
Embedded Semantic Metadata to
Support Device Interaction in Smart
Environments

Simon Mayer
ETH Zurich
Universittstrasse 6
Zurich, 8092 Switzerland
simon.mayer@inf.ethz.ch

Gianin Basler
ETH Zurich
Universittstrasse 6
Zurich, 8092 Switzerland
baslergi@student.ethz.ch

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s). Copyright is held by the author/owner(s).
UbiComp’13 Adjunct, September 8–12, 2013, Zurich, Switzerland.
ACM 978-1-4503-2215-7/13/09.

http://dx.doi.org/10.1145/2494091.2494169

Abstract
Facilitating the interaction of human users and machines
with smart devices is important to drive the successful
adoption of the Internet of Things in people’s homes and
at their workplaces. In this poster contribution, we
present an approach to support users controlling smart
devices in their environment. To do this, we propose to
embed semantic metadata in the representations of smart
things. By means of this metadata and a semantic
reasoning service, our system enables users to specify a
desirable state of their smart environment and produces a
machine-readable description that details which steps are
necessary to reach this state, where each step corresponds
to a Web request to a smart device. A client application
that could, for instance, run on the user’s smartphone,
can distill the necessary steps required to reach the user’s
goal state from this description and execute them to
modify the smart environment on behalf of the user.

Author Keywords
Machine-Machine Interaction, Reasoning, Smart
Environments, Semantics, Web of Things.

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces]: Web-based
interaction.

http://dx.doi.org/10.1145/2494091.2494169

Introduction
The Web of Things (WoT) is a concrete implementation
of the Internet of Things (IoT) vision that focuses on
establishing application-level connectivity between
heterogeneous devices. It is based on protocols and
patterns that have proven to be successful in the World
Wide Web such as caching, load balancing, and searching
as well as the stateless nature of the HTTP protocol. By
applying these to physical devices and thus creating
“smart things” that are modeled in a resource-oriented
fashion and according to the Representational State
Transfer (REST) constraints, it is possible to construct
lightweight applications that leverage large amounts of
real-time data and physical functionality. However, we
expect that the abundance of such devices and of services
provided by them will make it increasingly difficult for
human users to find and utilize relevant services in a fast
and user-friendly way, which in turn makes it hard to
efficiently interact with their smart environment.

We claim that the problem of finding and using smart
devices that provide relevant services for the user can be
solved in WoT environments by embedding information
about the capabilities of smart devices within their Web
representations. Such descriptions of what services a
smart thing provides can then be integrated with its
REST program interface, to make the smart thing
automatically usable by human users and machines.

In this poster abstract, we describe a system that makes
use of such embedded metadata to let users specify goals
which encode a desired state of their smart environment,
e.g., to regulate the ambient temperature at their current
location. The system then uses a reasoning service to
determine whether these goals can be reached given the
set of services available to the user. If the reasoner finds a

path from the current state of the smart environment to
the goal state, it produces a proof which details why it
believes that the goal state can indeed be reached. Given
this proof, our system can distill the necessary steps to
reach the goal where one such step corresponds to a single
Web request to a device or service, and execute them.

System Design
Our system leverages multiple services that are deployed
in our research group’s office space: All smart things that
are connected to our local network have access to a
Web-based lookup service [3] that allows to search for
smart devices and also keeps track of their location. For
instance, a user can query this system for all devices of
type dbpedia.org/resource/Alarm Clock on a specific
floor of our building, or request it to deliver all devices
that are located in a specific room on that floor. The
infrastructure also integrates services that are not
deployed on a physical device but rather can be run on
any server (e.g., as a cloud service).

Embedded Semantic Metadata
The smart devices that we consider in our system feature
semantic descriptions of their provided functionality and
their Web API to enable automatic interaction with and
between them. For instance, the lookup service provides a
description that holds information about what request to
send to find the URL of a service of a specific type at a
specific location1. This metadata thus also serves to
decouple the different components of our system: The
functionality of the whole system is not tied to using our
own lookup service. Rather, any Web service that can be
sent a semantic type and a location and will return URLs

1The semantic categories type and location as defined by the
Dublin Core Metadata Initiative (purl.org/dc/elements/1.1) and
the W3C WGS84 Geo Positioning vocabularies, respectively.

of devices of that very type at the given location
automatically integrates with our system.

To describe the capabilities of a service and link these
descriptions to its program interface, we use the
RESTdesc language [5] which integrates services’ REST
interface descriptions with metadata that is required to
reason about device capabilities. The required information
is encoded in the Notation3 (N3) format, which extends
the RDF data model by adding assertion and logic
capabilities. A concrete example of what the sematic data
that is embedded in our smart things (in this case, a
smart alarm clock) looks like is given here:

1 @prefix time: <http ://[...]/ time.html#>.
2 @prefix http: <http ://www.w3.org /2011/ http#>.
3 @prefix dbpedia: <http :// dbpedia.org/resource/>.
4
5 { _:event a dbpedia:Event; time:begins ?dateTime. }
6 =>
7 {
8 _:request http:methodName "POST"; http:requestURI

(</alarm?time=> ?dateTime); http:resp [http:
body ?alarm].

9
10 ?alarm a dbpedia:Alarm; time:hasDateTime ?dateTime;

loc:atLocation CNB/H/108.
11 }.

This information encodes that it is possible to obtain an
instance of a dbpedia:Alarm that is localized at
CNB/H/108 from the response message body of an HTTP
POST to http://[...]/alarm?time={?dateTime} (cf.
lines 8 and 10). ?dateTime is replaced at runtime by the
variable that is linked to a dbpedia:Event and specifies
when this event starts (cf. line 5).

To describe and classify devices in our office environment,
we made use of well-known public ontologies such as the
Dublin Core Metadata Initiative and DBpedia2 whose goal

2dublincore.org and dbpedia.org, respectively.

it is to extract structured information from Wikipedia and
make it accessible for machines. To describe HTTP
requests, we used ontologies published by the World Wide
Web Consortium (e.g., w3.org/2011/http). Devices
advertise their semantic descriptions by including links to
these documents in their responses to HTTP OPTIONS

requests, as part of the HTTP Link entity-header3.

Reasoning and Execution
The reasoner is a software component that generates
proofs from (i) the types of available inputs, (ii) a goal
and (iii) links to the semantic descriptions of currently
available devices (such as the description shown above).
The inputs correspond to values that the client already
knows about (e.g., the starting time of an event) and the
goal defines what it would like to achieve (e.g., an alarm
at a specific location). As reasoning engine, we use the
open-source Euler Yap Engine (EYE). Given inputs and a
goal, EYE produces a proof in the N3 format from which
the necessary HTTP requests to reach the goal can be
extracted. We selected EYE because of its high efficiency,
which allows our system to do reasoning in-between user
interaction steps and without having a great impact on
the system performance as a whole.

In the example above, a user would use a client application
that runs on an interface device (e.g., a smartphone) to
specify a goal such as “x a dbpedia:Alarm;

time:hasDateTime ?dateTime; loc:atLocation

?myLocation.” and would furthermore enter all
necessary input data regarding the event and the user’s
location. Given this information, the reasoner then fetches
the semantic descriptions of all available services using the
lookup service to produce a proof that specifies which
HTTP requests are necessary to reach the goal, given the

3tools.ietf.org/html/rfc5988

inputs. In this example, this is a single POST request to an
alarm clock, if one such device has been found at the
user’s location. This request is then executed on behalf of
the user by the client application, thereby modifying the
smart environment to reach the desired goal. The reason
for having the client execute the proof rather than letting
the reasoner do this is that the alternative would raise
privacy and security issues by requiring the reasoner to
have full access to all devices involved in an interaction.

Related Work
The problem of specifying a program interface for Web
services, and using such a specification to create mashups
of interlinked services has already been considered, for
instance, in the JOpera project [4], or in [1], where more
emphasis is placed on the linking of Web resources to
guide RESTful machine-to-machine interaction. An
example of other approaches that tackle the problem of
supporting end users in smart environments is the MIT
Oxygen project, especially its GOALS and MetaGlue [2]
components. Our approach is distinguished from this
system as it avoids tight coupling of the involved smart
things: Devices that provide appropriate semantic
metadata can join our system without any
reconfiguration, are immediately discovered by the
reasoner and can help to work towards the user’s goal by
interacting with other machines. Our system is also easy
to setup and maintain as all involved smart things can
function by themselves, without any supporting
infrastructure. Rather than tightly integrating the services
provided in a smart environment, we thus use the
embedded semantic metadata as a common ground for
enabling automatic collaboration between smart devices.

Conclusions
We have presented a system that integrates semantic
technologies and Web-enabled smart environments to
facilitate the interaction between smart devices and
human users. The biggest advantage of our approach is
that adding a new device to an already running system is
fast and straightforward. New services will seamlessly
interact with other services in the system, given that their
semantic descriptions are correct and sufficiently detailed.
The use of semantic descriptions furthermore dramatically
reduces the amount of shared information required for
smart things and user interface devices to interact in
smart environments. It enables applications to learn and
implement all steps necessary to modify previously
unknown environments on behalf of their user.

References
[1] J. Bellido, R. Alarcón, and C. Sepulveda. Web

Linking-based protocols for guiding RESTful M2M
interaction. In Proc. ComposableWeb, Paphos,
Cyprus, 2011.

[2] M. Coen, B. Phillips, N. Warshawsky, L. Weisman,
S. Peters, and P. Finin. Meeting the computational
needs of intelligent environments: The metaglue
system. In In Proc. MANSE ’99, pages 201–212.

[3] S. Mayer, D. Guinard, and V. Trifa. Searching in a
Web-based Infrastructure for Smart Things. In Proc.
IoT, Wuxi, China, 2012.

[4] C. Pautasso. Composing RESTful services with
JOpera. In A. Bergel and J. Fabry, editors, Proc. SC,
volume 5634 of LNCS, pages 142–159. Springer, 2009.

[5] R. Verborgh, T. Steiner, D. Van Deursen, R. Van de
Walle, and J. Gabarró Vallés. Efficient Runtime
Service Discovery and Consumption with Hyperlinked
RESTdesc. In Proc. NWeSP 2011, Salamanca, Spain,
2011.

	Introduction
	System Design
	Embedded Semantic Metadata
	Reasoning and Execution

	Related Work
	Conclusions
	References

