
HAL Id: hal-00872191
https://hal.science/hal-00872191

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Offering Web-of-Things Connectivity to Building
Networks

Gérôme Bovet, Jean Hennebert

To cite this version:
Gérôme Bovet, Jean Hennebert. Offering Web-of-Things Connectivity to Building Networks. The 4th
International Workshop on the Web of Things, Sep 2013, Zurich, Switzerland. �hal-00872191�

https://hal.science/hal-00872191
https://hal.archives-ouvertes.fr

Offering Web-of-Things
Connectivity to Building Networks

Gérôme Bovet
Telecom ParisTech
46 Avenue Barrault
Paris, 75013 France
gerome.bovet@telecom-
paristech.fr

Jean Hennebert
University of Applied Sciences
Fribourg
Bd. de Pérolles 80
Fribourg, 1700 Switzerland
jean.hennebert@hefr.ch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
UbiComp’13 Adjunct, September 8–12, 2013, Zurich, Switzerland.
Copyright c© 2013 ACM 978-1-4503-2215-7/13/09...$15.00.

http://dx.doi.org/10.1145/2494091.2497590

Abstract
Building management systems (BMS) are nowadays
present in new and renovated buildings, relying on
dedicated networks. The presence of various building
networks leads to problems of heterogeneity, especially for
developing BMS. In this paper, we propose to leverage on
the Web-of-Things (WoT) framework, using well-known
standard technologies of the Web like HTTP and
RESTful APIs for standardizing the access to devices seen
from an application point of view. We present the
implementation of two gateways using the WoT approach
for exposing KNX and EnOcean device capabilities as
Web services, allowing a fast integration in existing and
new management systems.

Author Keywords
Building networks, Web-of-Things, EnOcean, KNX,
Gateways

ACM Classification Keywords
D.2.11 [Software Engineering]: Software Architectures.;
H.4.3 [Information Systems Applications]:
Communications Applications.

Introduction
Building management systems (BMS) are nowadays very
common in different types of buildings such as offices,

manufactures or even private households. Those BMS rely
on a variety of sensors and actuators linked with each
other forming a dedicated building network. At origin,
only the temperature of a building was controlled in a
very simple way over global or room-wise thermostats,
targeting a threshold temperature value. Since then,
motivated by raising energy costs and by the growing
importance of the comfort, new strategies involving other
kind of devices and being much more complex have been
developed. New generation of BMS are taking advantage
on many kinds of sensing and actuating devices, for
managing the HVAC (Heating, Ventilation and Air
Conditioning), the lightening, doors opening, windows and
blinds control, and also for restricting access. This
constellation of devices has led buildings to become
”smart” and are now relying on information systems
connected to building networks like KNX, BACnet or
LonWorks. The most installed network in Europe is KNX.
The EnOcean network is gaining importance in buildings,
based on energy harvesting wireless technologies [?].

Unfortunately, those building management networks do
not propose any standardization from an application point
of view to dialogue with interconnected devices. Because
of this situation, BMS combining multiple networks are
uncommon. Buildings where the network should evolve
with new devices that are not compatible with the actual
one, or where extending the wiring is not feasible because
of physical constraints are good examples of the resulting
network heterogeneity [?], as illustrated in figure 1. Even
if gateways encapsulating the specific building telegrams
in IP packets are existing, it actually exists no standard at
the application level, having as consequence every building
network protocol to be understood and implemented by
the BMS.

BMS

IP Gateway
IP Gateway

IP Gateway

IP
 B

a
c
k
b
o
n
e

Figure 1: Network heterogeneity in smart buildings

Looking now at Internet and Web technologies, Web
services are nowadays trendy and widespread, allowing
interoperability between heterogeneous information
systems (IS). Their key benefits are in being platform
independent and using well-known standards for structured
exchange. The Simple Object Access Protocol (SOAP) is
an example of Web service protocol specification relying
on Extensible Markup Language (XML) for its message
format and Hypertext Transfer Protocol (HTTP) for
message negotiation and transmission [?]. Unfortunately,
because of the large overhead of XML and the complexity
of the service description language WSDL, SOAP is not
well suited for accessing sensors and actuators considered
as things. On the other hand, the resource oriented
architecture (ROA) part of the emerging Web-of-Things
(WoT) concept, offers new ways for accessing things,
which are more suited for BMS [?].

In this paper, we propose an approach for KNX and
EnOcean networks to become homogeneous, allowing
access to devices in a Web-of-Things manner. By taking
advantage of the bests practices of the WoT, we
guarantee a fast integration of both building networks in
every control system. In addition to this, we put
importance on the fact that our gateways must be simple

to use, low-cost and easily integrable in an existing
environment.

This paper is organised as follows. The next section refers
and summarizes related work. The application of the
Web-of-Things to the KNX and EnOcean networks is
discussed in the third section. The fourth describes the
implementation of the gateways. Performance tests in a
existing buildings are shown in the fifth section. The sixth
section concludes our paper and provides insights on
further research.

Related work
Cooltown [?] is one of the early projects considering
people, places and things as Web resources. A new
interaction approach using HTTP GET and POST for
manipulating things was introduced. Lately, with the
evolution made in embedded systems, it was possible to
embed Web servers directly on sensors and actuators. The
WebPlug [?] framework introduce so-called mashups,
relying on the Web-of-Things paradigm, where sensors
and actuators play a central role.

Trying to ease the development of applications using KNX
devices has been explored in different works. A first
attempt was realized with the BCU SDK [?], which
consists of a script generating C++ classes representing
devices capabilities. A more Web oriented approach has
been realized in [?]. The principle was to expose KNX
functionalities as Web services by using the oBIX (Open
Building Information Exchange) standard, which is a
special XML schema for representing building data and
operations. Unfortunately, oBIX is not at all widespread in
BMS, probably because of its relatively complex XML
schema. In addition to this, the proposed implementation
does not allow an easy integration of the gateway in an

existing environment, requiring an important configuration
effort for large networks. The openhab [?] project is a
BMS system offering interfaces to various building
networks, including KNX. An integration of EnOcean is
actually under development. Although being a complete
solution, it does not allow for importing a KNX
configuration nor exposing stored data through REST
services. Additionally the project is quite complex and
asks for having a deep knowledge of its working. Our
approach tackles these limitations by taking advantage of
the WoTs simplicity and by being highly integrable in
existing KNX infrastructures.

Mapping building networks to RESTful APIs
As required when using the WoTparadigm, every object is
expected to embed a REST server offering an API located
through self-descriptive URLs. This vision can
unfortunately not be applied as such to building networks.
Devices connected to KNX or EnOcean networks are not
IP-enabled and will therefore not be accessible through
URLs. In addition to this, those devices are very
constrained and task oriented, which makes it impossible
for most of them to embed a Web server. We propose to
fill this gap by introducing gateways exposing devices
functionalities in the form of RESTful APIs. The role of
those gateways is to hide the complexity of each building
network and to allow clients interacting with attached
devices in a Web-of-Things manner. In other words, the
devices will appear to other participants of the WoT as
they would be embedding the API on themselves.

From KNX
KNX interworking, the KNX application layer, was
thought to ensure the interoperability between devices
from various manufacturers. It standardizes the structure
and interpretation of telegrams payload data. As it is the

case for many automation systems, system functionality is
described by so-called functional blocks which ensures the
interworking [?]. Logical parts of a device, such as a
specific function are symbolized by those Functional
Blocks (FBs). This principle can be illustrated with an
example involving a light switch FB that is a logical
function of a four channels relay. A functional block is
always attached to only one device.

Functional
block

Light switch

OutputsInputs

Parameters

I1

I2

P1

O1
DPT I1

DPT I2

DPT P1

DPT O1

Datapoint type

Data type Size

Format Coding Value range Unit

Figure 2: Functional block structure and datapoint type
composition

As illustrated on figure 2, FBs are composed of a set of
datapoints (DPs). Those datapoints are communication
endpoints of devices allowing access to the functions of a
block [?]. The inputs (DPT I) stand for states that can be
altered by other devices. The parameters (DPT P) are
configured by administrators or engineers for changing the

behaviour of the FB. At last, the outputs (DPT O) give
insights of the actual state of the block. Datapoints are
also standardized in terms of syntax and semantics as
visible in the lower part of figure 2, and are also organized
in several categories depending on their FBs purposes. For
example, our light switch provides the DP switch on off
allowing to turn the light on or off. By knowing the
datapoint type, one can find in the KNX specification all
information regarding the datapoint, including the format,
coding, value range and unit. The KNX protocol identifies
two categories of DPs: group objects (GOs) and interface
object properties (IOPs). The GOs are endpoints involved
in group communications between producers and
consumers basing on a multicast approach. This type of
DP is used by sensors, actuators and control devices for
exchanging information. On the other hand, IOPs are only
for configuration and management purposes. One can
address an IOP only with the physical address of the
device.

The Engineering Tool Software (ETS) was developed by
the KNX association for configuring a KNX infrastructure.
With this software, administrators and engineers have the
possibility to create the building hierarchy, the network
topology, and finally to create group objects that will
represent functionalities between devices. At the time of
writing this article, ETS is the most used tool for KNX
configuration in professional installations. As shown in
figure 3, ETS exports projects in an archive composed of
multiple XML files. The knx master.xml file contains the
description of all the DP types. The network topology,
building organization and group addresses are stored in
the 0.xml file. Finally, there is a folder for every
manufacturer, containing a XML file for each device type
composing the network. The available DPs on a device
are contained in the device file. Luckily, this archive is

zipped without any security and contains easily
understandable XML files, which allows developers to
import all the network knowledge inside third-party
applications. As illustrated in figure 3, we suggest here to
perform a XSL transformation on the different files
included in the archive to aggregate all useful information
for our gateway into one single XML file.

ETS project archive

knx_master.xml

0.xml Product ID.xml

Manufacturer IDProject ID

datapoints.xml
transform.xsl

Figure 3: ETS project archive structure

As we previously pointed out, access to functionalities in a
KNX network is achieved via group objects, which are a
combination of datapoints and a group address. For
offering interaction with KNX devices, we match group
objects to REST services. This is obtained by using the
XSLT output issued from the XSL transformation, which
allow us to to compose an URL identifying a specific
group object. For example, following URL would be linked
to the data point shown in listing 1:
http://heating.office005.ground.leso.epfl.ch/dpt switch.
The domain part is composed of the physical location of
the device inside the building, completed by the domain
name of the organization. The last part of the URL that
represents the action to perform is the datapoint type
name. We can now easily link group objects to URLs by
following this rule:

http://<group name>.<location>.
<organization domain>/<datapoint>.

Listing 1: Datapoint XML representation after XSL
transformation

<d a t a p o i n t s t a t e B a s e d=” t r u e ”
name=” Heat ing ” d e s c=” S t a t u s ”
mainNumber=”1”
p r i o r i t y=”Low” actionName=” DPT Switch ”
a c t i o n D e s c=”on/ o f f ” dptDesc=”1−b i t ”
d p t B i t s S i z e=”1”
l o c a t i o n=” O f f i c e 0 0 5 . ground . LESO”>

<knxAddress t y p e=” group ”>
6195

</ knxAddress>
</ d a t a p o i n t>

Since now, clients can interact with the KNX devices
through the gateway by sending HTTP requests. A GET
request will result in the gateway returning the actual
state of the DP. On the other side a POST request
containing the new state inside the payload data will
result in the KNX device changing its state. Representing
the structural organization of the building inside the
domain part of the URL opens a new dimension. By
acting this way, we can hide the fact that the device is
actually in a KNX network and not directly connected to
an IP network. For users of the system, the device seems
to be an IP one with its own DNS entry directly pointing
to it. However, this brings a certain complexity for the
DNS system as it musts contain entries matching with
KNX groups redirecting requests to the gateway.

From EnOcean
EnOcean also works with its own application layer
ensuring compatibility between devices. It relies on the

EnOcean Equipment Profile (EEP) providing information
about the type of telegram and the representation of the
data. Four types of telegrams are defined: RPS for
Repeated Switch telegrams sent by push buttons, 1BS for
One Byte telegrams sent by contacts and switches, 4BS
for Four Byte telegrams sent by various types of sensors,
and the VLD for Variable Length telegrams. EEPs are
specified in an XML file provided by the EnOcean alliance
that holds the description of all profiles, including frame
composition, structure of data and meaning of data.
Furthermore, every field of data of an EEP is identified by
a so-called shortcut, such as TMP for temperature or
HUM for humidity. The listing 2 shows the XML
description of a datafield.

Listing 2: Datafield XML representation of an EEP

<d a t a f i e l d>
<data>Temperature</ data>
<s h o r t c u t>TMP</ s h o r t c u t>
<d e s c r i p t i o n>

Temperature (l i n e a r)
</ d e s c r i p t i o n>
< i n f o>

DB 1 Temperature (8 b i t) −4 0 . . . 0 C ,
l i n e a r n = 2 5 5 . . . 0

</ i n f o>
<b i t o f f s>16</ b i t o f f s>
<b i t s i z e>8</ b i t s i z e>
<ra ng e><min>255</min><max>0</max></ r an ge>
<s c a l e><min>−40</min><max>0</max></ s c a l e>
<u n i t> C</ u n i t>

</ d a t a f i e l d>

Mapping EnOcean capabilities is much more complicated
than KNX, even if the configuration of the network is very
simple by just pairing devices together. Indeed there is no

central management of the network like with ETS.
Forming groups of functionalities by pairing devices is
achieved by the user putting the actuator in a teach-in
mode, and triggering a learn telegram on the sensor that
have to drive the actuator. All the knowledge is
distributed in the actuators and it exists unfortunately no
way to retrieve it, because of the sensors sending
broadcast telegrams and most actuators being only
listeners. The major drawback of this working is the fact
that it is therefore not possible to automate the mapping
of the EnOcean network capabilities to REST APIs. An
alternative is to let the user reproduce the pairing of
devices by using a Web application hosted on the gateway.
However the process can be simplified for the user by the
gateway listening to teach-in telegrams. Those telegrams
hold the EEP information, so that the gateway is now able
to parse and interpret the telegrams. The user can then
add the detected devices to the gateway by furnishing
additional information such as a name and the location.
This information is then used to map URLs with shortcuts
of EEPs by following this rule:
http://<sensor name>.<location>.
<organization domain>/<shortcut>. This allows
clients to retrieve values of sensors by sending a HTTP
GET request. However, as sensors are only senders and
can not listen to command telegrams, the gateway will
return the last captured data. As there is no way to
discover actuators, their properties, like name, description,
location and compatible EEPs have to be entirely filled in
by the user. From now, it is possible for clients sending a
HTTP POST request to actuate either by giving all
shortcuts values of the EEP inside a JSON payload, or by
specifying the shortcut inside the URL as follows:
http://<actuator name>.<location>.
<organization domain>/[<shortcut>].

Common functions
Each gateway is extended with common APIs, especially
interesting for reactive and proactive BMS. Developers
can discover what devices are accessible and what are
their capabilities by sending GET requests to URLs
representing locations. The gateway will answer with a
JSON indicating all sub-locations or devices inside the
specified location. One can also gather knowledge about
the available datapoints/shortcuts of a device by putting
the .../* placeholder at the end of the URL.

For reactive BMS, we offer a notification mechanism,
notifying them as soon as the value of a sensor changes.
Clients must first register themselves on the interesting
resource and indicate the callback that will have to be
called by the gateway. This is achieved by putting the
.../[un]register keyword at the end of an URL pointing to
an endpoint (e.g.
http://air.office005.ground.leso/hum/register).

Finally, and dedicated to proactive BMS, we offer to them
the possibility to announce their needs for storing history
data on the gateway, and retrieving it later. For doing this,
a client will interact with the .../storage sub-resource of
an endpoint. By putting the add/remove keywords (e.g.
http://air.office005.ground.leso/tmp/storage/add), and
by indicating the number of days data should be stored in
the case of an add command, clients have the possibility
to start or end storing data. For retrieving the stored
data, clients can either indicate the number of days one
wants to go back in the history (i.e .../storage?days=X),
or by specifying a period of time with a start and an end
date (i.e. .../storage?from=X&to=Y).

Implementation
In this section, we provide further insights on the
implementation of both gateways by following the
principle described in this article. For running our
gateways, we decided to use the Raspberry Pi model B
platform that is low-cost and offers sufficient computing
power for our purposes [?].

EnOcean modes
Due to the pairing principle of EnOcean, where sensors
are learned on actuators, our gateway has to provide two
modes of working: hybrid and bridge. Those behaviours
are illustrated in figure 4. In the bridge mode it is the
gateway’s role to drive actuators, according to virtual
groups created through the Web application. This
simplifies the physical pairing of devices by needing only
to learn the gateway on actuators. In this mode, the
gateway will listen to telegrams sent by sensors, and if the
sender of an incoming telegram is configured in bridge
mode and is part of a group, the gateway will then
retransmit the original telegram by replacing the sender ID
by its own. The drawback of this mode is at adding some
latency and essentially to be critical in case of the
gateway failing (e.g. hardware problem, power outage,
etc.), in which case users will no more be able to actuate
(e.g switching lights, moving blinds, etc.) because of
sensors being not directly paired with actuators.

In order to avoid those problems, we implemented a
second mode of working, the hybrid mode. This time, not
only the gateway is learned in actuators, but also the
sensors. This allows to both the gateway and sensors to
drive actuators. By having a direct link between sensors
and actuators, we can provide a better user experience.
As for the hybrid mode, the gateway will store each
captured telegram for providing state values to clients.

Sensor

Actuator

Gateway

1
2

2

Sensor sends radio telegram

Gateway stores the telegram into the
database if wished and notifies consumers

Gateway rebroadcasts radio telegram by
replacing the sender ID

4

4
Actuator receives the radio telegram and
performs the action

2

2
Actuator receives the radio telegram and
performs the action

Bridge mode

Hybrid mode

3

1

3

Sensor sends radio telegram1

Gateway stores the telegram into the
database if wished and notifies consumers

3

Figure 4: EnOcean gateway hybrid and bridge modes

Architecture
The KNX gateway relies on the Calimero 2.0 Java
library [?]. This library provides Java classes and methods
for KNXnet/IP tunnel communications, and datapoint
object representation allowing developers to build
applications dedicated to KNX infrastructures. For the
EnOcean gateway, as it currently exists no similar library,
we had to develop our own library for capturing, parsing
and sending telegrams over an USB dongle. The Web part
of our implementation is based on Java servlets running
on a Jetty server [?]. We argue our choice for Jetty
because it is easily integrable on low-resources equipments
thanks to its lightweight implementation, compared to
other Web servers like Tomcat, Glassfish or Grizzly.
MySQL was chosen as database engine. All components
of the implementation are open source and free.

As illustrated on figure 5, our implementation relies on
several logical modules very similar for each gateway.

KNXnet/IP Tunneling

Datapoint object

representation

Calimero 2.0

REST

client

HTTP

server

Datapoint

locator

datapoints.xml

KNX

comm

KNX Twisted Pair

KNXnet/IP

Gateway

HTTPDP

Gateway WoT <-> KNX

Notification

manager

Storage

manager

Gateway WoT <-> EnOcean

REST

client

HTTP

server

EnOcean

comm

HTTPEEP

Notification

manager

Storage

manager

Capturing telegrams

Parsing telegrams

Sending telegrams

EnOcean library

EnOcean

USB dongle

Figure 5: Architecture of the KNX and EnOcean gateways

Evaluation
The performance and limitations of the implementations
were evaluated by several tests. For having realistic
feedbacks we performed our tests on two buildings already
installed with KNX and EnOcean networks. Starting from
the evaluation results, we also propose some improvements
of the gateway that could valuable for BMS.

KNX performance
For determining the gateway’s performance, we selected
to measure some key-values, like maximum number of
requests per second, maximum simultaneous requests,
notifications reaction time (i.e from the action on the
KNX device until notification) and processing time of the
ETS project archive during configuration. We base our
measurements on an existing KNX installation of the four

floors office LESO building located on the EPFL campus
in Lausanne, Switzerland. This installation features 265
devices, distributed in 795 group objects and represents an
average installation that can be found in several buildings.

Measure type Result

ETS archive processing time 30 [min]
Maximum HTTP requests per second 45
Maximum simultaneous HTTP requests 620
Average event reaction time 33 [ms]

Table 1: KNX gateway performance measured on a real-life
KNX installation running 265 devices

EnOcean performance
For the EnOcean gateway, we measured the same
key-values as for KNX apart the ETS archive processing
file. The gateway was installed at the College of
engineering, Fribourg, Switzerland, where an office room
of 20m2 is equipped with 7 sensors, 3 lights/blinds
switches and 4 actuators. This lab office is occupied by
three people and represents a typical room that can be
found in office buildings.

Measure type Result

Maximum HTTP requests per second 82
Maximum simultaneous HTTP requests 631
Average event reaction time 29 [ms]

Table 2: EnOcean Gateway performance measured on a
real-life EnOcean installation running 14 devices

Discussion
Table 1 summarises the performance of the KNX gateway
running on a RaspberryPi. The XSLT being extremely
resource consuming, this is reflected when processing the
ETS archive file that needs quite a long time. However, as

this operation has only to be performed during the
configuration of the gateway, we can assume that it is not
an important issue. The maximum HTTP requests per
seconds is actually bottlenecked by the twisted pair of the
KNX network offering only 9600b/s. The maximum
simultaneous HTTP requests is limited by the Raspberry
Pi. Nonetheless, we believe that the measured value is
largely sufficient for common BMS operation. Finally, we
observed a fast event response time that would typically
allow a BMS to function in reactive mode. From table 2,
we can clearly see that all results are also satisfying for
the EnOcean. All limitations are due to the Raspberry Pi
reaching its limits of processing capabilities. Anyway, the
Raspberry Pi is largely sufficient for such applications and
has to be considered as an alternative to classical PCs
running gateways os serving as middleware.

Our approach implying access to the DNS server of the
host network can be considered as a hurdle. The access to
the DNS may be restricted by security policies in which
case a dedicated DNS server has to be set up for the
gateways.

Some developers where asked to build prototypical BMS
applications using KNX or EnOcean devices, and this in
various development languages. We obtained very positive
feedbacks showing the benefits of leveraging on
standardized and well-accepted protocols for reducing
integration time.

Conclusions
Taking inspiration on Web-of-Things paradigms, we
inspected the feasibility and benefits of using well-known
Web standards like HTTP and RESTful APIs for
interfacing building networks and building management
systems. Our concepts and implementation were proven

by being used on real installations, resulting in many
positive feedbacks coming from developers pointing to the
simplicity of use of WoT APIs.

From a global point of view, we believe that the
integration of heterogeneous networks can be much
simplified using WoT approaches. We also believe that in
a near future, BMS will have to handle various networks
based on different technologies, where smart gateways will
prove their usefulness.

Our future works will cover security aspects of the
gateway through authentication and encryption of data to
prevent misuse. A mechanism for distributing the logical
rules coming from proactive BMS, potentially distributed
in the cloud, will also be explored.

Acknowledgements
The authors are grateful to the Swiss Hasler Foundation
and to the RCSO grants from the HES-SO financing our
research in this exciting area of smart buildings.

	Introduction
	Related work
	Mapping building networks to RESTful APIs
	From KNX
	From EnOcean
	Common functions

	Implementation
	EnOcean modes
	Architecture

	Evaluation
	KNX performance
	EnOcean performance
	Discussion

	Conclusions
	Acknowledgements

