skip to main content
10.1145/2493432.2493459acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

A model for WLAN signal attenuation of the human body

Published:08 September 2013Publication History

ABSTRACT

Fingerprinting-based indoor localization involves building a signal strength radio map. This map is usually built manually by a person holding the mapping device, which results in orientation-dependent fingerprints due to signal attenuation by the human body. To offset this distortion, fingerprints are typically collected for multiple orientations, but this requires a high effort for large localization areas. In this paper, we propose an approach to reduce the mapping effort by modeling the WLAN signal attenuation caused by the human body. By applying the model to the captured signal to compensate for the attenuation, it is possible to generate an orientation-independent fingerprint. We demonstrate that our model is location and person independent and its output is comparable with manually created radio maps. By using the model, the WLAN scanning effort can be reduced by 75% to 87.5% (depending on the number of orientations).

References

  1. P. Bahl and V. Padmanabhan. Radar: an in-building rf-based user location and tracking system. In INFOCOM 2000, volume 2, pages 775--784 vol.2. IEEE, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  2. K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. Indoor localization without the pain. Proc. MobiCom 2010, page 173, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Faria. Modeling signal attenuation in ieee 802.11 wireless lans-vol. 1. Computer Science Department, Stanford University, 1, 2005.Google ScholarGoogle Scholar
  4. C. Feng, W. S. A. Au, S. Valaee, and Z. Tan. Orientation-aware indoor localization using affinity propagation and compressive sensing. CAMSAP 2009, pages 261--264, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  5. U. Frese. Treemap: An o(log n) algorithm for indoor simultaneous localization and mapping. Autonomous Robots, 21(2):103--122, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Gu, A. Lo, and I. Niemegeers. A survey of indoor positioning systems for wireless personal networks. Communications Surveys Tutorials, 11(1):13--32, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Han, D. G. Andersen, M. Kaminsky, K. Papagiannaki, and S. Seshan. Access point localization using local signal strength gradient. In Proc. PAM 2009, pages 99--108. Springer-Verlag, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche. A comparative survey of wlan location fingerprinting methods. In WPNC 2009, pages 243--251, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  9. Y. Ji, S. Biaz, S. Pandey, and P. Agrawal. Ariadne: a dynamic indoor signal map construction and localization system. In Proc. MobiSys 2006, pages 151--164. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Jiang, X. Pan, K. Li, Q. Lv, R. P. Dick, M. Hannigan, and L. Shang. Ariel: automatic wi-fi based room fingerprinting for indoor localization. In Proc. UbiComp 2012, pages 441--450. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. Kaemarungsi. Distribution of wlan received signal strength indication for indoor location determination. In ISWPC 2006, pages 1--6. IEEE, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  12. K. Kaemarungsi and P. Krishnamurthy. Modeling of indoor positioning systems based on location fingerprinting. In INFOCOM 2004, volume 2, pages 1012--1022. IEEE, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  13. K. Kaemarungsi and P. Krishnamurthy. Properties of indoor received signal strength for WLAN location fingerprinting. MOBIQUITOUS 2004., pages 14--23, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  14. T. King, S. Kopf, T. Haenselmann, C. Lubberger, and W. Effelsberg. Compass: A probabilistic indoor positioning system based on 802.11 and digital compasses. In Proc. WiNTECH 2006, pages 34--40. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. M. Ladd, K. E. Bekris, A. Rudys, G. Marceau, L. E. Kavraki, and D. S. Wallach. Robotics-based location sensing using wireless ethernet. In Proc. MobiCom 2002, pages 227--238. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Lee, H. Kim, and W. Choi. Modeling heterogeneous signal strength characteristics for flexible wlan indoor localization. ICCAS-SICE 2009, pages 1765--1768, 2009.Google ScholarGoogle Scholar
  17. M. Lihan, T. Tsuchiya, and K. Koyanagi. Orientation-aware indoor localization path loss prediction model for wireless sensor networks. In Proc. NBiS 2008, pages 169--178. Springer-Verlag, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and systems. SMC 2007, Part C: Applications and Reviews, 37(6):1067--1080, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Lukaski. Methods for the assessment of human body composition: traditional and new. The American journal of clinical nutrition, 1987.Google ScholarGoogle Scholar
  20. K. Nasr, F. Costen, and S. Barton. Average signal level prediction in an indoor wlan using wall imperfection model. In PIMRC 2005, volume 1, pages 674--678. IEEE, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Seidel and T. Rappaport. 914 mhz path loss prediction models for indoor wireless communications in multifloored buildings. APS, 1992, 40(2):207--217, 1992.Google ScholarGoogle Scholar
  22. S. Sen, R. R. Choudhury, and S. Nelakuditi. Spinloc: Spin once to know your location. ACM HotMobile, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Varshavsky, D. Pankratov, J. Krumm, and E. D. Lara. Calibree: Calibration-free localization using relative distance estimations. Pervasive Computing, pages 146--161, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Velayos and G. Karlsson. Techniques to reduce the ieee 802.11b handoff time. In ICC 2004, volume 7, pages 3844--3848, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Youssef and A. Agrawala. The horus location determination system. Wireless Networks, 14(3):357--374, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Zhang and S. Zhang. An accurate and fast wlan user location estimation method based on received signal strength. In Proc. ICCS 2007, pages 58--65. Springer-Verlag, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A model for WLAN signal attenuation of the human body

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UbiComp '13: Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing
      September 2013
      846 pages
      ISBN:9781450317702
      DOI:10.1145/2493432

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 September 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UbiComp '13 Paper Acceptance Rate92of394submissions,23%Overall Acceptance Rate764of2,912submissions,26%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader