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Abstract

We study the design of Bayesian incentive compatible mashemin single parameter domains, for
the objective of optimizing social efficiency as measuredbgial cost. In the problems we consider,
a group of participants compete to receive service from ahar@iem that can provide such services at
a cost. The mechanism wishes to choose which agents to seovddr to maximize social efficiency,
but is not willing to suffer an expected loss: the agents’mpegts should cover the cost of service in
expectation.

We develop a general method for converting arbitrary appration algorithms for the underlying
optimization problem into Bayesian incentive compatibkectmanisms that are cost-recovering in expec-
tation. In particular, we give polynomial time black-boxitetions from the mechanism design problem
to the problem of designing a social cost minimization alipon without incentive constraints. Our
reduction increases the expected social cost of the gigorigim by a factor o0 (log(min{n, h})),
wheren is the number of agents aridis the ratio between the highest and lowest nonzero vahgstio
in the support. We also provide a lower bound illustratingt tifnis inflation of the social cost is essen-
tial: no BIC cost-recovering mechanism can achieve an aqtion factor better thaf(log(n)) or
Q(log(h)) in general.

Our techniques extend to show that a certain class of trialgarithms can be made cost-recovering
in the non-Bayesian setting, in such a way that the appraioméactor degrades by at mastlog(min{n, h})).
This is an improvement over previously-known construciasith inflation factorO(log ).
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1 Introduction

Consider the following scenarion self-interested agents wish to receive service from a aksgrvice
provider. The provider can give service to any Setf the agents, but at a coét(S), where costs are
monotone:C'(S) < C(T') whenS C T. Each agent has a private value for obtaining service, wifief
could misrepresent if they so choose. The provider musiddegjiven the reported values of the agents,
which subset to serve and how much payment to collect frorh eae. The goal of the service provider
is to maximize the social welfare: the value of the servechegminus the service costs. How should the
server proceed, given that the agents are rational and maggitally manipulate their declarations?

If we ignore computational considerations, this mechardssign problem can be resolved via the well-
known VCG mechanism, which optimizes social welfare andiged truth-telling as a dominant strategy
(i.e., it is in each agent’s best interest to report his vatuthfully, regardless of the behavior of the other
agents). If we ignore the incentive constraints, then fonyr@oblems of this form (e.g. steiner tree, vertex
cover, etc.) there are known approximation algorithms disgain nearly efficient outcomes; however, such
algorithms in general do not admit payment schemes thatdvimaluce truth-telling behavior from the
participants. Finding satisfactory solutions that ovemeoboth the algorithmic and economic difficulties
inherent in such problems is the primary research agendeeifidld of algorithmic mechanism design.

A recent line of work has sought to address such problems bgidering theBayesiansetting, where
agent values are drawn independently from publicly-knowgiriButions. In such settings, there exist black-
box reductions that convert an arbitrary algorithm into meentive compatible (i.e., truthful) mechanism
with no loss in expected social welfare [9,/2) 10] (wherehfuiness in the Bayesian setting means that
truth-telling is a Bayes-Nash equilibrium of the mechanis®uch transformations reduce the mechanism
design problem to a purely algorithmic one, decoupling tbenemic and computational constraints. A
mechanism designer is therefore free to design approxomatgorithms, tailored to the specifics of the
problem at hand, without paying heed to issues of agent fivesn

Our study begins with the observation that these black-bduetions have an unfortunate property: the
server may incur a net loss in expectation. That is, the pajgmllected by the mechanism may not cover
service costs, in expectation over the agent types. Evervarseho wishes to maximize the social welfare
may balk at the prospect of following such a protocol. Ouriwading question, then, is whether the theory
of Bayesian black-box reductions can be maodified to avoidh sxpected losses. This can be viewed as
a Bayesian version of eost-sharingmechanism design problem, in which the costs for servicet ipeis
divided among the participants in the mechanism. Our dauiion is to initiate the study of such cost-
sharing problems in the Bayesian domain, and to exhibit gédidéack-box reductions converting arbitrary
algorithms into truthful cost-sharing mechanisms.

We note that, as in the theory of cost-sharing, one immdgliateounters strong impossibility results in
such problems: social welfare is an ill-behaved optim@atnetric for which no approximation guarantees
are possible in polynomial time even in the full informatietting [6]. Thus, following recent developments
in the cost-sharing literature [18], we describe econorificiency with respect to minimizing theocial
cost the service costs plus the total value of the agents whodatrsenved.

The problem of designing cost-sharing mechanisms thatnizei social cost has been extensively stud-
ied in the non-Bayesian domain. Truthful cost-recoverirgchanisms have been developed for many spe-
cific problem formulations, such as Steiner tree/folest 182 8, 16], facility location [16], multicast routing
[6], and scheduling problems [3]. These mechanisms gdndodibw a high-level approach due to Moulin
[13]. Roughly speaking, a Moulin mechanism proceeds byctiapan initial allocation and then iteratively
offering cost-recovering prices to the current set of play@ny player who is not willing to pay his offered



price is then removed from the set and the process repeath rBechanisms have been used with great
success for numerous problems, but in general the offeiedsomust be tailored to a particular problem
and algorithm; the construction does not generally appbriitrary approximation methods.

A more general construction, also based upon Moulin mesha)iwas recently proposed by Georgiou
and Swamyl[7] in the non-Bayesian setting. They show thatrhitrary approximation mechanism that
is dominant strategy truthful and satisfies a no-bossinesdition can be converted into a truthful cost-
recovering mechanism, while increasing the social cost Baceor of O(logn). This dependency on
matches a lower bound due to Dobzinski etlal. [5]. While theéthod applies to many types of algorithms,
including a broad class of LP-based algorithms, the trikefss and no-bossiness requirements limit its
generality. We ask: is a fully general reduction possibléhia Bayesian domain, where incentive and
efficiency constraints are required to hold in expectatioer the agent types?

Our Results Our main result is a general reduction that converts anrariglgorithminto a Bayesian
incentive compatible mechanism with the property that #es does not incur an expected loss. Our
reductions arblack-box meaning that they require only the ability to query the gisggorithm on arbitrary
input profiles. We actually provide two different reducsomith slightly different guarantees on social cost.
The first increases the expected social cost of the origlgatithm by a factor ofD(log n), and the second
increases the social cost of the original algorithm by agiaof O (log(vmax/Vmin)) Wherevyax andvmin

are the largest and smallest non-zero values in the supptiré @alue distributions. Combining these two
constructions, we contain the increase in social cost totaf®f O(min{log n, log(vmax/Vmin) })-

We also demonstrate that the increase in social cost egtlibig our constructions is essential. Specifi-
cally, based on the construction of Dobzinski etlal. [5], Wwevg that no BIC mechanism that recovers cost in
expectation can achieve an approximation factor (to thiengpsocial cost) better thafi (log(vmax /Vmin) —

v/ Vmax/Umin™). AN implication of this bound is that our dependenciesmoand vy.x/vmin are tight:
no cost-recovering BIC mechanism can achieve approximdaator o(logn) or approximation factor
o (IOg(Umax/'Umin))-

The ideas underpinning our reductions are motivated by tbelil mechanism. We apply the paradigm
of determining appropriate payments for each agent, amorpeatedly excluding agents who are unwilling
to pay the required amount. However, rather than sequngatiuding agents from an outcome returned
by the algorithm, we apply a pre-processing step to the gibgarithm in which we sequentially exclude
potential agent declarationsT his analysis makes use of well-known characterizatié®agesian incentive
compatibility with respect to an algorithm’s interim albd®n curves (the expected allocation to a player,
as a function of his declaration, over the space of dectaratof the other agents). The result of this pre-
processing step will be a pre-computed threshold, speoititet given algorithm; any agent who bids below
the threshold will be denied service regardless of the maigalgorithm’s outcome. High thresholds allow
the mechanism to charge large payments, but may subshamtietlease social costs. We prove that this
tension can be balanced so that costs are recovered bueysidlal costs are not increased by too much.

A technical difficulty in the above approach is that knowledtpout the algorithm, necessary to deter-
mine appropriate thresholds, must be obtained via samplihgch introduces errors. In order to guarantee
that the mechanism recovers costs entirely, rather thanapproximately, it is necessary to modify our
mechanisms to recover more cost than strictly necessarypréve that this has only a small impact on
social cost, which can be made arbitrarily small via addaicsampling.

We also note that our mechanism with approximation faQ0log(vmax/vmin)) €xtends to the non-
Bayesian setting as well. Indeed, we show that the costrgheonstruction due to Georgiou and Swamy [7]
can be modified so that it increases the social cost of a gigenitam by a factor oD (min{log 7, 10g(vmax/Vmin) }),



rather tharO(log n). This provides an improvement to the obtainable approxondactors when agent val-
ues lie in a small range or are drawn from a small set of passidues.

Related work Moulin mechanisms were proposed by Moulin|[13] and Moulind &henker[[14], who
show that the resulting mechanism will be cost-recoveriadoag as the prices offered satisfy a cross-
monotonicity condition. Moulin mechanisms have been &gpto various cost-sharing problems, such as
Steiner treefforest [12, 18, 18,/16], facility location.[16&julticast routingl[6], and scheduling problems [3].
For the most part such mechanisms are also required to bexapgitely budget balanced, meaning that the
mechanism does generate (too large of) a profit. Immorlica.diil] showed that, for certain problems,
such cross-monotonic pricing methods can imply that thgbtidalance approximability factor can be very
high.

Roughgarden and Sundararajanl [18] suggested social cestregric for social efficiency, allowing
the study of approximate efficiency in cost-recovering na@idms. Subsequent work considered the ap-
proximation factors of cost-sharing methods accordinchi® tnetric, for various problems [18, 13,117, 4].
Dobzinski et al.|[5] show that, for the public-excludableodgroblem C'(S) = 1 forall S # (), C(0) = 0),
any (ex post) truthful cost-recovering mechanism will beHiog ) approximation to the optimal social
cost.

Georgiou and Swamy provide a general method for convertimgpful algorithms into truthful cost-
recovering mechanisms. They say an algoritdnis no-bossyif, for eachi, if A serves a sef > i on
input v, then A will also serve this same séton any input(v;’, v_;) with v;/ > v;. They show that any
p-approximate algorithm that is dominant strategy trutl#ntl no-bossy can be converted into a truthful
cost-recovering)(p log n)-approximate mechanisii. They also provide a linear programming technique
for constructing truthful no-bossy algorithms. Their retlon applies in the ex post (hon-Bayesian) setting,
rather than the Bayesian setting that we consider.

In the Bayesian domain, where truthfulness is relaxed toeBiay incentive compatibility, there are
black-box reductions that convert approximation algonhinto truthful mechanisms in single-parameter
[9] and multi-parameter [2, 10] domains. These reductiomsin an additive loss to the expected social
welfare of the original algorithm, which can be made arbityasmall. These constructions do not consider
the cost recovery properties of the resulting mechanisms.

2 Preliminaries

Single Parameter Mechanism Design Mechanism design studies optimization problems with peiva
information. Among a set of biddefs] = {1,2,--- ,n}, a mechanism decides upon a sulssef receivers

of a certain service. Each biddehas a private valuation; for the service. To incentivize bidders to reveal
their valuations truthfully, the mechanism also chargesyament. Formally, a mechanism consists of an
allocationrulex : R’} — [0, 1]" and apaymentulep : R’ — R’!. For avaluation profiler = (v1,...,v,),
x;(v) is the probability that bidderreceives the service, apg(v) is the payment made by biddeBidder:
has a utility ofz;(v)v; — p;(v). A mechanism is said to badividually rational (IR) if no bidder ever has

a negative utility. We impose the IR condition throughowt traper. A mechanism is said to be post
incentive compatibler truthful if,

xi(vi,v_i)v; — pi(vi, v_g) > (v’ v ) — pi(vi v_y), Vi, Vi, v, v_;. (1C)



Social Welfare and Social Cost A well studied objective in mechanism design is twial welfare
defined aszies v;, whereS' is the set of bidders receiving a service. In this work, weaufoon scenarios
where a cost(.S) is incurred when subsef is served. We assume th@f(()) = 0, and thatvS c T,
C(S) < C(T). Thesocial costof a subsetS is C(S) + Y45 v;- Given an algorithmd : R} — 20,
we write the social welfare aft onv asSW (A, v), and the social cost similarly &' (A, v). We say a
mechanism recovers its cost if for ally , p;(v) > C(S5).

Bayesian Mechanism Design This paper focuses on situations in which bidders have ardgmplete
information regarding the other bidders, captured by théysbf Bayesian mechanism design. Each bidder’s
valuationwv; is independently drawn from a known distributidn, with probability density functionf;.
By scaling all values and costs down, we may assume with@sgt &b generality that all distributions are
supported on0, 1]. We denote by,.x the supremum of the support of dl}'s, and vy, the infimum of
nonzero values in the support. We assumg is bounded away fror and denote by the ratiov,,ax /Vmin-
The allocation rule of a mechanism gives rise to an interitocation for each bidder. The interim
allocationz;(v;) is bidderi’s probability of getting served, taking an expectation rotree other bidders’
valuations, i.e.E,_,[z;(v;,v_;)]. A mechanism is said to d®ayesian incentive compatib{BIC) if

zi(v)v; — By_, [pi(vi,v—4)] = xi(vi")vi — Ey_, [pi(vi’,v-4)] Vi, v, vy (BIC)

The termE,_, [p;(vi, v—;)] is also called the interim paymep{(v;). Interim allocation rules and payments

of BIC mechémisms are characterized by the following ctasesult.

Lemma 1 (Myerson_15) A mechanism with interim allocation rulesis BIC iff eachz; is monotone non-
decreasing, and the expected (or interim) paymegf;) made by bidde# with valuationv; is v;z;(v;) —

fovi ri(y) dy.

We will denote bySC/(A) the expected social cost of an algorittdni.e., Ev[C(A(V)) + 3¢ 4(v) vil-
We say a mechanistv! recovers its cost in expectationtf, [, pi(v)] > E[C(M(v))], whereM(v) is
the set of bidderd1 serves at valuation profike, which is allowed to be randomized. Under the requirement
of cost recovery in expectation, it is without loss of gelfigrdo assume that a BIC mechanism charges a
payment of% to bidder: with valuationv; when he is served, artdwhen he is not served.

Black-Box Reductions for BIC Mechanisms While ex post truthful mechanisms optimize objectives
(such as social welfare) in the straitjacket of incentivestmints, Hartline and Lucier|[9] showed that, if one
were to relax the solution concept to that of BIC, essegtiatfly (approximate) social welfare maximization
algorithm can be transformed to a BIC mechanism with litbkesl of social welfare.

Theorem 2 (Hartline and Lucier/9) In any single-dimensional setting where the agents’ vabuat are
drawn independently from known distributions, given any 0, there is a polynomial time computable re-
ductionR such that, given any algorithtd, R(.A) is a BIC mechanism with, [STW (R (A))] > E[SW (A)]—

€.

The resampling technique 2 easily applies todttangs where expected social cost is the
objective, and we have the following corollary.

Corollary 3. In any single-dimensional setting where the agents’ vaduatare drawn independently from
known distributions, given arny > 0, there is a polynomial time computable reductiBrsuch that, given
any algorithmA, R(.A) is a BIC mechanism with, [SC(R(A))] < Ey[SC(A)] + e.
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ALGORITHM 1: A reduction from BIC cost-recovering-in-expectation sd@ost minimization to BIC social
cost minimization

Input : A BIC algorithm.4 and a valuation profile

Output: A set of agents to be served, and a price for each agent

1 LetS(v) =set of winners returned byt on inputv; compute the interim allocation rutein A ;
2 forj=0tol+ |logh| do

LetS;(v) = {i € S(v)|v; > 27}

Letp; j(vs) ’ sy
1,5 (Vi) = Vi i '
Di,j viwi(v;) — [y ziy) dy if v; > 27

it By [C(S;(v)] < Ey[S, pis(v)] then
Setk = j;
L Go to stefh B.

3 Serve agents is;(v), and charge agenta price of”;k(g;) .

We note that Hartline and Lucier proe Theoreim 2 by first shgwiow to construct aa-BIC mech-
anism, then showing how to convert this into a BIC mechanisia small loss to social welfare. Due to
the difference in the objective, the technique does nottirepply to our case; a minor modification to
the construction of Hartline and Ludier is required. In Apgix [Al we briefly describe the construction
involved.

3 Bayesian Incentive Compatible Cost Recovery

In this section we present our main result of converting doitrary algorithm to a Bayesian Incentive
Compatible mechanism that approximately minimizes samat in expectation, and recovers cost in ex-
pectation. We give two separate reductions, one that giv@dw /) approximation, and the other gives an
O(log n) approximation, and thus we have)q min {log h,log n} ) approximation.

Remark 4. Our reductions require computing certain expectationschivban be obtained only via sam-
pling, and hence with small error. In this section, all expdons are assumed to be accurately available,
i.e., we assume functional access to the interim allocatites and valuation distributions. We refer to this
as functional access to an algorithm. We address the ereotadsampling in the more realistic black-box
model in[Sectionl4. Also, the truthful payment correspogdimthe algorithmA requires knowing the out-
put of A on infinitely many values. In this section, we also assumeititarim payments are accurately
available, and we describe the procedure to circumventahie i Section]4.

In the presentation 5, itis convenient to scaleat@ns to[1, /| from [0, 1], mappinguyi, to 1.

Theorem 5. Given functional access to an algorithshwhich incurs an expected social cost@fA), and
when the values of all agents are distributedlink|, the reduction ifi Algorithm|1 outputs a BIC mechanism,
which incurs an expected social cost@flog »)C(.A) and recovers the cost in expectation.

Proof. By Theorem 3.1 of.[9] (arxiv version), it is without loss ofrggrality to assume that the input al-
gorithm A is BIC, i.e., has a monotone increasing interim allocatigle.r(Theorem 3.1 of [9] is a version



of [Corollary 3 where full functional access to allocatiorteris available, and shows that in such settings
there is not even an additiveloss.) proceeds in two phases. In the prepracggshase, it
computes a numbeérto be used in the next phase. This phase does not depend agethis’actual valua-
tions, and only uses information of the valuation distridma$ and the algorithri. In the second phase, the
mechanism uses bidders’ bids (declarations of their vians)t andk to modify the setS(v) returned byA.
The actual set of winners and payments are determined irettuand phase.

In the preprocessing phase, the mechanism experimentstnitbating the interim allocation o4
at different thresholds. To truncate an interim allocatiale x; at a threshold is to refuse service to all
agents that report values below the threshold, while kegjpitact services to others. The resulting interim
allocation rule is still monotone after truncation. The payntp; ;(v;) computed by the algorithm is simply
the expected payment made by the agent in such a truncabedtadh rule (recallLemma 1).

By the procedure outlined for computirigin [Algorithm 7], it follows that the resulting mechanism
recovers the cost in expectation, i.e., when the “if” caiodiin the algorithm becomes true, cost is recovered
in expectation. (Note that there is always #or which the “if” condition becomes true: &= 1+ |log i,
we haveS,(v) = (), and the “if” condition becomes true.) In addition, for alE 0. ..k — 1, we have

E, Zpi,j(vz)

We claim that, in expectation, the additional social costimed by the mechanism when dropping the
agents inS(v) \ Si(v) is bounded by a®(log h) factor timesC(.A). To begin with, the expected social
cost of the mechanism is

< Ey[C(S;(v))]- (1)

C(Sk(v) + Y vim(v)+ Y v]
)

¢S (v) 1€S(V)\Sk(v

SinceSi(v) C S(v), the first two terms are upper bounded®yA). We therefore need only to bound the
last term. Looking at this term from each agent’s perspective have
2j+1

> ] ZZ/ v (v) fi(v; dvz§2ZZ/ 2 x;i(v;) fi(v;) dv;.

iES(v)\Sk(v) i j=0 i =0

27+1

E,

Sincep; ;(vi) = vizi(vi) — [57 2i(y) dy > 29z;(v;) for v; > 27, we have

sz,j Uz ] .

But by (1), for eachj < k, Ey[>", pi ;(v;)] is in turn bounded byE, [C(S;(v))] < E[C(S(v))] <
C(A). As there are only: < log h suchj’s, the additional social cost is at mastlog ) timesC(.A).

23

2J+1

ZZ/ 2J:£Z (vi) fi(v;) dvz<ZE

i j=0

O
We now present the other reduction that gives better apmations whem is smaller tharh.

Theorem 6. Given functional access to an arbitrary algorithgh which incurs an expected social cost
of C'(A), the reduction in Algorithm|2 outputs a BIC mechanism, wincurs an expected social cost of
O(logn)C(A) and recovers the cost in expectation.
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ALGORITHM 2: A reduction from BIC cost-recovering-in-expectation sd@ost minimization to BIC social
cost minimization

Input : A BIC algorithm A; C(S) for every setS of agents; a valué > 0

Output: A set of agents to be served, and a price for each agent

1 Initialize So(v) = S(v) = set of winners returned byt on inputv, calculate interim allocation rute in A;
2 forj=0,1,2,... do

LetS;(v) = {i € S(v)|v; > t;}
0 if v; < tj
Letpi"j (Ui) - {Uil'i(’l)i) — f;j? .Tz(y) dy if v = tj
if Ev[C(S;(v)] < Ev[)_; pij(vi)] then
Setk = j;
L Go to stefyi B.

3 Serve agents if;(v), and charge agente Sy (v) a price offs(v)

:E,,(Ul) )

Proof. The idea behind the reduction is similar to that of Theoréfte main difference is in the definition
of the setsS;(v). They are defined inductively, as sets of agents whose valaéave the average cost
threshold.

By the same argument as before, the mechanism recoversghim @xpectation by its definition d.
In addition, we show that the algorithm will terminate aftefl/6) steps. If for somg we hadt; < ¢;_;
then by definition ot; we have:

[EV[C Si—1(v))]
Ev[[Si-i(v)[] — v[[Sj-1(v)]]

A

-‘ :tj Stj—ly
1)

which in turn implies:

B, [C(S;-1(v)] < 11 By [Sj-1(V)[] < By

Zpi,j—l(vz’)] )

where the last inequality follows from noting that at itésatj — 1 the payment of any player that is served
is at leastt;_;. Thus at that point it must be that the algorithm terminateiteaation j — 1, since the “if”
condition gets satisfied. Therefore, it follows that as lasghe algorithm has not terminated,> ¢;_1,
and since by definition the thresholds are multiples Bit must be that; > t;_ + J. Thus the algorithm
will terminate afterO(1/4) steps (since values lie [, 1]).

To complete the proof, similar 5, we need to bobied@rmEy [3 ;¢ (v )\ s, (v) vi]- Define
(1) inductively as follows:(0) = 0, and

) min {£ : Ey[|S,j_1)(v)| = |S¢(v)[] > 1} if such ant (< k) exists
T =
J k otherwise

11z]s is the smallest multiple of that is larger tham:



Note thatr(j) > r(j — 1), andt, ;) > t,(j_1). Let jmax be the smallesf for whichr(j) = k. Note that

Jmax < n since there are at mostagents, i.e.E,[|S(v)|] < n and therefore the number of times that the

expected service set size can decrease is atmdstt a; = Ey[|S,;_1)(V)| — [S,¢;)(v)[]. By definition
;> 1forall j < jmax. We have,

Jmax p
E, [ > ’Uz'] <> Z/ . vizi(v;) fi(vi) dv;
ieS( ) 2

V\Sk (v

i j=1 tr(jfl)

=1
Jmax Jmax EV[C(ST( )_I(V))]
Jz_:l (5 JZ::I E[S,;)_1(v)]] 5 J

Jmax
_ZE 5( )ﬁ (Z)i] 0 +nd < O(logn) By [C(S(V))] + nd,

where the last-but-one inequality follows from noting t@i"‘af‘ aj <EJ[|SWV)]] <n.
For the last inequality begin by noting that.x < n and for allj < jnax, o > 1. We need to show

Jmax Jmax ay Jmax a;y
that 7" gorsmys S S O(logn). Note thaty 4™y B SOy ar S > iy S =

1+ Zj-'ia" 1 % In the final summation, all the;’s involved are at least. The following

J<L<jmax—1

claim completes the proof of the last inequality since WeehE\i"‘ax aj < n.

Claim 7. Givenk real numbersiy, ..., ag, such thats; > 1 for all 4,
k (l
<2-H )
j:l tZ] Q¢ ] 1\_ ]J

whereH, =37, % <1+logr.

Proof.




k
la, ]
< _tJJ
= ; S lad) +HZ§:1LaJ-J

2J

We now show tha@k Ll o H. We drop the floors, and assume that thés are

I=1 s gla] = ;:ﬂajJ'
integers in the part below. Consider the t >J e
t>g
= + ...+
Dzt ajtajpt.Fag aj + aj41+ ...+ ag
a; times

1 1 1
+ +...+
1—|—aj+1—|—...—|—ak 2—|—aj+1—|—...—|—ak aj—|—aj+1—|—...—|—ak
N t

t:1+zk>j ag

IA

So we have,

O

On choosing = ¢/n, we approximate social cost to a factor@flog n) with an additive loss of. The
number of iterations is at mo%t: 2 because after/J iterations the threshold would have reached O

4 Sampling and the Black-Box Model

The mechanisms 3 work under the assumption teahéthanism designer has complete knowl-
edge of the interim allocation rules and valuation distiims in functional form, and can perform arbitrary
calculus on those functions. This is a strong assumptiogeireral it may be highly non-trivial to precisely
determine the interim allocation rules of an arbitrary aitpon. In this section we describe ways to imple-
ment the reductions 3 in a more realistic mode:algorithm A is provided as a black box that
can be queried on arbitrary input vectors. We refer to thihablack-boxmodel of computation.

Our approach will be to estimate the allocation rulesdofia sampling, then apply the reductions from
the ideal model. This introduces sampling error that mudidaended; the result will be a mechanism that
is approximatelycost-recovering. We will then show how to modify our constions to be cost-recovering
in the non-approximate sense. The following theorem surizesthe result.

Theorem 8. Givene > 0, black-box access to algorithtd and distributionF', one can construct a BIC
mechanism\ that is cost-recovering in expectation, Wik [SC(M)] < O(min{log(h),log(n)}) Ev[SC(A)]+
e. The mechanism runs in time polynomiallife, n, and the runtime of4.
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4.1 Computing BIC payments

Suppose that we are given an algoritbtrwith monotone interim allocation rules, and moreover we are
told that charging the expected payments of Lemma (b, ) = viz;(vi) — [, @i(y) dy, would recover costs
in expectation. In this case, all that would be required taioba BIC mechanism is to execute algorithm
A and compute payments so that the expected payment of agept(v;). However, in the black-box
model the mechanism can determine the value of the allotatiles (and hence the required payments)
only approximately; charging approximate payments isffigant for Bayesian incentive compatibility.
There is a well-known procedure to estimate integrals wia@oan sampling, used by Archer et al. [1] to
compute payments. For the purpose of having a self-comtagrposition, we explain the procedure below.

Theorem 9. Let f(-) be the probability density function of a random variablez [0, v]. ThenEy[m] =

Y
Jo h(z)dz.

The proof of the theorem follows from the definition of a prbllity density function. Thus one way
to estimate the integrgfl)” z;(y) dy is to draw a random variable from the uniform distributiori’ [0, v;],
and returnv;z;(Y). In expectation, this quantity precisely equﬂé x;(y)dy. Furthermore, the payment
of vz (v;) — viz;(Y) is always non-negative sineg(-) is monotone, and thus the mechanism is ex-post
IR.

~

4.2 Estimating Interim Allocation via Sampling

We now describe a method for implementing Algoritims 1 [@nch2mvthe interim allocation rules are not
given explicitly. Recall first that, 3, given > 0 and an arbitrary algorithrd, we can construct
an algorithmA with monotone interim allocation rules such tl[SC(A)] < E,[SC(A)] + ¢;. We will
therefore assume for the remainder of this section that ltq@ithm .4 has monotone interim allocation
rules.

Given black-box access to algorithp, we will construct approximations to its allocation rules a
follows. We first choose some& > 0, and partition value spadé, 1] into intervalsl, = ((k — 1)d, kd]
for k € [1/6]. Letx denote the interim allocation rute discretizedover the intervaldy: that is, for each
v; € I, we deflnefl(vl) = Evi [ml(vl)m € Ik].

For eachi and eachk € [1/6], we will sampleN = 2 log(nk/e) valuation profiless ~ F, conditional
onv; € I,. We will then runA on each of thesé/ inputs, and count the number of times that the resulting
allocation includes agent Denote byM;;. this number. Lek be the allocation rule defined by (v;) =
maxy<{M;}/N for all v; € I),. We think ofx as an estimated version ®f Note that the reason for the
max in the definition ofz; is to guarantee that is monotone.

We claim that the result of this sampling generates an esitwaallocation rulex, in the following
sense.

Definition 1. Allocation rulesx andx’ aree-closeif |x;(v;) — ;' (v;)| < € for all i andw;.

Lemma 10. Letx be the allocation rule defined b (v;) = M;;/N. Then with probabilityl — e over the
randomness in the sampling procedutejs e-close toz; for all i.

Once our sampling is complete, we have full functional asdescurvesx. We can therefore apply
Algorithms[1 and R to the curves. We claim that, for either algorithm, the analysid of Sez@owill go
through unchanged, except that each mechanism will be @pisoaimately cost recovering. We obtain the
following result, the proof of which appears in Appendix B.
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Lemma 11. Givene > 0 and black-box access to algorithi, one can construct a BIC mechanisi
with E [SC(M)] < O(min{log(h),log(n)}) Ey[SC(A)] + . Moreover, the expected payments\iihare
atleastE, [C(S(v))] —e.

It remains to show that we can modify our mechanism to recexpected costs entirely, rather than ap-
proximately. This requires a modification to Algorithins 1d& Each algorithm is currently designed
to iterate untilE,[> ", pi(v)] > Ey[C(S(v))]. We will modify each algorithm to instead iterate until
E >, pi(v)] > Ey[C(S(v))] + €0, for some appropriate, > 0. This additional payment ofy will
be chosen to cover the expected losses due to sampling &vtost we must show is that this modifica-
tion does not inflate the expected social cost by too much. edew this follows immediately from the
form of our analysis: in either case, our analysis procegdsdunding the loss with respect to the cho-
sen threshold, then bounding this threshold with respe&t@’'(S(v))]. If we replace this latter bound
with (Ey[C(S(v))] + €), the result is an extra term that is at mest An appropriate choice of there-
fore leads to an arbitrarily small increase to the sociat,casd the expected sum of payments is at least
E[C(Sx(V))] + € > (E[C(Sx(V))] —€) + ¢ = E[C(Sx(v))], as required. The resulting mechanisms
therefore recover costs in expectation, completing thefprtiTheorem 8.

5 Lower Bound for BIC Expected Cost-Recovering Mechanisms

We now show that a lower bound on the approximation to socist given by Dobzinski et al. [[5] extends
to BIC mechanisms, and we tighten the analysis there sohibdbtver bound is in terms of both andh.
In particular, ifh < n, then the lower bound i€ (log k). In general, we show a lower bound @flog h —

Vh/n).
Example 1 (Lower Bound on BIC Social Cost Minimization with Cost Reeoy). Consider the following
public excludable good problem: ageirg valuation isv; = 7- where eachu; is drawn independently

according to the so-called equal revenue distribution déhsity functionf(z) = ;1; for z € [1, h] and isO
with probability +. The cost function is given bg()) = 0 andC(S) = 1 for all S # 0.

It is easy to see that, without requiring cost recovery, wg giaply serve every agent and incur a cost
of 1. Next we give a lower bound for the expected social cost ofasy recovering BIC mechanism. The
proof of[Theorem 12 is deferred to Appendik C.

Theorem 12. Any BIC mechanism for the public excludable good probleneridsd above that recovers

cost in expectation has expected social cost at I@ggig(h) — /2).

n

6 Ex-post Truthful Cost Recovery

Georgiou and Swamy/|[7] proposed the following notiomofbossinesfor an algorithm and gave a proce-
dure to convert any truthful, no-bossy algorithm to an ex praghful, cost recovering mechanism with an
inflation of social cost up to a factor 61(log n).

Definition 2 (No Bossy, [7]) An algorithm A is said to beno bossyif, for every i, v;, v;/ andv_;, if
1€ S(’UZ',U_Z') and: € S(Ui/,v_i), thenS(Ui,U_i) = S(Ui/,v_i).

In this section, we show that such a conversion is also plessiith an inflation ofO(log k) in social
cost. For the special case in which all agents have eitheegabr 1, our conversion does not require the
input algorithm to be either truthful or no bossy. Proofsiirthis section appear in Appendix D
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ALGORITHM 3: A black-box reduction from ex-post truthful cost-recowgrsocial cost minimization to social
cost minimization fo0/1 valuations

Input : An algorithm.4 and a valuation profile
Output: A set of agents to be served, and a price for each agent

1 Initialize S(v) = set of winners returned by on inputv;
2 LetS(v) « S(v)\ Z(v), whereZ(v) = {i € S(v)|v; = 0};
3 if C(S(v)) < |S(v)| then
L Serve agents iEf(v); charge a price of for each agent i|§(v) and zero for the rest.

else
| Don’tserve any agent and charge zero

ALGORITHM 4: A black-box reduction from truthful cost-recovering sdaast minimization to truthful, no-
bossy social cost minimization

Input : A truthful, no-bossy mechanisii, and a valuation profile
Output: A set of agents, and a payment for each of them
1 Initialize S(v) = set returned byM on inputv, andS;(v) = {i € S(v)|v; > 27};
2 for j=0to |logh] do
If 27 15;(v)| = C(S;(v)):
1 setk=j

2. Serve agents ifiy (v); charge each of them a price f

3 Setk =1+ |logh]; no agentis served or charged.

6.1 Black-box reduction for0/1 valuations

When all bidders’ valuations are eith@ior 1, there is a simple procedure to convert any social cost mini-
mization algorithm to an ex post truthful, cost recoveringamanism without increasing the social cost, as

we show irf Algorithm B and Theorem|13.

Theorem 13. When bidders have only valuatiof®r 1, given black-box access to an arbitrary algorittn
which incurs a social cost of'(A), the black-box reduction ip Algorithnj 3 outputs an ex posthtul
mechanism whose social cost is no more thgm).

6.2 Black-box reduction for general valuations

In this section, for convenience of presentation we agaifesgp the valuations so that they lie in the range
[1,h]. We give a black-box conversion from a truthful, no bossy a&ism to a truthful, cost recovering
mechanism with an inflation of social cost by a facto€ginin{log h,log n}). This is achieved by choosing
the better one betweén Algorithm 4 and the reduction by Geomand Swamy [7], whose inflation factor is
bounded byO(log n) alone. We now show that the inflation factof of Algorithin 4 @ibded byO(log h).

Theorem 14. When values of all agents lie |i, /], given black-box access to a truthful, no-bossy mecha-
nismM with social costC (M), the black-box reduction 4 outputs a mechanigmch recov-
ers cost and incurs a social cost©flog h)C(M).
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Instead of experimenting with thresholding at powerg,@hIgorithm 4 has the option of proceeding at
more flexible paces. In particular, we easily obtain theofelhg corollary.

Corollary 15. Given a truthful, no-bossy mechanist that incurs a social cost of’(M), and when
valuations of all agents reside ifwy, ..., v}, there exists an efficiently computable black-box redactio
that outputs a mechanism which recovers cost and incursialsamst of at mosO (kC'(M)).
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A Improving ¢-BIC to BIC

In this section we discuss the construction from the stat¢wfeCorollary(3. The purpose of the discussion is
to illustrate a minor modification to the method of Hartlimald_ucier 9 for converting-BIC mechanisms to
BIC mechanisms. We will briefly recall theirBIC construction for the sake of completeness, then dasscri
how to modify it to obtain a BIC mechanism while incurring wia small increase to the social cost.

A.1 Thee-BIC Reduction

The ¢-BIC reduction due to Hartline and Lucier 9 is as follows. Boge.A is an arbitrary social cost
algorithm with (unknown) interim allocation rules For each, we will first partition the value spade, 1]
into 1/4 intervals of widthd; write I;, = (kd, (k + 1)0] for the kth such interval.

Suppose first that we knew the valuelf, [x;(v;) | v; € I;] for eachi andk. Given this information,
we could perform the following monotonizing operation. \Wmstruct a certain partitio® of [0, 1] (into
intervals), whereP is a coarsening of the intervalg; that is, each interval endpoint i will be a multiple
of §. Suppose the intervals iR arely, ..., I; for somel < 1/6. GivenP (whose construction we have not
described), we will define algorithod as follows:

1. For each ageni if v; € Ij’- € P, then drawy;’ ~ F.

2. ReturnA(v')
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Hartline and Lucier|9 show that there is a way to construditpar P so thatA4 is BIC, and.A has the same
social cost asd.

Next suppose that the value Bf, [z;(v;) | v; € I] is not known explicitly for alli andk. In this case,
our reduction will attempt to estimate these values. We dbystaking many sampleg ~ F subject to
v; € I, and executingd on each sampled value profile; our estimateHor|z;(v;) | v; € Ix] will be the
fraction of these samples for which serves agent. Chernoff-Hoeffding bounds imply that if we take
O(% log(n/\0)) samples per agent and interval, then every estimate willitténw\ of the true value with
probability at least — A. Write x for the estimated allocation curves.

Estimates in hand, we can perform the monotonizing operatescribed above on the estimated allo-
cation curves, as if they were the actual curves. Hartlinklartiern 9 show that, if this is done, the resulting
algorithm is approximately monotone: with probability — )), it is true that for each, if Z; is the interim
allocation rule for agent, thenz;(v;) < T;(v;) + 2X for all v; < v;. Also, the expected social welfare
decreases by at mogt + 2¢)n as a result of this reduction. Since social cost is simply.,,, v; minus the
social welfare, this implies the social cost increases bipa@gte for an appropriate choice df andd.

A.2 Obtaining a BIC Reduction

Suppose tha# is ane-BIC algorithm, constructed via the reduction describedvab An important fact
about A is that it has allocation rules that are piecewise-constemthe intervalsl;,. Thus, any non-
monotonicities in an interim allocation curve gf can occur only at finitely many possible input values;
specifically, at multiples of. Our approach for modifyingd to be BIC will therefore be to modify its
allocation curve in a blatantly monotone way over the irdenbetween these multiples &f Specifically,
we will reduce the probability of allocating to an agéry ek whenever he declares a value on interval
Since there are only/§ such intervals, the overall increase in social cost dueisoctange will be small.

More formally, we perform the following modification to alginm A. Our new algorithm A, proceeds
as follows, where we set = 2¢/0.

1. With probabilityl — ~, return.A(v).

2. Otherwise, choose an ageniniformly at random. Ifv; € Iy, then return{:} with probability £,
otherwise returr.

Claim 16. If A is e-BIC and piecewise constant on intervd}s thenA is BIC.

Proof. Write #; for the interim allocation rule ofd. Choose anyl < k < 1/6 and suppose € I and
v' € I11. Then

zi(v) = (1 = )Zi(v) + vkd
< (1 =7)@i(v') + 2€) + kS
< (1 =770 +2e+vy(k+1)5 —
=1 —70W) +v(k+1)d
= z;(v')
and hence; is monotone, as required. O

Claim 17. The expected social cost dfis at most the expected social costoplusyn.
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Proof. Note that we can assume th@t{i}) < n for all i; otherwise we would never serveand could
remove agent from the mechanism. We therefore have

EV[SC(A7 V)] < (1 - V)EV[SC(X7 V)] + 7 - max {Z Vi, C({l})’ ce ’C({n})}
< (1 - V)EV[SC(“TL V)] + mn
as required. O

Thus, fore’ = 2ne/§, we conclude thal is BIC and has expected social cost at most thad glus .
In other words, given an arbitragy, we can chooseands sufficiently small (but polynomial ia” and1/n)
such that4 is BIC and increases expected social cost of the originalriilgn 4 by at moste’, as required

by Caraliary 3.

B Omitted proofs from Section[4

B.1 Proof ofLemma 10

The expected value a¥/;;,/N is preciselyEy [z;(v) | v; € I;]. By Chernoff-Hoeffding bounds, afte¥
samples the probability thad/,;, /N — E[M,;/N]| > e is at mosted /n. Taking the union bound over all
i andk, we have thatM;, /N — E[M;;/N]| < e for all i andk with probability at mostl — €. This also
implies that|z;(v;) — T;(v;)| < € for all ¢ andv;, as required. O

B.2 Proof ofLemma11

Let us first recall the statement of the lemma. Given 0 and black-box access to algorith/ we claim
that one can construct a BIC mechanigrhwith E, [SC(M)] < O(min{log(h),log(n)}) Ev[SC(A)]+e.
Moreover, the expected paymentsht are at leasE, [C(S(v))] —e.

We first note that discretizing allocation curves alongrnves of lengthd can increase social cost by at
mostdn, as each agent’s value changes by at m@s a result of this approximation. We therefore note this
increase in social cost and assume for notational convemitvat each; is constant on each intervaj.

Our mechanism will proceed by constructifgas described above, and then apply eifher Algorithm 1
or[Algorithm 3, depending on which of or  is smaller. In either case, the algorithm will compute some
threshold?". The mechanism will proceed by eliciting valuation profilequerying.A(v), and then serving
those agents in the resulting setvith value at leas’. Regardless of the threshold returned, this mechanism
will be BIC.

In the event thak is note-close tox, the social cost generated by the resulting mechanismviallyi
bounded by:. Since this event occurs with probability at mesits contribution to the expected social cost
is at mosten. We therefore assume thatandx aree-close.

For either algorithm, the thresholdis chosen so that expected payments, as computedXroatover
expected costs in expectation. Since eagls e-close to the true curve;, the estimated payments differ
from the true payments by at mostfor each agent. This has two effects: first, in our analysisach
algorithm, bounds on the increase to social cost includeran ef up toe per agent, as;(v;) < x;(v;) + €
for all i. Thus, there can be up to an additioealincrease in social cost due to the threshiBldpplied.
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Second, the true BIC payment (frém Lemnia 1) may differ fromdpproximate BIC payment by up to
€, for each agent. Thus, the expected payments of mechakismay be up tan less than was computed
by either algorithm. In particular, it may be that the expelgbayments are as low &s, [C'(S(v))] — en.

To summarize, our resulting mechanism will h&g[SC(M)] < O(min{log(h),log(n)}) Ev[SC(A)]+
(0 4 2¢)n, and will have expected payments at IeB${C(S(v))] — en. Taking an appropriate choice of
andé then completes the proof. O

C Proof of Theorem[12

It is well known in auction theory (e.g. Myersonl 15) that,rfran agent whose valuation is drawn from the
equal revenue distribution, a BIC mechanism can extracympat of at most in expectation. Therefore,
any BIC mechanism fdr Examplé 1 can collect payments at mastexpectation. Since the mechanism
recovers cost in expectation, the expected cost must be ssttﬁms well. But unlesss = ), C(S) = 1.
Therefore,

Pr[S # 0] < i

LetV be), v;. Observe that

E[V]=nEvy] = loih, Var[V] = n Var[y;] < 16%’ o(V) < i h/n.

By Chebyshev’s inequality, we have

Pr |V <

log(h) — 2+/h/n <1
4 4

The expected social cost of a cost recovering BIC mechagisiis at most:

h) —2y/h/n
4

log(h) — 2+/h/n

P
d 1

S=0AV >

B [SC(M)] > %8

By the union bound, the latter probability is at Ieést'l’herefore,

- log(h) — 2 h/n'

E [SC(M)] > 3

D Omitted Proofs from Section[6

D.1 Proof of Theorem[13

The mechanism output 3 can be clearly seen toutkftl: an agent with valué never wins,
and an agent with valukegets a zero utility, and so no agent has motivation to mistépevalue. It recovers
cost because it serves agents only if the cost can be recowiso, as§(v) C S(v), if S is served, then
the social cost is less than th@f.4) since the agents ii(v) — S(v) does not add to the social cost; on the
other hand, if no agents are served, the change in socialsa0$6 (v)) — |S(v)| < 0. O
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D.2 Proof of Theorem[14

It is easy to see that the procedurg in Algorithm 4 guarantessrecovery. To see that it is truthful, note
that if an agent is served, then misreporting his valuaad$ either to non-service (to his disadvantage)

or to service with the same cost and payment (by the no basswofe\1); if an agent is not served, he will
not have an incentive to overreport his valuation to be skbarause he would not do that.m (because
M is truthful) and now the payment is even higher thaovih Now, similarly to the proof of Theorem 5,
we need only to bound the additional social cost inflicteddfusing service to bidders with valuations no
more thare®,

By the wayk is determined, we have

2185(v)| < C(Sj(v)), Vi<k. 2
Using this, we have
k—1 k—1 ' k—1
Yoo uw=) > v < PTS;(v)] <) 2C(85(v)) < O(log h)C(M).
i€S(v)\ Sk (V) 7=04eS;(v)\Sj11(v) §=0 j=0
O
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