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Abstract

We study the design of Bayesian incentive compatible mechanisms in single parameter domains, for
the objective of optimizing social efficiency as measured bysocial cost. In the problems we consider,
a group of participants compete to receive service from a mechanism that can provide such services at
a cost. The mechanism wishes to choose which agents to serve in order to maximize social efficiency,
but is not willing to suffer an expected loss: the agents’ payments should cover the cost of service in
expectation.

We develop a general method for converting arbitrary approximation algorithms for the underlying
optimization problem into Bayesian incentive compatible mechanisms that are cost-recovering in expec-
tation. In particular, we give polynomial time black-box reductions from the mechanism design problem
to the problem of designing a social cost minimization algorithm without incentive constraints. Our
reduction increases the expected social cost of the given algorithm by a factor ofO(log(min{n, h})),
wheren is the number of agents andh is the ratio between the highest and lowest nonzero valuations
in the support. We also provide a lower bound illustrating that this inflation of the social cost is essen-
tial: no BIC cost-recovering mechanism can achieve an approximation factor better thanΩ(log(n)) or
Ω(log(h)) in general.

Our techniques extend to show that a certain class of truthful algorithms can be made cost-recovering
in the non-Bayesian setting, in such a way that the approximation factor degrades by at mostO(log(min{n, h})).
This is an improvement over previously-known constructions with inflation factorO(log n).
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1 Introduction

Consider the following scenario:n self-interested agents wish to receive service from a central service
provider. The provider can give service to any setS of the agents, but at a costC(S), where costs are
monotone:C(S) ≤ C(T ) whenS ⊆ T . Each agent has a private value for obtaining service, whichthey
could misrepresent if they so choose. The provider must decide, given the reported values of the agents,
which subset to serve and how much payment to collect from each one. The goal of the service provider
is to maximize the social welfare: the value of the served agents minus the service costs. How should the
server proceed, given that the agents are rational and may strategically manipulate their declarations?

If we ignore computational considerations, this mechanismdesign problem can be resolved via the well-
known VCG mechanism, which optimizes social welfare and induces truth-telling as a dominant strategy
(i.e., it is in each agent’s best interest to report his valuetruthfully, regardless of the behavior of the other
agents). If we ignore the incentive constraints, then for many problems of this form (e.g. steiner tree, vertex
cover, etc.) there are known approximation algorithms thatobtain nearly efficient outcomes; however, such
algorithms in general do not admit payment schemes that would induce truth-telling behavior from the
participants. Finding satisfactory solutions that overcome both the algorithmic and economic difficulties
inherent in such problems is the primary research agenda in the field of algorithmic mechanism design.

A recent line of work has sought to address such problems by considering theBayesiansetting, where
agent values are drawn independently from publicly-known distributions. In such settings, there exist black-
box reductions that convert an arbitrary algorithm into an incentive compatible (i.e., truthful) mechanism
with no loss in expected social welfare [9, 2, 10] (where truthfulness in the Bayesian setting means that
truth-telling is a Bayes-Nash equilibrium of the mechanism). Such transformations reduce the mechanism
design problem to a purely algorithmic one, decoupling the economic and computational constraints. A
mechanism designer is therefore free to design approximation algorithms, tailored to the specifics of the
problem at hand, without paying heed to issues of agent incentives.

Our study begins with the observation that these black-box reductions have an unfortunate property: the
server may incur a net loss in expectation. That is, the payments collected by the mechanism may not cover
service costs, in expectation over the agent types. Even a server who wishes to maximize the social welfare
may balk at the prospect of following such a protocol. Our motivating question, then, is whether the theory
of Bayesian black-box reductions can be modified to avoid such expected losses. This can be viewed as
a Bayesian version of acost-sharingmechanism design problem, in which the costs for service must be
divided among the participants in the mechanism. Our contribution is to initiate the study of such cost-
sharing problems in the Bayesian domain, and to exhibit general black-box reductions converting arbitrary
algorithms into truthful cost-sharing mechanisms.

We note that, as in the theory of cost-sharing, one immediately encounters strong impossibility results in
such problems: social welfare is an ill-behaved optimization metric for which no approximation guarantees
are possible in polynomial time even in the full informationsetting [6]. Thus, following recent developments
in the cost-sharing literature [18], we describe economic efficiency with respect to minimizing thesocial
cost: the service costs plus the total value of the agents who are not served.

The problem of designing cost-sharing mechanisms that minimize social cost has been extensively stud-
ied in the non-Bayesian domain. Truthful cost-recovering mechanisms have been developed for many spe-
cific problem formulations, such as Steiner tree/forest [12, 18, 8, 16], facility location [16], multicast routing
[6], and scheduling problems [3]. These mechanisms generally follow a high-level approach due to Moulin
[13]. Roughly speaking, a Moulin mechanism proceeds by selecting an initial allocation and then iteratively
offering cost-recovering prices to the current set of players. Any player who is not willing to pay his offered
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price is then removed from the set and the process repeats. Such mechanisms have been used with great
success for numerous problems, but in general the offered prices must be tailored to a particular problem
and algorithm; the construction does not generally apply toarbitrary approximation methods.

A more general construction, also based upon Moulin mechanisms, was recently proposed by Georgiou
and Swamy [7] in the non-Bayesian setting. They show that an arbitrary approximation mechanism that
is dominant strategy truthful and satisfies a no-bossiness condition can be converted into a truthful cost-
recovering mechanism, while increasing the social cost by afactor ofO(log n). This dependency onn
matches a lower bound due to Dobzinski et al. [5]. While theirmethod applies to many types of algorithms,
including a broad class of LP-based algorithms, the truthfulness and no-bossiness requirements limit its
generality. We ask: is a fully general reduction possible inthe Bayesian domain, where incentive and
efficiency constraints are required to hold in expectation over the agent types?

Our Results Our main result is a general reduction that converts an arbitrary algorithm into a Bayesian
incentive compatible mechanism with the property that the server does not incur an expected loss. Our
reductions areblack-box, meaning that they require only the ability to query the given algorithm on arbitrary
input profiles. We actually provide two different reductions, with slightly different guarantees on social cost.
The first increases the expected social cost of the original algorithm by a factor ofO(log n), and the second
increases the social cost of the original algorithm by a factor of O(log(vmax/vmin)) wherevmax andvmin

are the largest and smallest non-zero values in the support of the value distributions. Combining these two
constructions, we contain the increase in social cost to a factor ofO(min{log n, log(vmax/vmin)}).

We also demonstrate that the increase in social cost exhibited by our constructions is essential. Specifi-
cally, based on the construction of Dobzinski et al. [5], we show that no BIC mechanism that recovers cost in
expectation can achieve an approximation factor (to the optimal social cost) better thanO(log(vmax/vmin)−√

vmax/vminn). An implication of this bound is that our dependencies onn and vmax/vmin are tight:
no cost-recovering BIC mechanism can achieve approximation factor o(log n) or approximation factor
o (log(vmax/vmin)).

The ideas underpinning our reductions are motivated by the Moulin mechanism. We apply the paradigm
of determining appropriate payments for each agent, and then repeatedly excluding agents who are unwilling
to pay the required amount. However, rather than sequentially excluding agents from an outcome returned
by the algorithm, we apply a pre-processing step to the givenalgorithm in which we sequentially exclude
potential agent declarations. This analysis makes use of well-known characterizations of Bayesian incentive
compatibility with respect to an algorithm’s interim allocation curves (the expected allocation to a player,
as a function of his declaration, over the space of declarations of the other agents). The result of this pre-
processing step will be a pre-computed threshold, specific to the given algorithm; any agent who bids below
the threshold will be denied service regardless of the original algorithm’s outcome. High thresholds allow
the mechanism to charge large payments, but may substantially increase social costs. We prove that this
tension can be balanced so that costs are recovered but yet the social costs are not increased by too much.

A technical difficulty in the above approach is that knowledge about the algorithm, necessary to deter-
mine appropriate thresholds, must be obtained via sampling, which introduces errors. In order to guarantee
that the mechanism recovers costs entirely, rather than only approximately, it is necessary to modify our
mechanisms to recover more cost than strictly necessary. Weprove that this has only a small impact on
social cost, which can be made arbitrarily small via additional sampling.

We also note that our mechanism with approximation factorO(log(vmax/vmin)) extends to the non-
Bayesian setting as well. Indeed, we show that the cost-sharing construction due to Georgiou and Swamy [7]
can be modified so that it increases the social cost of a given algorithm by a factor ofO(min{log n, log(vmax/vmin)}),
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rather thanO(log n). This provides an improvement to the obtainable approximation factors when agent val-
ues lie in a small range or are drawn from a small set of possible values.

Related work Moulin mechanisms were proposed by Moulin [13] and Moulin and Shenker [14], who
show that the resulting mechanism will be cost-recovering as long as the prices offered satisfy a cross-
monotonicity condition. Moulin mechanisms have been applied to various cost-sharing problems, such as
Steiner tree/forest [12, 18, 8, 16], facility location [16], multicast routing [6], and scheduling problems [3].
For the most part such mechanisms are also required to be approximately budget balanced, meaning that the
mechanism does generate (too large of) a profit. Immorlica etal. [11] showed that, for certain problems,
such cross-monotonic pricing methods can imply that the budget-balance approximability factor can be very
high.

Roughgarden and Sundararajan [18] suggested social cost asa metric for social efficiency, allowing
the study of approximate efficiency in cost-recovering mechanisms. Subsequent work considered the ap-
proximation factors of cost-sharing methods according to this metric, for various problems [18, 3, 17, 4].
Dobzinski et al. [5] show that, for the public-excludable good problem (C(S) = 1 for all S 6= ∅, C(∅) = 0),
any (ex post) truthful cost-recovering mechanism will be anΩ(log n) approximation to the optimal social
cost.

Georgiou and Swamy provide a general method for converting truthful algorithms into truthful cost-
recovering mechanisms. They say an algorithmA is no-bossyif, for each i, if A serves a setS ∋ i on
input v, thenA will also serve this same setS on any input(vi′, v−i) with vi

′ > vi. They show that any
ρ-approximate algorithm that is dominant strategy truthfuland no-bossy can be converted into a truthful
cost-recoveringO(ρ log n)-approximate mechanismM. They also provide a linear programming technique
for constructing truthful no-bossy algorithms. Their reduction applies in the ex post (non-Bayesian) setting,
rather than the Bayesian setting that we consider.

In the Bayesian domain, where truthfulness is relaxed to Bayesian incentive compatibility, there are
black-box reductions that convert approximation algorithms into truthful mechanisms in single-parameter
[9] and multi-parameter [2, 10] domains. These reductions incur an additive loss to the expected social
welfare of the original algorithm, which can be made arbitrarily small. These constructions do not consider
the cost recovery properties of the resulting mechanisms.

2 Preliminaries

Single Parameter Mechanism Design Mechanism design studies optimization problems with private
information. Among a set of bidders[n] = {1, 2, · · · , n}, a mechanism decides upon a subsetS of receivers
of a certain service. Each bidderi has a private valuationvi for the service. To incentivize bidders to reveal
their valuations truthfully, the mechanism also charges a payment. Formally, a mechanism consists of an
allocationrulex : Rn

+ 7→ [0, 1]n and apaymentrulep : Rn
+ 7→ R

n
+. For a valuation profilev = (v1, . . . , vn),

xi(v) is the probability that bidderi receives the service, andpi(v) is the payment made by bidderi. Bidderi
has a utility ofxi(v)vi − pi(v). A mechanism is said to beindividually rational (IR) if no bidder ever has
a negative utility. We impose the IR condition throughout the paper. A mechanism is said to beex post
incentive compatibleor truthful if,

xi(vi, v−i)vi − pi(vi, v−i) ≥ xi(vi
′, v−i)vi − pi(vi

′, v−i), ∀i,∀vi, vi
′, v−i. (IC)
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Social Welfare and Social Cost A well studied objective in mechanism design is thesocial welfare,
defined as

∑
i∈S vi, whereS is the set of bidders receiving a service. In this work, we focus on scenarios

where a costC(S) is incurred when subsetS is served. We assume thatC(∅) = 0, and that∀S ⊂ T ,
C(S) ≤ C(T ). Thesocial costof a subsetS is C(S) +

∑
i/∈S vi. Given an algorithmA : Rn

+ 7→ 2[n],
we write the social welfare ofA onv asSW (A,v), and the social cost similarly asSC(A,v). We say a
mechanism recovers its cost if for allv

∑
i pi(v) ≥ C(S).

Bayesian Mechanism Design This paper focuses on situations in which bidders have only incomplete
information regarding the other bidders, captured by the study of Bayesian mechanism design. Each bidder’s
valuationvi is independently drawn from a known distributionFi, with probability density functionfi.
By scaling all values and costs down, we may assume without loss of generality that all distributions are
supported on[0, 1]. We denote byvmax the supremum of the support of allFi’s, andvmin the infimum of
nonzero values in the support. We assumevmin is bounded away from0 and denote byh the ratiovmax/vmin.

The allocation rule of a mechanism gives rise to an interim allocation for each bidder. The interim
allocationxi(vi) is bidderi’s probability of getting served, taking an expectation over the other bidders’
valuations, i.e.,Ev−i

[xi(vi, v−i)]. A mechanism is said to beBayesian incentive compatible(BIC) if

xi(vi)vi −Ev−i
[pi(vi, v−i)] ≥ xi(vi

′)vi −Ev−i

[
pi(vi

′, v−i)
]
, ∀i, vi, vi

′. (BIC)

The termEv−i
[pi(vi, v−i)] is also called the interim paymentpi(vi). Interim allocation rules and payments

of BIC mechanisms are characterized by the following classic result.

Lemma 1 (Myerson 15). A mechanism with interim allocation rulesx is BIC iff eachxi is monotone non-
decreasing, and the expected (or interim) paymentpi(vi) made by bidderi with valuationvi is vixi(vi) −∫ vi
0 xi(y) dy.

We will denote bySC(A) the expected social cost of an algorithmA, i.e.,Ev[C(A(v)) +
∑

i/∈A(v) vi].
We say a mechanismM recovers its cost in expectation ifEv[

∑
i pi(v)] ≥ Ev[C(M(v))], whereM(v) is

the set of biddersM serves at valuation profilev, which is allowed to be randomized. Under the requirement
of cost recovery in expectation, it is without loss of generality to assume that a BIC mechanism charges a
payment ofpi(vi)xi(vi)

to bidderi with valuationvi when he is served, and0 when he is not served.

Black-Box Reductions for BIC Mechanisms While ex post truthful mechanisms optimize objectives
(such as social welfare) in the straitjacket of incentive constraints, Hartline and Lucier [9] showed that, if one
were to relax the solution concept to that of BIC, essentially any (approximate) social welfare maximization
algorithm can be transformed to a BIC mechanism with little loss of social welfare.

Theorem 2 (Hartline and Lucier 9). In any single-dimensional setting where the agents’ valuations are
drawn independently from known distributions, given anyǫ > 0, there is a polynomial time computable re-
ductionR such that, given any algorithmA,R(A) is a BIC mechanism withEv[SW (R(A))] ≥ Ev[SW (A)]−
ǫ.

The resampling technique of Theorem 2 easily applies to the settings where expected social cost is the
objective, and we have the following corollary.

Corollary 3. In any single-dimensional setting where the agents’ valuations are drawn independently from
known distributions, given anyǫ > 0, there is a polynomial time computable reductionR such that, given
any algorithmA,R(A) is a BIC mechanism withEv[SC(R(A))] ≤ Ev[SC(A)] + ǫ.
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ALGORITHM 1: A reduction from BIC cost-recovering-in-expectation social cost minimization to BIC social
cost minimization

Input : A BIC algorithmA and a valuation profilev
Output : A set of agents to be served, and a price for each agent

1 Let S(v) = set of winners returned byA on inputv; compute the interim allocation rulex in A ;
2 for j = 0 to 1 + ⌊log h⌋ do

Let Sj(v) = {i ∈ S(v)|vi ≥ 2j}

Let pi,j(vi) =

{
0 if vi < 2j

vixi(vi)−
∫ vi

2j xi(y) dy if vi ≥ 2j

if Ev[C(Sj(v)] ≤ Ev[
∑

i pi,j(vi)] then
Setk = j;
Go to step 3.

3 Serve agents inSk(v), and charge agenti a price ofpi,k(vi)
xi(vi)

.

We note that Hartline and Lucier prove Theorem 2 by first showing how to construct anǫ-BIC mech-
anism, then showing how to convert this into a BIC mechanism at a small loss to social welfare. Due to
the difference in the objective, the technique does not directly apply to our case; a minor modification to
the construction of Hartline and Lucier is required. In Appendix A we briefly describe the construction
involved.

3 Bayesian Incentive Compatible Cost Recovery

In this section we present our main result of converting an arbitrary algorithm to a Bayesian Incentive
Compatible mechanism that approximately minimizes social-cost in expectation, and recovers cost in ex-
pectation. We give two separate reductions, one that gives aO(log h) approximation, and the other gives an
O(log n) approximation, and thus we have aO

(
min {log h, log n}

)
approximation.

Remark 4. Our reductions require computing certain expectations, which can be obtained only via sam-
pling, and hence with small error. In this section, all expectations are assumed to be accurately available,
i.e., we assume functional access to the interim allocationrules and valuation distributions. We refer to this
as functional access to an algorithm. We address the error due to sampling in the more realistic black-box
model in Section 4. Also, the truthful payment corresponding to the algorithmA requires knowing the out-
put ofA on infinitely many values. In this section, we also assume that interim payments are accurately
available, and we describe the procedure to circumvent thisissue in Section 4.

In the presentation of Theorem 5, it is convenient to scale valuations to[1, h] from [0, 1], mappingvmin to 1.

Theorem 5. Given functional access to an algorithmA which incurs an expected social cost ofC(A), and
when the values of all agents are distributed in[1, h], the reduction in Algorithm 1 outputs a BIC mechanism,
which incurs an expected social cost ofO(log h)C(A) and recovers the cost in expectation.

Proof. By Theorem 3.1 of [9] (arxiv version), it is without loss of generality to assume that the input al-
gorithmA is BIC, i.e., has a monotone increasing interim allocation rule. (Theorem 3.1 of [9] is a version
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of Corollary 3 where full functional access to allocation rule is available, and shows that in such settings
there is not even an additiveǫ loss.) Algorithm 1 proceeds in two phases. In the preprocessing phase, it
computes a numberk to be used in the next phase. This phase does not depend on the agents’ actual valua-
tions, and only uses information of the valuation distributions and the algorithmA. In the second phase, the
mechanism uses bidders’ bids (declarations of their valuations) andk to modify the setS(v) returned byA.
The actual set of winners and payments are determined in the second phase.

In the preprocessing phase, the mechanism experiments withtruncating the interim allocation ofA
at different thresholds. To truncate an interim allocationrule xi at a threshold is to refuse service to all
agents that report values below the threshold, while keeping intact services to others. The resulting interim
allocation rule is still monotone after truncation. The paymentpi,j(vi) computed by the algorithm is simply
the expected payment made by the agent in such a truncated allocation rule (recall Lemma 1).

By the procedure outlined for computingk in Algorithm 1, it follows that the resulting mechanism
recovers the cost in expectation, i.e., when the “if” condition in the algorithm becomes true, cost is recovered
in expectation. (Note that there is always ak for which the “if” condition becomes true: atk = 1+ ⌊log h⌋,
we haveSk(v) = ∅, and the “if” condition becomes true.) In addition, for allj ∈ 0 . . . k − 1, we have

Ev

[
∑

i

pi,j(vi)

]
< Ev [C(Sj(v))] . (1)

We claim that, in expectation, the additional social cost incurred by the mechanism when dropping the
agents inS(v) \ Sk(v) is bounded by anO(log h) factor timesC(A). To begin with, the expected social
cost of the mechanism is

Ev


C(Sk(v)) +

∑

i/∈S(v)

vixi(v) +
∑

i∈S(v)\Sk(v)

vi


 .

SinceSk(v) ⊆ S(v), the first two terms are upper bounded byC(A). We therefore need only to bound the
last term. Looking at this term from each agent’s perspective, we have

Ev




∑

i∈S(v)\Sk(v)

vi


 =

∑

i

k−1∑

j=0

∫ 2j+1

2j
vixi(vi)fi(vi) dvi ≤ 2

∑

i

k−1∑

j=0

∫ 2j+1

2j
2jxi(vi)fi(vi) dvi.

Sincepi,j(vi) = vixi(vi)−
∫ vi
2j xi(y) dy ≥ 2jxi(vi) for vi ≥ 2j , we have

∑

i

k−1∑

j=0

∫ 2j+1

2j
2jxi(vi)fi(vi) dvi ≤

k−1∑

j=0

Ev

[
∑

i

pi,j(vi)

]
.

But by (1), for eachj < k, Ev[
∑

i pi,j(vi)] is in turn bounded byEv[C(Sj(v))] ≤ Ev[C(S(v))] ≤
C(A). As there are onlyk ≤ log h suchj’s, the additional social cost is at mostO(log h) timesC(A).

We now present the other reduction that gives better approximations whenn is smaller thanh.

Theorem 6. Given functional access to an arbitrary algorithmA which incurs an expected social cost
of C(A), the reduction in Algorithm 2 outputs a BIC mechanism, whichincurs an expected social cost of
O(log n)C(A) and recovers the cost in expectation.
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ALGORITHM 2: A reduction from BIC cost-recovering-in-expectation social cost minimization to BIC social
cost minimization

Input : A BIC algorithmA; C(S) for every setS of agents; a valueδ > 0
Output : A set of agents to be served, and a price for each agent

1 Initialize S0(v) = S(v) = set of winners returned byA on inputv, calculate interim allocation rulex in A;
2 for j = 0, 1, 2, . . . do

Let tj =

⌈
Ev[C(Sj−1(v))]

Ev[|Sj−1(v)|]

⌉

δ

, wheret0 = 0

LetSj(v) = {i ∈ S(v)|vi ≥ tj}

Let pi,j(vi) =

{
0 if vi < tj

vixi(vi)−
∫ vi

tj
xi(y) dy if vi ≥ tj

if Ev[C(Sj(v)] ≤ Ev[
∑

i pi,j(vi)] then
Setk = j;
Go to step 3.

3 Serve agents inSk(v), and charge agenti ∈ Sk(v) a price ofpi,k(vi)
xi(vi)

.

Proof. The idea behind the reduction is similar to that of Theorem 5.The main difference is in the definition
of the setsSj(v). They are defined inductively, as sets of agents whose value is above the average cost
threshold.

By the same argument as before, the mechanism recovers the cost in expectation by its definition ofk.
In addition, we show that the algorithm will terminate afterO(1/δ) steps. If for somej we hadtj ≤ tj−1

then by definition oftj we have:

Ev[C(Sj−1(v))]

Ev[|Sj−1(v)|]
≤

⌈
Ev[C(Sj−1(v))]

Ev[|Sj−1(v)|]

⌉

δ

= tj ≤ tj−1,

which in turn implies:

Ev [C(Sj−1(v))] ≤ tj−1Ev [|Sj−1(v)|] ≤ Ev

[
∑

i

pi,j−1(vi)

]
,

where the last inequality follows from noting that at iteration j − 1 the payment of any player that is served
is at leasttj−1. Thus at that point it must be that the algorithm terminated at iterationj − 1, since the “if”
condition gets satisfied. Therefore, it follows that as longas the algorithm has not terminated,tj > tj−1,
and since by definition the thresholds are multiples ofδ 1 it must be thattj ≥ tj−1 + δ. Thus the algorithm
will terminate afterO(1/δ) steps (since values lie in[0, 1]).

To complete the proof, similar to Theorem 5, we need to bound the termEv[
∑

i∈S(v)\Sk(v)
vi]. Define

r(l) inductively as follows:r(0) = 0, and

r(j) =

{
min

{
ℓ : Ev[|Sr(j−1)(v)| − |Sℓ(v)|] ≥ 1

}
if such anℓ (≤ k) exists

k otherwise

1⌈x⌉δ is the smallest multiple ofδ that is larger thanx
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Note thatr(j) > r(j − 1), andtr(j) > tr(j−1). Let jmax be the smallestj for which r(j) = k. Note that
jmax ≤ n since there are at mostn agents, i.e.,Ev[|S(v)|] ≤ n and therefore the number of times that the
expected service set size can decrease is at mostn. Letαj = Ev[|Sr(j−1)(v)| − |Sr(j)(v)|]. By definition
αj ≥ 1 for all j < jmax. We have,

Ev


 ∑

i∈S(v)\Sk(v)

vi


 ≤

∑

i

jmax∑

j=1

∫ tr(j)

tr(j−1)

vixi(vi)fi(vi) dvi

≤
∑

i

jmax∑

j=1

∫ tr(j)

tr(j−1)

tr(j)xi(vi)fi(vi) dvi

≤

jmax∑

j=1

tr(j)Ev

[
|Sr(j−1)(v)| − |Sr(j)(v)|

]

=

jmax∑

j=1

tr(j)αj ≤

jmax∑

j=1

⌈
Ev[C(Sr(j)−1(v))]

Ev[|Sr(j)−1(v)|]

⌉

δ

αj

≤

jmax∑

j=1

[
Ev[C(Sr(j)−1(v))]

Ev[|Sr(j)−1(v)|]
+ δ

]
αj

≤

jmax∑

j=1

Ev[C(S(v))]

Ev[|S(v)|] −
∑

ℓ<j αℓ
αj + nδ ≤ O(log n)Ev [C(S(v))] + nδ,

where the last-but-one inequality follows from noting that
∑jmax

j=1 αj ≤ Ev[|S(v)|] ≤ n.
For the last inequality, begin by noting thatjmax ≤ n and for allj < jmax, αj ≥ 1. We need to show

that
∑jmax

j=1
αj

Ev[|S(v)|]−
∑

ℓ<j αℓ
≤ O(log n). Note that

∑jmax

j=1
αj

Ev[|S(v)|]−
∑

ℓ<j αℓ
≤

∑jmax

j=1
αj∑

j≤ℓ≤jmax
αℓ
≤

1 +
∑jmax−1

j=1
αj∑

j≤ℓ≤jmax−1 αℓ
. In the final summation, all theαj ’s involved are at least1. The following

claim completes the proof of the last inequality since we have
∑jmax

j=1 αj ≤ n.

Claim 7. Givenk real numbersa1, . . . , ak, such thatai ≥ 1 for all i,

k∑

j=1

aj∑
t≥j at

≤ 2 ·H∑k
j=1⌊aj⌋

,

whereHr =
∑r

i=1
1
i ≤ 1 + log r.

Proof.

k∑

j=1

aj∑
t≥j at

=
k∑

j=1

⌊aj⌋∑
t≥j at

+
k∑

j=1

aj − ⌊aj⌋∑
t≥j at

≤
k∑

j=1

⌊aj⌋∑
t≥j⌊at⌋

+
k∑

j=1

1∑
t≥j at

≤
k∑

j=1

⌊aj⌋∑
t≥j⌊at⌋

+Hk

9



≤
k∑

j=1

⌊aj⌋∑
t≥j⌊at⌋

+H∑k
j=1⌊aj⌋

We now show that
∑k

j=1
⌊aj⌋∑
t≥j⌊at⌋

≤ H∑k
j=1⌊aj⌋

. We drop the floors, and assume that theaj ’s are

integers in the part below. Consider the termaj∑
t≥j at

.

aj∑
t≥j at

=
1

aj + aj+1 + . . . + ak
+ . . . +

1

aj + aj+1 + . . .+ ak︸ ︷︷ ︸
aj times

≤
1

1 + aj+1 + . . .+ ak
+

1

2 + aj+1 + . . .+ ak
+ . . . +

1

aj + aj+1 + . . .+ ak

=

aj+
∑

k>j ak∑

t=1+
∑

k>j ak

1

t

So we have,

k∑

j=1

aj∑
t≥j at

≤
k∑

j=1

∑
k≥j ak∑

t=1+
∑

k>j ak

1

t
=

∑
j aj∑

t=1

1

t
= H∑

j aj

On choosingδ = ǫ/n, we approximate social cost to a factor ofO(log n) with an additive loss ofǫ. The
number of iterations is at most1δ = n

ǫ because after1/δ iterations the threshold would have reached1.

4 Sampling and the Black-Box Model

The mechanisms of Section 3 work under the assumption that the mechanism designer has complete knowl-
edge of the interim allocation rules and valuation distributions in functional form, and can perform arbitrary
calculus on those functions. This is a strong assumption; ingeneral it may be highly non-trivial to precisely
determine the interim allocation rules of an arbitrary algorithm. In this section we describe ways to imple-
ment the reductions in Section 3 in a more realistic model: the algorithmA is provided as a black box that
can be queried on arbitrary input vectors. We refer to this astheblack-boxmodel of computation.

Our approach will be to estimate the allocation rules ofA via sampling, then apply the reductions from
the ideal model. This introduces sampling error that must bebounded; the result will be a mechanism that
is approximatelycost-recovering. We will then show how to modify our constructions to be cost-recovering
in the non-approximate sense. The following theorem summarizes the result.

Theorem 8. Givenǫ > 0, black-box access to algorithmA and distributionF, one can construct a BIC
mechanismM that is cost-recovering in expectation, withEv[SC(M)] ≤ O(min{log(h), log(n)}) Ev[SC(A)]+
ǫ. The mechanism runs in time polynomial in1/ǫ, n, and the runtime ofA.
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4.1 Computing BIC payments

Suppose that we are given an algorithmA with monotone interim allocation rulesx, and moreover we are
told that charging the expected payments of Lemma 1,pi(vi) = vixi(vi)−

∫ vi
0 xi(y) dy, would recover costs

in expectation. In this case, all that would be required to obtain a BIC mechanism is to execute algorithm
A and compute payments so that the expected payment of agenti is pi(vi). However, in the black-box
model the mechanism can determine the value of the allocation rules (and hence the required payments)
only approximately; charging approximate payments is insufficient for Bayesian incentive compatibility.

There is a well-known procedure to estimate integrals via random sampling, used by Archer et al. [1] to
compute payments. For the purpose of having a self-contained exposition, we explain the procedure below.

Theorem 9. Letf(·) be the probability density function of a random variableY ∈ [0, v]. ThenEY [
h(Y )
f(Y ) ] =∫ v

0 h(z) dz.

The proof of the theorem follows from the definition of a probability density function. Thus one way
to estimate the integral

∫ vi
0 xi(y) dy is to draw a random variableY from the uniform distributionU [0, vi],

and returnvixi(Y ). In expectation, this quantity precisely equals
∫ vi
0 xi(y) dy. Furthermore, the payment

of vixi(vi) − vixi(Y ) is always non-negative sincexi(·) is monotone, and thus the mechanism is ex-post
IR.

4.2 Estimating Interim Allocation via Sampling

We now describe a method for implementing Algorithms 1 and 2 when the interim allocation rules are not
given explicitly. Recall first that, by Corollary 3, givenǫ1 > 0 and an arbitrary algorithmA, we can construct
an algorithmA with monotone interim allocation rules such thatEv[SC(A)] ≤ Ev[SC(A)] + ǫ1. We will
therefore assume for the remainder of this section that the algorithm A has monotone interim allocation
rules.

Given black-box access to algorithmA, we will construct approximations to its allocation rules as
follows. We first choose someδ > 0, and partition value space[0, 1] into intervalsIk = ((k − 1)δ, kδ]
for k ∈ [1/δ]. Let x denote the interim allocation rulex, discretizedover the intervalsIk: that is, for each
vi ∈ Ik, we definexi(vi) = Evi [xi(vi)|vi ∈ Ik].

For eachi and eachk ∈ [1/δ], we will sampleN = 1
ǫ2 log(nk/ǫ) valuation profilesv ∼ F, conditional

on vi ∈ Ik. We will then runA on each of theseN inputs, and count the number of times that the resulting
allocation includes agenti. Denote byMik this number. Let̃x be the allocation rule defined bỹxi(vi) =
maxℓ≤k{Miℓ}/N for all vi ∈ Ik. We think ofx̃ as an estimated version ofx. Note that the reason for the
max in the definition ofx̃i is to guarantee that̃x is monotone.

We claim that the result of this sampling generates an estimate to allocation rulex, in the following
sense.

Definition 1. Allocation rulesx andx′ areǫ-closeif |xi(vi)− xi
′(vi)| < ǫ for all i andvi.

Lemma 10. Let x̃ be the allocation rule defined bỹxi(vi) = Mik/N . Then with probability1 − ǫ over the
randomness in the sampling procedure,x̃i is ǫ-close toxi for all i.

Once our sampling is complete, we have full functional access to curves̃x. We can therefore apply
Algorithms 1 and 2 to the curves̃x. We claim that, for either algorithm, the analysis of Section 3 will go
through unchanged, except that each mechanism will be only approximately cost recovering. We obtain the
following result, the proof of which appears in Appendix B.
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Lemma 11. Givenǫ > 0 and black-box access to algorithmA, one can construct a BIC mechanismM
withEv[SC(M)] ≤ O(min{log(h), log(n)})Ev[SC(A)] + ǫ. Moreover, the expected payments inM are
at leastEv[C(S(v))] − ǫ.

It remains to show that we can modify our mechanism to recoverexpected costs entirely, rather than ap-
proximately. This requires a modification to Algorithms 1 and 2. Each algorithm is currently designed
to iterate untilEv[

∑
i pi(v)] ≥ Ev[C(S(v))]. We will modify each algorithm to instead iterate until

Ev[
∑

i pi(v)] ≥ Ev[C(S(v))] + ǫ0, for some appropriateǫ0 > 0. This additional payment ofǫ0 will
be chosen to cover the expected losses due to sampling error.What we must show is that this modifica-
tion does not inflate the expected social cost by too much. However, this follows immediately from the
form of our analysis: in either case, our analysis proceeds by bounding the loss with respect to the cho-
sen threshold, then bounding this threshold with respect toEv[C(S(v))]. If we replace this latter bound
with (Ev[C(S(v))] + ǫ), the result is an extra term that is at mostǫn. An appropriate choice ofǫ there-
fore leads to an arbitrarily small increase to the social cost, and the expected sum of payments is at least
E[C(Sx̃(v))] + ǫ ≥ (E[C(Sx(v))] − ǫ) + ǫ = E[C(Sx(v))], as required. The resulting mechanisms
therefore recover costs in expectation, completing the proof of Theorem 8.

5 Lower Bound for BIC Expected Cost-Recovering Mechanisms

We now show that a lower bound on the approximation to social cost given by Dobzinski et al. [5] extends
to BIC mechanisms, and we tighten the analysis there so that the lower bound is in terms of bothn andh.
In particular, ifh < n, then the lower bound isΩ(log h). In general, we show a lower bound ofΩ(log h −√

h/n).

Example 1 (Lower Bound on BIC Social Cost Minimization with Cost Recovery). Consider the following
public excludable good problem: agenti’s valuation isvi = ai

4n where eachai is drawn independently
according to the so-called equal revenue distribution withdensity functionf(z) = 1

z2
for z ∈ [1, h] and is0

with probability 1
h . The cost function is given byC(∅) = 0 andC(S) = 1 for all S 6= ∅.

It is easy to see that, without requiring cost recovery, we may simply serve every agent and incur a cost
of 1. Next we give a lower bound for the expected social cost of anycost recovering BIC mechanism. The
proof of Theorem 12 is deferred to Appendix C.

Theorem 12. Any BIC mechanism for the public excludable good problem described above that recovers

cost in expectation has expected social cost at leastΩ(log(h)−
√

h
n).

6 Ex-post Truthful Cost Recovery

Georgiou and Swamy [7] proposed the following notion ofno bossinessfor an algorithm and gave a proce-
dure to convert any truthful, no-bossy algorithm to an ex post truthful, cost recovering mechanism with an
inflation of social cost up to a factor ofO(log n).

Definition 2 (No Bossy, [7]). An algorithmA is said to beno bossyif, for every i, vi, vi′ and v−i, if
i ∈ S(vi, v−i) andi ∈ S(vi

′, v−i), thenS(vi, v−i) = S(vi
′, v−i).

In this section, we show that such a conversion is also possible with an inflation ofO(log h) in social
cost. For the special case in which all agents have either value0 or 1, our conversion does not require the
input algorithm to be either truthful or no bossy. Proofs from this section appear in Appendix D
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ALGORITHM 3: A black-box reduction from ex-post truthful cost-recovering social cost minimization to social
cost minimization for0/1 valuations

Input : An algorithmA and a valuation profilev
Output : A set of agents to be served, and a price for each agent

1 Initialize S(v) = set of winners returned byA on inputv;

2 Let Ŝ(v)← S(v) \ Z(v), whereZ(v) = {i ∈ S(v)|vi = 0};

3 if C(Ŝ(v)) ≤ |Ŝ(v)| then
Serve agents in̂S(v); charge a price of1 for each agent in̂S(v) and zero for the rest.

else
Don’t serve any agent and charge zero

ALGORITHM 4: A black-box reduction from truthful cost-recovering social cost minimization to truthful, no-
bossy social cost minimization

Input : A truthful, no-bossy mechanismM, and a valuation profilev
Output : A set of agents, and a payment for each of them

1 Initialize S(v) = set returned byM on inputv, andSj(v) = {i ∈ S(v)|vi ≥ 2j};
2 for j = 0 to ⌊log h⌋ do

If 2j · |Sj(v)| ≥ C(Sj(v)):

1. setk = j

2. Serve agents inSk(v); charge each of them a price of2k

3 Setk = 1 + ⌊log h⌋; no agent is served or charged.

6.1 Black-box reduction for 0/1 valuations

When all bidders’ valuations are either0 or 1, there is a simple procedure to convert any social cost mini-
mization algorithm to an ex post truthful, cost recovering mechanism without increasing the social cost, as
we show in Algorithm 3 and Theorem 13.

Theorem 13. When bidders have only valuations0 or 1, given black-box access to an arbitrary algorithmA
which incurs a social cost ofC(A), the black-box reduction in Algorithm 3 outputs an ex post truthful
mechanism whose social cost is no more thanC(A).

6.2 Black-box reduction for general valuations

In this section, for convenience of presentation we again scale up the valuations so that they lie in the range
[1, h]. We give a black-box conversion from a truthful, no bossy mechanism to a truthful, cost recovering
mechanism with an inflation of social cost by a factor ofO(min{log h, log n}). This is achieved by choosing
the better one between Algorithm 4 and the reduction by Georgiou and Swamy [7], whose inflation factor is
bounded byO(log n) alone. We now show that the inflation factor of Algorithm 4 is bounded byO(log h).

Theorem 14. When values of all agents lie in[1, h], given black-box access to a truthful, no-bossy mecha-
nismM with social costC(M), the black-box reduction in Algorithm 4 outputs a mechanismwhich recov-
ers cost and incurs a social cost ofO(log h)C(M).
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Instead of experimenting with thresholding at powers of2, Algorithm 4 has the option of proceeding at
more flexible paces. In particular, we easily obtain the following corollary.

Corollary 15. Given a truthful, no-bossy mechanismM that incurs a social cost ofC(M), and when
valuations of all agents reside in{v1, . . . , vk}, there exists an efficiently computable black-box reduction
that outputs a mechanism which recovers cost and incurs a social cost of at mostO(kC(M)).
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A Improving ǫ-BIC to BIC

In this section we discuss the construction from the statement of Corollary 3. The purpose of the discussion is
to illustrate a minor modification to the method of Hartline and Lucier 9 for convertingǫ-BIC mechanisms to
BIC mechanisms. We will briefly recall theirǫ-BIC construction for the sake of completeness, then describe
how to modify it to obtain a BIC mechanism while incurring only a small increase to the social cost.

A.1 The ǫ-BIC Reduction

The ǫ-BIC reduction due to Hartline and Lucier 9 is as follows. SupposeA is an arbitrary social cost
algorithm with (unknown) interim allocation rulesx. For eachi, we will first partition the value space[0, 1]
into 1/δ intervals of widthδ; write Ik = (kδ, (k + 1)δ] for thekth such interval.

Suppose first that we knew the value ofEvi [xi(vi) | vi ∈ Ik] for eachi andk. Given this information,
we could perform the following monotonizing operation. We construct a certain partitionP of [0, 1] (into
intervals), whereP is a coarsening of the intervalsIk; that is, each interval endpoint inP will be a multiple
of δ. Suppose the intervals inP areI ′1, . . . , I

′
ℓ for someℓ ≤ 1/δ. GivenP (whose construction we have not

described), we will define algorithmA as follows:

1. For each agenti, if vi ∈ I ′j ∈ P, then drawvi′ ∼ Fi.

2. ReturnA(v′)

15



Hartline and Lucier 9 show that there is a way to construct partition P so thatA is BIC, andA has the same
social cost asA.

Next suppose that the value ofEvi [xi(vi) | vi ∈ Ik] is not known explicitly for alli andk. In this case,
our reduction will attempt to estimate these values. We do soby taking many samplesv ∼ F subject to
vi ∈ Ik and executingA on each sampled value profile; our estimate forEvi [xi(vi) | vi ∈ Ik] will be the
fraction of these samples for whichA serves agenti. Chernoff-Hoeffding bounds imply that if we take
O( 1

λ2 log(n/λδ)) samples per agent and interval, then every estimate will be within λ of the true value with
probability at least1− λ. Write x̃ for the estimated allocation curves.

Estimates in hand, we can perform the monotonizing operation described above on the estimated allo-
cation curves, as if they were the actual curves. Hartline and Lucier 9 show that, if this is done, the resulting
algorithm is approximately monotone: with probability(1 − λ), it is true that for eachi, if xi is the interim
allocation rule for agenti, thenxi(vi) ≤ xi(vi) + 2λ for all vi ≤ vi

′. Also, the expected social welfare
decreases by at most(δ + 2ǫ)n as a result of this reduction. Since social cost is simply

∑
i∈[n] vi minus the

social welfare, this implies the social cost increases by atmostǫ for an appropriate choice ofλ andδ.

A.2 Obtaining a BIC Reduction

Suppose thatA is anǫ-BIC algorithm, constructed via the reduction described above. An important fact
aboutA is that it has allocation rules that are piecewise-constanton the intervalsIk. Thus, any non-
monotonicities in an interim allocation curve ofA can occur only at finitely many possible input values;
specifically, at multiples ofδ. Our approach for modifyingA to be BIC will therefore be to modify its
allocation curve in a blatantly monotone way over the intervals between these multiples ofδ. Specifically,
we will reduce the probability of allocating to an agenti by ǫk whenever he declares a value on intervalk.
Since there are only1/δ such intervals, the overall increase in social cost due to this change will be small.

More formally, we perform the following modification to algorithmA. Our new algorithm,Ã, proceeds
as follows, where we setγ = 2ǫ/δ.

1. With probability1− γ, returnA(v).

2. Otherwise, choose an agenti uniformly at random. Ifvi ∈ Ik, then return{i} with probability kδ,
otherwise return∅.

Claim 16. If A is ǫ-BIC and piecewise constant on intervalsIk, thenÃ is BIC.

Proof. Write x̃i for the interim allocation rule ofÃ. Choose any1 ≤ k < 1/δ and supposev ∈ Ik and
v′ ∈ Ik+1. Then

x̃i(v) = (1− γ)xi(v) + γkδ

≤ (1− γ)(xi(v
′) + 2ǫ) + γkδ

≤ (1− γ)xi(v
′) + 2ǫ+ γ(k + 1)δ − γδ

= (1− γ)xi(v
′) + γ(k + 1)δ

= x̃i(v
′)

and hencẽxi is monotone, as required.

Claim 17. The expected social cost of̃A is at most the expected social cost ofA plusγn.
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Proof. Note that we can assume thatC({i}) ≤ n for all i; otherwise we would never servei and could
remove agenti from the mechanism. We therefore have

Ev[SC(Ã,v)] ≤ (1− γ)Ev[SC(A,v)] + γ ·max

{
∑

i

vi, C({1}), . . . , C({n})

}

≤ (1− γ)Ev[SC(A,v)] + γn

as required.

Thus, forǫ′ = 2nǫ/δ, we conclude that̃A is BIC and has expected social cost at most that ofA plusǫ′.
In other words, given an arbitraryǫ′, we can chooseǫ andδ sufficiently small (but polynomial inǫ′ and1/n)
such thatÃ is BIC and increases expected social cost of the original algorithmA by at mostǫ′, as required
by Corollary 3.

B Omitted proofs from Section 4

B.1 Proof of Lemma 10

The expected value ofMik/N is preciselyEv[xi(v) | vi ∈ Ik]. By Chernoff-Hoeffding bounds, afterN
samples the probability that|Mik/N − E[Mik/N ]| ≥ ǫ is at mostǫδ/n. Taking the union bound over all
i andk, we have that|Mik/N − E[Mik/N ]| < ǫ for all i andk with probability at most1 − ǫ. This also
implies that|x̃i(vi)− xi(vi)| < ǫ for all i andvi, as required.

B.2 Proof of Lemma 11

Let us first recall the statement of the lemma. Givenǫ > 0 and black-box access to algorithmA, we claim
that one can construct a BIC mechanismM with Ev[SC(M)] ≤ O(min{log(h), log(n)})Ev[SC(A)]+ǫ.
Moreover, the expected payments inM are at leastEv[C(S(v))] − ǫ.

We first note that discretizing allocation curves along intervals of lengthδ can increase social cost by at
mostδn, as each agent’s value changes by at mostδ as a result of this approximation. We therefore note this
increase in social cost and assume for notational convenience that eachxi is constant on each intervalIk.

Our mechanism will proceed by constructingx̃ as described above, and then apply either Algorithm 1
or Algorithm 2, depending on which ofn or h is smaller. In either case, the algorithm will compute some
thresholdT . The mechanism will proceed by eliciting valuation profilev, queryingA(v), and then serving
those agents in the resulting setS with value at leastT . Regardless of the threshold returned, this mechanism
will be BIC.

In the event that̃x is not ǫ-close tox, the social cost generated by the resulting mechanism is trivially
bounded byn. Since this event occurs with probability at mostǫ, its contribution to the expected social cost
is at mostǫn. We therefore assume thatx̃ andx areǫ-close.

For either algorithm, the thresholdT is chosen so that expected payments, as computed fromx̃, recover
expected costs in expectation. Since eachx̃i is ǫ-close to the true curvexi, the estimated payments differ
from the true payments by at mostǫ, for each agent. This has two effects: first, in our analysis of each
algorithm, bounds on the increase to social cost include an error of up toǫ per agent, as̃xi(vi) ≤ xi(vi) + ǫ
for all i. Thus, there can be up to an additionalǫn increase in social cost due to the thresholdT applied.
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Second, the true BIC payment (from Lemma 1) may differ from the approximate BIC payment by up to
ǫ, for each agent. Thus, the expected payments of mechanismM may be up toǫn less than was computed
by either algorithm. In particular, it may be that the expected payments are as low asEv[C(S(v))] − ǫn.

To summarize, our resulting mechanism will haveEv[SC(M)] ≤ O(min{log(h), log(n)})Ev[SC(A)]+
(δ + 2ǫ)n, and will have expected payments at leastEv[C(S(v))] − ǫn. Taking an appropriate choice ofǫ
andδ then completes the proof.

C Proof of Theorem 12

It is well known in auction theory (e.g. Myerson 15) that, from an agent whose valuation is drawn from the
equal revenue distribution, a BIC mechanism can extract a payment of at most1 in expectation. Therefore,
any BIC mechanism for Example 1 can collect payments at most1

4 in expectation. Since the mechanism
recovers cost in expectation, the expected cost must be at most 1

4 as well. But unlessS = ∅, C(S) = 1.
Therefore,

Pr[S 6= ∅] ≤
1

4
.

Let V be
∑

i vi. Observe that

E [V ] = nE [vi] =
log h

4
, Var[V ] = nVar[vi] ≤

h

16n
, σ(V ) ≤

1

4

√
h/n.

By Chebyshev’s inequality, we have

Pr

[
V <

log(h) − 2
√

h/n

4

]
≤

1

4
.

The expected social cost of a cost recovering BIC mechanismM is at most:

E [SC(M)] ≥
log(h)− 2

√
h/n

4
Pr

[
S = ∅ ∧ V ≥

log(h) − 2
√

h/n

4

]
.

By the union bound, the latter probability is at least1
2 . Therefore,

E [SC(M)] ≥
log(h)− 2

√
h/n

8
.

D Omitted Proofs from Section 6

D.1 Proof of Theorem 13

The mechanism output by Algorithm 3 can be clearly seen to be truthful: an agent with value0 never wins,
and an agent with value1 gets a zero utility, and so no agent has motivation to misreport his value. It recovers
cost because it serves agents only if the cost can be recovered. Also, asŜ(v) ⊆ S(v), if Ŝ is served, then
the social cost is less than thatC(A) since the agents inS(v)− Ŝ(v) does not add to the social cost; on the
other hand, if no agents are served, the change in social costis C(Ŝ(v)) − |Ŝ(v)| < 0.
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D.2 Proof of Theorem 14

It is easy to see that the procedure in Algorithm 4 guaranteescost recovery. To see that it is truthful, note
that if an agent is served, then misreporting his valuation leads either to non-service (to his disadvantage)
or to service with the same cost and payment (by the no bossiness ofM); if an agent is not served, he will
not have an incentive to overreport his valuation to be served because he would not do that inM (because
M is truthful) and now the payment is even higher than inM. Now, similarly to the proof of Theorem 5,
we need only to bound the additional social cost inflicted by refusing service to bidders with valuations no
more than2k.

By the wayk is determined, we have

2j |Sj(v)| < C(Sj(v)), ∀j < k. (2)

Using this, we have

∑

i∈S(v)\Sk(v)

vi =

k−1∑

j=0

∑

i∈Sj(v)\Sj+1(v)

vi ≤
k−1∑

j=0

2j+1|Sj(v)| ≤
k−1∑

j=0

2C(Sj(v)) ≤ O(log h)C(M).
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