
A Comparative Study of Parallel and
Sequential Priority Queue Algorithms

ROBERT RÖNNGREN and RASSUL AYANI
Royal Institute of Technology (KTH), Stockholm, Sweden

Priority queues are used in many applications including real-time systems, operating systems,
and simulations. Their implementation may have a profound effect on the performance of such
applications. In this article, we study the performance of well-known sequential priority queue
implementations and the recently proposed parallel access priority queues. To accurately
assess the performance of a priority queue, the performance measurement methodology must
be appropriate. We use the Classic Hold, the Markov Model, and an Up/Down access pattern
to measure performance and look at both the average access time and the worst-case time that
are of vital interest to real-time applications. Our results suggest that the best choice for
priority queue algorithms depends heavily on the application. For queue sizes smaller than
1,000 elements, the Splay Tree, the Skew Heap, and Henriksen’s algorithm show good average
access times. For large queue sizes of 5,000 elements or more, the Calendar Queue and the
Lazy Queue offer good average access times but have very long worst-case access times. The
Skew Heap and the Splay Tree exhibit the best worst-case access times. Among the parallel
access priority queues tested, the Parallel Access Skew Heap provides the best performance on
small shared memory multiprocessors.

Categories and Subject Descriptors: D.1.3 [Programming Techniques] Concurrent Pro-
gramming; E.1 [Data Structures]: Lists, Trees; E.2 [Data Storage Representation]:
Linked Representations; F.2.2 [Analysis of Algorithms] Nonnumerical Algorithms and
Problems—sequencing and scheduling; I.6.8 [Simulation and Modeling]: Discrete Event

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Parallel access priority queue, pending event set imple-
mentations, priority queue

This work is part of a distributed simulation project financed by the Swedish National Board
for Industrial and Technical Development (NUTEK). Part of this article is based on “Fast
Implementations of the Pending-Event Set,” by Rönngren, Riboe, and Ayani, in Proceedings of
The International Workshop on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems, Part of the SCS Western Multiconference on Computer Simulation, San
Diego, California, January 17–20, 1993 SCS.
Authors’ addresses: Department of Teleinformatics, Simulation Laboratory, Royal Institute of
Technology (KTH), Stockholm, Sweden; email: ^robertr,rassul@it.kth.se& http://www.it.kth.se/
labs/sim.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1049-3301/97/0400–0157 $03.50

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997, Pages 157–209.

1. INTRODUCTION

Priority queues are used in a wide variety of applications including
operating systems, real-time systems, and discrete event simulations. In a
priority queue, each element is ordered by its associated priority. The basic
operations are dequeue and enqueue. A dequeue operation removes the
element with the highest priority, and an enqueue inserts a new element
into the queue. The way the operations are performed may have a profound
effect on the performance of such applications. Although priority queues
are used in various contexts, there are some general quality measures of
interest. The most important metric is the time required to perform the
most common operations, in our case, dequeue and enqueue, and we refer
to this time as access time. In most cases, the measure of interest is the
amortized (or average) access time [Tarjan 1985]. However, for some
applications (e.g., real-time systems), the maximum or worst-case access
time is also of interest. Other characteristics that may influence the choice
of a priority queue implementation are memory requirements, code size,
and the possibility of providing additional operations such as retrieval of an
arbitrary element.

Over the years, several performance studies on priority queues have
appeared in the literature. A significant number of these studies have been
performed in the context of discrete event simulation (DES).1 Here, a
priority queue is used to hold the pending event set (sometimes referred to
as the event calendar [Chung et al. 1993]) which contains the generated but
not yet evaluated events. The reason for studying priority queues in this
context is twofold: the specific implementation is often crucial to the
performance of the simulator, and the way operations are performed on the
pending event set provides an excellent test case for studying priority
queues. The former is accentuated in parallel discrete event simulation
[Fujimoto 1990], where the impact of the implementation of the pending
event set can have a superlinear effect on performance [Rönngren et al.
1993b]. Thus it is important to find methods that allow a realistic and
accurate assessment of the access time.

Up till now, the most widely used method for performance studies of
priority queues has been the Hold model introduced by Vaucher and Duval
[1975] and refined by Jones [1986]. It models operations on a fixed-size
queue where a series of hold operations (a dequeue followed by an enqueue)
are performed. In the following, we refer to this model as the Classic Hold.
This method, however, does not capture the dynamic nature of queue sizes
that often appears in practice, as recognized by several researchers includ-
ing Rönngren et al. [1993a] and Chung et al. [1993]. An Up/Down model is
proposed in Rönngren et al. [1993a], where a sequence of enqueues is
followed by an equally long sequence of dequeues. Chung et al. [1993]
propose an elegant generalization of the Hold model, the Markov Hold,

1See Chung et al. [1993], Jones [1986], McCormack and Sargent [1981], and Vaucher and
Duval [1975].

158 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

where operations on the queue are determined by a two-state Markov
process with states insert (enqueue) and delete (dequeue). By changing the
transition probabilities, the Markov Hold model can represent random
sequences of enqueue and dequeue operations. Apart from queue size and
access pattern, a priority queue may also be sensitive to the distribution
function used to generate priority for the elements. This issue has been
addressed in several studies.2

Recently, several new data structures for the implementation of priority
queues have appeared in the literature.3 We compare the performance of
some of these data structures with data structures that have fared best in
earlier studies. Two categories of priority queues are studied: general
purpose priority queues and those tailored to discrete event simulation.

In this article, we present the results of an extensive experimental study
of priority queues. The study encompasses several recently proposed data
structures for the implementation of priority queues as well as data
structures that have fared well in earlier studies. Our main contributions
can be summarized as follows.

(1) We use three measurement methods: Classic Hold [Vaucher and Duval
1975; Jones 1986], Markov Hold [Chung et al. 1993], and Up/Down
[Rönngren et al. 1993a] and comment on the advantages and disadvan-
tages of each.

(2) For most of the experiments, we measure the access time of each
individual enqueue/dequeue operation to isolate the effects of the
underlying hardware. Most of the other studies have measured the
access time by measuring the execution time of a loop consisting of a
number of operations. Our method not only allows measuring the
average access time, but also identifying the best and worst-case access
times which are of great interest in real-time systems.

(3) We use some compound distribution functions which interleave se-
quences of time-stamp increments drawn from different distribution
functions in addition to those used by other researchers. These distri-
butions are of practical interest in applications such as traffic systems.

(4) We compare the performance of parallel access priority queue algo-
rithms that have been recently proposed. To our knowledge, this has
never been done before.

The remainder of this article is organized as follows. Section 2 provides
an introduction to discrete event simulation and the use of priority queues
for implementation of the pending event set; Section 3 describes perfor-
mance measurement techniques; Section 4 gives a brief overview of the
priority queues investigated in this article; results from the performance

2For example, Jones [1986], McCormack and Sargent [1981], Rönngren et al. [1993a], and
Vaucher and Duval [1975].
3See Ayani [1990], Brown [1988], Jones [1989], Pugh [1990], Rao and Kumar [1988], and
Rönngren et al. [1993a].

Parallel and Sequential Priority Queue Algorithms • 159

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

measurements are presented in Section 5; and conclusions and recommen-
dations are found in Section 6.

2. PRIORITY QUEUES AND DISCRETE EVENT SIMULATION

In the unifying framework that we use to describe both sequential and
parallel discrete event simulation, a system is modeled as a number of
concurrent logical processes (LPs) interacting by scheduled event messages.
The pending event set (PES) is the set of all generated but not yet
evaluated events and, in general, is represented by a priority queue. The
implementation of the PES is often crucial to simulation performance. An
empirical study by Comfort [1984] indicated that up to 40% of the simula-
tion execution time may be spent on the management of the PES alone.
Therefore, as systems become more complex and a demand for fast simula-
tors arises efficient implementation of the PES becomes increasingly im-
portant.

One particular problem lies in the size of the PES. In general, larger
PESs result in slower execution time. Although most simulation models
generate event sets of at most a few hundred events, some models can
generate event sets containing thousands of events. In some cases, this
problem can be minimized depending on the purpose of the simulation. If
the purpose is to study statistical entities, it is sometimes possible to apply
modeling techniques that simplify the model or to manipulate the statisti-
cal properties of the model to reduce the PES’s size [Kesidis and Walrand
1993; Obal and Sanders 1994]. However, these methods are not generally
applicable, and it may be hard to validate and scale the obtained results.
Furthermore, as simulation is a widely used tool, users may create simula-
tion models without being aware of the size of the event set that is
generated. Other situations may occur where it is not possible to reduce the
size of the PES. If the aim is to validate or verify the behavior of a system,
then the model often has to be in great detail. This may, in turn, result in
very large PESs and hence greater execution time. An example is gate-level
simulation for validation of custom-design digital logic circuits (ASICs).
Such systems are often built from several ASICs, where a single ASIC may
consist of more than 100,000 gates. If only a fraction of the gates are
simultaneously active, the PES can contain several thousand events. Other
examples of simulations generating potentially very large event sets can be
found in communication systems such as Personal Communication Systems
[Carothers et al. 1994; Das et al. 1994] and telephone networks [Unger et
al. 1994]. Thus a data structure suitable for the implementation of the PES
in discrete event simulation systems should ideally be able to handle event
set sizes ranging from a few to several thousand events efficiently.

2.1 Pending Event Set in Sequential DES

In a PES, the simulated times at which the events are scheduled to be
executed (time-stamps) are used as priorities. A sequential discrete event
simulator operates in a three-step cycle: remove the event with the small-

160 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

est timestamp (i.e., highest priority) from the PES; execute this event; and
insert any new events resulting from this execution into the PES. Thus the
two most common operations on the PES data structure are: dequeue, the
removal of the event with the highest priority (sometimes referred to as
delete-min), and enqueue, the insertion of a new event. Empirical studies of
real simulations [Comfort 1984] indicate that these two operations can
account for as much as 98% of all operations on the PES, the rest being
other operations such as deletion of arbitrary events and the like. The
performance of the PES is influenced by a number of variables including
the initial distribution of events, the priority (or time-stamp) increment
distributions, access patterns (i.e., mixture of dequeue and enqueue opera-
tions), and the size of the event set [Jones 1986]. Thus the event set
implementation must be efficient under a wide variety of operating condi-
tions and possibly be adaptive to take advantage of these conditions [Jones
et al. 1986].

2.2 Event Set in Parallel DES

The requirements of high performance simulation of complex systems and
the observation that these systems are often inherently parallel have
motivated the development of parallel (or distributed) discrete event simu-
lation [Fujimoto 1990; Jeffersson 1985; Misra 1986]. In parallel DES
(PDES), the inherent parallelism that exists in most simulation models is
realized by allowing LPs to be executed in parallel using several processing
units. From a conceptual view, the LPs are independent self-contained
processes. Among other things, this implies that the global PES is often
divided over the LPs so that each LP has its own input queue of events (or
event list). In PDES priority queues are also often used as scheduling
queues for LPs that are ready to execute (i.e., LPs that have events to
execute). This queue may also be shared by several processing elements.

2.3 Stability and Determinism

An issue that is important in many cases but is often neglected when using
priority queues is how elements with identical priorities are handled. In
DES, the user often assumes that if two events with identical time-stamps
are inserted into the PES in a specific order, these events will be dequeued
in the same order (i.e., FIFO order). A priority queue that preserves FIFO
order on items with equal priority is referred to as stable [Gordon 1981]. A
stable PES is often desirable as it may facilitate debugging of a simulation
model/program since all events will be evaluated in the order in which they
were generated. Nevertheless, many popular priority queue algorithms are
not stable, such as the Implicit Binary Heap. Nonstable priority queues can
be made stable by the introduction of an auxiliary priority field, a sequence
number [McCormack and Sargent 1981], to break ties. Although stability is
often considered to be critically important we should, for the sake of
completeness, note that there exist different opinions on this issue. One
counterargument is that (implicit) assumptions on the ordering of events

Parallel and Sequential Priority Queue Algorithms • 161

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

with identical time-stamps as a basis for the correctness of a simulation
model in some cases can make the model harder to understand and difficult
to maintain.

A related concept to stability is determinism, which means that two runs
of a simulation model with identical parameter settings produce the same
results. Determinism is an important property of a simulation system as it
facilitates debugging of the code as well as validation of the model. A
simulator is deterministic if all LPs in a model execute their events in the
same order in any two runs with identical parameter settings [Jeffersson
1985]. Determinism is inherent in a sequential simulation but not in a
parallel one.

A parallel simulation is considered to be correct if all LPs process all
events in correct causal order [Jeffersson 1985]. However, this does not
guarantee that the simulation is deterministic. The real-time order in
which two independent events are generated by two different processing
elements may vary for different runs of a simulation. Hence a PDES cannot
rely on a real-time ordering of events to achieve deterministic results.
Enforcing determinism in a parallel simulation requires the ability of
imposing a total ordering of the events. Methods by which events in
distributed systems can be ordered have been proposed by Lamport [1978]
and for PDES in particular by Mehl and Hammes [1993].

3. PERFORMANCE MEASUREMENT TECHNIQUES

As indicated in Sections 1 and 2, the PES must be able to operate under a
wide variety of operating conditions. When designing experiments to study
priority queues, it is important to carefully choose access patterns, priority
increment distributions, and measurement techniques. The choices should
reflect the operating conditions under which the priority queue will be used
as well as enabling accurate measurement of the performance metrics of
interest. In this section we describe the methods that have been used and
evaluated in this study. It also contains a description of the computer and
programming systems used in the experiments.

3.1 Access Patterns

When selecting access patterns for this study we chose synthetic experi-
ments [Chung et al. 1993; Jones 1986; Vaucher and Duval 1975] over real
simulations [Chung et al. 1993; McCormack and Sargent 1981]. Synthetic
experiments provide better control over the variables affecting performance
and, thus, they better expose the factors that influence performance.
Furthermore, synthetic experiments facilitate direct comparison to earlier
priority queue studies [Chung et al. 1993; Jones 1986; Vaucher and Duval
1975].

Three classes of accesses can be identified: steady-state, transient behav-
ior, and random access patterns. The steady-state is the most commonly
used method to study priority queues and is primarily modeled as Classic

162 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Hold.4 A hold operation is defined as a dequeue followed by an enqueue
operation. Up/Down experiments proposed by Rönngren et al. [1993a]
model the PES’s transient behavior where the queue grows to a certain size
by a sequence of enqueues and then shrinks by a sequence of dequeues. In
our experiments, the measurements start and end with an empty queue for
this access pattern. In a random access pattern, each access may be a
dequeue or an enqueue operation.

In simulation experiments it is often necessary to let the simulation run
for some time before statistics are collected. This is to avoid the transient
startup period of the simulation. Similar transient periods occur in the
synthetic experiments before the distribution of events in the event set has
stabilized. This phenomenon has been analytically studied in the context of
the hold model by Vaucher [1977] and Steinman [1994], respectively. These
studies show that the distribution of the events in the queue under the hold
model eventually reaches a steady state that is entirely determined by the
priority increment distribution. Given these distributions, it is possible to
calculate a measure on the average fraction of the events that an enqueue
operation would scan in a linked list implementation of the PES after an
initial phase of an infinite number of hold operations [Kingston 1985;
McCormack and Sargent 1981]. In this article, we use the term bias, as
suggested by Jones [1986], for this measure. A bias value of 1 corresponds
to a pure FIFO behavior and similarly, a value of 0 corresponds to a LIFO
queue. McCormack and Sargent [1981] observed that in practice different
LPs often use different priority increment distributions. They also showed
that the mixing of priority increment distributions tends to result in low
bias. To model this phenomenon, they proposed an interaction hold model
where the priority increment is drawn randomly from a set of distribution
functions. Kingston [1985], however, showed that this particular model is,
in general, equivalent to the Classic Hold model using a single priority
increment distribution.

The Classic Hold models the behavior of a discrete event simulation
system performing a sequence of hold operations. In the Classic Hold
experiments, the queue is initialized to a certain size by a stochastic series
of enqueue and dequeue operations with a slightly higher probability for
enqueue operations than dequeue operations [Jones 1986]. When the queue
has reached the desired size, the measurement phase which consists of a
number of hold operations is performed. The manner in which the buildup
phase of the queue is performed ensures that the shape of the tree and
heap-structured queues will be correct [Jones 1986]. After the buildup
phase, the distribution of the events in the queue undergoes a transient
period before bias has reached the theoretical value. The length of this
transient period, which is often short [McCormack and Sargent 1981],
depends on the number of events in the queue and the priority increment
distribution. Measuring the average bias from the first hold operation after

4See Jones [1986], Kingston [1985], McCormack and Sargent [1981], and Vaucher and Duval
[1975].

Parallel and Sequential Priority Queue Algorithms • 163

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

the buildup phase, we have observed that for priority increment distribu-
tions with bias greater than or equal to 0.5, the measured bias will, in
general, converge to the theoretical value after a number of hold operations
equalling 5 times the queue size. For priority increment distributions with
bias less than 0.5, the required number of hold operations is, however,
often substantially longer, up to 30 times the queue size. Thus, if access
time measurements begin directly after the buildup phase, we expect that
correct average values for the access time will be obtained after a number
of hold operations equal to 5 or 30 times the queue size. This method to
determine the measurement phase has the advantages (i) that the problem
of determining the length of the transient period is avoided, and (ii) that
the transient period will influence the performance measurements for
different queue sizes to the same extent. The latter would not necessarily
be the case if the same number of operations had been used for the
observation and/or skipped transient periods for all queue sizes.

The Classic Hold and the Up/Down models represent two extreme cases
and serve to show the performance bounds of PES implementations.
Experiments were performed for various queue sizes ranging from 25 to
50,000 elements. In the Classic Hold experiments, the number of hold
operations performed was 5 times the queue size for all experiments
performed on the Sequent Symmetry (due to prohibitively long execution
times for the larger queue sizes) and 30 times the queue size on the SUN
Sparc10 and PentiumPro PC (see Section 3.3).

Chung et al. [1993] proposed an elegant generalization of the Classic
Hold, called the Markov Hold model. In Markov Hold, the operations on the
priority queue are generated by a two-state Markov process that may be in
either of the states insert (enqueue) or delete (dequeue). By changing the
state transition probabilities (a and b in Figure 1) this model can be used to
represent the Classic Hold, transient behavior, and a generalized random
sequence of enqueue and dequeue operations. Chung et al. argued that in
real-life simulations, the effects of changing queue sizes will dominate over
the effects of using different priority increment distributions. However,
according to our experience, this only holds if the considered priority queue
implementation is relatively insensitive to the particular priority incre-
ment distribution function used (see the discussion in Section 3.2). With
this reasoning, Chung et al. [1993] used only a mixture of two priority
distributions in their reported experiments. With an enqueue immediately
followed by a dequeue, the priority increment is drawn from an Erlang
distribution with mean 2 and standard deviation 1. In all other cases, the
priority increment is drawn from a two-component hyperexponential distri-

Fig. 1. State transition probability matrix for Markov Hold.

164 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

bution with mean 2 and standard deviation 4. As a consequence of this,
only the Erlang distribution is used in a sequence of hold operations as in
Classic Hold, and the hyperexponential distribution for a series of consecu-
tive enqueues.

Although the Markov model can be used to generate access patterns
equivalent to the three classes mentioned (Classic Hold, transient behavior,
and generalized random sequence of enqueue and dequeue operations), we
also studied these models to: (i) compare our results with the published
works which are mainly based on the Classic Hold, and (ii) evaluate the
Markov model for a wide variety of parameters.

3.2 Priority Increment Distributions

The priorities (time-stamps) of new elements are calculated by adding an
increment generated by a priority increment distribution function to the
value of the most recently dequeued element. Different distributions can
result in access patterns ranging from near FIFO to near LIFO behavior.
Moreover, some queue implementations are sensitive to the shape of the
distributions.

The distributions used in this study are found in Table I, where rand()
returns a random number in the interval [0, 1], as described in Park and
Miller [1988]. Several of these distributions have been used in other
studies.5 The bias values have been measured in separate experiments and
correspond well with analytically calculated and measured values which
have been presented in earlier studies, with the exception of the bimodal

5See Brown [1988], Henriksen [1977], Jones [1986], Kingston [1985, 1986], and McCormack
and Sargent [1981].

Table I. Priority Increment Distributions

Parallel and Sequential Priority Queue Algorithms • 165

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

distribution, reported in Jones [1986]. Jones reports that this distribution
should have a bias value of 0.13. This distribution is, however, very similar
to several of the distributions used by McCormack and Sargent [1981] (i.e.,
distributions 1, 13, and 14) for which the reported bias values fell in the
range 0.17 to 0.42. We therefore believe the value 0.34 to be correct for this
distribution. The last three distributions of Table I, the negative triangu-
lar, the camel distribution [Rönngren et al. 1993a; Riboe 1991], and the
ExponentialMix are specifically intended to test some of the special pur-
pose PES implementations. The camel distribution may be used to model
aspects of bursty traffic in computer and telecommunication networks. The
parameter setting used for the camel distribution results in a double hump
distribution. A 0.001 fraction of the probability mass is evenly distributed
over the interval [0, 1,000] and the remaining 0.999 fraction is concen-
trated in two equally large humps located at one-third and two-thirds from
the beginning of the interval. The two humps have each a width of 0.0005
of the total interval length. The ExponentialMix distribution is a slight
variation of the distribution labeled 3 in McCormack and Sargent [1981].

The use of a single distribution does not always reveal all weaknesses of
a particular priority queue implementation. Some of the special-purpose
PES implementations that depend on resize heuristics and operations, such
as the Calendar queue and the Lazy Queue, may be sensitive to drastic
changes in priority increment distribution [Rönngren et al. 1993a]. For this
reason, we have tested the queues with interleaving sequences of priority
increments drawn from two different distributions. This is defined as
Change(A, B, x), where A and B are priority increment distributions and x
is an integer value. The initial x priority increments are drawn from
distribution A, the following x increments are generated by distribution B,
the next x increments from distribution A, and so on [Rönngren et al.
1993a].

3.3 Coding Conventions and Target Machine

The experiments measuring the performance of the priority queues were
primarily conducted on a Sequent Symmetry6 S81 [Sequent 1989] shared
memory bus-based multiprocessor equipped with 10 Intel 386i processors
operating at 16 MHz (delivering 1.6–2.4 Mips per processor). The machine
is equipped with 40 Mb shared RAM, 20 MHz external floating point units,
and 32 Kb caches for data and instructions using a copyback cache
consistency protocol. The bus has a bandwidth of 53.3 Mb/s. Although the
Sequent Symmetry S81 does not have impressive performance by today’s
standards, it provided us a single platform for both parallel and sequential
experiments and allowed a more accurate time measurement technique
than could be accomplished on more modern computers (see Section 3.4).

Our measure for the performance of the priority queues is execution time.
This measure is accurate for the particular hardware configuration on

6Symmetry is a registered trademark of the Sequent Computer Systems, Inc.

166 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

which it has been obtained. However, the characteristics of different
computer architectures may affect the execution speed of different priority
queues differently, thereby changing their relative performance. To give an
indication of whether conclusions based on the Sequent Symmetry experi-
ments change when more recent computer architectures are used, we
conducted additional experiments on a SUN Sparc10 workstation and a
high performance PC. Both of these computers used the Solaris 2.5 operat-
ing system and were equipped with two processors and 64 Mb memory. The
Sparc10 was equipped with 40 MHz processors and the PC had PentiumPro
200 MHz processors.

All code was written in the C programming language and optimized by
eliminating all recursive procedure calls, and the like. Four operations on
the queues were implemented: enqueue, dequeue, create-queue, and de-
stroy-queue. For some of the queues, it is possible to implement a specific
hold operation that is more efficient (see McCormack and Sargent [1981]).
However, this was not done since the practical importance of such an
operation is limited, and it would make our comparison more complicated.
No assumptions on the queue size were made when the queues were
created.

The performance measurements were performed with the needed mem-
ory pre-allocated (when necessary managed in free-lists). Thus the effects
of the underlying memory management system on the performance were
minimized. In the parallel experiments, the locks and the macrolock
operations provided by the Sequent microtasking library were used. The
average cost of accessing a lock was 4–5 ms.

3.4 Time Measurements

Two different measurement techniques were used. In the sequential exper-
iments on the Sequent Symmetry S81 each operation on the queue was
timed separately [Rönngren et al. 1993a] with the use of the microsecond
resolution clock available on the Sequent Symmetry S81. This technique
has the important property that time measurements are restricted to the
queue accesses, which improves the accuracy of the performance measure-
ments. This technique not only allows measurements of the amortized
access times [Tarjan 1985], but also the worst-case access time.

For the other experiments, this technique was not feasible. On the SUN
Sparc10 and the PentiumPro equipped PC, this was due to insufficient
resolution of the available time measurement mechanisms. Measuring
individual operations in the parallel experiments would disturb the poten-
tial parallelism. Instead, a more traditional two-loop technique was em-
ployed in these cases. One of the loops included the queue accesses and the
other did not. The execution time corresponding to the first loop, T1,
consisted of the loop overhead and the queue access time, and the second
loop time, T2, represented only the loop overhead. Thus the total queue
access time was T1 2 T2, and the average access time was Taverage 5 (T1 2
T2)/Total number of operations.

Parallel and Sequential Priority Queue Algorithms • 167

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

4. PRIORITY QUEUE DATA STRUCTURES

Both sequential access and parallel access priority queue implementations
are discussed in this work. In the following sections we discuss: (i) the
sequential priority queue data structures evaluated in this study and their
expected performance, (ii) particular issues related to parallel access prior-
ity queue algorithms, and (iii) the parallel access priority queue algorithms
that we have selected for this study.

4.1 Sequential Priority Queue Data Structures

Our study includes: (i) the following well-known data structures: implicit
binary heaps [Bentley 1985], linked lists, Skew Heaps [Sleator and Tarjan
1986], Splay Trees [Sleator and Tarjan 1985], Calendar Queue [Brown
1988], skip lists [Pugh 1990], and Henriksen’s [1977] algorithm, previously
studied by other researchers [Chung et al. 1993; Jones 1986; McCormack
and Sargent 1981] and (ii) some of the more recently proposed queue
implementations, that is, the Lazy Queue [Rönngren et al. 1993a] and the
SPEEDESQ [Steinman 1992]. The Calendar Queue, Henriksen’s algorithm,
the SPEEDESQ, and the Lazy Queue are specifically tailored to take
advantage of the special characteristics of the PES in discrete event
simulation.

Of these data structures, the Median Pointer Linked list, the Calendar
Queue, the skip lists, the Splay Tree, and Henriksen’s algorithm are stable.
The Lazy Queue and the SPEEDESQ can be made stable if the sorting
algorithms used in the implementation of these queues are stable. In this
study we have, however, not used stable sorting algorithms for these
queues. Moreover, our implementations of the implicit binary heap and the
Skew Heap are not stable; that is, they do not implement auxiliary
sequence numbers [McCormack and Sargent 1981]. The characteristics of
these data structures are discussed in the following.

4.1.1 Implicit Binary Heap. The sequential implicit binary heap [Bent-
ley 1985] (referred to as implicit 2-heap in Chung et al. [1993]) is well
known, and the data structure as such should need no further introduction.
However, there is one observation worth making on the computational
complexity of the implicit binary heap. Both the enqueue and dequeue
operation have a worst-case behavior of O(log(n)), where n is the number of
elements in the queue. The amortized complexity of enqueue operations is,
however, often near O(1) in practical cases. In an enqueue operation, the
new element is placed at the base of the heap (i.e., as the rightmost leaf at
the lowest level). To restore the heap property (i.e., that each parent has a
higher priority than any of its children), the new element is compared to its
parent and if necessary they are swapped. This process has to be repeated
upwards in the heap until either the root is reached or at some level no
swap is needed. The question is then, how many levels have to be traversed
on average? This problem can be answered by calculating at what level
(enumerating the levels 1, 2, 3, . . . from the bottom-most level) an arbi-
trary element is placed. Consider a heap where the last level is fully filled,

168 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

then half the elements are at level 1, one quarter of the elements are at
level 2, and so on. Thus the average level can be expressed as the sum
1*1/2 1 2*1/4 1 3*1/8 1 . . . , which is asymptotically bounded by 2.
Consequently, if the bias is not extremely low we would expect the
amortized enqueue time to be near O(1).

4.1.2 Median Pointer Linked List. The Median Pointer Linked list was
implemented as a doubly linked circular list that allows insertions to take
place from both the front and the back. A pointer to the median element
(with respect to the number of elements) in the list is used to identify
whether the insertions should be made from the front (time-stamp of the
new element is less than or equal to that of the median element) or the
back end of the list [McCormack and Sargent 1981]. A dequeue operation
on a Median Pointer Linked list is performed in constant time, whereas the
enqueue operation is O(n).

4.1.3 Skew Heap. The Skew Heap [Sleator and Tarjan 1986] is a
heap-ordered binary tree where any descendant of a node has lower priority
than the node itself. The central operation in the Skew Heap is referred to
as a meld operation. A meld operation merges two Skew Heaps into one,
preserving the heap property. Thus a dequeue operation is performed by
removing the topmost (root) node and melding the two resulting subheaps
into a single heap. In the top-down Skew Heap used in our study, an
enqueue operation is performed as a meld of a one-node Skew Heap and the
existing Skew Heap. Our implementation was based on the nonrecursive
code found in Jones [1989]. The amortized time to perform a dequeue or an
enqueue operation is O(log(n)) [Sleator and Tarjan 1986] although individ-
ual operations may be O(n) if the heuristics for the balancing of the heap
fails.

4.1.4 Splay Tree. Splay Tree [Sleator and Tarjan 1985] is a heuristi-
cally balanced binary search tree. It uses a balancing technique called
splaying. Splaying is essentially a sequence of tree rotations that helps
balance the tree and move nodes on frequently used branches upwards
(closer to the root). Our implementation was based on the Pascal code used
by Jones [1986]. In this implementation, a dequeue operation can be
performed in constant time and the amortized access time for the enqueue
operation is O(log(n)) [Sleator and Tarjan 1985]. The worst-case access time
of an individual enqueue operation is O(n) if the balancing heuristic fails.

4.1.5 Calendar Queue. The Calendar Queue suggested by Brown
[1988] is a multilist-based data structure. It uses an elegant technique to
manage the overflow problem encountered in multilist-based implementa-
tions. In the Calendar Queue, there exists no dedicated overflow structure.
All elements, including those that would fall into an overflow structure in
an ordinary multilist, are inserted into the sublists. This is accomplished in
the following way: all sublists span equally long priority (time) intervals
where the total length of these subintervals is called a year. When a new
element is inserted in the queue, the sublist into which the new element

Parallel and Sequential Priority Queue Algorithms • 169

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

will fall is calculated. To ensure good performance, it is required that the
sublists, which are implemented as linked lists, are kept short (an average
length of two elements). This is accomplished by a resize operation. The
resize operation is performed when the queue size has changed by a factor
of two. The new length of the subintervals is calculated by using an
approximation of the distribution based on the first few elements [Brown
1988]. Our implementation is based on the calendar queue code supplied by
Brown [1988]. The Calendar Queue has O(1) access time under many
operating conditions although the resize operations are O(n). The worst-
case amortized access time for the Calendar Queue is O(n) [Rönngren et al.
1993a].

4.1.6 Lazy Queue. The Lazy Queue [Rönngren et al. 1993a] is a multil-
ist-oriented data structure. The fundamental idea is to divide the future
events into several parts and keep only a small portion of the elements
completely sorted. The elements are divided into: (i) a near future that is
kept sorted, (ii) a far future that is partially sorted, and (iii) a very far
future that is used as an overflow bucket. As time advances, part of the far
future is sorted by standard sorting techniques and transferred into the
near future. This lazy sorting behavior gives the queue its name. The far
future part of the queue is implemented as an array of unsorted sublists
where each sublist corresponds to an equally long priority interval. The
near future consists of a sorted array of elements (transferred from the far
future) and a skew heap is used to insert the new elements that belong to
the near future. Skew heaps are used to implement the very far future of
the lazy queue.

To ensure good utilization of the data structures, a set of resize opera-
tions was introduced. Some modifications in the implementations of the
resize operations have been performed that improve the performance for
smaller queue sizes as compared to the results presented in [Rönngren et
al. 1993a]. In particular, there is a resize operation that recalculates both
the length of a subinterval and the number of subintervals. This operation
is used whenever a resize operation is initiated. However, the criteria for
initiating a resize operation remain unchanged. The resize operations are
expensive, worst case of O(nlog(n)), but they are amortized over the
relatively inexpensive ordinary operations. This results in a near O(1)
access time for many operating conditions. The worst-case amortized access
time can be restricted to O(n) [Rönngren et al. 1993a]. A minimum queue
size of 256 elements is requested to perform a resize operation. The Lazy
queue is stable only if the sorting algorithm and the implementations of the
near and very far futures are stable.

4.1.7 Henriksen’s Data-Structure. Henriksen’s [1977] implementation
of the PES employed in GPSS/H [Gordon 1981] uses a linked list and an
array of pointers into the list. The array of pointers is used to perform
binary searches in the list to find the place where a new element should be
put in an enqueue operation. A heuristic algorithm is employed to update
the auxiliary pointers. The implementation was based on the code given in

170 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Kingston [1986] where the array of pointers is used as a circular list of
pointers. The size of the array of pointers is doubled when necessary as the
queue size grows. However, the array is not decreased in size if the queue
size shrinks. Our implementation does not allow insertions of new events
with time-stamps less than that of the most recent event dequeued from
the queue. The amortized access time of Henriksen’s algorithm is often
O(log(n)), and limited by O(n1/2) in the worst case [Kingston 1986]. Dequeue
operations are performed in constant time, whereas enqueue operations
can be O(n).

4.1.8 Skip List. Skip List was proposed as an alternative to balanced
search trees by Pugh [1990]. The Skip List is built on an ordinary doubly
linked linear list where the elements of the list may carry additional
forward pointers to successors in the list. The “level” of an element decides
how many forward pointers the element has. An element of level k has k
forward pointers pointing to the next elements of level 1, 2, . . . , k,
respectively. The level of an element is chosen randomly when the element
is inserted in the list and the maximum level of a node is limited to some
fixed value. The basic idea of the Skip List is that the additional pointers
form a randomly balanced search tree on top of the list without the
additional costs required to balance the tree. Our implementation of the
Skip List was based on code retrieved via ftp according to the instructions
in Pugh [1990]. The Skip List has a O(log(n)) behavior provided the
probabilistic search tree remains nearly balanced. If this is not the case,
enqueue operations may take O(n) time, whereas dequeue operations can
always be performed in constant time.

4.1.9 SPEEDESQ. The SPEEDESQ [Steinman 1992] consists of two
single linear linked lists. One list, referred to as the “dequeue-list,” is kept
sorted and the other list, the “enqueue-list” is unsorted. New elements are
added to the enqueue-list, which can be done in constant time since the list
is kept unordered. The queue also maintains a variable recording of the
highest priority (smallest time-stamp) of any element present in the
enqueue-list. A dequeue operation removes the element with the highest
priority from the dequeue-list. The enqueue-list is sorted and merged with
the dequeue-list in a dequeue operation if the dequeue-list is exhausted or
whenever the highest priority element is present in the enqueue-list. The
merge operation is potentially an O(n) operation which, if frequent, results
in a worst-case performance of O(n). The SPEEDESQ resembles the two-
list structure proposed by Blackstone et al. [1981]. However, the main
difference lies in the way the elements are transferred from the enqueue-
list to the dequeue-list. Whereas the SPEEDESQ transfers the complete
enqueue-list, the two-list approach scans the enqueue-list and transfers
only a subset of the elements, that is, those with the highest priority. The
two-list selection of which elements to transfer is based on some heuristics.
If these heuristics fail, there is the potential for frequent scans of a very
long enqueue-list in which case the performance would deteriorate. In this
perspective, the SPEEDESQ approach for handling the enqueue-list is an

Parallel and Sequential Priority Queue Algorithms • 171

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

improvement that eliminates this heuristic. SPEEDESQ has constant
enqueue time and a constant time for many of the dequeue operations.
However, dequeue operations that involve sorting of the enqueue-list have
an O(nlog(n)) time complexity.

4.1.10 Expected Performance of Sequential Priority Queues. Table II
summarizes the theoretically expected performance of the sequential prior-
ity queues studied in this article. For some of the data structures, there are
two figures in the columns for amortized enqueue and dequeue times.
These figures correspond to the expected amortized access times for a
majority of operating conditions encountered in simulations and to the
worst-case amortized behavior, respectively. When the worst and expected
cases are equal, we give only one figure in the table. In Section 5, we
compare these theoretically expected values with our experimental results.

4.2 Parallel Access Priority Queues

When designing parallel algorithms, there are a number of design choices
that have to be addressed in addition to what is encountered in sequential
programming. In particular, the parallelism has to be exploited efficiently
while ensuring that the algorithm gives correct results and is free from
deadlocks and livelocks. This section describes the evolution of parallel
access priority queues in the context of DES and the design choices that
have been made.

It is potentially possible to perform enqueue operations in parallel if they
operate on separate parts of the priority queue. Apparently, this was first
recognized within the database community where examples of concurrent
software operations on data structures similar to priority queues were
proposed [Bayer and Schkolnik 1977; Ellis 1980]. The first approach (to the
authors’ knowledge) to parallelizing the operations on the PES was based
on special-purpose hardware. Comfort [1984] discussed a special-purpose
multiprocessor system with several coprocessors managing a PES. The
result of this study indicated that substantial reductions in execution time

Table II. Expected Performance of Sequential Priority Queues

172 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

can be achieved by performing parallel operations on the PES. However,
the potential level of parallelism in these experiments appeared to be
limited to three. A software solution to parallel access priority queues that
allowed simultaneous update of the queue was proposed by Biswas and
Browne [1987]. Apart from managing the PES, parallel access priority
queues could be used for scheduling queues in parallel processing environ-
ments [Ahmed et al. 1994].

When designing a parallel access priority queue, one main question is
whether the process accessing the queue (i.e., performing a dequeue or
enqueue operation) should be responsible for reordering the queue or if
special processes should perform this task. The latter approach is advo-
cated in both Comfort [1984] and Biswas and Browne [1987]. The use of
maintenance processes may help achieve better locality and better cache
performance as the location of the pending event set could be confined to
some processors.

More recent parallel access priority queues [Rao and Kumar 1988; Jones
1989; Ayani 1990] do not, however, use separate maintenance processes.
Instead, the processes performing the dequeue/enqueue operations also
perform the restructuring operations. However, this is logically equivalent
to using maintenance processes. It can be viewed as if the process, after
claiming the element with the highest priority (in a dequeue) or bringing a
new element to the queue, transforms into a maintenance process to
perform the restructuring of the queue. The advantage of this approach is
the absence of an explicit context switch between the accessing process and
the maintenance process. With this view, it is also evident that the queue
accesses are serializable if a dequeue operation returns the element with
the highest priority when the operation started.

4.3 Parallel Access Priority Queue Algorithms

In this study we considered parallel access versions of the binary heap [Rao
and Kumar 1988], Skew heap [Jones 1989], Lazy Queue, and linked list
implementation of priority queues. The question of stability in the context
of parallel access priority queues is more complex than in the sequential
case. The first observation is that the issue of stability (in the context of
DES) is based on the notion that there exists a particular real-time order in
which events are generated and that this order is the same for any two
executions of the same simulation model with identical parameter settings.
As pointed out in Section 2.3, this may not be the case in a parallel
environment where priorities or time-stamps of events are often made
unique to accomplish determinism, in which case the question of stability is
no longer relevant. The second observation is that in all implementations
described in this section, any access to the priority queue has to go through
a single entry point protected by a lock. Thus a prerequisite for a stable
queue is that the queueing strategy for several processes contending for the
lock is order preserving. This may, however, be system-dependent. Given
order-preserving locks, the linked list implementation is stable.

Parallel and Sequential Priority Queue Algorithms • 173

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

4.3.1 Parallel Access Binary Heap. In sequential implementations of
the implicit binary heap, the heap is traversed level by level. In each step,
at most one parent and its child node are affected (their contents may be
swapped). In the conventional heap, the dequeue operation traverses the
heap top-down, and the enqueue operation traverses the heap bottom-up.
This method could potentially lead to deadlock in a parallel implementa-
tion. This problem was resolved by Rao and Kumar [1988], who devised an
enqueue operation that traverses the heap in a top-down manner. Each
node of the heap is also equipped with a lock and a flag to show whether
the content of the node is present or pending.

4.3.2 Parallel Access Skew Heap. In the Skew Heap, the operations are
performed in a top-down manner traversing the heap level by level. The
operations involve at most a parent and two child nodes at a time. Thus the
basis for a parallel implementation exists in which several processors could
work in parallel while updating the heap. This was recognized by Jones
[1989] who suggested a parallel access implementation based on a parallel
meld algorithm where each node is equipped with a lock (a semaphore in
the original algorithm). The original algorithm suggested by Jones was
recursive. In the implementation used in our experiments, an iterative
implementation was devised which further improved the performance.

4.3.3 Parallel Access Lazy Queue. In the Lazy Queue [Rönngren et al.
1993a], an operation first accesses the common descriptor, then it accesses
one of the near future, the sublists of the far future, or the very far future.
A dequeue operation generally accesses the near future whereas enqueue
operations tend to access the far future or possibly the very far future. The
time needed to access the descriptor is slightly shorter than the time spent
in any of the “future” parts of the queue. This implies that the potential
level of parallelism, that is, the maximal number of simultaneous accesses,
is slightly higher than two. In the current parallel implementation, the
descriptor and the near future have been equipped with one lock each. The
far future and the very far future have been equipped with a common lock.
This allows one dequeue and one enqueue operation to be overlapped with
one more operation. The resize operations of the Lazy Queue have not yet
been parallelized for the sake of simplicity, although they offer potential for
further parallelism.

4.3.4 Parallel Access Linked List. In a parallel implementation of the
linked list, performing enqueue operations from both the front and the back
end of the queue may lead to deadlock. Hence, a single linked list where all
operations traverse the list from the front end has been chosen as the basis
for the parallel implementation. The implementation is straightforward;
each node is equipped with one lock. In a dequeue operation, only the head
of the list needs to be locked. An enqueue operation traverses the list
locking at most two successive nodes at a time.

4.3.5 Expected Performance of Parallel Access Priority Queues. The
parallel access priority queues in this study are, to some extent, serialized

174 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

as all operations have to go through a critical section (e.g., the topmost
node in a heap, the descriptor in a heap, and the head of the list in a linear
list implementation). Thus this critical section restricts the performance of
the parallel implementations.

The heap-based implementations have operations with a time complexity
of O(log(n)), but they allow for a potential degree of parallelism of O(log(n))
to be exploited. The Lazy Queue has a near O(1) behavior in its sequential
version. The linked list has an O(1) dequeue operation and the enqueue
operation is O(n). On the other hand, it allows for an O(n) degree of
parallelism. Thus all the parallel access implementations have a potential
for a near O(1) behavior. Questions that have to be answered are: to what
extent can the parallelism offered by the different implementations be
exploited? Will the queue size affect the performance? Experimental results
answering these questions as well as the results from the sequential
experiments are found in the next section.

5. PERFORMANCE MEASUREMENTS

In this section we present the results of the performance measurements.
The experiments revealed that all queue implementations, except the
Median Pointer Linked list, are only marginally dependent on the seed
used in the priority increment distributions. Several of the implementa-
tions were also less sensitive to the priority increment distribution, mak-
ing, in many cases, the individual curves from different distributions hard
to distinguish. The results presented are the average values from experi-
ments with 10 different initial seeds. The relative error in these experi-
ments is less than 4%. Note that for many of the figures, a logarithmic
scale has been used for the queue-size axis leading to linear plots for
logarithmic complexity.

5.1 Classic Hold Versus Up/Down Model

Experiments with the Classic Hold and Up/Down models were performed
on the Sequent Symmetry, the SUN Sparc10, and the PentiumPro based
PC. The reader should bear in mind that the number of operations
performed for the Classic Hold model on the Sequent Symmetry equals 5
times the queue size whereas the corresponding figures for the other
architectures are 30 times the queue size. This implies that the perfor-
mance results for the bimodal priority increment distribution on the
Sequent Symmetry essentially reflects a transient period with respect to
bias (see discussion in Section 3.1).

5.1.1 Performance on the Sequent Symmetry. Figures 2 and 3 depict
the performance of the Implicit Binary Heap [Bentley 1985]. As expected,
the Implicit Binary Heap exhibits O(log(n)) performance and depends only
marginally on the priority increment distribution.

The access time of the Median Pointer Linked list, Figures 4 and 5, grows
linearly with the number of elements in the queue. Its performance quickly
deteriorates as the queue size exceeds 100 elements. The Classic Hold

Parallel and Sequential Priority Queue Algorithms • 175

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

experiments also show that the Median Pointer Linked list (and linear
linked lists in general) is sensitive to the priority increment distribution. It
performs best for distributions that are heavily biased, that is, distribu-
tions for which new elements tend to fall close to one end of the list. In this
case, only a small fraction of the list has to be traversed before finding the
correct place to insert the new element in the list.

The access time of the Skew Heap [Sleator and Tarjan 1986], Figures 6
and 7, grows as O(log(n)). However, it consistently shows better perfor-
mance than the Implicit Binary Heap. The heuristic balancing of the Skew
Heap appears to be efficient as it only shows marginal dependency on the
priority increment distribution.

The Splay Tree [Sleator and Tarjan 1985] shows the expected O(log(n))
performance, Figures 8 and 9. It outperforms both the Implicit Binary
Heap and the Skew Heap but is more sensitive to the priority increment
distribution.

In Figure 10, the Calendar Queue [Brown 1988] exhibits a near-linear
behavior for most of the distributions in the Classic Hold experiments. In

Fig. 2. Mean access time for Binary Heap and Classic Hold experiments.

176 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

the cases where the performance remains stable, it outperforms the Splay
Tree for queue sizes larger than a few thousand elements. However, it also
exhibits an irregular behavior for the camel distribution for which the
access time grows almost linearly. The camel distribution reveals some of
the weaknesses in the Calendar Queue (Figure 10). Its performance is
based on the ability to spread the elements evenly over the subintervals
(days) creating short sublists. If a large portion of the elements is clustered
within a small priority interval and the remaining elements are scattered
over a relatively large priority interval, the Calendar Queue is likely to
exhibit O(n) performance [Rönngren et al. 1993a]. If the clustered elements
are not spread over many subintervals, there will be linked lists of O(n)
length. If, on the other hand, the clustered elements are spread out,
subsequent scattered elements will fall into different years, forcing a scan
of each of the O(n) subintervals in dequeue operations.

Another factor explaining the poor performance of the Calendar Queue
for the camel distribution is the heuristics for calculating the length of a
subinterval in the resize operations. In the original heuristics suggested by

Fig. 3. Mean access time for Binary Heap and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 177

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Brown [1988], the length of the subintervals is determined by the interpri-
ority distances of the first few hundred elements in the queue. However,
this sample may not give a correct picture of the distribution of the
elements (priorities) in the queue. Resize operations are only performed
when the queue size is halved or doubled. Thus the queue does not adapt
itself to dynamic changes in the distribution of the elements unless the
queue size changes by more than a factor of two. Other heuristics for the
resize criteria have been proposed by Davison [1989] (these have not been
implemented in this study). However, the original Calendar Queue has
been successfully used in real-world simulations by the authors as well as
others [Das et al. 1994].

The Up/Down experiments, Figure 11, reveal that the resize operations
are costly, and that the Calendar Queue is not a good choice for applica-
tions where the queue size varies often by more than a factor of two.

The Lazy Queue [Rönngren et al. 1993a] shows a near linear performance
in the Classic Hold experiments, Figure 12. However, it shows some
sensitivity to the priority increment distribution. The humps of the curves
coincide with resizes that have been made during the buildup phase. The

Fig. 4. Mean access time for Median Pointer Linked List and Classic Hold experiments.

178 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Up/Down experiments, Figure 13, reveal that the resize operations are
costly. The access time remains bounded for all distributions and does not
tend to grow with the queue size as is the case for the Calendar Queue,
Figure 11. The performance results for the Lazy Queue presented in this
study deviate slightly from the results presented in [Rönngren et al.
1993a]. In particular, the steady-state performance is slightly worse, and
the Up/Down performance is better in the results here. This can be
attributed to the modified resize operations.

Figures 14 and 15 depict the performance of Henriksen’s [1977] priority
queue used in the GPSS/H simulation system. For queue sizes of up to
several thousand elements, it shows a near O(log(n)) behavior. For some
distributions, it behaves almost as well as the Splay Tree, Figures 8 and 9.
However, for larger queue sizes, it appears to be sensitive to the priority
increment distribution.

The Skip List [Pugh 1990] shows a performance that is rather dependent
on the priority increment distribution in the Classic Hold experiments,

Fig. 5. Mean access time for Median Pointer Linked List and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 179

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Figure 16. The access time grows as O(log(n)). The Up/Down experiments,
Figure 17, do not reveal any sensitivity to changing queue sizes.

Figures 18 and 19 show the performance of the SPEEDESQ [Steinman
1992]. The SPEEDESQ performs very well for small queue sizes where it
can compete with the Median Pointer Linked list, Figures 4 and 5. It is,
however, sensitive to the priority increment distribution. Sorting and, in
particular, merging the enqueue list with the dequeue list can be time
consuming. If the enqueue list contains elements with time-stamps that fall
very far into the future, the merge operation has to traverse almost the
entire dequeue list, which is an O(n) operation. If such sorts and merges
are frequently invoked, the access time will grow linearly as is the case for
some of the distributions in the Classic Hold experiments, Figure 18. In the
Up/Down experiments, Figure 19, only one sort operation is invoked which
explains the better performance than in the steady state.

5.1.2 Performance on the SUN Sparc10 and the PentiumPro-Based PC.
Figures 20 and 21 depict the performance for all tested priority queues for
the exponential priority increment distributions on the SUN Sparc10 and

Fig. 6. Mean access time for Skew Heap and Classic Hold experiments.

180 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

the PentiumPro-based PC, respectively. From these figures, we see that all
queues show similar performance on these two architectures. The Lazy
Queue and the Calendar Queue also perform well for queue sizes larger
than 10,000 events. This is partly due to good cache performance for these
queues. It is also interesting to note that the Calendar Queue shows
performance comparable to that of the best performing queues down to
queue sizes of 50 events. The Splay Tree, the Skew Heap, and Henriksen’s
algorithm form a second group of curves that show good performance for
queue sizes up to approximately 5,000 events. After this point, there is a
knee in these curves due to declining cache performance. The relatively
poor performance of the SkipList is also notable. This can partly be
explained by the fact that our implementation uses the random() function
supplied in BSD UNIX which, for the Solaris operating system, is time
consuming. In Table III, the relative performance for exponential priority
increment distribution on the different architectures is found. In our
experience, as indicated in Table III, the relative performance of the queues
remains similar over the different architectures (with the exception of the
SkipList and the Calendar Queue discussed previously). This indicates that

Fig. 7. Mean access time for Skew Heap and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 181

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

conclusions from the experiments on the Sequent Symmetry are also
relevant for more modern architectures.

Before summarizing the results of the experiments with Classic Hold and
Up/Down, we revisit the issue of the impact of bias on the performance of
the priority queues. Figures 22 and 23 depict performance results for
Bimodal and ExponentialMix distributions with Classic Hold on the SUN
Sparc10. When contrasted with the performance results from the Exponen-
tial distribution in Figure 20, we can note that only the SPEEDESQ and
the SkipList are appreciably sensitive to low bias.

To summarize this section, we note that the Calendar Queue, Splay Tree,
and Henriksen’s queue, which are all stable, show good performance for
queue sizes ranging from 50 to 5,000 elements. The Calendar Queue and
the Lazy Queue show good performance for queue sizes larger than 5,000
elements. For very small queues ranging from 25 to 50 events, the Splay
Tree, SPEEDESQ, and Skew Heap show good performance with Henrik-
sen’s as a strong contender. The Median Pointer Linked list appears to be
best suited for queues that do not exceed 25 elements. For the choice of
data structure to implement the PES in a general-purpose DES system, the

Fig. 8. Mean access time for Splay Tree and Classic Hold experiments.

182 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

best seems to be either the Calendar Queue, Splay Tree, or Henriksen’s
queue. It is, however, worthwhile to point out that all these queues have
shown some weaknesses which the potential user should bear in mind
when making his or her choice. Some of these weaknesses are further
explored in the following sections.

5.2 Access Time Limits

The figures presented so far reflect the amortized access times of the
queues. For some applications however, it is of interest to identify the
maximum or worst-case access time of the queue. One class of applications
where this is particularly important is in real-time systems, where such
knowledge is necessary to guarantee that the required time constraints can
be met. Our measurement method, which measures the time needed for
each individual operation on a queue, enabled us to compile such statistics.
Most of the previously published works, such as Jones [1986] and Chung et
al. [1993], measure only the amortized access time.

Fig. 9. Mean access time for Splay Tree and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 183

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

In Tables IV and V, the average, maximum, and minimum enqueue and
dequeue times, and the corresponding standard deviations for the Classic
Hold and Up/Down experiments are presented, respectively. In these
experiments, an exponential distribution with mean 1 was used, and the
maximum queue size was 1,000 elements. The performance of the queues in
these experiments is representative also for other priority increment distri-
butions and queue sizes. In particular, we found that the maximum and
minimum access times were virtually independent of the priority increment
distribution. Moreover, the queues that fared well in the reported experi-
ments exhibited similar behavior in other experiments that are not dis-
cussed in this article. These tables show that the Skew Heap and Splay
Tree both have low worst-case access times and low standard deviations.
The Implicit Binary Heap shows similar but slightly worse performance
than the Splay Tree and Skew Heap. It has, however, a worst-case
performance of O(log(n)) for individual operations. Thus the conclusion is
that the Splay Tree and Skew Heap are suitable priority queues for
real-time applications with soft time constraints where guaranteed worst-
case performance is not required, whereas the Implicit Binary Heap is the

Fig. 10. Mean access time for Calendar Queue and Classic Hold experiments.

184 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

only choice among the queues in this report that gives guaranteed perfor-
mance.

Table IV indicates that some dequeue operations on Calendar Queue and
Lazy Queue are very time consuming. These operations occur whenever a
subinterval is exhausted, and the Calendar Queue needs to search for the
next element to dequeue, or when the Lazy Queue must sort a new
subinterval. The Up/Down experiment, Table V, also reveals that the resize
operations can be extremely time consuming. The Henriksen’s queue and
Skip List at times have long enqueue times, Tables IV and V. This occurs
when the heuristic binary search pointers/tree have to be updated.

5.3 Compound Distributions

The results described in Sections 5.1 and 5.2 are all based on experiments
employing single priority increment distributions. However, in a real
simulation, several distributions may be mixed and there may appear
situations that cannot be covered by using only one distribution. In this
section we want to investigate the effects of sudden and drastic changes in

Fig. 11. Mean access time for Calendar Queue and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 185

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

bias. Although the Classic Hold experiment usually measures performance
in a stable case with regard to bias, the distributions used in this section
will cause large variations in bias during the measurement phase. Thus the
measurements include what is referred to as transient phases, which occur
when bias shifts.

To illustrate when this can occur, we consider a simulation where the
activity (i.e., new events) suddenly takes a leap forward in simulated time.
This can occur in battlefield simulations where activity is intense during
combat and low for long periods between engagements. This behavior can
also be found in certain traffic simulations where traffic is heavy during
rush hours. In particular we would expect priority queues that are sensi-
tive to bias (or changes in bias) to behave poorly for such models.

To model such phenomena, we used a compound distribution Change (A,
B, x) (see also Section 3.2) consisting of sequences of priority increments
drawn from two different distributions. In these experiments we chose A,
B, and x to stress the priority queues. Two interleaved sequences were
used: Change(Triang(90,000, 100,000), Exp(1), 2,000) and Change(Exp(1),
Triang(90,000, 100,000), 2,000), where Triang(90,000, 100,000) is a trian-

Fig. 12. Mean access time for Lazy Queue and Classic Hold experiments.

186 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

gular distribution defined on the interval [90,000, 100,000]. The choice of
sequences of length 2,000 to be drawn before changing distribution was
made to assert that large variations in bias would occur during the
measurement phase for queue sizes ranging from 300 to 1,000 events. In
these experiments, only one initial value of the random number generator
seed was used (as opposed to the other experiments where 10 different
seeds were used). In these experiments the bias varies between 0.95 and
0.05 during the time measurement phase. Thus the results from these
experiments show the behavior for transient phases with regard to bias. In
Figures 24 and 25, the inherent weaknesses associated with the Lazy
Queue and the Calendar Queue are clearly depicted. However, the Lazy
Queue manages to adapt itself, although at a high cost, but the Calendar
Queue heuristics fail. This results in access times of several thousand
microseconds.

Inspecting the figures for the Classic Hold experiments, Figures 24 and
25, one observes a transient phase that occurs for most queues with sizes of
300 to a few thousand elements. This is caused by the first change from the
initial priority increment distribution to the second distribution and the

Fig. 13. Mean access time for Lazy Queue and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 187

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

corresponding shift in bias. The effects of these changes on the priority
increment distribution eventually decline as the distribution of the ele-
ments in the queue reaches steady state. Interestingly, all priority queues
tested are affected by the transient phase. The Calendar Queue fails to
adapt itself if the transient phase is not hidden in the buildup phase of the
queue, which is the case for queue sizes larger than or equal to 2,000
elements in Figure 25. The dip in the curve for the Calendar Queue in
Figure 24 at 5,000 elements is a result of the buildup phase being longer in
this case (the results are based on only one experiment for each queue size).
In Figure 25, we can also see that the performance of the Skew Heap to
some extent can be negatively affected by these kinds of changing distribu-
tions. The best performers in these experiments were the Splay Tree and
Henriksen’s.

5.4 Markov Hold

The Markov Hold model (Section 3.1) proposed by Chung et al. [1993] is a
generalization of the Classic Hold model and is supposed to mimic a

Fig. 14. Mean access time for Henriksen’s and Classic Hold experiments.

188 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

simulation more accurately. The experiments presented in Chung et al.
[1993] were run on the same type of computer as the experiments in this
study, a Sequent Symmetry. We performed four Markov Hold experiments
as described in Chung et al. [1993] allowing us to make direct comparisons
of our results with those reported in that paper. In these experiments, the
queue initially contained 1,000 elements which were inserted in the ran-
dom way described for Classic Hold in Section 3.1. A total number of
100,000 operations (enqueue and/or dequeue) were performed on the
queues during the measurements. The first experiment, Table VI, corre-
sponds to an uncorrelated random sequence of enqueue and dequeue
operations, where each type of operation is equally probable. The second
experiment, Table VII, favors insertions with uncorrelated consecutive
operations. The third experiment is a Classic Hold experiment, Table VIII.
The last experiment shows the performance of an interleaved sequence of
enqueue and dequeue operations where each operation has equal probabil-
ity but with a positive correlation between operations, Table IX. Observe
that the rightmost columns in Tables VI through IX show the access times

Fig. 15. Mean access time for Henriksen’s and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 189

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

for the corresponding Classic Hold or Up/Down experiment with an expo-
nential priority increment distribution function.

Our results show that the standard Classic Hold yields results that
correspond closely to the Markov Hold experiments with nearly constant
queue size, that is, Tables VI, VIII, and IX, columns 2 and 4, respectively.
The exceptions are the figures for the SPEEDESQ, where the priority
increment distribution plays a distinctive role. For the experiment where
insertions are favored, Table VII, the correspondence to the closest Up/
Down experiment is low. This can partly be due to the fact that the Markov
Hold experiment, in contrast to the Up/Down experiment, did not contain
an equal number of insertions and deletions. Most of the queues did not
have symmetric enqueue and dequeue times, Tables IV and V.

If we compare the access times to the completion times of an experiment,
Tables VII and VIII, we note that the fraction of the time spent in accessing
the priority queue is in the range of 20–50% of the completion time. This
indicates that when measuring the completion time of an experiment, the
performance of the priority queue is obfuscated. On the Sequent Symmetry
used in these experiments and in the experiments reported by Chung et al.

Fig. 16. Mean access time for Skip Lists and Classic Hold experiments.

190 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

[1993], floating point operations are costly, and a large fraction of the time
is spent in the random number calculations. The implementation of the
memory management routines (i.e., usage of free lists or direct calls to
malloc()) also has a large impact on the performance. Thus measurement of
the completion time rather than the access time may make it harder to
evaluate and draw general conclusions from the obtained results.

The Markov Hold model can also be used to perform experiments with
pure sequences of either enqueue or dequeue operations. Chung et al.
[1993] defined growth (shrink) efficiency as the ratio of the total time to
complete 2N enqueue (dequeue) operations to the time to complete N
enqueue (dequeue) operations on a queue of initial size n. According to
these definitions, a growth or shrink efficiency of 2 corresponds to O(1)
enqueue and dequeue times, respectively. We, however, choose to define
these efficiencies as the ratio of the access times, yielding an efficiency of 1
for a queue with constant time enqueue or dequeue operations. It should be
noted that these measures are not independent of n and N, which may
make them of limited practical use. Tables X and XI depict the performance
for sequences of enqueue (growth efficiency) and dequeue operations

Fig. 17. Mean access time for Skip Lists and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 191

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

(shrink efficiency), respectively. The initial queue size n was 8,192 in these
experiments and N was 4,096.

These types of experiments may cause misleading results. To illustrate
this, we examine the results for the Calendar Queue in Table X. In these
experiments, the first enqueue operation invokes a resize operation. The
cost of this resize operation is then amortized over 4,096 or 8,192 enqueue
operations. This leads to a growth efficiency less than 1, indicating that the
access time is reduced as the queue size grows. If, on the other hand, the
initial queue size had been 8,193 instead of 8,192, only the last of the series
of 8,192 enqueue operations would have led to a resize, resulting in a
growth efficiency greater than 1. The same kind of effects can also be
noticed for the Lazy Queue.

The SPEEDESQ is another example of how these kinds of experiments
can be misleading. In the growth experiments, Table X, the elements are
enqueued into an unsorted linked list in constant time. In the shrink
experiments, Table XI, at most one sorting and merging of the enqueue list
to the dequeue list occurs. This could lead to the conclusion that the
SPEEDESQ is not affected at all by changes in the queue size.

Fig. 18. Mean access time for the SPEEDESQ and Classic Hold experiments.

192 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

The performance figures in parentheses in Tables X and XI are the
corresponding figures from Chung et al. [1993]. The figures found in the
columns for enqueue/dequeue are the total times to complete 4,096 or 8,192
enqueue/dequeue operations in microseconds. These figures are, however,
hard to interpret. For instance, one can look at the figures for the Calendar
Queue in Table X which seem to indicate that 4,096 enqueue operations
could be performed in 12 microseconds. If this were correct, the Intel 386i
processor of the Sequent Symmetry would have Gips speed, which is
obviously not the case.

5.5 Comparison of the Markov Hold and the Classic Hold Model

The Markov Hold model has been suggested as a generalization of the
Classic Hold model. It allows random access patterns that could better
mimic the behavior of real simulations. It has been claimed that this
capability could reveal more information on the performance of priority
queues than conventional methods. However, when comparing the results
obtained using the Classic Hold and Up/Down with the results obtained

Fig. 19. Mean access time for the SPEEDESQ and Up/Down experiments.

Parallel and Sequential Priority Queue Algorithms • 193

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

from the Markov Hold experiments, we draw the following conclusions.
When the queue size remains nearly constant, the Classic Hold model gives
as accurate and informative results as the more random access patterns
generated by the Markov Hold model for the queues tested in this article.
For changing queue sizes, the simple Up/Down access pattern often gives
sufficient information. We argue that for these kinds of experiments, the
simplicity of the Classic Hold and the Up/Down is appealing, and that it
helps reveal more and clearer information on the dependencies of priority
increment distributions and queue sizes on the performance of the queue.

5.6 Performance of Parallel Access Queues

The sequential experiments, Sections 5.1 through 5.4, revealed that the
sequential counterparts to the parallel access Implicit Binary Heap, Skew
Heap, and Lazy Queue are relatively insensitive to the priority increment
distribution. The Median Pointer Linked list is somewhat more sensitive
but showed good performance for smaller queue sizes. The Lazy Queue, on

Fig. 20. Access time for Classic Hold experiments and exponential distribution on SUN
Sparc10.

194 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

the other hand, performed relatively better for larger queue sizes. This
allows us to restrict the parallel access experiments to a single distribution,
a uniform distribution on the interval [0, 1,000] with bias 0.66. Likewise,
we can conclude that only the smaller queue sizes are interesting for the
linked list, whereas it is the larger queue sizes that are of interest for the
Lazy Queue.

Performance of the parallel access Implicit Binary Heap and linked list
in steady-state experiments (i.e., a parallelization of Classic Hold) for
queue sizes ranging from 50 to 500 elements are shown in Figures 26 and
27. These queues show relatively good speedup. However, in absolute
terms, the performance is not very impressive compared to the best
sequential access priority queue implementations; see Section 5.1. Figure
28 depicts the performance for the parallel access Skew Heap (note the
logarithmic scale for queue sizes). It also shows good speedup and good
performance when compared to sequential priority queues. Figure 29 shows
the performance of the parallel access Lazy Queue for queue sizes ranging
from 1,000 to 32,000 elements.

Fig. 21. Access time for Classic Hold experiments and exponential distribution on Pentium-
Pro based PC.

Parallel and Sequential Priority Queue Algorithms • 195

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Figures 28 and 29 suggest that the Lazy Queue performs better than the
Skew heap when 1 to 3 processors are used, and the queue size is greater
than 5,000 elements. However, if more processors are used, the Skew Heap
shows better performance. It is only for small or very large queue sizes and
a low number of processors accessing the queue in parallel that other queue
implementations are preferable.

The overhead associated with the parallel access linked list implementa-
tion may seem high compared to the overhead of the other parallel access
queue implementations. The reader should, however, keep in mind that
these implementations are based on single and double linked implementa-
tions, respectively.

Figures 26 through 29 also show that the mean access time (and the
speedup) of all the queue implementations converged rather rapidly. The
heap-based data structures theoretically allow a number of simultaneous
accesses that are equivalent to the number of levels in the heap, that is,
O(log(n). Thus the larger queue sizes should be sufficient for further
speedup, up to 14 processors. This phenomenon is mainly due to the fact
that all accesses must go through one entry point (e.g., the top element of
the heap), and this point could be subject to memory contention. This
suggests that only a limited amount of parallelism can be efficiently
exploited when centralized priority queues are used.

Figure 30 compares the performance of one of the best sequential data
structures, the Splay Tree, to the performance of the best parallel access
priority queue, the Skew Heap. As indicated in this figure, the speedup is
at most 3. Furthermore, the reader should be aware that sharing and
migrating data on the Sequent Symmetry S81 are relatively less expensive
than on many more recent shared memory architectures which often have

Table III. Relative Performance for Exponential Priority Increment Distribution

196 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

larger data caches allowing for more efficient exploitation of locality and
programs with large data sets.

The preceding discussion seems to imply that it is better, from a
performance point of view, to partition the data set on several sequential
priority queues mapped to different processing elements (PEs) than using a
single parallel access queue. Such an approach could allow all PEs to access
their respective parts of the data set in parallel. Therefore, this approach
could yield optimal linear speedup of the accesses to the data set in the
number of PEs used. However, it could also introduce overhead due to the
need for additional synchronization or load balancing. The authors have
practical experience with situations where the benefits of using a central-
ized data structure outweigh the drawbacks. An important characteristic of
applications using priority queues is the average number of simultaneous
accesses to the queue. On a multiprocessor with N processing elements,
this number could be expressed as a fraction k of N. In many applications,
the accesses to the queue are randomly distributed in time, and k is
equivalent to the total fraction of the computation spent in accessing the

Fig. 22. Access time for Classic Hold experiments and bimodal distribution on SUN Sparc10.

Parallel and Sequential Priority Queue Algorithms • 197

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Fig. 23. Access time for Classic Hold experiments and ExponentialMix distribution on SUN
Sparc10.

Table IV. Classic Hold, Queue Size 1,000 Elements, Exponential Priority Increment Mean
1

198 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Fig. 24. Access time for Classic Hold experiments, Change(triangular(90,000,
100,000),exp(1),2,000) distribution.

Table V. Up and Down, Max. Queue Size 1,000 Elements, Exponential Priority Increment
Mean 1

Parallel and Sequential Priority Queue Algorithms • 199

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

queue. On the Sequent Symmetry S81 used in the experiments, N was
equal to 10. From our experience, k is less than 30% in many applications.
That is, the average number of parallel accesses to the priority queue is
less than or equal to 3 for which the parallel Skew Heap shows acceptable
performance and speedup. Thus the parallel access Skew Heap could be
useful in practice. The authors have used the parallel access Skew Heap to
successfully implement a centralized scheduling queue for LPs in an
optimistically synchronized discrete event simulator [Ahmed et al. 1994].
This opened the possibility to drastically improve the quality of the
scheduling which resulted in an overall performance improvement. In
particular, it enabled efficient execution of simulation models with a very
dynamic nature that could not be efficiently executed using a conventional
static partitioning and mapping scheme with decentralized scheduling.

Fig. 25. Access time for Classic Hold experiments, Change(exp(1),triangular(90,000,
100,000), 2,000) distribution.

200 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

6. CONCLUSIONS

In this article, we presented the results of an extensive experimental study
of several priority queue algorithms. We considered both well-established
priority queue algorithms and some recently proposed ones. Three different
access patterns (Classic Hold, Markov, and Up/Down) and a variety of
distribution functions were used. The access time of each enqueue/dequeue
operation was, in many cases, measured separately to isolate the effect of
the underlying hardware and to identify the worst-case access time that is
of great interest in some real-time systems. We also discussed the perfor-

Table VII. Markov Hold, a 5 0.3, b 5 0.7, Favor Enqueue, and Corresponding Up/Down

Table VI. Markov Hold, a 5 0.5, b 5 0.5, Uncorrelated Random Enqueue-Dequeue, and
Corresponding Classic Hold

Parallel and Sequential Priority Queue Algorithms • 201

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Table IX. Markov Hold, a 5 0.8, b 5 0.8, Positive Correlation, and Corresponding Classic
Hold

Table X. Markov Hold Growth Efficiency, Initial Queue Size 8192 (Values in parenthesis
from Chung et al. [1993])

Table VIII. Markov Hold, a 5 0, b 5 0 (Hold), and Corresponding Classic Hold

202 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

mance of the parallel access priority queues. We tried to identify the impact
of a number of factors affecting the performance, such as the number of
elements in the queue (queue size), priority increment distributions, and
access patterns.

Table XI. Markov Hold Shrink Efficiency, Initial Queue Size 8192 (Values in parenthesis
from Chung et al. [1993])

Fig. 26. Mean access time of parallel access Binary Heap in steady-state experiment,
uniform(0, 1,000) distribution.

Parallel and Sequential Priority Queue Algorithms • 203

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Regarding the access patterns, our conclusion is that it should be kept
simple such as the Classic Hold [Vaucher and Duval 1975], Up/Down
[Rönngren et al. 1993a], or pure Up and pure Down sequences [Chung et al.
1993]. The main reason for this is that a simple access pattern facilitates
the identification of the important factors affecting the performance. Fur-
thermore, the additional knowledge that can be gained by using more
complicated access patterns appears to be marginal. However, we believe
that the random access patterns that can be generated with the Markov
Hold [Chung et al. 1993] model are valuable for further evaluation of
priority queues that have been found to perform well for the simpler access
patterns.

Our study indicates that performance of some of the recently proposed
heuristics-based priority queues, the Calendar Queue [Brown 1988] and the
Lazy Queue [Rönngren et al. 1993a], cannot be fully assessed by a single
classic priority distribution function. To show the potential weaknesses of
these queues, heterogenous distributions or combinations of more than one

Fig. 27. Mean access time of parallel access linked list in steady-state experiment, uniform(0,
1,000) distribution.

204 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

distribution have to be employed. Such distributions are helpful in identi-
fying the worst-case access time of some multilist based queues.

The best choice of priority queue algorithm depends heavily on the
application. In discrete event simulation, the desirable characteristics are
good amortized access time for the range of queue sizes and priority
increment distributions used, and in many cases, stability, in terms of
preserving FIFO on events with identical priorities (time-stamps). A group
of three stable data structures emerged as good candidates for queue sizes
ranging from 50 to 5,000 elements which should cover most situations
encountered in simulations. This group includes the Calendar Queue, Splay
Tree, and Henriksen’s queue. The choice is, however, complicated by the
fact that all these queues have some weak and strong points. The Calendar
Queue performed very well for queue sizes larger than 5,000 elements but
it was shown that the heuristics for adaption to the queue size and priority
increment distribution can fail in some cases. Henriksen’s queue performed
well for most operating conditions although it was, in general, somewhat
slower than the other two. It was also sensitive to bias in some experi-

Fig. 28. Mean access time of parallel access Skew heap in steady-state experiment, uni-
form(0, 1,000) distribution.

Parallel and Sequential Priority Queue Algorithms • 205

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

ments. The Splay Tree often performed well for queue sizes smaller than 50
elements and showed no apparent weaknesses. However, it may not be as
simple to implement additional operations on this queue, such as search for
and deletion of arbitrary elements, compared to queues based on linked
lists, as with the Calendar Queue or Henriksen’s. For very small queue
sizes (i.e., less than 50 elements), the SPEEDESQ and the Median Pointer
Linked list are both reasonable alternatives to the group of three previ-
ously mentioned.

For real-time applications, the worst-case access time may be the most
interesting measure. Of the tested priority queues, the implicit binary heap
had the best worst-case performance for individual operations, which was
better than O(n). Thus, if guaranteed performance better than O(n) is
required, this is the only choice. The Splay Tree and the Skew Heap,
however, showed better amortized worst cases and we did not observe any
individual access to these queues with worse time complexity than
O(log(n)). Thus they are good alternatives for real-time systems without
hard real-time requirements.

Fig. 29. Mean access time of parallel access Lazy Queue in steady-state experiment,
uniform(0, 1,000) distribution.

206 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

Several parallel access priority queues were also studied. The commonly
used small shared memory computers (such as multiprocessor workstations
with typically 8 to 16 CPUs) provide an interesting platform for parallel
access priority queues. We observed that in many simulations, the number
of concurrent accesses to the PES was less than 30% of the available
processors. Our experiments indicate that the parallel access skew heap
provides the best performance on small multiprocessors.

ACKNOWLEDGMENTS

We thank the anonymous referees for their insightful comments and
suggestions which helped improve this article.

REFERENCES

AHMED, H., RÖNNGREN, R., AND AYANI, R. 1994. Impact of event scheduling in time warp
parallel simulations. In Proceedings of the 27th Annual Hawaii International Conference on
System Sciences, Vol II, 455–463.

Fig. 30. Speedup, access time of sequential Splay Tree to access time of parallel access Skew
Heap for 1 to 9 processing elements.

Parallel and Sequential Priority Queue Algorithms • 207

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

AYANI, R. 1990. LR-algorithm: Concurrent operations on priority queues. In Proceedings of
the Second IEEE Symposium on Parallel and Distributed Systems, 22–25.

BAYER, R. AND SCHKOLNIK, M. 1977. Concurrency of operations on B-trees. Acta Inf. 9, 1–22.
BENTLEY, J. 1985. Thanks, heaps. Commun. ACM 28, 3 (March), 245–250.
BISWAS, B. AND BROWNE, J. C. 1987. Simultaneous update of priority structures. In Proceed-

ings of the 1987 International Conference on Parallel Processing, 17–21.
BROWN, R. 1988. Calendar queues: A fast O(1) priority queue implementation for the

simulation event set problem. Commun. ACM 31, 10 (Oct.), 1220–1227.
BLACKSTONE, J. H. HOGG, G. L., AND PHILIPS, D. T. 1981. A two list synchronization

procedure for discrete event simulation. Commun. ACM 24, 12 (Dec.), 825–829.
CAROTHERS, C. D., FUJIMOTO, R. M., LIN, Y.-B., AND ENGLAND, P. 1994. Distributed simula-

tion of large-scale PCS networks. In Proceedings of the 1994 MASCOTS Conference.
CHUNG, K., SANG, J., AND REGO, V. 1993. A performance comparison of event calendar

algorithms: An empirical approach. Softw. Pract. Exper. 23, 10 (Oct.), 1107–1138.
COMFORT, J. C. 1984. The simulation of a master-slave event set processor. Simulation 42, 3

(March), 117–124.
DAVISON, G. A. 1989. Calendar p’s and queues. Commun. ACM 32, 10 (Oct.), 1241–1243.
DAS, S., FUJIMOTO, R., PANESAR, K., ALLISON, D., AND HYBINETTE, M. 1994. GTW: A time

warp system for shared memory multiprocessors. In Proceedings of the 1994 Winter
Simulation Conference, 1332–1339.

ELLIS, C. S. 1980. Concurrent search and insertion in AVL trees. IEEE Trans. Comput.
C-29, 9 (Sept.), 811–817.

FUJIMOTO, R. 1990. Parallel discrete event simulation. Commun. ACM 33, 10 (Oct.), 31–53.
GORDON, G. 1981. The development of the general purpose simulation system (GPSS). In

History of Programming Languages, ACM Monograph Series, ACM, New York, 403–426.
HENRIKSEN, J. O. 1977. An improved events list algorithm. In Proceedings of the 1977

Winter Simulation Conference, 547–557.
JEFFERSSON, D. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (July), 404–425.
JONES, D. W. 1986. An empirical comparison of priority-queue and event-set implementa-

tions. Commun. ACM 29, 4 (April), 300–311.
JONES, D. W. 1989. Concurrent operations on priority queues. Commun. ACM 32, 1 (Jan.),

132–137.
JONES, D. W., HENRIKSEN, J. O., PEGDEN, C. D., SARGENT, R. G., O’KEEFE, R. M., AND UNGER, B.

W. 1986. Implementations of time (panel). In Proceedings of the 1986 Winter Simulation
Conference, 409–416.

KESIDIS, G. AND WALRAND, J. 1993. Quick simulation of ATM buffers with on-off multiclass
Markov fluid sources. ACM Trans. Model. Comput. Simul. 3, 3 (July), 269–276.

KINGSTON, J. 1985. Analysis of tree algorithms for the simulation event set. Acta Inf. 22, 1
(April), 15–33.

KINGSTON, J. 1986. Analysis of Henriksen’s algorithm for the simulation event set. SIAM
J. Comput. 15, 3 (Aug.), 887–902.

LAMPORT, L. 1978. Concurrent operations on priority queues. Commun. ACM 32, 1 (Jan.),
132–137.

MCCORMACK, W. M. AND SARGENT, R. G. 1981. Analysis of future event set algorithms for
discrete event simulation. Commun. ACM 24, 12 (Dec.), 801–812.

MEHL, H. AND HAMMES, S. 1993. Shared variables in distributed simulation. In Proceedings
of the Seventh Workshop on Parallel and Distributed Simulation (PADS’93), 68–75.

MISRA, J. 1986. Distributed discrete-event simulation. Comput. Surv. 18, 1 (March), 39–65.
OBAL, W. D. AND SANDERS, W. H. 1994. Importance sampling simulation in UltraSAN.

Simulation 62, 2 (Feb.), 98–111.
PARK, S. K. AND MILLER, K. W. 1988. Random number generators: Good ones are hard to

find. Commun. ACM 31, 10, 1192–1201.
PUGH, W. 1990. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33,

6 (June), 668–676.
RAO, V. N. AND KUMAR, V. 1988. Concurrent access of priority queues. IEEE Trans. Comput.

37, 12 (Dec.), 1657–1665.

208 • R. Rönngren and R. Ayani

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

RIBOE, J. 1991. The camel distribution. Tech. Rep. TRITA-TCS-9104, Dept. of Teleinformat-
ics, The Royal Institute of Technology, Stockholm.

RÖNNGREN, R., AYANI, R., FUJIMOTO, R. M., AND DAS, S. R. 1993b. Efficient implementation
of event sets in time warp. In Proceedings of the Seventh Workshop on Parallel and
Distributed Simulation (PADS’93), 101–108.

RÖNNGREN, R., RIBOE, J., AND AYANI, R. 1993a. Lazy queue: New approach to implementing
the pending event set. Int. J. Comput. Simul. 3, 303–332.

SEQUENT 1989. Guide to Parallel Programming on Sequent Computer Systems. Prentice-
Hall, Englewood Cliffs, NJ.

SLEATOR, D. D. AND TARJAN, R. E. 1985. Self-adjusting binary search trees. J. ACM 32, 3
(July), 652–686.

SLEATOR, D. D. AND TARJAN, R. E. 1986. Self-adjusting heaps. SIAM J. Comput. 15, 1 (Feb.),
52–69.

STEINMAN, J. S. 1992. SPEEDES: A unified approach to parallel simulation. In Proceedings
of the Sixth Workshop on Parallel and Distributed Simulation, Vol. 24, No. 3, 75–84.

STEINMAN, J. S. 1994. Discrete-event simulation and the event horizon. In Proceedings of
the Eighth Workshop on Parallel and Distributed Simulation (PADS’94), 39–49.

TARJAN, R. E. 1985. Amortized computational complexity. SIAM J. Algebraic Discrete Meth.
6, 2 (April), 306–318.

UNGER, B. W., GOETZ, D. J., AND MARYKA, S. W. 1994. Simulation of SS7 common channel
signaling. IEEE Commun. Mag. 32, 3 (March), 52–62.

VAUCHER, J. G. 1977. On the distribution of event times for the notices in a simulation
event list. INFOR 15, 2 (June), 171–182.

VAUCHER, J. G. AND DUVAL, P. 1975. A comparison of simulation event lists. Commun. ACM
18, 4 (June), 223–230.

Received March 1995; revised October 1996; accepted October 1996

Parallel and Sequential Priority Queue Algorithms • 209

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 2, April 1997.

