skip to main content
research-article

On-Chip Hybrid Power Supply System for Wireless Sensor Nodes

Published:06 May 2014Publication History
Skip Abstract Section

Abstract

With the miniaturization of electronic devices, small-size but high-capacity power supply systems appear to be more and more important. A hybrid power source, which consists of a fuel cell (FC) and a rechargeable battery, has the advantages of long lifetime and good load-following capabilities. In this article, we propose the schematic of a hybrid power supply system that can be integrated on a chip compatible with present CMOS processes. For the on-chip, fuel-cell-based hybrid power system in wireless sensor node design, we propose a two steps optimization: (1) dynamic power management (DPM), and (2) adaptive fuel cell optimal power point tracking (AOPPT). Simulation results demonstrate that the on-chip FC-Bat hybrid power system can be used for wireless sensor nodes under different usage scenarios. Our proposed DPM method can achieve 12.9% more energy savings than the method without DPM. Meanwhile, implementing our AOPPT approach can save about 17% energy compared with the fixed architecture for the fuel cell system. For an on-chip power system with 1cm2 area consumption, the wafer-level battery can power a typical sensor node for only about five months, while our on-chip hybrid power system will supply the same sensor node for two years steadily.

References

  1. G. L. Arsov. 2008. Improved parametric PSpice model of a PEM fuel cell. In Proceedings of the 11th International Conference on Optimization of Electrical Equipment (OPTIM'08). 203--208.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Benecke, N. Nissen, and H. Reichl. 2009. Environmental comparison of energy scavenging technologies for self-sufficient micro system applications. In Proceedings of the IEEE International Symposium on Sustainable Systems and Technology (ISSST'09). 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. V. Boscaino, G. Capponi, P. Livreri, and F. Marino. 2008. A fuel cell-supercapacitor power supply for portable applications. In Proceedings of the 11th Workshop on Control and Modeling for Power Electronics (COMPEL'08). 1--4.Google ScholarGoogle Scholar
  4. L. Boulon, M. C. Pera, D. Hissel, A. Bouscayrol, and P. Delarue. 2007. Energetic macroscopic representation of a fuel cell-supercapacitor system. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC'07). 290--297.Google ScholarGoogle Scholar
  5. F. Ciancetta, E. Fiorucci, A. Ometto, and N. Rotondale. 2009a. The modeling of a PEM fuel cell—supercapacitor—battery system in dynamic conditions. In Proceedings of the IEEE PowerTech Conference (PTC'09). IEEE, 1--5.Google ScholarGoogle Scholar
  6. F. Ciancetta, G. Bucci, A. Ometto, and N. Rotondale. 2009b. System PEM fuel cell-supercapacitor: Analysis in transitory conditions. In Proceedings of the International Conference on Clean Electrical Power (ICCEP'09). 154--158.Google ScholarGoogle Scholar
  7. G. Erdler, M. Frank, M. Lehmann, H. Reinecke, and C. Müller. 2006. Chip integrated fuel cell. Sensors Actuators A: Physical 132, 1, 331--336.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Frank, M. Kuhl, G. Erdler, I. Freund, Y. Manoli, C. Müller, and H. Reinecke. 2009. An integrated power supply system for low-power 3.3V electronics using on-chip polymer electrolyte membrane (PEM) fuel cells. In Proceedings of the IEEE International Solid-State Circuits Conference (Digest of Technical Papers) (ISSCC'09). 292--293.Google ScholarGoogle Scholar
  9. M. Frank, M. Kuhl, G. Erdler, I. Freund, Y. Manoli, C. Müller, and H. Reinecke. 2010. An integrated power supply system for low-power 3.3V electronics using on-chip polymer electrolyte membrane (PEM) fuel cells. IEEE J. Solid-State Circuits 45, 1, 205--213.Google ScholarGoogle ScholarCross RefCross Ref
  10. W. Gao. 2005. Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain. IEEE Trans. Vehicular Technol. 54, 3, 846--855.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. Hahn, S. Wagner, A. Schmitz, and H. Reichl. 2004. Development of a planar micro fuel cell with thin film and micro patterning technologies. J. Power Sources 131, 1--2, 73--78.Google ScholarGoogle ScholarCross RefCross Ref
  12. N. Kim, D. Wu, D. Kim, A. Rahman, and P. Wu. 2011. Interposer design optimization for high frequency signal transmission in passive and active interposer using through silicon via (TSV). In Proceedings of the IEEE 61st Electronic Components and Technology Conference (ECTC'11). 1160--1167.Google ScholarGoogle Scholar
  13. M. Krämer and A. Geraldy. 2006. Energy measurements for MicaZ node. Tech. rep. University of Kaiserslautern.Google ScholarGoogle Scholar
  14. K. Lee, N. Chang, J. Zhuo, C. Chakrabarti, S. Kadri, and S. Vrudhula. 2008. A fuel-cell-battery hybrid for portable embedded systems. ACM Trans. Des. Autom. Electron. Syst. 13, 1, Article 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. W. Li and G. Joos. 2008. A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications. In Proceedings of the IEEE Power Electronics Specialists Conference (PESC'08). 1762--1768.Google ScholarGoogle Scholar
  16. W. Liu, X. Fei, T. Tang, P. Wang, H. Luo, B. Deng, and H. Yang. 2012. Application specific sensor node architecture optimization—Experiences from field deployments. In Proceedings of the 17th South Asia and South Pacific Design Automation Conference (ASP-DAC'12). IEEE, 389--394.Google ScholarGoogle Scholar
  17. W. Liu, Y. Wang, W. Liu, Y. Ma, Y. Xie, and H. Yang. 2011. On-chip hybrid power supply system for wireless sensor nodes. In Proceedings of the 16th Asia and South Pacific Design Automation Conference (ASP-DAC'11). IEEE, 43--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, and T. Osaka. 2004. MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (μ-DMFC). Electrochem. Commun. 6, 6, 562--565.Google ScholarGoogle ScholarCross RefCross Ref
  19. P. H. L. Notten, F. Roozeboom, R. A. H. Niessen, and L. Baggetto. 2007. 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 19, 24, 4564--4567.Google ScholarGoogle ScholarCross RefCross Ref
  20. Y. Ou, C. Wang, and F. Hong. 2010. A variable step maximum power point tracking method using Taylor mean value theorem. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC'10). 1--4.Google ScholarGoogle Scholar
  21. Y. Pal, L. K. Awasthi, and A. J. Singh. 2009. Maximize the lifetime of object tracking sensor network with node-to-node activation scheme. In Proceedings of the IEEE International Advance Computing Conference (IACC'09). 1200--1205.Google ScholarGoogle Scholar
  22. S. Pay and Y. Baghzouz. 2003. Effectiveness of battery-supercapacitor combination in electric vehicles. In Proceedings of the PowerTech Conference (PTC'03). IEEE, 3.Google ScholarGoogle Scholar
  23. A. Payman, S. Pierfederici, F. Meibody-Tabar, and B. Davat. 2009. Flatness based control of a fuel cell-supercapacitor multi source/multi load hybrid system. In Proceedings of the 13th European Conference on Power Electronics and Applications (EPE'09). 1--10.Google ScholarGoogle Scholar
  24. D. Shin, Y. Kim, Y. Wang, N. Chang, and M. Pedram. 2012. Constant-current regulator-based battery-supercapacitor hybrid architecture for high-rate pulsed load applications. J. Power Sources 205, 1, 516--524.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Song, X. Yang, S.-S. Zeng, M.-Z. Cai, L.-T. Zhang, Q.-F. Dong, M.-S. Zheng, S.-T. Wu, and Q.-H. Wu. 2009. Solid-state microscale lithium batteries prepared with microfabrication processes. J. Micromech. Microeng. 19, 4.Google ScholarGoogle ScholarCross RefCross Ref
  26. P. Thounthong, P. Sethakul, S. Raël, and B. Davat. 2009a. Control of fuel cell/battery/supercapacitor hybrid source for vehicle applications. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT'09). IEEE, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Thounthong, P. Sethakul, S. Raël, and B. Davat. 2009b. Performance evaluation of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. In Proceedings of the IEEE Industry Applications Society Annual Meeting (IAS'09). IEEE, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Tominaka, H. Nishizeko, J. Mizuno, and T. Osaka. 2009. Bendable fuel cells: On-chip fuel cell on a flexible polymer substrate. Energy Environ. Sci. 10, 2, 1074--1077.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Tominaka, S. Ohta, H. Obata, T. Momma, and T. Osaka. 2008. On-chip fuel cell: Micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design. J. Amer. Chem. Soc. 130, 32, 10456--10457.Google ScholarGoogle ScholarCross RefCross Ref
  30. Y. Wang, X. Lin, Y. Kim, N. Chang, and M. Pedram. 2012. Enhancing efficiency and robustness of a photovoltaic power system under partial shading. In Proceedings of the International Symposium on Quality Electronic Design (ISQED'12). 592--600.Google ScholarGoogle Scholar
  31. W. Xiao, N. Ozog, and W. G. Dunford. 2007. Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans. Indust. Electron. 54, 3, 1696--1704.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Yeom, G. Z. Mozsgai, B. R. Flachsbart, E. R. Choban, A. Asthana, M. A. Shannon, and P. J. A. Kenis. 2005. Microfabrication and characterization of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid. Sensors Actuators B: Chemical 107, 2, 882--891.Google ScholarGoogle ScholarCross RefCross Ref
  33. L. Yuan and G. Qu. 2005. Analysis of energy reduction on dynamic voltage scaling-enabled systems. IEEE Trans. Comput. Aid. Des. Intregr. Circuits Syst. 24, 12, 1827--1837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Z. Zhang, O. C. Thomsen, and M. A. E. Andersen. 2009a. A two-stage DC-DC converter for the fuel cell-supercapacitor hybrid system. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE'09). 1425--1431.Google ScholarGoogle ScholarCross RefCross Ref
  35. Y. Zhang, L. Qian, Q. Lv, P. Qian, and L. Zhao. 2009b. A dynamic frequency scaling solution to DPM in embedded Linux systems. In Proceedings of the 10th IEEE International Conference on Information Reuse & Integration (IRI'09). 256--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Zhang, Z. Jiang, and X. Yu. 2009c. Small-signal modeling and analysis of battery-supercapacitor hybrid energy storage systems. In Proceedings of the Power & Energy Society General Meeting (PES'09). IEEE, 1--8.Google ScholarGoogle Scholar
  37. J. Zhuo, C. Chakrabarti, K. Lee, N. Chang, and S. Vrudhula. 2009. Maximizing the lifetime of embedded systems powered by fuel cell-battery hybrids. IEEE Trans. Very Large Scale Intregr. Syst. 17, 1, 22--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Zhuo, C. Chakrabarti, N. Chang, and S. Vrudhula. 2006. Extending the lifetime of fuel cell based hybrid systems. In Proceedings of the 43rd ACM/IEEE Design Automation Conference (DAC'06). 562--567. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On-Chip Hybrid Power Supply System for Wireless Sensor Nodes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 10, Issue 3
        April 2014
        196 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/2614448
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 May 2014
        • Accepted: 1 May 2013
        • Revised: 1 April 2013
        • Received: 1 October 2012
        Published in jetc Volume 10, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader