
The Dissertation Committee for Joseph Tessler

certifies that this is the approved version of the following honors thesis:

Using Cargo-Bot to Provide Contextualized

Learning of Recursion

Committee:

Calvin Lin, Supervisor

Michael Walfish

George Veletsianos

Using Cargo-Bot to Provide Contextualized
Learning of Recursion

by

Joseph Tessler

HONORS THESIS

Presented to the Faculty of the Computer Science Department of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

HONORS DEGREE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT AUSTIN

April 2013

Acknowledgments

I thank Calvin Lin and Bradley Beth for their valuable assistance writ-

ing and editing this thesis. I thank Alicia Beth, Mike Walfish, and George

Veletsianos for their helpful comments on this research. Lastly, I thank my

friends and family for waiting for me as I secluded myself to finish this work.

Joseph Tessler

The University of Texas at Austin

April 2013

iii

Using Cargo-Bot to Provide Contextualized
Learning of Recursion

Joseph Tessler, B.S.

The University of Texas at Austin, 2013

Supervisor: Calvin Lin

This thesis presents a new method of teaching recursion in which students

first play a video game that encourages recursive thinking. Results from a con-

trolled experiment with 47 high school students taking AP Computer Science

A indicate that this instructional strategy produces significant improvements

in students’ understanding of recursion. Additionally, survey results show that

nearly every student enjoys the learning activity and is confident in his or her

ability to accomplish the recursive exercises.

iv

Table of Contents

Acknowledgments iii

Abstract iv

Chapter 1. Introduction 1

Chapter 2. Background And Related Work 5

2.1 What is Recursion? . 5

2.2 Other Instructional Approaches 7

Chapter 3. Experimental Design 9

3.1 The Video Game . 11

3.2 Recursive Thinking in Cargo-Bot 14

3.3 Direct Instruction . 14

3.4 The Pre-, Mid-, and Post-Tests 16

3.5 The Students . 19

3.6 Experimental Limitations . 20

Chapter 4. Results and Analysis 22

v

4.1 Test Results . 22

4.2 Survey Results . 26

Chapter 5. Conclusions 29

vi

Chapter 1

Introduction

A student’s ability to understand recursion is an essential prerequisite

for countless computer science algorithms. Without a proper understand-

ing, students may dismiss recursion as hopelessly difficult and struggle with

it throughout their studies [16]. Therefore, it is important that we provide

introductory students with influential and effective recursion education.

There is nearly unanimous agreement that recursion is difficult to learn

[15]. The concept of a function calling itself is simple, but recognizing the

distinctions among different invocations of the same function, along with the

amount of bookkeeping required for each recursive call, quickly complicates the

scenario. Specifically, research shows that students struggle with the unfamil-

iarity of recursive activities [2]; the visualization of the program execution [11];

the backward flow of control after reaching the base case [21]; the comparison

to loop structures [2]; and the lack of everyday analogies [18].

Teaching recursion is no less challenging and there exists an abun-

1

dance of literature that analyzes various instructional approaches [12]. These

approaches include conceptual and abstract discussions of recursion and its

control flow [7, 10, 19, 21, 22, 28]; comparisons to other topics and disci-

plines [8, 14, 20, 25]; and the use of visual aids and hands-on activities [3, 9,

12, 13, 23, 26]. Gunion et al. [12] claim that we need further “efforts to find

useful and effective instructional approaches”.

Our work builds on the basic notion of contextualized learning, which

suggests that students learn best when they can relate new concepts to pre-

viously understood concepts [4, 5, 27]. In addition, our work continues the

study of video games and the advantages of using them for educational pur-

poses [1, 6, 17]. While there exist few natural instances of recursion in most

students’ lives, there is a growing number of computer games that require the

player to think recursively. For example, in both Cargo-Bot and Light-Bot 2.0

players command robots to accomplish certain tasks. In Cargo-Bot, players

create simple visual programs to control a robotic arm so that it moves a set

of crates to some specified configuration. Notably, Cargo-Bot does not provide

explicit looping structures; recursion is the only means of iterating.

It is natural to wonder if students who play Cargo-Bot are able to

transfer their learning to new contexts (e.g., Java). Thus, we investigate a

new method of teaching recursion in which students play Cargo-Bot for an

hour before they are formally taught recursion.

There are several benefits to this approach:

• Cargo-Bot contextualizes recursion in familiar terms of cranes and crates.

2

• As with most successful video games, Cargo-Bot is fun and addictive.

• Cargo-Bot provides multiple opportunities for students to practice think-

ing recursively, as they are given progressively more difficult problems

to solve.

• The game encourages elegant uses of recursion by rewarding smaller

Cargo-Bot programs with higher scores.

We propose a new approach to teaching recursion by allowing students

to play engaging video games that essentially ask the user to create recursive

programs to accomplish various goals. This thesis explores the question of

whether these games could be used to improve the way that we teach recursion

to introductory computer science students. We evaluate this idea by using an

experiment conducted on 47 students across two AP Computer Science A high

school classes, with one class serving as a control group and the other serving as

the experimental group. We introduce recursion for the first time to students

in both the control and experimental groups. The control group first listens

to a traditional lecture on recursion, followed by a mid-test; then they simply

play the video game before taking a post-test. By contrast, the experimental

group plays the video game before learning any recursion; they then take the

mid-test and have the same lecture on recursion before taking the post-test.

We find that the experimental group experienced a significantly greater

increase in scores from playing the game than the control group did from direct

instruction. Moreover, both the control and experimental groups experienced

3

the greatest increase in scores after playing the game.

The remainder of this thesis is organized as follows. Chapter 2 defines

recursion and explains why it traditionally has been difficult to learn and places

our work in the context of prior work. Chapter 3, describes our experimental

design, including Cargo-Bot, and Chapter 4 evaluates our solution, before we

conclude.

4

Chapter 2

Background And Related Work

In this chapter, we briefly define recursion and present common mis-

conceptions that students develop when first introduced to the topic. We

then analyze other proposed instruction approaches and place our work in the

context of these works.

2.1 What is Recursion?

Recursion is a powerful programming tool that elegantly solves many

complex problems. A recursive function is one that either directly or indirectly

makes a call to itself, typically defined in terms of a smaller instance of itself,

as shown in Figure 2.1 [24]. Every recursive function should obey the following

rules:

1. The function must include at least one base case that can be computed

without using recursion.

5

2. Every recursive call must progress toward a base case.

3. For efficiency reasons, each recursive call should avoid duplicating work.

// Precondition : x > 0
public void f1(int x) {

System .out.print(x);
if (x > 0)

f1(x - 1);
}

(a) Print before recursive call.

// Precondition : x > 0
public void f2(int x) {

if (x > 0)
f2(x - 1);

System .out.print(x);
}

(b) Print after recursive call.

Figure 2.1: Two functions that highlight the flow of control in recursion.

Students typically struggle with recursion because it requires a mental

model of the program stack to recognize the backward flow of control after

reaching a base case [11, 21]. For example, students may incorrectly conclude

that the functions in Figures 2.1(a) and 2.1(b) produce the same output. How-

ever, with a proper understanding of the program stack, it is clear that f1 will

output x before the recursive call, which then outputs x - 1, so f1 prints the

numbers in descending order. By contrast, each invocation of f2 is pushed on

the stack before anything is printed; after reaching the base case, f2 outputs

0, and then there is a backward flow of control through each invocation of f2.

So f2 prints the numbers in ascending order.

Students are sometimes confused by simple but contrived examples of

recursion, such as in Figure 2.1, that have better iterative counterparts, be-

cause the students then incorrectly associate recursion with loop structures [2].

Furthermore, such examples fail to show students the benefits of recursion [18].

6

2.2 Other Instructional Approaches

There is a large amount of existing research dedicated to improving the

way that we teach recursion. In the following paragraphs, we present and

discuss the various approaches proposed by these writers, then explain how

our research builds on the previous work.

Ginat and Shifroni [10] found that “teaching recursion with an empha-

sis on the declarative, abstract, level of recursion considerably improves the

student’s ability”. Similar to the work of Sooriamurthi [22], they claimed that

focusing on what the recursive function should accomplish, rather than how

it goes about doing it, is the “key” to comprehending recursion. Cargo-Bot

requires students to focus on the end goal rather than the bookkeeping and

procedural internals of the recursive process.

Edgington [7] suggested using the “concept of someone delegating a

task to another person” as an example of a divide-and-conquer algorithm.

Wirth [28] suggested asking students to solve an inherently recursive problem:

How can they randomly parallel park cars on a city street? Given the lack of

real-world examples, Wiedenbeck [25] advocated recursion analogies that come

from programming. Our work incorporates these suggestions by introducing

students to a video game that actually elicits recursive thinking.

Scholtz and Sanders [21] studied the use of tracing recursive methods as

exercises for students. They found that “trace methods are essentially mechan-

ical processes that can allow students with little understanding of recursion to

correctly evaluate a recursive function but that students do not fully under-

7

stand recursion and in particular have difficulties with the passive flow”. They

suggested the use of diverse recursive examples so that students can “learn

recursion from different perspectives," and they claimed that students require

sufficient practice designing their own recursive functions. Our use of video

games gives students ample time to explore many recursive examples and to

practice writing recursive functions in an interactive and visual manner.

A number of authors encourage the use of visual aids when teaching

recursion. Hsin [13] developed a recursive graph that “can help students un-

derstand the flow of a recursion process”. Similar to the work of George [9],

Wilcocks and Sanders [26] use a program animator to assist students in “ex-

trapolating a correct mental model of what recursion is”. However, experi-

ments by Stasko et al. [23] found no significant result suggesting that algo-

rithm animators assist learning. They suggested that future research focus on

allowing students to construct their own animations. Our work directly ad-

dresses this recommendation, as students use a video game to create functional

solutions and their accompanying animated visualizations.

Closely related to our work, Chaffin et al. [3] developed a video game

that allows students to write depth-first search algorithms and interact with

a visualization of a binary tree. They found that students achieve statisti-

cally significant learning gains after playing the game. However, their solution

provides limited experiences with recursion, while Cargo-Bot offers many prob-

lems of various levels of difficulty in a fun and engaging environment.

8

Chapter 3

Experimental Design

The goal of our experiment was to determine whether Cargo-Bot could

be used to improve the way that we teach recursion to novice computer science

students. Specifically, we measured performance gains on a traditional code-

based assessment over recursive routines before and after game play. We also

measured the students’ learning gains achieved by playing the game both prior

to direct instruction and after. Thus, our experiment tracked two groups

of students. One group, the experimental group, played Cargo-Bot before

receiving a lecture on recursion. The other group, the control group, received

the lecture on recursion and then played Cargo-Bot.

To measure the effects of the various teaching components, we gave

each group a series of tests, (1) a pre-test, which measured the students’ ini-

tial facility with recursion, (2) a mid-test, which evaluated the effectiveness

of one teaching component, and (3) a post-test, which measured the effective-

ness of the second teaching component. In particular, the schedules for the

9

Day One
Control Pre-Test Lecture Mid-Test

Experimental Pre-Test Cargo-Bot

Day Two
Control Cargo-Bot Post-Test

Experimental Mid-Test Lecture Post-Test

Table 3.1: Experimental time line for day one and two.

two groups and their tests are shown in Table 3.1: The control group first

received direct instruction covering recursion, followed by a mid-test; then

they played Cargo-Bot before taking a post-test. Conversely, the experimen-

tal group played Cargo-Bot before formally learning recursion; they attended

the recursion lecture after the mid-test, prior to taking the post-test.

Note that on day two the control group essentially becomes the experi-

mental group, so it is perhaps a misnomer. Regardless, we refer to the control

and experimental groups consistently throughout this thesis.

Students in both the control and experimental groups had 20 minutes

to complete the pre-test, 15 minutes for the mid-test, and 20 minutes for the

post-test. The lecture required approximately 50 minutes, and students had

70 minutes of in-class time available to play Cargo-Bot. Accordingly, students

utilized the entirety of each 90 minute class period even though the individual

activities varied each day and between groups.

10

Figure 3.1: Screen shot of the original Cargo-Bot iPad game.

3.1 The Video Game

Cargo-Bot is a popular game for the Apple iPad in which users “teach

a robot how to move crates”1, as shown in Figure 3.1. To teach the robot, the

user writes a recursive program in a lightweight visual programming language.

We rewrote the application in JavaScript—with permission from the original

developer—to make the game accessible to all students with Internet access.

We additionally modified the game to include user identification and tracking,

allowing us to associate game play with individual students. The original

game is not explicitly designed for educational use, and its developers are not

directly involved in our research. Our rendition includes all of the 36 levels

and GUI components that are found in the original video game.
1http://twolivesleft.com/CargoBot

11

http://twolivesleft.com/CargoBot

(a) Goal configuration (top), animator window, and controls (bottom).

(b) Available actions and conditionals. (c) User-defined functions.

Figure 3.2: Various components of the Cargo-Not GUI.

In Cargo-Bot, the player’s goal is to direct a robot to move a set of

cargo blocks from some initial configuration (see the bottom of Figure 3.2a) to

a specified goal configuration (see the top of Figure 3.2a). This direction comes

in the form of a visual program that has simple commands, conditionals, and

function calls for maneuvering the crane, as shown in Figure 3.2b.

For example, the user-defined program in Figure 3.2c consists of five

12

commands following the label F0: The first command tells the robot move

down, picking up or dropping any cargo that it might hold. The second com-

mand moves the crane right if the crane is currently holding any cargo, and

the third command moves the crane right again if it is holding yellow cargo.

The fourth command moves the crane left if holds no cargo. Finally, the last

command calls the function again to repeat the actions. Any function may

call itself recursively, and most levels require a recursive solution for higher

scores.

The 36 levels of game play are separated into six difficulty categories:

Tutorial, Easy, Medium, Hard, Crazy, and Impossible. In the original game,

players must complete each level before moving on to the more challenging

ones. We removed this constraint, allowing students to explore more levels

within the allotted class time. Scoring is indicated by the assignment of 1

to 3 stars for a correct solution based on the number of register slots used.

The number of commands required for each star rating varies among scenarios

according to their difficulties.

Our version of Cargo-Bot is open source and freely available online2.

However, there are other recursion-based video games available, such as Light-

Bot 2.03, that have similar traits and may be just as effective.
2https://github.com/jtessler/cargo-not
3http://armorgames.com/play/6061/light-bot-20

13

https://github.com/jtessler/cargo-not
http://armorgames.com/play/6061/light-bot-20

3.2 Recursive Thinking in Cargo-Bot

We now discuss the ways in which Cargo-Bot encourages students to

think recursively.

Cargo-Bot levels are designed to be increasingly difficult as game play

progresses. As a result, the recursive thinking required to complete a level, par-

ticularly with an optimal score, scales upward. The simplest examples use tail

recursion—which is indistinguishable from iteration given the game’s visual

programming environment. For example, Figure 3.2c shows a simple Cargo-

Bot routine, F0, which iterates by calling itself, F0. In this limited example

of Cargo-Bot recursion, it is not clear whether the program is calling a new

instance of F0 or simply executing a GOTO F0 command—in effect, interpreting

F0 as a label rather than as a recursive function.

Later problems, however, require the user to make the nuanced distinc-

tion between the recursive and jump-to-label interpretations of the code. For

example, Figure 3.3 utilizes the program stack to store the number of left-

ward movements needed to return to the leftmost platform. A non-recursive

interpretation of the code fails to account for this implicitly stored value, and

executes as at most one leftward movement.

3.3 Direct Instruction

This section describes the in-class lecture in more detail. Students in

both the control and experimental groups received the same material for an

14

Figure 3.3: An advanced recursive solution requiring passive control flow.

15

equivalent amount of time—50 minutes.

The discussion began with an introduction to recursion similar to the

one presented in Chapter 2. After defining recursion, we provided a basic

overview of the program stack and worked through a series of tracing problems

that exhibit the backward flow of control.

We concluded with a discussion of recursion within Cargo-Bot. We

modeled recursion through examples that utilize the program stack, such as

that depicted in Figure 3.3. Additionally, Cargo-Bot examples were presented

for comparison in Java-like syntax, with explicitly named methods representing

each of the available actions in the Cargo-Bot visual programming language.

For the control group, this was a first introduction to the game; the ex-

perimental group attends the lecture after playing Cargo-Bot to contextualize

direct instruction with the prior experience of game play.

3.4 The Pre-, Mid-, and Post-Tests

We now describe the three tests in some detail. Each test assessed the

students’ understanding of recursion in two ways. One required students to

trace a provided recursive function and determine its return value; the other

required students to write a recursive function from scratch to address a given

problem statement. The pre- and post-tests also contained several survey

questions using a Likert scale to measure student engagement.

The pre-test included a code-tracing problem (see Figure 3.4) in which

students determine the value that is returned by the method call exec(5). It

16

public int exec(int n){
if(n == 0)

return 0;
else

return n + exec(n - 1);
}

Figure 3.4: Code for the pre-test tracing question.

also included the task of writing a recursive function that determines whether a

given string of nested parentheses is balanced, (i.e., every opening parenthesis

has a matching closing parenthesis). The pre-test survey determined whether

students had any previous experience with Cargo-Bot by asking students if

they had played it before. This item included a number of distractors to

reduce any possible confirmation bias that might occur if students suspect

that Cargo-Bot may improve their understanding of recursion. The pre-test

included the following survey questions:

• “I understand recursion.”

• “I can follow the execution of a recursive function.”

• “I can write a recursive function.”

The mid-test asked students to trace the code in Figure 3.5 and deter-

mine the value that is returned by the method call tough(3). It also included

an iterative implementation of binary search and asked students to write a

recursive version of the same search routine.

The post-test required students to trace the code in Figure 3.6 to de-

termine the value that is returned by mystery(3, 35). It also asked students

17

public int tough(int x) {
if(x < 0)

return 2;
else

return x + tough(x - 1) + tough(x - 1);
}

Figure 3.5: Code for the mid-test tracing question.

to implement the “bucket fill” tool seen in a typical image editing software

package, which fills all instances of a target color with a replacement color at

a given location in the image. In addition, the post-test included the following

survey questions:

• “I liked playing Cargo-Bot.”

• “I am good at Cargo-Bot.”

• “I realized that I used recursion in Cargo-Bot.”

public int mystery (int a, int b) {
if (b == 0)

return 0;
else if (b % 2 == 0)

return mystery (a + a, b / 2);
else

return mystery (a + a, b / 2) + a;
}

Figure 3.6: Code for the post-test tracing question.

18

3.5 The Students

Our experiment included two sections of AP Computer Science A at

a public school magnet program in a large urban district, with one section

serving as the control group and the other as the experimental group.

●

● ● ●

C
o

n
tr

o
l

E
xp

e
ri
m

e
n

ta
l

60 70 80 90 100

Semester Grade (%)

T
e

st
in

g
 G

ro
u

p

Figure 3.7: Box plot comparison of first semester grades from the control and
experimental groups.

The control group contained 21 students; the experimental group con-

tained 26. The control group was the stronger of the two groups, as indicated

by teacher commentary and an average first semester grade of 91.5% versus the

19

experimental group’s 87.7%. The box plot in Figure 3.7 shows how the grades

in the control group are much less spread out than those of the experimental

group. Moreover, the control group had only a single outlier of 78%, whereas

the experimental group contained three, each with a failing grade. In spite of

the anecdotal evidence, however, there is no statistically significant difference

between the groups’ grades.

The control group met from 9:50 a.m. to 11:30 a.m., before lunch, and

the experimental group meets from 12:35 p.m. to 2:05 p.m., after lunch. Both

classes followed the same time line of topics, and neither group had any in-class

exposure to recursion prior to our experiment.

3.6 Experimental Limitations

This section describes possible sources of bias in our experiment. Pri-

marily, we could not produce a truly controlled environment as we were using

two preexisting classes. We had access to these classes because the author

worked as a student teacher at the magnet high school while we conducted

our research.

There were several limitations regarding the teaching environment. Given

that the students were in a highly selective magnet school, these results might

not be representative of a traditional high school environment. Moreover, the

experimental group was more familiar with the author’s teaching style, be-

cause the author was the student teacher for their class. The author only

taught students in the control group for the days of our experiment. However,

20

the author used the same direct instruction format that both classes had seen

all year: a lecture with an accompanying slide deck.

The experimental timeline included other possible sources of bias. Two

tests and direct instruction in a single day was a lot of drudgery and may

have impacted the results of the control group’s mid-test and the experimental

group’s post-test. The direct instruction for the control group was less relevant

because they were also being introduced to Cargo-Bot for the first time. In

addition, the experimental group had two nights to rest and digest the new

information before taking the mid-test, unlike the control group.

We considered possible solutions to these limitations. For example,

perhaps we should have included a third test group that only received direct

instruction, providing a more concrete control group for unbiased comparison.

However, as previously stated, we only had access to two classes and did the

best we could with the limited resources available.

21

Chapter 4

Results and Analysis

Using the pre-, mid-, and post-test results, along with the survey re-

sponses, we show that playing Cargo-Bot statistically significantly increases

students’ learning of recursion. In this chapter, we present and analyze the

experimental results that justify this conclusion.

4.1 Test Results

In this section, we first analyze the writing portion results, then evalu-

ate the tracing portion results. This allows us to determine whether playing

Cargo-Bot helps improve students’ understanding of one question type over the

other. As previously discussed, the pre-, mid-, and post-tests each included one

question that required students to trace the execution of a recursive function

and one that required them to write a recursive function from scratch.

As seen in Figure 4.1, students in the control group, who first were

22

Pre Mid Post

Test

A
ve

ra
g

e
 W

ri
tin

g
 G

ra
d

e
 (

%
)

0
1

0
2

0
3

0
4

0
5

0

●

●

●

●

●

●

Control Group

Experimental Group

Figure 4.1: Average grade for the writing portion on each test.

provided direct instruction, actually had an initial drop in performance on

the written portion of the assessments. Then, after playing Cargo-Bot, their

scores increased by approximately 19.48%. By contrast, students in the exper-

imental group, who first played Cargo-Bot, experienced the greatest increase

in performance between the pre- to mid-tests. Then, after direct instruction,

their test scores increased by just 4.48%.

Using a two-sample Student’s t-test, we show that the learning gains

(i.e., the difference in test scores) from the pre- to mid-tests for the experi-

23

Factors Testing Group Learning Gain t df p-value

Pre- to mid-test Control -4.286 -2.0872 43.349 0.0428Experimental 15.000
Pre- to mid-test Control -4.286 -2.0664 36.245 0.0460Mid- to post-test 19.841

Table 4.1: Two-sample t-test results indicate student performance on written
test improved significantly after playing Cargo-Bot (p < 0.05).

mental group are statistically significantly greater than those of the control

group and that students experience greater learning gains in their abilities

to write recursive functions after playing Cargo-Bot, rather than from direct

instruction (p < 0.05, as seen in Table 4.1).

In addition, we compared students’ learning gains on the writing portion

from the pre- to mid-tests to the learning gains from the mid- to post-tests

within the control and experimental groups. Students in the experimental

group, who first played Cargo-Bot, then had direct instruction, experienced a

monotonic increase in writing performance on each test. Conversely, students

in the control group showed a drop in performance after the initial lecture

before their performance improved after playing the game.

We observed very different results on the tracing portion of the pre-,

mid-, and post-tests. As shown in Figure 4.2, students in both the control and

experimental groups experienced a decline in tracing performance from the

pre- to mid-tests, then an increase from the mid- to post-tests. In spite of this

initial decrease, these results suggest that first playing Cargo-Bot or receiving

direct instruction produces no significant difference in improving students’

abilities to trace the execution of a recursive function.

24

Pre Mid Post

Test

A
ve

ra
g

e
 T

ra
ci

n
g

 G
ra

d
e

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0

●

●

●

●

●

●

Control Group

Experimental Group

Figure 4.2: Average grade for the tracing portion on each test.

Thus, we show that playing Cargo-Bot significantly improves students’

performance writing recursive functions, but it does not seem to produce the

same learning gains with students’ abilities to trace the execution of recur-

sive functions. This is unsurprising, as Cargo-Bot does not explicitly involve

code tracing; users focus on the use of recursion at the conceptual problem-

solving level, rather than as the procedural process described by Scholtz and

Sanders [21].

25

4.2 Survey Results

In this section, we present, analyze, and compare the survey responses

from students in the control and experimental groups. On the pre- and post-

tests, we asked students a series of survey questions to gauge their own per-

ceptions of their abilities to trace and write recursive functions as well as their

attitudes toward playing Cargo-Bot.

Strongly agree

Agree

Neither disagree nor agree

Disagree

Strongly disagree

Strongly agree

Agree

Neither disagree nor agree

Disagree

Strongly disagree

Control
Group

Experimental
Group

"I understand recursion"

R
e

la
tiv

e
 F

re
q

u
e

n
cy

0
.0

0
.4

0
.8

Control
Group

Experimental
Group

"I can follow the execution
of a recursive function"

R
e

la
tiv

e
 F

re
q

u
e

n
cy

0
.0

0
.4

0
.8

Control
Group

Experimental
Group

"I can write a recursive function"

R
e

la
tiv

e
 F

re
q

u
e

n
cy

0
.0

0
.4

0
.8

Figure 4.3: Survey results from the pre-test.

Over 90% of students in both the control and experimental groups

26

played Cargo-Bot without prior knowledge of the game. This further strength-

ens our test results because the vast majority of students experience significant

learning gains after playing a game they have never encountered before.

As shown in Figure 4.3, the majority of students in the experimental

group respond with “Neither agree nor disagree” to each survey question in

the pre-test. Perhaps students in the control group are more willing to share

their self-assessment, evident by the relatively large proportion of “Strongly

disagree” and “Strongly agree” in Figure 4.3. Given that both testing groups

experienced the most learning gains after playing Cargo-Bot, this suggests

that a student’s perception of his or her own understanding of recursion is not

necessarily indicative of his or her performance.

Control
Group

Experimental
Group

"I liked playing Cargo−Not"

R
e

la
tiv

e
 F

re
q

u
e

n
cy

0
.0

0
.4

0
.8

Control
Group

Experimental
Group

"I am good at Cargo−Not"

R
e

la
tiv

e
 F

re
q

u
e

n
cy

0
.0

0
.4

0
.8

Figure 4.4: Survey results from the post-test.

After students in both the control and experimental groups completed

both the game and direct instruction activities, there was nearly unanimous

27

agreement on the survey question, “I liked playing Cargo-Bot”. Moreover,

there was a similar positive response to “I am good at Cargo-Bot”. In ad-

dition, more students in the control group realized Cargo-Bot is inherently

recursive, but this to be expected, because they first attended a traditional

lecture about recursion grounded in Cargo-Bot. Regardless, it is evident that

the vast majority of students in both testing groups realized Cargo-Bot re-

quires recursion and still enjoyed playing it. This shows that not only is this

instructional approach effective at improving students’ understanding of re-

cursion, but students overwhelmingly enjoyed the recursive activity and were

confident in their ability to play the game.

28

Chapter 5

Conclusions

In this thesis, we have proposed a new method of teaching recursion

that combines direct instruction with Cargo-Bot, a game in which the user

creates recursive programs to accomplish various goals. Our empirical results

with 47 high school students in two separate classes has shown that our new

teaching method improves students’ understanding of recursion, with statis-

tically significant results. Moreover, surveys show that nearly every student

enjoyed the learning activity and was confident in his ability to accomplish the

recursive exercises.

As future work, we would like to modify our implementation of Cargo-

Bot to illustrate the relationship between the program’s execution and its

stack-based flow of control, as we believe that this could improve students’

abilities to trace recursive functions. More significantly, we hope to explore

the use of other video games to teach other difficult-to-learn concepts, such as

threading.

29

Bibliography

[1] Timothy Barko and Troy D. Sadler. Practicality in virtuality: Finding

student meaning in video game education. Journal of Science Education

and Technology, pages 1–9, May 2012.

[2] Alan C. Benander and Barbara A. Benander. Student monks - teaching

recursion in an is or cs programming course using the towers of hanoi.

Journal of Information Systems Education, 19(4):455–467, 2008.

[3] Amanda Chaffin, Katelyn Doran, Drew Hicks, and Tiffany Barnes. Exper-

imental evaluation of teaching recursion in a video game. In Proceedings

of the 2009 ACM SIGGRAPH Symposium on Video Games, Sandbox ’09,

pages 79–86, New York, NY, USA, 2009. ACM.

[4] Diana I. Cordova and Mark R. Lepper. Intrinsic motivation and the pro-

cess of learning: Beneficial effects of contextualization, personalization,

and choice. Journal of Educational Psychology, 88(4):715–730, 1996.

[5] J. Davis-Dorsey. The Role of Context Personalization and Problem Re-

30

wording in the Solving of Math Word Problems. Memphis State University,

1989.

[6] Miguel de Aguilera and Alfonso Mendiz. Video games and education:

(education in the face of a “ parallel school”). Comput.

Entertain., 1(1):1:1–1:10, October 2003.

[7] Jeffrey Edgington. Teaching and viewing recursion as delegation. J.

Comput. Sci. Coll., 23(1):241–246, October 2007.

[8] Gary Ford. A framework for teaching recursion. SIGCSE Bull., 14(2):

32–39, June 1982.

[9] Carlisle E. George. Erosi-visualising recursion and discovering new errors.

SIGCSE Bull., 32(1):305–309, March 2000.

[10] David Ginat and Eyal Shifroni. Teaching recursion in a procedu-

ral environment-how much should we emphasize the computing model?

SIGCSE Bull., 31(1):127–131, March 1999.

[11] James Eugene Greer. An empirical comparison of techniques for teach-

ing recursion in introductory computer sciences. Ph.D. dissertation, The

University of Texas at Austin, May 1987.

[12] Katherine Gunion, Todd Milford, and Ulrike Stege. Curing recursion

aversion. SIGCSE Bull., 41(3):124–128, July 2009.

[13] Wen-Jung Hsin. Teaching recursion using recursion graphs. J. Comput.

Sci. Coll., 23(4):217–222, April 2008.

31

[14] Robert L. Kruse. On teaching recursion. SIGCSE Bull., 14(1):92–96,

February 1982.

[15] Dalit Levy and Tami Lapidot. Recursively speaking: analyzing students’

discourse of recursive phenomena. SIGCSE Bull., 32(1):315–319, March

2000.

[16] Daniel D. McCracken. Ruminations on computer science curricula. Com-

munications of The ACM, 1987.

[17] Marina Papastergiou. Exploring the potential of computer and video

games for health and physical education: A literature review. Comput.

Educ., 53(3):603–622, November 2009.

[18] Peter L. Pirolli and John R. Anderson. The role of learning from examples

in the acquisition of recursive programming skills. Canadian Journal of

Psychology, 39(2):240–272, June 1985.

[19] Irene Polycarpou, Ana Pasztor, and Malek Adjouadi. A conceptual ap-

proach to teaching induction for computer science. SIGCSE Bull., 40(1):

9–13, March 2008.

[20] Manuel Rubio-Sánchez and Isidoro Hernán-Losada. Exploring recursion

with fibonacci numbers. SIGCSE Bull., 39(3):359–359, June 2007.

[21] Tamarisk Lurlyn Scholtz and Ian Sanders. Mental models of recursion:

investigating students’ understanding of recursion. In Proceedings of the

32

fifteenth annual conference on Innovation and technology in computer sci-

ence education, ITiCSE ’10, pages 103–107, New York, NY, USA, 2010.

ACM.

[22] Raja Sooriamurthi. Problems in comprehending recursion and suggested

solutions. SIGCSE Bull., 33(3):25–28, June 2001.

[23] John Stasko, Albert Badre, and Clayton Lewis. Do algorithm anima-

tions assist learning?: an empirical study and analysis. In Proceedings

of the INTERACT ’93 and CHI ’93 Conference on Human Factors in

Computing Systems, CHI ’93, pages 61–66, New York, NY, USA, 1993.

ACM.

[24] Mark Allen Weiss. Data Structure & Problem Solving Using Java. Pearson

Education, Inc., Boston, MA, third edition, 2006.

[25] SusanWiedenbeck. Learning recursion as a concept and as a programming

technique. SIGCSE Bull., 20(1):275–278, February 1988.

[26] Derek Wilcocks and Ian Sanders. Animating recursion as an aid to in-

struction. Computers & Education, 23(3):221 – 226, 1994.

[27] Desha L. Williams. The what, why, and how of contextual teaching in

a mathematics classroom. Mathematics Teacher, 100(8):572–575, April

2007.

[28] Michael Wirth. Introducing recursion by parking cars. SIGCSE Bull., 40

(4):52–55, November 2008.

33

	Acknowledgments
	Abstract
	Chapter Introduction
	Chapter Background And Related Work
	What is Recursion?
	Other Instructional Approaches

	Chapter Experimental Design
	The Video Game
	Recursive Thinking in Cargo-Bot
	Direct Instruction
	The Pre-, Mid-, and Post-Tests
	The Students
	Experimental Limitations

	Chapter Results and Analysis
	Test Results
	Survey Results

	Chapter Conclusions

