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1. INTRODUCTION

In a distributed discrete event simulation (DDES), the simulation model is
partitioned into several logical processes (LPs) which are assigned to the
various processing elements. The time evolution of the simulation at the
various logical processes is synchronized by means of time-stamped mes-
sages that flow between the logical processes. We are concerned with the
situation in which the messages are not just for synchronization, but also
carry “work” which when done modifies the state of the receiving logical
process. A typical example is the distributed simulation of a queueing
network model, in which one or more queues is assigned to each logical
process, and the messages indicate the motion of customers between the
queues in the various logical processes. We assume that the simulation
makes correct progress if each logical process processes the incoming events,
from all other logical processes, in time-stamp order. It is possible for a
conservatively synchronized parallel simulation to execute events out of
time-stamp order, and still be correct (e.g., Gaujal et al. [1993]). Methods
for doing so inevitably involve exploiting model-specific information that is
not applicable in the general case. Likewise, it is possible for an optimisti-
cally synchronized parallel simulation that uses lazy cancellation [Reiher
et al. 1990] or lazy re-evaluation to get the correct result without effectively
committing events in time-stamp order. Its ability to do so is also problem
dependent. The context in which our results apply is that of a general
purpose conservatively synchronized parallel simulator where the only
information available for sequencing is message time-stamps, or an opti-
mistically synchronized parallel simulator that uses aggressive cancella-
tion.

Each logical process may be viewed as comprising an input queue for
each channel over which it can receive messages from another logical
process (i.e., LP1, LP2, . . . , LPn); (see Figure 1). Since the messages must

Fig. 1. Schematic view of a logical process.



be processed in time-stamp order, the event processor must be preceded by
an event sequencer. The messages must emerge from the sequencer in
time-stamp order.

It is the event sequencer that is at the core of much of the research in
distributed discrete event simulation. Event sequencing algorithms fall
into one of two classes: conservative or optimistic. A conservative event
sequencer allows a message to pass through only if it is sure that no event
with a lower time-stamp can arrive in the (real-time) future [Chandy and
Misra 1981; Misra 1986]. An optimistic event sequencer, on the other hand,
occasionally lets messages pass through without being sure that no lower
time-stamped event can arrive in the future. If a lower time-stamped event
does arrive, corrective action is taken resulting in a roll-back of the
simulation [Jefferson 1985; Fujimoto 1990].

Considerable work has been done on performance models of distributed
simulation with the objective of obtaining estimates or bounds on simula-
tion speedup with respect to centralized simulation.1 In these models,
speedup is defined as the ratio of the real-time rate of advancement of
correctly simulated virtual time in a distributed simulation and a central-
ized simulation. These analyses are usually made under considerably
simplifying assumptions, and generally yield bounds on the expected
speedup. In particular, little attention seems to have been paid to formally
studying the behavior of the interprocessor message queues in distributed
discrete event simulators. The simulation progresses by processing these
messages. Following Wagner and Lazowska [1989], we view a simulator as
a queueing network in which the customers are these interprocessor
messages; the throughput of this network would correspond to the progress
rate of the simulation. Furthermore, viewing the problem in this way may
lead to useful insights into issues such as the allocation of logical processes
to processors.

In this article we study stochastic models for distributed simulators of
feedforward stochastic queueing networks. We first study a particular class
of stochastic models for message and time-stamp arrivals at an event
sequencer in a logical process. We consider event sequencers that rely only
on time-stamp information in event messages. We show that for this class
of models, and for conservative sequencing, the message queues that
precede the sequencer are essentially unstable. Next, we show that even
with maximum lookahead (i.e., prescient knowledge of the time-stamp of
the next message yet to arrive on the channel with the empty message
queue) these queues are still unstable. It follows that the resequencing
problem is fundamentally unstable (even for optimistic sequencing), and
some form of interprocessor “flow control” is necessary in order to make the
message queues stable (without message loss). Using mainly simulation
results and heuristic reasoning Shanker and Patuwo [1993] have antici-

1See Mitra and Mitrani [1984], Nicol [1988], Wagner and Lazowska [1989], Kleinrock [1990],
Felderman and Kleinrock [1991], and Nicol [1993].



pated some of the results we report here. Our results are based on a
complete analysis of a formal stochastic model.

Our notion of maximum lookahead is based on the notion of correctness
of the simulation previously set down; that is, the simulation is correct by
ensuring that every logical process processes the events in time-stamp
order. This notion of correctness reproduces sample paths of a queueing
network simulation, no matter which sequencing algorithm is used. Note
that simulating two customers out of order at a queue will at least give
them different samples of service time (with probability one), although it
may not alter the average delay estimate. In particular, this implies that
our analysis does not permit lazy cancellation [Gafni 1988] in optimistic
simulation.

We obtain some generalizations of the instability results to time-stamped
message arrival processes with certain ergodicity properties. We character-
ize the departure process from the event sequencer and obtain a stability
condition for the event processor (see Figure 1). Finally, we provide
formulas for the throughput of distributed simulators of feedforward
queueing networks. These formulas involve parameters of the queueing
model, and the service rates of the processors in the distributed simulator,
and hence demonstrate, for example, the performance of a particular
mapping of a problem onto a simulator.

The article is organized as follows. In Section 2, we study the instability
of queues associated with the event sequencer. In Section 3 we present
some complements and extensions of the results of Section 2. Section 4
contains the conclusions and directions for future work.

2. INSTABILITY OF SEQUENCING

Two time-stamped message streams arrive at a logical process (see Figure
2). Within each stream the messages are in time-stamp order. The mes-
sages must be processed in overall time-stamp order by the event processor.

We first assume that the two message arrival streams form independent
Poisson processes, and that the successive time-stamps in each stream are
independent sequences of Poisson epochs independent of the message
arrival process. With these stochastic assumptions, we prove that the
message queues are unstable for both conservative sequencing and se-
quencing with maximum lookahead.

Fig. 2. A logical process with two input message streams.



We then show some generalizations of these instability results to point
processes with certain ergodicity properties.

2.1 Poisson Arrivals and Exponential Time-Stamp Increments

2.1.1 Conservative Sequencing. In this section we assume that the
sequencer uses the conservative sequencing algorithm.

Arriving messages queue up in their respective queues, at the sequencer,
in their order of arrival. If both queues are nonempty, then the sequencer
takes the head-of-the-line (HOL) message with the smaller time-stamp and
forwards it to the processor. We assume that the service time for doing this
work is negligible and take it to be zero.2 If either of the queues is empty
then the sequencer does not know the time-stamp order of the HOL
message in the nonempty queue and does not forward any message to the
processor. It follows that at most one of the message queues at the
sequencer is ever nonempty and, in fact, exactly one of the queues is always
nonempty.

We study the process of the number of unsequenced messages, embedded
at the arrival epochs in the superposition of the two message arrival
streams. Let Xn denote the number of unsequenced messages just after the
nth message arrival. If there are k messages in queue 1, then Xn 5 1k,
whereas if there are k messages in queue 2, then Xn 5 2k. In this model
for conservative sequencing, Xn Þ 0 for all n.

We assume that the two message arrival streams form Poisson processes
with rates n1 and n2, respectively, and that the successive time-stamps in
each stream are Poisson epochs with rates, l1 and l2, respectively.

Remark. Before we proceed with the analysis of this model, we note
here that this model is not vacuous, but is obtained as the model of a logical
process in a distributed simulator of an open feedforward queueing net-
work. Consider the queueing model in Figure 3 with external Poisson

2This assumption does not affect the stability result. For the purpose of simulator performance
analysis, the event synchronization time can be added to the event processing time in the
event processor.

Fig. 3. A queueing network.



arrivals and exponential service times, l1 , m1, l2 , m2, l1 1 l2 , m3, and
the queues Q1 and Q2 being stationary.

The model in Figure 3 is mapped onto the distributed simulator in Figure
4 in the obvious way. LP1 and LP2 simulate the work in the system
[Kleinrock 1975] in Q1 and Q2, and thus are driven by the two arrival
processes. LPi (i [ {1, 2}) progresses by generating an interarrival time
with distribution exponential (l i), updating the work in the system process
for Qi and generating a departure event corresponding to the arrival. Since
the queues are stationary, the departure processes in the queueing model
are Poisson with rates l1 and l2, respectively. If it takes LPi an exponen-
tially distributed amount of time with mean n i

21 to do the work correspond-
ing to each arrival, then we get a model for LP3 that is exactly the same as
previously described.

Define
n1

n1 1 n2

:5 a,
l1

l1 1 l2

:5 s.

If the rates n1, n2 and l1, l2 are strictly greater than zero, then 0 , a , 1,
and 0 , s , 1.

THEOREM 1. {Xn, n $ 0} is a Markov Chain on {. . . , 23, 22, 21}ø
{1, 2, 3, 4, . . .} with transition probabilities:

for i $ 1

pi,i11 5 a

pi,i2j 5 ~1 2 a!s j~1 2 s! for 0 # j # i 2 1

pi,21 5 ~1 2 a!s i

and

p2i,2~i11! 5 ~1 2 a!

p2i,2~i2j! 5 a~1 2 s! js for 0 # j # i 2 1.

p2i,1 5 a~1 2 s! i

Fig. 4. Distributed simulator for the model in Figure 3.



PROOF. The result is intuitively clear from the memoryless properties of
the Poisson process and the exponential distribution. We present, however,
a careful proof in the Appendix. e

THEOREM 2. (i) For all n1, n2, l1, l2, except those for which n1/l1 5
n2/l2, the Markov chain {Xn} is transient. (ii) For n1/l1 5 n2/l2, {Xn} is
null recurrent.

PROOF. These conclusions follow from standard Markov chain results.
The detailed analysis is given in the Appendix. e

It follows that for all instances of the problem the message queues are
unstable. In particular, we conclude from Theorem 2 that if n1/l1 , n2/l2
then the queue of messages received from LP2 will grow without bound.
Observe that n i/l i has the interpretation of “rate of virtual time arrival per
unit real-time”; hence the result is intuitive. In practice, of course, the
downstream LP must flow control the upstream LP to prevent unbounded
message queues from being formed.

2.1.2 Sequencing with Maximum Lookahead. An optimistic sequencer
works as in the case of conservative sequencing whenever both the message
queues are nonempty. When a queue is empty, however, the processor is
allowed to process messages in the nonempty queue. Messages whose
time-stamps precede that of the next message to arrive in the empty queue
will get processed correctly. The rest will have to be reprocessed. Thus at
any time there are messages that cannot be processed correctly even if the
sequencer had maximum lookahead, that is, (somehow) knew the time-
stamp of the next message to arrive in the empty queue. Since we are
limiting ourselves to sequencers that use only time-stamp information for
sequencing, these are the messages that optimistic sequencing (in fact, any
sequencing algorithm) cannot process correctly until the next message in
the empty queue is received. We show that the number of these messages
forms a transient or null recurrent Markov chain under the same assump-
tions and conditions as before. In optimistic sequencing, all such messages
will be either in the input message queues, or in the queue of processed but
uncommitted messages.

Note that in conservative sequencing with lookahead, the best that
lookahead can do is to let the sequencer know the time-stamp of the next
message to arrive at the empty message queue. Hence our term maximum
lookahead. Maximum lookahead is an unachievable algorithm, but its
analysis should yield fundamental limits on the performance of any se-
quencing algorithm.

Let {Xn, n $ 0} denote the number of unsequenced messages just after
nth arrival, when the sequencer has maximum lookahead, with the same
stochastic assumptions and notation as before. Observe that now Xn can be
0. Again we find that the message queues are unstable.

THEOREM 3. {Xn, n $ 0} is a Markov chain on {. . . , 23, 22, 21, 0, 1,
2, 3, 4, . . .} with transition probabilities:



for i $ 1

pi,i11 5 a

pi,i2j 5 ~1 2 a!s j~1 2 s! 0 # j # i 2 1

pi,0 5 ~1 2 a!s i

p2i,2~i11! 5 1 2 a

p2i,2~i2j! 5 a~1 2 s! js 0 # j # i 2 1

p2i,0 5 a~1 2 s! i

p0,1 5 a~1 2 s!

p0,21 5 ~1 2 a!s

p00 5 1 2 ~ p0,1 1 p0,21!.

PROOF. Similar to Theorem 2. e

THEOREM 4. (i) {Xn, n $ 0} is transient except when n1/l1 5 n2/l2; (ii)
{Xn, n $ 0} is null recurrent when n1/l1 5 n2/l2.

PROOF. Exactly the same as for Theorem 2. e

It follows that the resequencing problem is fundamentally unstable, and
no sequencing algorithm, which does not exercise some form of interproces-
sor flow control, will yield stable message queues. In practical implementa-
tions, finite message buffers and communication flow control in the operat-
ing system automatically impose flow control between the LPs. In addition,
many authors have proposed and studied flow controls between LPs that
further limit the asynchrony among the various processes. For example, a
buffer level based backpressure control can be applied by downstream LPs,
or various LPs can be prevented from getting too far apart in virtual time
by means of a mechanism such as time windows [Sokol et al. 1991; Nicol et
al. 1989] or bounded lag [Lubachevsky 1989]. What we have shown here is
that the “open-loop” system is unstable.

2.2 Generalizations of the Stochastic Assumptions

We now provide instability results for more general message arrival and
time-stamp increment processes.

2.2.1 Unequal Rates of Virtual Time Advance. Denote by Ni(t), i 5 1,
2, the message arrival counting process at input stream i of the event



sequencer. Assume that Ni(t) has an arrival rate n i, that is, with probabil-
ity one (w.p. 1),

lim
t3`

Ni~t!

t
5 n i . 0.

Denote by Vn
(i), i 5 1, 2, the time-stamp of the nth arrival in stream i.

Assume that Vn
(i) has an “average time-stamp increment”; that is,

lim
n3`

Vn
~i!

n
5 l i

21 . 0 w.p.1.

It is clear that the assumptions on Ni(t) and Vn
(i) hold for the stochastic

model in Section 2.1.

THEOREM 5. If n1/l1 Þ n2/l2 then

uVN1~t!
~1! 2 VN2~t!

~2! ) u 3 ` w. p.1.

PROOF.

VN1~t!
~1! 2 VN2~t!

~2!

t
5

N1~t!

t

VN1~t!
~1!

N1~t!
2

N2~t!

t

VN2~t!
~2!

N2~t!
.

Letting t 3 `, and noting that n i . 0 implies Ni(t) 3 `, the preceding
expression converges to

n1

l1

2
n2

l2

w.p.1.

Now

n1

l1

2
n2

l2

. 0 f ~VN1~t!
~1! 2 VN2~t!

~2! ! 3 1` w.p.1, (1)

whereas

n1

l1

2
n2

l2

, 0 f ~VN1~t!
~1! 2 VN2~t!

~2! ! 3 2` w.p.1. (2)

Hence the result follows. e

Observe that if VN1
(t)(1) 2 VN2

(t)(2) . 0 then, for conservative sequencing,
this difference is the amount by which the time-stamp of the last message
in input queue 1 exceeds the virtual time at the event sequencer. If n1/l1 .
n2/l2, then this difference increases without bound.



2.2.2 Equal Rates of Virtual Time Advance. It is not surprising that
when n1/l1 Þ n2/l2, the queues at the event sequencer are unstable, for if
the real-time rate of virtual time advance of stream 1 is greater than that
of stream 2, it is intuitively clear that queue 1 will be unstable.

The more interesting case is when the real-time rates of virtual time
advance in the two input streams are equal, that is, when n1/l1 5 n2/l2.
With the earlier assumption that the two message arrival streams form a
Poisson process with rates n1 and n2, respectively, and that the successive
time-stamps in each stream are Poisson epochs with rates l1 and l2,
respectively, we showed that the Markov Chain of the number of unse-
quenced messages just after the nth message arrival is null recurrent when
n1/l1 5 n2/l2.

Motivated by the previous result, we prove a form of instability of the
message queues when the arrival processes are very general and the
time-stamp arrival rates are balanced. We, however, take a slightly differ-
ent approach in this section. Instead of carrying a time-stamp, each message
carries a sequence number, which is unique across both streams, and within a
stream the messages arrive in sequence number order. Each sequence number
(1, 2, 3, . . .) is assigned to exactly one message of one of the two streams.
Obviously, time-stamps imply such a sequence numbering, but sequence
numbers provide more information to the sequencer than time-stamps alone.
In fact, sequencing of such sequence-numbered streams is equivalent to
sequencing time-stamped streams with maximum lookahead.

In the remaining part of this section, we use the following notation. As
before, let N1(t) and N2(t) be two point processes representing the inputs to
the two event sequencer queues. Define A(n) to be the assignment process that
assigns global sequence numbers to the points of N1 and N2, that is,

A~n! 5 H 1 if sequence number n is assigned to N1 ,
2 otherwise.

The sequencer forwards messages in N1 and N2 to the event processor in
the proper global order determined by their sequence numbers. The for-
warding is assumed to be instantaneous.

For i 5 1, 2, let Ej
(i) denote the sequence number assigned to the jth

message in the process Ni(t). Thus the sequence number of the most recent
message (up to time t) of Ni(t) will be ENi

(t)(i) , since Ni(t) is assumed to
have generated Ni(t) messages in the interval [0, t].

Let, for i 5 1, 2, F(i)(t) denote the number of messages in Ni(t) that
have been forwarded to the event processor up to time t. Thus the number
of messages in Ni(t) that are waiting in the sequencer queue at time t
equals Ni(t) 2 F(i)(t).

With sequence numbers, a message j generated by N1(t) or N2(t) can be
forwarded to the event processor if all messages with sequence numbers up
to 1 less than the sequence number of j have been forwarded. Such is not
the case with time-stamps since if the other queue is empty one cannot be
sure if the next arrival into that queue will carry a larger time-stamp. The



following sequencing strategy essentially models with sequence numbers
the behavior of the conservative strategy using time-stamps.

According to this strategy, if EN1
(t)(1) . EN2

(t)(2) , then F(1)(t) 5 N1(t9)
where t9 5 max{t: EN1

(t)(1) , EN2
(t)(2) } and F (2)(t) 5 N2(t). Similarly,

if EN2
(t)(2) . EN1

(t)(1) , then F (1)(t) 5 N1(t) and F (2)(t) 5 N2(t9), where t9 5
max{t: EN2

(t)(2) , EN1
(t)(1) }. In other words, if at time t, the sequence number

of the most recent arrival into Q1 is greater than that of Q2, then at time t
the sequencer will have forwarded all arrivals into Q2 up to t whereas, as
far as arrivals into Q1 are concerned, the sequencer will have forwarded
only those whose sequence numbers are less than that of the most recent
arrival into Q2. It is easy to see that this strategy mimics the behavior of
the conservative strategy based on time-stamps.

Let Q (i)(t) denote the number of unsequenced messages waiting in queue
Qi at time t. Under the conservative strategy then,

Q ~i!~t! 5 Ni~t! 2 F ~i!~t!

5 max$Ni~t! 2 Ni~t!, 0%,

where t 5 max{t9 : EN1
(t9)(1) , EN2

(t)(2) }.
Define S(t) :5 Q (1)(t) 1 Q (2)(t) to be the number of events awaiting

synchronization. Assume that the counting process N1(t) and N2(t) both
have a “rate”; that is,

lim
t3`

N1~t!

t
5 n1 ,

lim
t3`

N2~t!

t
5 n2 .

THEOREM 6. N1(t) and N2(t) are general point processes with rates n1
and n2. A(n) is a Bernoulli process independent of N1(t) and N2(t); that is,

A~n! 5 H 1 w.p. a

2 w.p. 1 2 a,

and the A(n), n $ 1, are i.i.d. If n1/a 5 n2/(1 2 a), then E[S2(t)] 3 ` as
t 3 `; that is, the second moment (and hence the variance) of the number of
events awaiting synchronization increases without bound.

Remark. Observe that 1/a (resp., 1/(1 2 a)) is the mean increment of the
sequence number between successive messages in stream 1 (resp., stream
2). Hence n1/a (resp., n2/(1 2 a)) is the rate of the sequence number
increment in stream 1 (resp., stream 2) per unit “wall-clock” time. Also note
that Poisson time-stamp processes (as in Section 2.1) yield a Bernoulli
sequence number allocation with a 5 l1/(l1 1 l2).



PROOF. Let P[n, m; l, k] denote the joint probability that the lth
arrival into Q1 has sequence number n and the kth arrival into Q2 has
sequence number m. Then it can be shown that:

P@n, m; l, k# 5 5 a l~1 2 a!n2lSn 2 m 2 1
n 2 l 2 k D Sm 2 1

k 2 1 D
am2k~1 2 a!kSm 2 n 2 1

m 2 l 2 k D Sn 2 1
l 2 1 D

for n . m

for m . n.

Consider the quantity:

EFQ ~1!~t!~Q ~1!~t! 1 1! 1
a2

~1 2 a!2
Q ~2!~t!~Q ~2!~t! 1 1!G .

We can write:

EFQ~1!~t!~Q~1!~t! 1 1! 1
a2

~1 2 a!2
Q~2!~t!~Q~2!~t! 1 1!UN1~t! 5 l, N2~t! 5 kG

5 O
n5l1k

` O
m5k

l1k21

P@n, m; l, k#~l 2 ~m 2 k!!~l 2 ~m 2 k! 1 1!

1
a2

~1 2 a!2 O
m5l1k

` O
n5l

l1k21

P@n, m; l, k#~k 2 ~n 2 l !!~k 2 ~n 2 l ! 1 1!

5 O
n5l1k

` O
m5k

l1k21

~l 1 k 2 m!~l 1 k 2 m 1 1!a l~1 2 a!n2lSn 2 m 2 1
n 2 l 2 k D Sm 2 1

k 2 1 D
1 O

m5l1k

` O
n5l

l1k21

~l 1 k 2 n!~l 1 k 2 n 1 1!am2k~1 2 a!kSm 2 n 2 1
m 2 l 2 k D

z Sn 2 1
l 2 1 D a2

~1 2 a!2
.

It can be shown that the preceding expression reduces to (details of the
proof are given in the Appendix):

l~l 1 1! 2
2alk

1 2 a
1

a2k~k 1 1!

~1 2 a!2
5 S l 2

ak

1 2 a
D 2

1 l 1
ka2

~1 2 a!2
.



Thus

EFQ~1!~t!~Q~1!~t! 1 1! 1
a2

~1 2 a!2
Q~2!~t!~Q~2!~t! 1 1!uN1~t! 5 l, N2~t! 5 kG

5 Sl 2
ak

1 2 a
D2

1 l 1
ka2

~1 2 a!2
.

Therefore

EFQ ~1!~t!~Q ~1!~t! 1 1! 1
a2

~1 2 a!2
Q ~2!~t!~Q ~2!~t! 1 1!G

5 EF SN1~t! 2
aN2~t!

1 2 a
D 2G 1 E@N1~t!# 1

a2E@N2~t!#

~1 2 a!2
.

Therefore, even if n1/a 5 n2/(1 2 a),

EFQ ~1!~t!~Q ~1!~t! 1 1! 1
a2

~1 2 a!2
Q ~2!~t!~Q ~2!~t! 1 1!G 3 ` as t 3 `.

Now

Q ~1!2

~t! 1 Q ~1!~t! 1
a2

~1 2 a!2
@Q ~2!2

~t! 1 Q ~2!~t!# #

5
a2

~1 2 a!2
@Q ~1!2

~t! 1 Q ~1!~t! 1 Q ~2!2

~t! 1 Q ~2!~t!# if
a

12a
$ 1,

Q ~1!2

~t! 1 Q ~1!~t! 1 Q ~2!2

~t! 1 Q ~2!~t! if
a

1 2 a
, 1.

Therefore

Q ~1!2

~t! 1 Q ~1!~t! 1
a2

~1 2 a!2
@Q ~2!2

~t! 1 Q ~2!~t!#

# maxS1,
a2

~1 2 a!2D @Q ~1!2

~t! 1 Q ~1!~t! 1 Q ~2!2

~t! 1 Q ~2!~t!#

# maxS1,
a2

~1 2 a!2D @S2~t! 1 S~t!#,

where S(t) is the number of events awaiting synchronization. Thus, as t 3
`, E[S2(t) 1 S(t)] 3 ` as long as N1(t) and N2(t) increase without bound
as t 3 `.



Since S(t) $ 1 for all t,

E@S2~t! 1 S~t!# # 2E@S2~t!#.

Thus E[S2(t)] 3 ` as t 3 `. e

The preceding result shows that the second moment of S(t), the number
of events awaiting synchronization, increases without bound as t 3 `
under very weak assumptions about the arrival process N1(t) and N2(t) (as
long as A(n) is Bernoulli). This means that either the mean of the number
of events awaiting synchronization increases without bound, or, if the mean
is bounded, then the variance grows without bound.

3. COMPLEMENTS AND EXTENSIONS

In this section we present some complements and extensions of the results
in Section 2.

3.1 Departure Process from the Sequencer

Consider two time-stamped message streams (with assumptions as in
Section 2.1) arriving at a sequencer; let the parameters of the streams be
denoted by (n i, l i), i [ {1, 2}. We assume that n1/l1 Þ n2/l2. If the
messages departing from the sequencer are fed to an event processor or
another event sequencer, then it is necessary to investigate the character-
istics of the departure process. Suppose n1/l1 , n2/l2, then the queue of
messages from stream 2 increases without bound. It is easily seen that a
batch of sequenced messages departs whenever a message arrives from
stream 1 (one from queue 1 and the rest from queue 2, which can be
assumed to be infinite). The batch size is geometrically distributed (with at
least one message in each batch) with mean (1 1 l2/l1). Hence the message
departure rate is n1(1 1 l2/l1). Furthermore, for both conservative sequenc-
ing and maximum lookahead, it can be shown that the epochs of message
departures forms a renewal process (of rate n1(1 1 l2/l1)), and the time-
stamp sequence of the departing messages is an independent Poisson
process with rate (l1 1 l2).

This result has an immediate consequence for the stability of the event
processor that follows the event sequencer. If the event service times at the
processor are i.i.d. with mean 1/n, it follows that the event processor queue
is stable if n1(1 1 l2/l1) , n. The corresponding result holds for n1/l1 .
n2/l2.

We have also shown in Shorey [1996] that flow controlled throughput
(e.g., with buffer limit flow control [Shorey 1996] or Moving Time Windows
[Sokol et al. 1991]) is bounded above by this unstable throughput of the
event sequencer calculated in the preceding. Thus flow control does not
help to speed up the simulation; the open-loop throughput provides a
fundamental bound.



Finally, observe that if the physical process represents a stationary open
feedforward Jackson-type queueing network, then the time-stamp process
at the output of the event processor will be Poisson [Wolff 1989].

3.2 More than 2 Message Streams

Consider n time-stamped message streams with renewal arrival epochs,
and the time-stamps forming Poisson processes. Let (n i, l i), 1 # i # n,
denote the parameters of the stream; we assume here that n i/l i Þ n j/l j,
i Þ j. Let j* 5 min1#i#n n i/l i. These n streams are offered to a sequencer.
If we view the sequencing as being done on pairs of streams, and then on
pairs of the resulting departure processes, and so on, it easily follows that

(i) Queues i, i Þ j*, 1 # i # n, are unstable.
(ii) The departure process from the sequencer comprises geometrically

distributed batches of messages (with at least one message in each
batch) departing at the arrival epochs of stream j*. The mean batch
size is 1 1 1/l j* ( i51,iÞj*

n l i 5 1/l j* ( i51
n l i

(iii) The message departure epochs form a renewal process of rate n j*/l j*
( i51

n l i, and the time-stamp process is Poisson with rate ( i51
n l i. We

denote such a stream by (n j*, l j*, (i51
n l i); observe that in this

notation, a Poisson message stream of rate n, with Poisson time
stamps of rate l is denoted by (n, l, l).

3.3 Feedforward Queueing Networks

We restrict our discussion to simulators of feedforward queueing networks
(FQNs) with no “split routing” in the queueing network; that is, all
customers departing a queue enter exactly one downstream queue.

With this restriction on the routing, the topology of the FQN is just a
tree, with each node of the tree representing a synchronization/queueing
station. The root of the tree represents the penultimate queue; customers
enter at the leaves and flow out of the root. The tree is m levels deep if m is
the maximum number of queues that any customer traverses. A queue is at
level i, 1 # i # m if a customer leaving it has m 2 i queues left to
traverse; the level of the root is m. Each queue may receive an external
Poisson arrival process. Figure 5 shows an example of such an FQN with
m 5 4.

We also assume that each queue in the queueing network model is
simulated by an LP on a separate processor; thus the message flow between
LPs has the same topology as the customer flow in the queueing network.
The LPs representing the queues on leaves of the tree are like sources of
messages. Recalling the notation introduced in Section 3.2, let the message
streams flowing out of the LPs at stage i, 1 # i # m, be denoted by (n1

(i),
l1

(i), l̂1
(i)), . . . , (nni

(i), lni

(i), l̂ni

(i)), where l̂ j
(i) $ l j

(i). An LP at level i that
represents a leaf node will have a flow out of it of the form (n, l, l). If an LP
is not representing a leaf queue and has an external Poisson arrival process
of rate l, this external arrival process can be viewed as a message stream
with parameter (`, l, l).



Denote by n j, 1 # j # L, the processor service rates of the LPs at the leaf
nodes, and by l j, 1 # j # L, the external arrival rates at the corresponding
queues. Let l̂ denote the total external arrival rate in the queueing model.
As in Section 3.2, we assume that n i/l i Þ n j/l j, i Þ j.

THEOREM 7. If the processors of the LPs at the nonleaf nodes have an
infinite service rate, then the departure process of the simulator is (n j*, l j*,
l) where j* 5 arg min1#j#L(n j/l j).

PROOF. Easy observation from the results of Section 3. The restriction of
infinite service rate is required here as we have proved the previous results
only for renewal message arrival processes. e

Thus the throughput of the simulator of the FQN is given by:

S min
1#j#L

n j

l j
D ~l̂!

This formula clearly shows the effect of mapping the model onto the
simulator processors; for example, the worst performance will be obtained
if the leaf queue with the largest l j is simulated by the slowest processor
(i.e., the least n j).

Example. Consider the FQN shown in Figure 5. The simulator for the
FQN is shown in Figure 6.

Let m i, i 5 1, 2, . . . , 7 denote the service rates of the queues of the FQN.
We assume that these queues are stable; that is, l i , m i, i 5 1, 2, 3, 4,
(i51

2 l i , m5, ( i51
3 l i , m6, ( i51

4 l i , m7. With reference to the previous
description, the leaf queues in the FQN (i.e., queues 1, 2, 3, and 4) are
simulated by LPs with event processing rates n i, 1 # i # 4. The remaining
event processors have service rate n. Hence we obtain the simulation model
shown in Figure 6.

Fig. 5. A feedforward queueing network.



Table I shows the throughput of the simulator obtained from analysis
and simulation as a function of the parameters of the PP and the LP. In the
example, we keep n 5 10, and m i 5 1 for all i 5 1, 2, 3, 4.

It can be seen that the throughput obtained from analysis (gAnal) matches
very well with that obtained from simulation (gSim), the difference being
due to the fact that gAnal is a long-run average, whereas gSim is a finite
sample average.

4. CONCLUSION

The instability results obtained in this article are not surprising if viewed
in the light of similar results obtained for other queueing models. It is easy
to see that event synchronization is similar to the assembly problem
arising in manufacturing systems. If the parts to be assembled come from
independent streams, it was shown by Harrison [1973] and Latouche [1981]
that under fairly general conditions the queues of parts to be assembled are
unstable. The assumption of independent part streams may not always be
appropriate in the manufacturing context, as the part streams usually
originate from a common order stream. No such parent stream can be
argued in the context of distributed simulation of open queueing networks.
Hence if all logical processors are permitted to proceed at their own rates,
then message buffers will overflow. Such simulations must be stabilized by
some form of interprocessor flow control. For example, a buffer level based
backpressure control can be applied by downstream LPs, or various LPs
can be prevented from getting too far apart in virtual time by means of a
mechanism such as time windows [Sokol et al. 1991] or bounded lag
[Lubachevsky 1989].

Although such mechanisms will serve to stabilize buffers, our approach of
modeling and analyzing the message flow processes in the simulator has
pointed towards certain fundamental limits of efficiency of distributed
simulation imposed by the synchronization mechanism. In subsequent
work [Shorey 1996], we have shown for the simple models considered in the
article that flow-controlled throughput is bounded above by the open-loop
throughput.

It is clear that the rate of departure of processed messages from the
simulator corresponds to the rate of progress of the simulation. We have
obtained formulas or bounds for the throughput of simulators of feedfor-

Fig. 6. Feedforward queueing network simulator.



ward networks. These formulas involve parameters of the simulator (pro-
cessor speeds) and the model being simulated, and hence clearly demon-
strate the performance impact of various ways of mapping the simulation
model onto the processors.

In subsequent work (see, e.g., Shorey [1996] and Gupta et al. [1996]) we
have attempted to develop more detailed formal models for message flows
in distributed simulators of queueing networks, and to study the stability
and performance of these models; in particular, we have explored the
stability of simulators of queueing networks with feedbacks. We expect that
this approach will yield useful insights into the performance limits of
distributed simulators and how the performance could be optimized.

APPENDIX A. Proof of Theorems

PROOF OF THEOREM 1. Let tn denote the “virtual” time up to which
synchronization is complete just after the nth arrival epoch. Note that tn is
the time-stamp of the last message allowed to pass through at the nth
arrival. Time-stamps of queued messages and messages yet to arrive are
viewed relative to tn, as increments beyond tn.

The result follows from the following Lemma.

LEMMA. Let Xn 5 i, and the time-stamps of the queued messages relative
to tn be S1, S1 1 S2, . . . , S1 1 S2, 1 . . . 1 Si ; here S1 is the amount by
which the time-stamp of the first queued message exceeds tn. Since time-
stamp increments are exponentially distributed, owing to the memoryless
property of exponential distribution, residual time S1 is also exponentially
distributed. {S1, S2 . . .} are i.i.d., Exp (l1). Let T denote the time-stamp of
the message arriving at the (n 1 1)st arrival epoch relative to tn. Let {T1,
T1 1 T2, . . .} denote the time-stamps, relative to tn11, of the messages left
in queue after the (n 1 1)st arrival.

Then

P~Xn11 5 j, T1 . t1 , T2 . t2 , . . . , Tj . tjuXn 5 i!

5 5aP k51
j e2l1tk

~1 2 a!s i2j~1 2 s!Pk51
j e2l1tk

~1 2 a!sie2l2t1

j 5 i 1 1 ~i!
1 # j # i ~ii!
j 5 2 1 ~iii!

.

Table I. Throughput of the Feedforward Queueing Network Simulator (analysis and
simulation).



PROOF.

(i) j 5 i 1 1 if the (n 1 1)st arrival is from stream 1 (probability a). In
that case tn11 5 tn, and T1 5 S1, T2 5 S2, . . . , Ti 5 Si, Ti11 ;
Exp(l1) and is independent of the others; (here ; is to be read “is
distributed as”).

(ii) Let , 5 i 2 j for 1 # j # i. In this case tn11 5 T 1 tn, T1 5 (k51
,11

Sk 2 T, T2 5 S,12, . . . , Tj 5 S,1j 5 Si, and T ; Exp(l2)

P~Xn11 5 j, T1 . t1 , . . . , Tj . tjuXn 5 i!

5 ~1 2 a! P~G , T , G 1 S,11 , G 1 S,11 2 T . t1 ,

S,12 . t2 , . . . , S,1j . tj!,

where G :5 (k51
, Sk, and which, letting g( . ) be the probability density

of G,

5 ~1 2 a!E
0

`

g~u!du E
u

`

l2e2l2tdt e2l1~t11t2u!e2l1t2 . . . e2l1tj

5 ~1 2 a!P
k51

j

e2l1tk E
0

`

g~u!du E
u

`

l2e2l2tdt e2l1~t2u!

and, letting t 2 u 5 v,

5 ~1 2 a!P
k51

j

e2l1tk E
0

`

g~u!e2l2udu E
0

`

l2e2~l11l2!vdv

5 ~1 2 a!S l1

l1 1 l2
D ,S l2

l1 1 l2
D P

k51

j

e2l1tk

5 ~1 2 a!s i2j~1 2 s!P
k51

j

e2l1tk.

(iii)

P~Xn11 5 21, T1 . t1uXn 5 i! 5 ~1 2 a! PS O
k51

i

Sk , T, T 2 O
k51

i

Sk . t1D ,



letting G 5 (k51
i Sk, and g( . ) be the probability density of G,

5 ~1 2 a!E
0

`

g~u!du e2l2~t11u!

5 ~1 2 a!sie2l2t1. e

Thus after each arrival epoch, the time-stamps of the queued messages are
successive epochs of a Poisson process. Returning to the proof of Theorem 1,
let t0 5 0, X0 5 i0 ($1), and let the time-stamps of these queued
messages have the same distribution as the first i0 epochs of a Poisson
process of rate l1.

P3~Xn11 5 j uX0 5 i0 , . . . , Xn21 5 in21 , Xn 5 in!,

where the subscript 3 denotes that the initial time stamps form a segment
of a Poisson process. Now writing this out,

5
P3~X1 5 i1 , . . . , Xn 5 in , Xn11 5 j uX0 5 i0!

P3~X1 5 i1 , . . . , Xn 5 inuX0 5 i0!
.

Consider the numerator

P3~X1 5 i1 , . . . , Xn 5 in , Xn11 5 j uX0 5 i0!

5 E
~51!i1

P3~X1 5 i1 , S1
~1! [ ds1 , S2

~1! [ ds2 , . . . , Si1

~1! [ dsi1uX0 5 i0!

zP~X2 5 i2 , X3 5 i3 , . . . , Xn11 5 juX0 5 i0 , X1 5 i1 , S1
~1! 5 s1 , . . . , Si1

~1! 5 si1!,

where 51 is the nonnegative real line, and {Sk
(1)} are time-stamps of

messages queued just after the first arrival, in relation to t1. Now note that
since the arrival epochs form a Poisson process, and the time-stamps of the
yet to arrive messages also form a Poisson process, independent of the past,
the conditioning on X0 5 i0 in the second term under the integral can be
dropped, and applying the preceding lemma we get

5 P3~X1 5 i1uX0 5 i0! P3~X2 5 i2 , X3 5 i3 , . . . , Xn11 5 j uX1 5 i1!.

Proceeding this way in the numerator and denominator we will get

P3~Xn11 5 j uX0 5 i0 , . . . , Xn21 5 in21 , Xn 5 in! 5 P3~Xn11 5 j uXn 5 in!,

where the transition probabilities are obtained from the Lemma. e

PROOF OF THEOREM 2. (i) Let Q be the transition probability matrix
restricted to the set of states {1, 2, 3, . . .}. We show that whenever l1n2 Þ



n1l2, there exists a bounded, nonnegative, nonzero solution to (see Cinlar
[1975])

QyI 5 yI ,

that is, ( y1, y2, . . .) such that, for i $ 1,

yi 5 ayi11 1 O
j50

i21

~1 2 a!s j~1 2 s! yi2j .

Multiplying by zi, for 0 , z , 1, and summing from 1 to `,

O
i51

`

ziyi 5 O
i51

`

aziyi11 1 ~1 2 a!~1 2 s!O
i51

` O
j50

i21

zis jyi2j .

Hence, defining ỹ( z) 5 (i51
` ziyi,

ỹ~ z! 5
a

z
~ ỹ~ z! 2 zy1! 1

~1 2 a!~1 2 s!

~1 2 sz!
ỹ~ z!,

from which, on simplification, we get

ỹ~ z! 5
z~1 2 sz!

~1 2 z!~1 2 ~s/a! z!
y1 .

Case (i) a Þ s (i.e., n1/(n1 1 n2) Þ l1/(l1 1 l2), i.e., n1l2 Þ l1n2). Using
partial fraction expansion

ỹ~ z! 5
a

s
z

y1

~a/s! 2 1S1 2 s

1 2 z
2

1 2 a

~a/s! 2 zD
5 O

j51

`

zjS ~1 2 s! 2 ~1 2 a!~s/a! j

1 2 s/a D y1 ,

hence, by definition of ỹ( z), the solutions to Qy 5 y for s Þ a are of the
form, for j $ 1,

yj 5 S ~1 2 s! 2 ~1 2 a!~s/a! j

1 2 s/a D y1 .

It is clear that there is a bounded nonzero solution between 0 and 1 if s ,
a and none if s . a. Thus for s , a there are states in {1, 2, 3, . . .} from
which there is a positive probability of never leaving this set. Hence {Xn}
would be transient. It is similarly clear that for (1 2 s) , (1 2 a), that is,



s . a, there are states in { . . . , 23, 22, 21} from which there is a positive
probability of never leaving {. . . , 23, 22, 21}. Thus for s Þ a, {Xn} is
transient.

Case (ii) s 5 a.

ỹ~ z! 5 z
1 2 sz

~1 2 z!2
y1

5 O
i51

`

zi~i~1 2 s! 1 s! y1 .

Recalling that s , 1, there is no bounded solution to Qy 5 y; hence {Xn} is
recurrent for s 5 a.

(ii) From (i) we know that for l1/l2 5 n1/n2 (i.e., a 5 s) {Xn} is recurrent.
We show now that for a 5 s, {Xn} is not positive recurrent, and hence is
null.

Consider the Markov chain {X9n} on the state space {0, 1, 2, 3, . . .} with
the transition probabilities p9. , . given by (recall that p. , . are transition
probabilities for {Xn}):

p9i, j 5 pi, j for i $ 1, j $ 1

p9i,0 5 pi,21 for i $ 1

p90,1 5 p21,1 5 1 2 p90,0 .

Observe that {Xn} positive recurrent f {X9n} is positive recurrent. We
show that for a 5 s, {X9n} is not positive recurrent. To do this we use a
result due to Kaplan [1979] (see also Szpankowski [1990]). For i $ 1,

E~X9k11 2 X9kuX9k 5 i!

5 a 2 O
j50

i21

j~1 2 a!s j~1 2 s! 2 i~1 2 a!s i

5 a 2 S1 2 a

1 2 s
Ds$1 2 s i%.

Hence for a 5 s :5 a and i $ 1,

E~X9k11 2 X9kuX9k 5 i! 5 ai11 . 0 for a . 0.

Also, directly,

E~X9k11 2 X9kuX9k 5 0! 5 a~1 2 a! . 0,



for 0 , a , 1. Furthermore, for i $ 1, and z [ (0, 1],

O
j50

`

p9ij~ zi 2 zj! $ O
0#j,i

p9ij~2~i 2 j!!~1 2 z!,

where we use the inequality

zi 2 zj $ 2~i 2 j!1~1 2 z!,

for z [ [0, 1] (see Szpankowski [1985]). Hence for i $ 1, z [ (0, 1] (see
preceding mean drift calculations),

O
j50

`

p9ij~ zi 2 zj! $ 2a~1 2 ai!~1 2 z! $ 2a~1 2 z!.

Hence the required conditions in Kaplan [1979] are satisfied and {X9k} is
not positive recurrent, implying that {Xk} is not positive recurrent. It
follows that {Xk} is null recurrent for s 5 a. e

PROOF OF THEOREM 6. We give here the details of the proof of Theorem 6.
We prove that

EFQ ~1!~t!~Q ~1!~t! 1 1! 1
a2

~1 2 a!2
Q ~2!~t!~Q ~2!~t! 1 1! uN1~t! 5 ,, N2~t! 5 kG

5 l~l 1 1! 2
2alk

1 2 a
1

a2k~k 1 1!

~1 2 a!2
.

Consider P[n, m; ,, k] 5 P[E,
(1) 5 n and Ek

(2) 5 m].

If n . m, then k # m # , 1 k 2 1, and n $ , 1 k

If m . n, then , # n # , 1 k 2 1, and m $ , 1 k.

Obviously,

O
n5,1k

` O
m5k

,1k21

P@n, m; ,, 2k# 1 O
m5,1k

` O
n5,

,1k21

P@n, m; ,, k# 5 1.



Thus

O
n5,1k

` O
m5k

,1k21

a,~1 2 a!n2,Sm 2 1
k 2 1 D Sn 2 m 2 1

n 2 , 2 k D

1 O
m5,1k

` O
n5,

,1k21

am2k~1 2 a!kSn 2 1
, 2 1D Sm 2 n 2 1

m 2 , 2 kD 5 1.

In the first term substitute n 5 n 2 , 2 k and m 5 m 2 k; in the second
term substitute n 5 m 2 , 2 k and m 5 n 2 ,. Then the preceding
expression reduces to

O
n50

` O
m50

,21

a,~1 2 a!n1kSm 1 k 2 1
k 2 1 D S n 1 , 2 m 2 1

n
D

1 O
n50

` O
m50

k21

an1,~1 2 a!kSm 1 , 2 1
, 2 1 D S n 1 k 2 m 2 1

n
D 5 1;

that is,

a,~1 2 a!k O
n50

` H ~1 2 a!n O
m50

,21Sm 1 k 2 1
k 2 1 D S n 1 , 2 m 2 1

n D J
1 a,~1 2 a!k O

n50

` Han O
m50

k21Sm 1 , 2 1
, 2 1 D S n 1 k 2 m 2 1

n D J 5 1. (3)

It can be shown that for 0 , x , 1, and n 5 0, 1, 2, . . . ,

O
n50

`

xnS n 1 n
n D 5 ~1 2 x!2~n11!.

Therefore the preceding expression can be written as

1 5 a,~1 2 a!kH O
m50

,21

a2~,2m!Sm 1 k 2 1
k 2 1 D 1 O

m50

k21

~1 2 a!2~k2m!Sm 1 , 2 1
, 2 1 D J ;



that is,

1 5 ~1 2 a!k O
m50

,21

amSm 1 k 2 1
k 2 1 D 1 a, O

m50

k21

~1 2 a!mSm 1 , 2 1
, 2 1 D .

Note that this expression holds for ,, k 5 1, 2, . . . .
We write

S,,k 5 ~1 2 a!k O
m50

,21

amSm 1 k 2 1
k 2 1 D 1 a, O

m50

k21

~1 2 a!mSm 1 , 2 1
, 2 1 D 5 1. (4)

We now show that

EFQ ~1!~t!~Q ~1!~t! 1 1! 1
a2

~1 2 a!2
Q ~2!~t!~Q ~2!~t! 1 1! uN1~t! 5 ,, N2~t! 5 kG

5 ,~, 1 1! 2
2a

~1 2 a!
,k 1

a2

~1 2 a!2
k~k 1 1!.

In particular, we have

EFQ ~1!~t!~Q ~1!~t! 1 1! 1
a2

~1 2 a!2
Q ~2!~t!~Q ~2!~t! 1 1! uN1~t! 5 ,, N2~t! 5 kG

5 O
n5,1k

` O
m5k

,1k21

~, 1 k 2 m!~, 1 k 2 m 1 1!a,~1 2 a!n2,Sm 2 1
k 2 1 D

z Sn 2 m 2 1
n 2 , 2 k D

1 O
m5,1k

` O
n5,

,1k21

~, 1 k 2 n!~, 1 k 2 n 1 1!am2k~1 2 a!kSn 2 1
, 2 1D

z Sm 2 n 2 1
m 2 , 2 kD a2

~1 2 a!2



5 a,~1 2 a!k O
n50

` H~1 2 a!n O
m50

,21

~, 2 m!~, 2 m 1 1!Sm 1 k 2 1
k 2 1 DSn 1 , 2 m 2 1

n DJ
1 a,~1 2 a!k O

n50

` Han O
m50

k21

~k 2 m!~k 2 m 1 1!Sm 1 , 2 1
, 2 1 DSn 1 k 2 m 2 1

n DJ
5 ~1 2 a!k O

m50

,21

~, 2 m!~, 2 m 1 1!amSm 1 k 2 1
k 2 1 D

1 a,12 O
m50

k21

~k 2 m!~k 2 m 1 1!~1 2 a!m22Sm 1 , 2 1
, 2 1 D

5 ~1 2 a!k O
m50

,11

~, 2 m!~, 2 m 1 1!amSm 1 k 2 1
k 2 1 D

1 a,12 O
m50

k11

~k 2 m!~k 2 m 1 1!~1 2 a!m22Sm 1 , 2 1
, 2 1 D. (5)

Also,

,~, 1 1! 5 ,~, 1 1!.S,12,k

5 ~1 2 a!k O
m50

,11

amSm 1 k 2 1
k 2 1 D ,~, 1 1! 1 a,12 O

m50

k21

~1 2 a!m

z Sm 1 , 2 1
, 1 1 D ,~, 1 1!

5 ~1 2 a!k O
m50

,11

amSm 1 k 2 1
k 2 1 D ,~, 1 1!

1 a,12 O
m50

k11

~1 2 a!m22Sm 1 , 2 1
, 2 1 Dm~m 2 1! (6)

a2k~k 1 1!

~1 2 a!2
5

a2k~k 1 1!

~1 2 a!2
z S,,k12



5
a2

~1 2 a!2F ~1 2 a!k12 O
m50

,21

amSm 1 k 1 1
k 1 1 Dk~k 1 1!G

1
a2

~1 2 a!2Fa, O
m50

k11

~1 2 a!mSm 1 , 2 1
, 2 1 Dk~k 1 1!G

5 ~1 2 a!k O
m50

,11

amSm 1 k 2 1
k 2 1 Dm~m 2 1!

1 a,12 O
m50

k11

~1 2 a!m22Sm 1 , 2 1
, 2 1 Dk~k 1 1! (7)

and

a,k

~1 2 a!
5

a,k

1 2 a
z S,11,k11

5
a

1 2 aF ~1 2 a!k11 O
m50

,

amSm 1 k
k D ,k 1 a,11 O

m50

k

~1 2 a!m

z Sm 1 ,

, D ,kG
5 ~1 2 a!k O

m50

,

am11Sm 1 k
k 2 1D ,m 1 a,12 O

m50

k

~1 2 a!m21Sm 1 ,

, 2 1Dkm

5 ~1 2 a!k O
m50

,11

amSm 1 k 2 1
k 2 1 D ,m

1 a,12 O
m50

k11

~1 2 a!m22Sm 1 , 2 1
, 2 1 Dkm. (8)

Taking Equations (6) 1 (7) 2 2.(8), we have

,~, 1 1! 1
k~k 1 1!a2

~1 2 a!2
2

2,ka

1 2 a



5 ~1 2 a!k O
m50

,11

amSm 1 k 2 1
k 2 1 D ~, 2 m!~, 2 m 1 1!

1 a,12 O
m50

k11

~1 2 a!m22Sm 1 , 2 1
, 2 1 D ~k 2 m!~k 2 m 1 1!

5 EFQ ~1!~t!~Q ~1!~t! 1 1! 1
a2

~1 2 a!2
Q ~2!~t!~Q ~2!~t!

1 1! uN1~t! 5 ,, N2~t! 5 kG . e
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