
Visualizing and Classifying Multiple Solutions to
Engineering Design Problems

Elena Glassman
MIT CSAIL, UID Group, Rm G707

32 Vassar St., Cambridge, MA 02139, USA
ELG@MIT.edu

ABSTRACT
In engineering design courses, many problems have a spec-
ification that the student’s implementation must meet, but
give the student a broad range of freedom for the inter-
nal design of that implementation. There may be several
distinct, correct strategies for solving them, some of which
may be unknown to the teaching staff or intelligent tutor
designer. Visualizing and classifying the multiple solutions
that students generate in response to assigned engineering
design problems will improve hints and answers to students’
questions, whether they are provided by peers, staff, or au-
tomation. I log incremental snapshots of students’ solutions
as they progress toward correct and incorrect solutions. Ini-
tial investigations demonstrate that the choice of features
to represent solutions is critical, and may be domain- or
problem-dependent.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

Keywords
Problem Solving Process, Pattern Recognition

1. RESEARCH SITUATION
I am a doctoral candidate in MIT’s Electrical Engineering

and Computer Science (EECS) Department. I have com-
pleted all of my qualifying exams, and am now in my fourth
year. I discuss my initial thesis research investigations with
several professors, including my advisor, Rob Miller. To-
gether, they cover the fields of machine learning, human
computer interfaces, and instructional design. I intend to
formalize the relationship by the end of this summer, with
the submission of my thesis proposal. I plan to analyze and
present the data I collect from students over the next two
years, in order to graduate in May 2015.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICER’13, August 12–14, 2013, San Diego, California, USA.
ACM 978-1-4503-2243-0/13/08 ...$15.00
http://dx.doi.org/10.1145/2493394.2493421.

In engineering design courses, many problems have a spec-
ification that the student’s implementation must meet, but
give the student a broad range of freedom for the internal
design of that implementation. There may be several dis-
tinct, correct solutions, some of which may be unknown to
the teaching staff or intelligent tutor designer. This raises
problems for helping students and giving feedback. In face-
to-face situations, if a teaching assistant doesn’t recognize
the student’s solution path, then they may redirect the stu-
dent completely, costing them work and possibly derailing
a novel, valid solution. In an intelligent tutor or massively
open online course (MOOC), the automated hint generators
may not recognize the unexpected solution paths, and will
generate unhelpful hints.

A first step toward discovering these alternate correct so-
lution paths is visualizing many student solutions together,
so that the teaching staff can understand the space of paths
leading to correct solutions. I have taken this approach in
6.004, an undergraduate computer architecture (CompArch)
course. I have also observed this approach in a collaborator’s
work on an online Matlab programming challenge. Plotting
dynamic behavior or static features such as parse tree size is
enough, in these initial examples, to separate students’ solu-
tions into clear clusters representing different strategies. In
the Matlab challenge, visualizing code size provides insight
into common strategies as well as successful and unsuccessful
outliers. In CompArch, this led to better education of the
teaching staff. Some now ask a simple question to identify
the student’s approach before trying to help them.

2. CONTEXT AND MOTIVATION
I am an instructor for an undergraduate introductory course

on computer architecture (CompArch). Roughly two hun-
dred students enroll per semester.

One mid-semester lab assignment in this course requires
that students create state-transition rules for a Turing ma-
chine. Many distinct sets of state-transition rules behave
identically, given the same input tape.

The dynamic behavior of students’ Turing machines has
recurring patterns. I visualized this dynamic behavior for
148 students’ two-state Turing machines, and by visual in-
spection of the Turing machine’s movement across a common
input tape, identified strategies [1]. The majority (88%) of
the solutions employed one of two mutually exclusive strate-
gies: (1) matching the innermost open parenthesis with the
innermost closed parenthesis and (2) matching the nth open
parenthesis with the nth closed parenthesis.

The fact that there were two correct solutions to the Tur-
ing machine assignment came as a surprise. I now ask strug-
gling students a question first, to determine the solution they
are aiming for. I can then suggest edits that preserve the
chosen solution, if I recognize it as correct. Common solu-
tion identification also allows me to recognize novel alterna-
tive solutions.

This is one example of an engineering design problem
where a small number of common, distinct, correct solu-
tions are distinguishable once an appropriate representation
of the data is found. My thesis research explores the gen-
erality of this phenomenon, with a focus on scaling up to
online environments with thousands of students.

3. BACKGROUND & RELATED WORK
Helminen et al. [2] introduced interactive graphs for ex-

amining the problem solving process of students working on
small programming-like problems. In contrast to our work,
problems with multiple solutions were outside the scope of
their investigation.

Taherkhani et al. [4] demonstrated the practicality of dif-
ferentiating between multiple solutions, i.e., different sorting
algorithms, in students’ solutions to a particular engineering
design problem using a supervised machine learning method.

My thesis work complements the work of Piech et al.
[3]. They found distinct development paths to solutions
by putting students’ incremental solution attempts into a
pipeline involving classification, milestone discovery, Hidden
Markov Modeling of the students’ process, and clustering of
solution paths. Evaluation focused on predicting midterm
exam grades and detecting milestone difficulty. It is not used
to help new students through the same lab exercise, in the
absence of staff assistance.

Peer-pairing can stand in place of staff assistance. Weld
et al. speculate about peer-pairing in MOOCs based on
student competency measures [5].

4. STATEMENT OF THESIS/PROBLEM
My thesis statement is: Visualization and automated clas-

sification of the multiple solutions that students generate in
response to assigned engineering design problems will im-
prove hints and answers to students’ questions, whether they
are provided by peers, staff, or automation.

I plan to explore the following aspects of this claim:

• What features are useful for visualizing or automati-
cally clustering engineering design solution paths? For
programming domains, for example, features could in-
clude measures of program complexity, stack depth,
and runtime characteristics. For digital logic and ana-
log circuit domains, features could include graph met-
rics and voltage traces on intermediate nodes.

• How can teaching staff be trained to quickly recognize
the solution path of a given student, in order to give
tailored feedback?

• If teaching staff are in short supply (as in a MOOC),
how can peers help each other in a space where there
are multiple good solution paths?

• If peer help is not feasible, then how can we provide
automated help based on solution path recognition in a
design space where multiple correct paths are possible?

5. RESEARCH GOALS & METHODS
I will design an interactive data visualization environment

for teaching staff. By interacting with representations of
many student solutions at once, staff can visually identify
and investigate patterns. If staff independently find similar
meaningful, persistent patterns in their students’ solutions
using the tool, I will consider it a success.

For peer-pairing, there are a variety of solution path-
dependent pairing strategies. One could pair students on
the same solution path: students who have implemented a
recognized solution or fixed a particular bug would be paired
with another student who is struggling to implement the
same solution or fix the same bug. By comparing metrics,
e.g., grades, of students paired based on solution paths, rel-
ative to random pairing and no pairing, I can measure the
interventions’ educational value.

In CompArch, we capture snapshots of students’ inter-
mediate code as they work. These snapshot sequences are
solution paths ready for analysis. One semester’s data has
been collected already. I hope to demonstrate generality on
similar datasets from other engineering domains.

6. EXPECTED CONTRIBUTIONS
This research may be particularly helpful to staff who fo-

cus on helping each student reach their own envisioned so-
lution. The algorithms, tools, visualizations, and resulting
insights from this work are intended to support this con-
structivist approach to teaching, facilitate students helping
each other, and inform automated feedback.

Acknowledgments This work is supported by the Na-
tional Science Foundation Graduate Research Fellowship un-
der Grant No. 1122374.

7. REFERENCES
[1] E. L. Glassman, N. Gulley, and R. C. Miller. Toward

facilitating assistance to students attempting
engineering design problems. In Proceedings of the
Tenth Annual International Conference on
International Computing Education Research, ICER
’13, New York, NY, USA, 2013. ACM.

[2] J. Helminen, P. Ihantola, V. Karavirta, and L. Malmi.
How do students solve parsons programming problems?
an analysis of interaction traces. In Proceedings of the
Ninth Annual International Conference on
International Computing Education Research, ICER
’12, pages 119–126, New York, NY, USA, 2012. ACM.

[3] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program.
In Proceedings of the 43rd ACM technical symposium
on Computer Science Education, SIGCSE ’12, pages
153–160, New York, NY, USA, 2012. ACM.

[4] A. Taherkhani, A. Korhonen, and L. Malmi. Automatic
recognition of students’ sorting algorithm
implementations in a data structures and algorithms
course. In Proceedings of the 12th Koli Calling
International Conference on Computing Education
Research, pages 83–92. ACM, 2012.

[5] D. Weld, E. Adar, L. Chilton, R. Hoffmann, E. Horvitz,
M. Koch, J. Landay, C. Lin, and Mausam. Personalized
online education – a crowdsourcing challenge. In
Proceedings of the 4th Human Computation Workshop
(HCOMP ’12) at AAAI, 2012.

