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Abstract—Empirical social networks are often aggregate prox-
ies for several heterogeneous relations. In online social networks,
for instance, interactions related to friendship, kinship, business,
interests, and other relationships may all be represented as
catchall “friendships.” Because several relations are mingled into
one, the resulting networks exhibit relatively high and uniform
density. As a consequence, the variation in positional differences
and local cohesion may be too small for reliable analysis.

We introduce a method to identify the essential relationships
in networks representing social interactions. Our method is based
on a novel concept of triadic cohesion that is motivated by Sim-
mel’s concept of membership in social groups. We demonstrate
that our Simmelian backbones are capable of extracting structure
from Facebook interaction networks that makes them easy to
visualize and analyze. Since all computations are local, the method
can be restricted to partial networks such as ego networks, and
scales to big data.

I. INTRODUCTION

Empirical social networks are often aggregate proxies
for several heterogeneous relations, especially when collected
from social media and other communication systems. For
instance, communication may be triggered by a desire to
exchange gossip between close friends or to transmit formal
notifications between business partners. When these diverse
types of interaction are captured in a single dataset, the overlap
of social circles blurs the structure of primary groups that
actors are affiliated with.

As an example, consider the network of Facebook friend-
ship relations between students in Figure 1a, where individuals
are colored according to the dorm they reside in. While
the layout suggests that clusters may be aligned with dorms
to some extent, this property is more pronounced in the
substructure shown in Figure 1b. We hasten to add that this
substructure is derived from the network structure alone, i.e.,
without taking the dorm attribute into account.

We here propose a method to extract such backbone struc-
tures by restricting a network to relationships most strongly
embedded in social groups. While there are many conceptions
of social groups, “primary” groups are of particular interest:

Over the years sociologists have distinguished vari-
ous kinds, or what Simmel called “forms” of human
groups. Among these, one form in particular has
continued to interest investigators for more than a
century. Groups that are relatively small, informal,
and involve close personal ties – those that Tönnies
characterized as based on Gemeinschaft, Durkheim

portrayed as reflecting solidarité organique, and both
Spencer and Cooley described as primary – remain
at the core of the discipline. [3]

We focus therefore on the identification of strong ties that are
embedded in primary groups. While common technical terms
include, for instance, clusters and modules we henceforth refer
to these primary groups as communities.

Note that our goal is not to assign community memberships
themselves. As we will argue below, structural embeddedness
can be defined locally, without knowing the surrounding com-
munities or even postulating a formal definition for them. The
reduction to strong, embedded ties is thus substantially differ-
ent from common approaches to community detection which
assess the relation between internally dense and externally
sparse actor groups [4].

In the next section, we motivate our approach by substan-
tive theory on social groups and structural embeddedness. Sim-
melian backbones are introduced in Section III, and evaluated
in Section IV. We conclude with a brief discussion.

II. BACKGROUND

A. Tie Dependencies

Community detection algorithms generally equate com-
munities with relatively dense subgroups, where ‘relatively
dense’ means that within-group density is higher than expected
with respect to some null model or substantially higher than
between-group density. Modularity’s null model, for example,
is based on a planted partition model, which is a slight
generalization of Erdős-Rényi random graphs [5] with differ-
ent tie probabilities within and between prespecified groups.
Within each planted partition, edges are assumed to form
independently of each other.

The processes that drive the formation of social networks,
however, go beyond the level of dyadic variables. Rather, ties
are systematically patterned and embedded in local structures,
such as triangles and cycles. The presence of ties is likely to
conditionally depend on the presence of other ties. A typical
examples are common neighbors. Indeed, such conditional
dependencies fundamentally drive network evolution: “Without
dependence among ties, there is no emergent network struc-
ture.” [6]

The design of valid network models therefore requires
careful consideration of such dependencies. For example,
Markov random graphs [7], a subset of exponential-family
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(a) original network (b) Simmelian backbone

Fig. 1: Facebook friends at California Institute of Technology (Caltech), September 2005. Color encodes dormitory attribute;
gray for missing value. (a) giant component as analyzed in [1], [2]. (b) reduced network according to “at least 5 overlapping
top-10 ranked neighbors” w.r.t. Simmelian tie strength and after removing edges that are no longer Simmelian in the backbone.

random graph models [8], include conditional dependence of
incident ties. It is hence surprising that community detection
approaches such as modularity do not seek to exploit such
fundamental dependencies; instead, they are usually based on
unconditional dyadic aggregate information, such as density
and nodal degrees.

While the “cohesive” groups detected by such commu-
nity detection methods do indeed correspond to relatively
dense substructures, they can not be expected to exhibit other
distinguished qualities that can be expected by substantive
sociological arguments, such as high transitivity.

We illustrate this point in Figure 2, which provides descrip-
tive statistics on the interdependency of dyadic relationships
in the Facebook100 data consisting of Facebook friends at
collegiate institutions in the U.S. [1], [2]. In each network,
the probability of observing a tie conditioned on the num-
ber of shared friends increases with the number of shared
friends. The number of shared friends equals the number of
triangles a dyad can close and is sometimes referred to as
its structural embeddedness. The effect is roughly linear for
small to moderate numbers of common neighbors and then
saturates.1 When the networks are partitioned into density-
based communities (using the hierarchical Louvain modularity
maximization approach [10]), conditional probabilities of intra-
community dyads are lifted (which is consistent with increased
density) but the functional form remains largely the same; still,
for instance, a small number of common friends significantly
increases conditional probabilities of intra-community edges.

1For this reason, the specification of transitivity effects in exponential-family
random graph models commonly involves geometrically-weighted shared
partner statistics [9].

B. Simmelian Ties and Social Groups

Local density in the sense of modularity is only one of
many possible proxies for the cohesiveness of relationships
among group members. We now show that sociological theory
suggests that structural embeddedness (i.e., the number of
triangles in which an edge is embedded, or the number
of common neighbors shared by the endpoints of an edge)
better accounts for the quantitative and qualitative differences
between edges that exist within communities and those that
exist between communities. Backed by sociological theory,
we thus shift the perspective from an unconditional dyadic
view towards a conditional triadic interpretation, and posit
that (social) communities are formed by strong and highly
redundant ties between members.

In social networks, dyadic relationships are assumed to
depend on the structural environment in which they are embed-
ded [6]. Network formation theories attach particular impor-
tance to triadic settings [11], [12]. According to Simmel [13],
triads (sets of three actors) are fundamentally different from
dyads (sets of two actors) by way of introducing mediating
effects. On the other hand, “the further extension to four
or more persons by no means correspondingly modifies the
group any further.” [14] Krackhardt goes so far to conclude
that “the key to understanding the quality of a tie between
two actors can be reduced to asking whether it is part of a
strong triad or not” [11] and classifies dyadic relationships
accordingly: “super-strong” Simmelian ties are embedded in
at least one triangle of reciprocated ties, while sole-symmetric
and asymmetric ties are not; cf. Figure 3.

Prominent examples of triadic perspectives include Hei-
der’s structural balance theory [15], [16] and Granovetter’s
theory of the strength of weak ties [17]. As others have noted,
“Granovetter’s argument contends that weak ties provide better
connections to different social milieus because they usually
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Fig. 2: Conditional edge probabilities in networks of Facebook
friends (data from [1], [2]). The x-axis conditions on a
minimum number of triangles a dyad is contained in, and the y-
axis gives the fraction of ties in such dyads. Lines are saturated
according to networks density which is decreasing with size
since average degree is relatively constant across networks. In
the lower figure, dyads are restricted to lie within communities
found by Louvain modularity maximization [10].

Fig. 3: Qualitatively distinct triadic embeddedness of dyadic
relations according to [11]: “super-strong” Simmelian ties are
embedded in at least one triangle of reciprocated ties, while
sole-symmetric and asymmetric ties are not.

connect socially dissimilar people” [18].

Similar to Granovetter, Burt distinguishes between weak
ties that provide non-redundant connections to information
buried in structural holes, and strong ties, which are much more
interconnected (i.e., highly redundant) [19]. A group’s capabil-
ities (and constraints) are then determined by two dimensions:
the redundancy of internal edges (along the horizontal axis
of Figure 4) and the non-redundancy of external edges (along
the vertical axis). Burt argues that a group achieves maximum
performance when its internal edges are strong, and its external
edges are weak: “while brokerage across structural holes is the

Fig. 4: Group performance according to Burt’s notion of
constraint: “while brokerage across structural holes is the
source of added value, closure can be critical to realizing the
value buried in the structural holes” (reproduced from [20]).

source of added value, closure can be critical to realizing the
value buried in the structural holes” [20]; cf. Figure 4.

Our intended notion of triadic cohesion is driven by this
conception of a high-performing group with strong internal
connections and weak external connections, as in the upper-
right quadrant of Figure 4. This notion, which is fundamentally
based on the embeddedness of edges, is thus very different
from aggregate density-based measures such as modularity,
which do not consider embeddedness at all. Against this back-
ground, we now specify a method for distinguishing a) intra-
cluster edges: “strong”, Simmelian, structurally embedded ties
exhibiting a high level of redundancy and homogeneity, from
b) inter-cluster edges: “weak”, non-Simmelian, less embedded
ties that are rather diverse and heterogeneous.

III. SIMMELIAN BACKBONES

In the following we propose a framework to extract a
substructure consisting of ties that are strong and redundant.
The approach is based on a triadic notion of cohesion and
consists of the following steps:

A. If input tie strength is uniform, assign to ties the number
of triangles they are embedded in (Simmelian strength).

B. For each actor, rank all alters by tie strength.
C. For each (strong) tie, determine its redundancy.
D. Filter ties that are weak or not redundant.

A. Tie Strength

Our procedure requires that each edge is labeled with
a preliminary weight that is a proxy for social importance.
While such weights are rarely explicitly known, common
proxies are frequency of contact in communication networks
or shared attributes in recommender systems. If such a weight
is available, then one can simply use this and proceed to B.

Even if there is no explicit information on edge weight, as
is the case with the Facebook data examined here, sociolog-
ically informed strengths can be extracted from the network



structure itself. According to Granovetter, structural embed-
dedness is an important proxy for tie strength and in many
substantive applications embeddedness can be characterized by
triadic configurations.

While the specific weighting technique will depend on
what ties represent, a generic proxy for uniformly weighted
friendship networks is Simmelianness [11]. Dekker [21] lists
several tie-level measures of Simmelianness and claims that
“The main advantage of the Simmelian tie strength measures
is that they are firmly rooted in a substantive theory.” Under
the binary variant, a tie is considered Simmelian if it is part
of a triangle (cf. Figure 3). A straightforward extension to
measure the degree of Simmelianness for an edge {i, j} is to
count the number of neighbors shared by i and j (i.e., the
number of distinct triangles a tie is embedded in). Dekker
argues that shared partners “are central in opinion formation
about behavior and intentions” and ever more shared partner
impute constraints “on each others behavior, because more of
their behaviors become observable to each other.” [21]

For the purpose of this paper, and the examples in the next
section, we use this weighting technique (i.e., the number of
shared neighbors) as a preliminary proxy for social importance
in unweighted social networks. We discuss the computational
complexity of this approach below.

B. Ranking Ties

A pivotal factor in our approach is the following: In
correspondence with Burt’s notion of constraint, we do not
consider a global, network-level ranking of ties but advocate
a local assessment on the level of actor neighborhoods. Let
ego be an actor in a network with ordinal tie weights. It does
not matter whether the relation is directed or not. We define
ego’s rank-ordered neighborhood as the list of adjacent actors
(alters) sorted from strongest to weakest tie between ego and
alter.

N→
ego : ego’s alters ranked from strongly to weakly tied

This actor-level ranking procedure is very different from
ranking all ties globally, for at least two reasons. First, the
procedure introduces asymmetry between connected pairs of
nodes, even in undirected networks: for example, whereas
B may only rank eleventh in A’s list, A may rank third in
B’s list. Secondly, the procedure can deal with heterogeneity:
edges which have the same weight from a global perspective
may have very different rankings from a local perspective. For
example, a tie embedded in ten triangles in a very dense region
of the graph may rank low, whereas an equally embedded edge
in a sparser portion of the graph may rank high. Whether the
input was directed or not, the result of this step is a (rank-
weighted) directed graph which we refer to as the ranked
neighborhood graph.

C. Tie Redundancy (Structural Embeddedness)

There are various ways of filtering the edges of a weighted
graph based on derived weights and absolute or relative thresh-
olding (see, e.g., [22], [23], [24]). Many of these, however, bear
little relationship with the Simmelian idea of groups.

Based on the ranked neighborhood graph, we therefore
introduce a novel measure of triadic cohesion. The crucial idea
is to compare the local perspectives of ego and alter on the
social importance of others: a strong (i.e., highly ranked) tie is
considered strongly embedded,2 if its endpoints have similar
views on highly ranked neighbors — that is, the actors incident
to a triadic cohesive tie are relatively strongly connected to
each other and also relatively strongly connected to relatively
many common neighbors (and thus embedded in very strong
Simmelian groups).

Formal definitions of the degree of embeddedness thereby
correspond to a similarity assessment of ranked neighborhood
lists. In this way, we can avoid that (additional) weak ties
to distinct neighbors degrade the evaluation of top-ranked
(strong) redundancies. Two examples, one parametric and one
non-parametric, follow below.

1) Parametric variant: A granularity parameter k specifies
the rank after which ties are not considered to be relatively
strong anymore. The degree to which a strong tie is structurally
embedded is then defined as the overlap of common neighbors
among the top-k entries of N→

ego and N→
alter.

This procedure corresponds to eval-
uating ego’s (strong) connections in the
directed top-k ranked neighborhood graph
for mediating positions in transitive triplets;
see adjacent diagram. Transitive (mediated)
triplets and balanced neighborhoods have
proven crucial, e.g., in modeling the evolu-
tion of longitudinal networks [25].

A general reference for comparison of top-k lists is [26].

2) Non-parametric variant: While a granularity parameter
k appears convenient for exploring structural embeddedness at
different levels, it may also prove to be a burden in the absence
of substantive expectations on the degree of embeddedness.

A non-parametric alternative is to automatically determine,
for each edge, a k that maximizes the overlap among the top-
k entries of N→

ego and N→
alter as above. Because this involves

prefixes of different length, however, the number of common
entries is normalized by the size of the union of entries. In
other words, we compute the Jaccard coefficient for prefixes of
any length and pick the maximum value. Note that the classical
Jaccard coefficient (i.e. the comparison of all neighbors) only
provides a lower bound for the best prefix Jaccard coefficient.

While the non-parametric variant allows for even more
heterogeneity across edges, we do not yet have a good grasp of
the consequences because of its more difficult interpretation.

We note in passing that both variants can take into account
reciprocity in the redundancy assessment by identifying alter’s
rank in N→

ego with ego’s rank in N→
alter.

D. Filtering Ties

We define the Simmelian backbone of a social network by
applying a (global) threshold on the derived (local) measure
of triadic cohesion. Minimum requirements include, e.g.,

2In the present setting we find the term (structural) embeddedness more
intuitive than redundancy.



• a minimum number of common top-k neighbors, or

• a required prefix Jaccard coefficient.

In other words, we filter the edges of a ranked neighbor-
hood graph first by their relative strength (i.e., their rank in
N→

ego) and then, additionally, by their strong embeddedness
(i.e., the similarity of N→

ego and N→
alter in their top ranks).

In the so reduced network, remaining ties are directly
and indirectly attached to top-ranked neighbors: we expect to
observe high similarity between the ties of ego and the ties of
those alters to whom ego still has a tie after the filtering (while
weak and less embedded connections are implicitly filtered
away). Based on this transformation, therefore, we induce an
individual-level attachment to groups corresponding to Burt´s
notion of constraint. Indeed, the proposed heuristic can be
interpreted as a pairwise comparison of ego networks, since
all calculations are solely based on local information.

As we will demonstrate in Section IV, social communities
and bridges between them become rather obvious in the filtered
network. For convenience, inter-community bridges can be
filtered by removing also edges that are no longer Simmelian
in the backbone. However, where appropriate, this should not
be done for edges in the 1-core that are not in the 2-core, since
these connect otherwise isolate actors with the community to
which they are most attached.

If the communities themselves are of interest, any tech-
nique from the broad range of existing community detection
algorithms can be applied to partition the network via its
backbone. As illustrated in the next section, the balance
between inter- and intra-community edges has altered strongly
in favor of the latter, so that community detection is easy.

We conclude this section with a word on the computa-
tional complexity of this approach, including the weighting
scheme. The triangles of a graph G can be listed in time
O(mα(G)) [27], where m is the number of edges and
α(G) ≤

√
m its arboricity. The arboricity is defined as

the minimum number of forests needed to cover the edges.
Since it is bounded from above by the h-index of the graph
and the latter has been found to be small for networks of
social relations [28], the arboricity can be expected to be
small as well. Both Simmelian tie strength and the degree
of embeddedness can be determined by a slight variation of
the triangle listing algorithm. In the non-parametric variant
the latter requires O(mα(G)), again, and in the parametric
one it becomes linear for fixed k. Moreover, neighborhoods
can be rank-ordered in linear time using bucket sort, since
tie weights are bounded by n − 2, the maximum number of
shared neighbors in a graph with n nodes. Overall, the ranked
neighborhood graph of an unweighted directed or undirected
graph (including the weighting technique described above) is
constructed in O(mα(G)) time where α(G) is expected to be
small.

IV. EVALUATION

We illustrate a potential use case of Simmelian backbones
by re-analyzing the 100 networks of Facebook friendships
in the Facebook100 dataset. These networks were introduced
and analyzed in [1], [2]; they range in size from 769 nodes
and 17k edges to 36k nodes and 1.6m edges. The data has

many desirable characteristics; for example, it comes directly
from Facebook and is not sampled, and it comes from a
service which at the time of data collection was widely and
intensively used by students. Furthermore, the dataset includes
node information on several attributes, derived from the Face-
book profiles: gender, year of graduation, dormitory, primary
academic major, secondary academic major, high school, and
student/faculty status. Not every user filled in every field of
the profile, and so for all attributes many values are missing
(except for student/faculty status, for which no attribute values
are missing).

Traud et al. used a modularity maximization technique to
detect communities in their investigation of these networks,
and found that in some cases dorms displayed a high level of
homophily within communities, and in other cases the year
of graduation appeared to be the attribute most related to
community structure. In particular, the dorm attribute tended
to have high homophily in communities found at small in-
stitutions, whereas the year attribute was more enriched in
the communities detected at larger institutions. Findings in
[29] indicate that this tendency may be an artifact caused by
limitations of modularity-based community detection, which
is known to suffer from a resolution limit [30].3 Thus, despite
previous work on the topic, the relationship between the
community structure, and the level of homophily for each of
the node attributes, remains somewhat uncertain.

A. Visual Exploration

Visualization of these networks has proven difficult. Three
of the Facebook100 datasets were used for the Visual Analysis
of Complex Networks (VACN) challenge.4 While some inter-
esting visualizations emerged, none of them clearly displayed
both the connections between and within communities.

We provide anecdotal evidence that extracting the Sim-
melian backbone and visualizing the resulting subgraph yields
more informative visualizations of the community structure
present in Facebook100 networks. In addition to the Simmelian
backbone of the Caltech network visualized in Figure 1b, we
show the backbone of the University of Chicago network in
Figure 5.

The Caltech network received extensive discussion in [1],
in which the authors note that at Caltech the residential
house system is particularly important for the formation of
social relationships. However, the network visualization of the
Caltech network presented in that paper does not provide a
clear picture of how the dormitories are closely related to social
life; this relationship is much clearer in Figure 1b.

As one of the authors has first-hand experience of the social
life there and is included in that dataset, we will pay particular
attention to the Simmelian backbone of the University of
Chicago network, which includes 6,591 nodes and 208,103

3For example, maximizing modularity in many cases produced unreasonably
large and few communities. A parameterized version of modularity was shown
to alleviate these problems, but Traud et al. did not use the parameterized
definition in their investigation.

4With participation from tools Gephi, i2’s Analyst Notebook,
Pajek, Tulip, and visone. See http://sociograph.blogspot.com/2011/02/
visualizing-large-facebook-friendship.html for details including the two best
visualizations of the Caltech network – compare these to Figure 1b.



(a
)

N
od

es
co

lo
re

d
by

do
rm

(b
)

N
od

es
co

lo
re

d
by

ye
ar

of
gr

ad
ua

tio
n

Fi
g.

5:
G

ia
nt

co
m

po
ne

nt
of

Si
m

m
el

ia
n

ba
ck

bo
ne

of
Fa

ce
bo

ok
fr

ie
nd

s
at

th
e

U
ni

ve
rs

ity
of

C
hi

ca
go

(3
85

4
no

de
s,

19
72

4
ed

ge
s)

:
(a

)
N

od
es

co
lo

re
d

ac
co

rd
in

g
to

do
rm

th
ey

liv
e

in
.

B
ec

au
se

th
er

e
ar

e
do

ze
ns

of
di

st
in

ct
va

lu
es

fo
r

th
is

at
tr

ib
ut

e,
no

t
al

l
co

lo
rs

ar
e

vi
si

bl
y

di
st

in
ct

.
(b

)
N

od
es

co
lo

re
d

ac
co

rd
in

g
to

ye
ar

of
gr

ad
ua

tio
n.

N
ot

e
th

e
ne

w
ar

riv
al

s
on

th
e

ri
gh

t
(r

ed
co

lo
re

d)
.G

re
y

no
de

s
in

di
ca

te
m

is
si

ng
at

tr
ib

ut
e

va
lu

es
.



(a) dorm (b) year (c) gender (d) student/fac (e) high school (f) major

Fig. 6: Share of ties linking nodes with the same attribute value in original network (x-axis) and Simmelian backbone (y-axis).
Each dot represents one network of Facebook friends with Caltech (red) and University of Chicago (blue) highlighted. For
networks above the diagonal, homophily is stronger in the backbone.

undirected edges. The residential “houses” are known to be
of utmost importance to the social life at the University of
Chicago: upon entering the university, every student is required
to spend at least one year living in the dormitory system,
and the friendships formed in this stage of college—for many
students, the first time living away from home—often endure
for years. According to the University of Chicago website,
“each house represents a tight-knit community of students,
resident faculty masters, and residential staff, who live, relax,
study, dine together at House Tables, engage, socialize, and
learn from each other.” 5 6

As we can see by zooming in closely on Figure 5a, in which
nodes are colored by their house, the Simmelian backbone does
a good job of recognizing clustered structures in which the
dorm attribute displays a high level of homophily, providing
a strong validation of the approach. The major exception to
this trend is the large cluster located at the 3:30 position.
In Figure 5b we see that all of these nodes share the same
year; in fact, the metadata indicates that these red colored
nodes have 2009 as their graduation year. This dataset was
collected in September 2005. In the middle of that month, the
University of Chicago class of 2009 moved into their dorms
and attended orientation week, during which they interacted
with each other and had very little interaction with students
graduating in other years, most of whom would not arrive back
in Chicago until the end of September when the Fall term
started. It is interesting to see the first-year students isolated
in their own group, having not yet met and integrated with
the older members of their dorms. We note that this feature
is not apparent in visualizations which include all edges in
the graph—we first noticed it when looking at the Simmelian
backbone.

B. Quantitative Description

We persistently observe the same effect for almost all
network and all relevant attributes, namely that backbone edges

5http://csl.uchicago.edu/feature/announcing-new-residence-hall-and-dining-commons
6The meta-data does not explicitly indicate that the “dorm” meta-data

represents the housing system at the University of Chicago, but this is strongly
suggested by the data itself, as the number of distinct values corresponds
quite closely to the number of houses and fraternity houses. At the time of
data collection, the housing system consisted of 10 residence halls (physical
buildings) which were further subdivided into 37 houses, which typically
represent a physically adjacent wing of a residence hall. House sizes range
from 100 to 37 students, with an average size of 70. Furthermore, there were
somewhere between ten and twenty fraternity houses. Thus some of the dorm
meta-data may indicate fraternity membership.

[dorm(B)/year(B)] / [dorm(O)/year(O)]
F
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Fig. 7: The prominence of dorm-homophily over year-
homophily increases on average by a factor of 1.5 in the
Simmelian backbones (B) when compared to the original
networks (O).

display a stronger tendency for homophily than the entire set
of edges. The share of homophily in the original network and
in the Simmelian backbone for each Facebook100 network is
contrasted in Figure 6.

Each point in the scatterplots represents one institution in
the Facebook100 data. Points above the dotted line through
the origin indicate that homophily in the Simmelian backbone
is increased compared to the original network with respect
to a focal attribute. In detail, for each attribute, edges are
classified as follows: “homophily edges” connect students
having the same attribute value, while “heterophily edges”
connect students having a different attribute value. Then, the
share of “homophily edges”,

#homophily edges
#homophily edges +#heterophily edges

,

in the original network (x-axis) is contrasted with the same
fraction of edges in the Simmelian backbone (y-axis); centered
at (0.5, 0.5). Edges with attached student for which the focal
attribute is undefined are not taken into account in this ratio
calculation.

The scatterplots in Figure 7 indicate which attributes are
most important factors in network formation on the aggregate
level: dormitory, graduation year, gender, and student/faculty
status. Our Simmelian backbones reveal that homophily in
the first three attributes is much stronger than can be noticed
from the original networks. In addition, they also show that
the relative importance of attributes is shifted after denoising



the networks. Figure 7 in particular suggests that dorm-
homophily, which could previously only be observed in the
smaller networks [1], [2], was subdued by year-homophily.

These numbers together with the above network visualiza-
tions clearly suggest that within-dormitory communities are
more prominent than could previously be detected.

V. DISCUSSION

We presented an approach to uncover deeply embedded re-
lations that are likely to be internal to primary groups, referred
to as communities. The method serves, among other things, to
reveal essential structure in networks with insufficient variation
in local density for standard community detection approaches
to work.

The main ingredient of our method is the concept of ranked
neighborhood comparisons to infer the structural embedded-
ness of ties. The corresponding notion of triadic cohesion
has three desirable aspects: (i) it implements sociological
theory and should therefore be easier to justify in empirical
settings, (ii) it is defined locally and therefore applicable to
ego networks as well, and (iii) it is computationally efficient
and scales to big network data.

By way of re-analysis, we showed that Simmelian back-
bones of Facebook friendship networks may serve to reveal
primary groups that provided strong evidence of homophily
and had been difficult to detect previously.

Although our examples are all based on static undirected
unweighted networks, the method can be adapted straightfor-
wardly to directed, weighted, and temporal network data. In
fact, the social vector clocks of [31] yield networks with tie
strength that align well with the underlying theory.

There are several other directions for future research. We
are currently exploring alternative definitions of relatively
strong structural embeddedness and different filtering schemes.
More importantly, we are interested in structural properties of
Simmelian backbones related to invariants of the input graph
as well as their impact on community detection algorithms.
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and C. D. Tóth, Eds., 2009, vol. 5664, pp. 278–289.

[29] C. Lee and P. Cunningham, “Benchmarking community detection
methods on social media data,” arXiv preprint arXiv:1302.0739, 2013.

[30] S. Fortunato and M. Barthelemy, “Resolution limit in community
detection,” PNAS, vol. 104, no. 1, pp. 36–41, 2007.

[31] C. Lee, B. Nick, U. Brandes, and P. Cunningham, “Link prediction with
social vector clocks,” Proc. 19th ACM SIGKDD Conf. on Knowledge,
Discovery, and Data Mining, 2013, to appear.


	Text1: Zuerst ersch. in: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ; August 25 - 29, 2013, Niagara, ON, Canada / Jon Rokne ... . - New York : ACM, 2013. - S. 525-532. - ISBN 978-1-4503-2240-9
	Text2: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-259941


