
Autonomy requirements engineeringAutonomy requirements engineering

Emil Vassev, Mike Hinchey

Publication datePublication date

01-01-2013

Published inPublished in

Proceedings of the 14th IEEE International Conference on Information Reuse and Integration (IRI 2013);pp.
175-184

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Vassev, E. and Hinchey, M. (2013) ‘Autonomy requirements engineering’, available:
https://hdl.handle.net/10344/3447 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

Autonomy Requirements Engineering

Emil Vassev and Mike Hinchey

Lero–the Irish Software Engineering Research Center, University of Limerick, Ireland

emil.vassev@lero.ie, mike.hinchey@lero.ie

Abstract

Contemporary robotics relies on the most recent

advances in automation and robotic technologies to

promote autonomy and autonomic computing principles

to robotized systems. However, it appears that the design

and implementation of autonomous systems is an

extremely challenging task. The problem is stemming

from the very nature of such systems where features like

environment monitoring and self-monitoring allow for

awareness capabilities driving the system behavior.

Moreover, changes in the operational environment may

trigger self-adaptation. The first and one of the biggest

challenges in the design and implementation of such

systems is how to handle requirements specifically related

to the autonomy of a system. Requirements engineering

for autonomous systems appears to be a wide open

research area with only a limited number of approaches

yet considered. In this paper, we present an approach to

Autonomy Requirements Engineering where goals models

are merged with special generic autonomy requirements.

The approach helps us identify and record the autonomy

requirements of a system in the form of special self-*

objectives and other assistive requirements, those

capturing alternative objectives the system may pursue in

the presence of factors threatening the achievement of the

initial system goals. The paper presents a case study

where autonomy requirements engineering is applied to

the domain of space missions.

Keywords: autonomy requirements, autonomic systems,

robotics, requirements engineering, space missions.

1. Introduction

The first step towards development of any software-

intensive system is to determine the system’s

requirements, which includes both requirements elicitation

and specification (or modeling). Traditionally,

requirements engineering is concerned with what a system

should do and within which constraints it must do it. To

answer these questions, software requirements fall into

two categories: functional and non-functional. Whereas

the former define the system’s functionality the latter

emphasize system’s qualities (e.g. performance) and

constraints under which a system is required to operate.

Along with the traditional requirements, requirements

engineering for autonomous and self-adaptive systems

(e.g., exploration robots) needs to address requirements

related to adaptation issues, in particular: 1) what

adaptations are possible; 2) under what constrains; and 3)

how those adaptations are realized [1]. Note that

adaptations arise when a system needs to cope with

changes to ensure realization of the system’s objectives.

To handle these and other issues, Lero – the Irish

Software Engineering Research Center, is currently

conducting a joint project with ESA targeting an

Autonomy Requirements Engineering (ARE) approach.

ARE converts adaptation issues into autonomy

requirements where Goal-Oriented Requirements

Engineering (GORE) [2] is used along with a model for

Generic Autonomy Requirements (GAR) [1]. In the

course of this project, ARE was applied to a proof-of-

concept case study, to capture autonomy requirements of

the ESA’s BepiColombo Mission [3]. This paper presents

the ARE approach along with the case study where the

emphasis is put on the requirements specification. The

paper is a follow-up to [4] and [5] where we presented our

GAR [4] and the ARE process [5] for space missions.

The rest of this paper is organized as follows. Section 2

presents the ARE approach. Section 3 presents the case

study where ARE is applied to capture the autonomy

requirements of the ESA’s BepiColombo Mission with the

emphasis put on the requirements specification. Finally,

Section 4 presents a brief conclusion and future work.

2. Autonomy Requirements Engineering

ARE should be considered as a software engineering

process helping to 1) determine what autonomic features

are to be developed for a particular autonomous system;

and 2) generate autonomy requirements supporting those

features. A comprehensive and efficient ARE approach

should take into account all the autonomy aspects of the

targeted system and emphasize the so-called self-*

requirements by taking into consideration the traditional

functional and non-functional requirements (e.g., safety

requirements) [1].

In our approach, ARE: 1) relies on GORE [2] to elicit

and define the system goals; and then 2) uses a special

framework called Generic Autonomy Requirements

(GAR) [1, 4] to derive and define assistive and eventually

alternative goals (or objectives) the system may pursue in

the presence of factors threatening the achievement of the

initial system goals. In addition, GAR also helps to

identify goal-supporting autonomy requirements. Once

identified, the autonomy requirements including the self-*

objectives might be further specified with formal

languages complying with both GORE and GAR (e.g.,

KnowLang [6]). The outcome of ARE (goals models,

requirements specification, etc.) is a precursor of design

of autonomic features.

Note that GAR is very generic and needs to be put in

the specific system’s context and generate generic

autonomy requirements for this specific context first, and

then merged with the output generated by GORE. For

example, as part of this exercise, we put GAR in the

context of space missions [4].

2.1. GAR – Generic Autonomy Requirements

GAR considers that the development of autonomous

systems is driven by self-adaptive objectives and

adaptation-assistive attributes, which introduce special

requirements termed self-* requirements [1, 4]:

 Autonomicity (self-* objectives) - Autonomicity

is one of the essential characteristics of

autonomous systems. The self-* objectives

provide for autonomous behavior (e.g., self-

configuring, self-healing, self-optimizing, and

self-protecting).

 Knowledge – An autonomous system is intended

to possess awareness capabilities based on well-

structured knowledge and algorithms operating

over the same.

 Awareness – A product of knowledge

representation, reasoning and monitoring.

 Monitoring – The process of obtaining raw data

through a collection of sensors or events.

 Adaptability – The ability to achieve change in

observable behavior and/or structure.

Adaptability may require changes in

functionality, algorithms, system parameters, or

structure. The property is amplified by self-

adaptation.

 Dynamicity – The technical ability to perform a

change at runtime. For example, a technical

ability to remove, add or exchange services and

components.

 Robustness – The ability to cope with errors

during execution.

 Resilience - A quality attribute prerequisite for

resilience and system agility. Closely related to

safety, resilience enables systems to bounce back

from unanticipated disruptions.

 Mobility – A property demonstrating what

moves in the system at design time and runtime.

Note that, ARE requires GAR to be put in the

operational context of the system in question first (e.g.,

the BepiColombo space mission), to derive context-

specific GAR used by the ARE process.

2.2. GORE for ARE

GORE (Goal-Oriented Requirements Engineering) has

extended upstream the software development process by

adding a new phase called Early Requirements Analysis.

The fundamental concepts used to drive the goal-oriented

form of analysis are those of goal and actor. To fulfill a

stakeholder goal, GORE [2] helps engineers analyze the

space of alternatives, which makes the process of

generating functional and non-functional (quality)

requirements more systematic in the sense that the

designer is exploring an explicitly represented space of

alternatives.

To comply with ARE, GORE is used to produce goals

models that represent system objectives and their inter-

relationships. Goals are generally modeled with intrinsic

features such as their type, actors and targets, and with

links to other goals and to other elements of the

requirements model (e.g., constraints). Goals can be

hierarchically organized and prioritized where high-level

goals (e.g., mission objectives) might comprise related,

low-level, sub-goals that can be organized to provide

different alternatives to achieving the high-level goals.

ARE merges GORE with a context-specific GAR to arrive

at goals models where system goals are supported by self-

* objectives promoting autonomicity in system behavior.

3. The BepiColombo Case Study

In this section, we present the BepiColombo case study

where ARE is applied to capture the autonomy

requirements. The section briefly presents the

requirements elicitation process (GORE + GAR) and

presents in more detail the requirements specification. For

more details on the requirements elicitation process,

please refer to [4] and [5].

3.1. BepiColombo Mission

BepiColombo is an ESA mission to Mercury [3, 7, 8,

9] (see Figure 1) scheduled for launching in 2015.

BepiColombo will perform a series of scientific

experiments, tests and measures. For example,

BepiColombo will make a complete map of Mercury at

different wavelengths. Such a map, will chart the planet's

mineralogy and elemental composition. Other experiments

will be to determine whether the interior of the planet is

molten or not and to investigate the extent and origin of

Mercury’s magnetic field.

Figure 1. BepiColombo Arriving at Mercury [7]

The space segment of the BepiColombo Mission

consists of two orbiters: a Mercury Planetary Orbiter

(MPO) and a Mercury Magnetospheric Orbiter (MMO).

Initially, these two orbiters will be packed together into a

special composite module used to bring both orbiters into

their proper orbits. Moreover, in order to transfer the

orbiters to Mercury, the composite module is equipped

with an extra electric propulsion module both forming a

transfer module. The transfer module is intended to do the

long cruise from Erath to Mercury by using the electric

propulsion engine and the gravity assists of Moon, Venus

and Mercury. The transfer module spacecraft will have a 6

year interplanetary cruise to Mercury using solar-electric

propulsion and Moon, Venus, and Mercury gravity assists.

On arrival in January 2022, the MPO and MMO will be

captured into polar orbits. When approaching Mercury in

2022, the transfer module will be separated and the

composite module will use rocket engines and a technique

called weak stability boundary capture to bring itself into

polar orbit around the planet. When the MMO orbit is

reached, the MPO will separate and lower its altitude to its

own operational orbit. Note that the environment around

Mercury imposes strong requirements on the spacecraft

design, particularly to the parts exposed to Sun and

Mercury: solar array mechanisms, antennas, multi-layer

insulation, thermal coatings and radiators.

The Mercury Planetary Orbiter (MPO) is a three-axis-

stabilized spacecraft pointing at nadir. The spacecraft

shall revolve around Mercury at a relatively low altitude

and will perform a series of experiments related to planet-

wide remote sensing and radio science. MPO will be

equipped with two rocket engines nested in two

propulsion modules respectively: a solar electric

propulsion module (SEPM) and a chemical propulsion

module (CPM). Moreover, to perform scientific

experiments, the spacecraft will carry a highly

sophisticated suit of eleven instruments [10].

The Mercury Magnetospheric Orbiter (MMO) is a

spin-stabilized spacecraft in a relatively eccentric orbit

carrying instruments to perform scientific experiments

mostly with fields (e.g., Mercury magnetic field), waves

and particles. Similar to MPO, MMO is also equipped

with two propulsion modules: a solar electric propulsion

module (SEPM) and a chemical propulsion module

(CPM). MMO has altitude control functions, but no orbit

control functions. MMO’s main structure consists of: two

decks (upper and lower), a central cylinder (thrust tube)

and four bulkheads. The instruments are located on both

decks. The MMO spacecraft will carry five advanced

scientific experiments [10].

3.2. ARE – Requirements Elicitation

3.2.1. GORE for BepiColombo. By applying GORE, we

build goals models that can help us derive and organize

the autonomy requirements for BepiColombo. In our

approach, the models provide the starting point for ARE

for BepiColombo by defining 1) the objectives of the

mission that must be realized in 2) the system’s

operational environment (space, Mercury, proximity to

the Sun, etc.), and by identifying the 3) problems that

exist in this environment as well as 4) the immediate

targets supporting the mission objectives and 5)

constraints the system needs to address. Moreover, GORE

helps us identify the mission actors (mission spacecraft,

spacecraft components, environmental entities, base

station, etc.). In this exercise, we do not categorize the

objectives’ actors, but for more comprehensive

requirements engineering, actors might be categorized by

role or by importance (e.g., main, supporting and offstage

actors). Further, the requirements goals models can be

used as a baseline for validating the system.

Complete goals models along with the accompanying

rational can be found in [5]. Due to space limitations, in

this paper we present only the Orbit-placement Goal [5]:

 Orbit-placement: Both MPO and MMO must be

placed in orbit around Mercury to fulfill the

mission objectives.

Rationale: When approaching Mercury in, the

carrier spacecraft will be separated and the

composite spacecraft will use rocket engines and a

technique called weak stability boundary capture

to bring it into polar orbit around the planet. When

the MMO orbit is reached, the MPO will separate

and lower its altitude to its own operational orbit.

Observations from orbit will be taken for at least

one Earth year.

Actors: BepiColombo transfer module, electric

propulsion rocket engines, chemical rocket

engines, Mercury, the Sun, Base on Earth,

BepiColombo composite module (MPO and

MMO), MPO, MMO.
Targets: MPO orbit, MMO orbit

3.2.2. GAR for BepiColombo. The BepiColombo

Mission falls in the category of Interplanetary Missions

[4] and consecutively inherits the context-specific GAR

model for such missions [4]. A good practice will be to

associate the autonomy requirements with each objective

(or group of objectives). Thus, we may have autonomy

requirements (including self-* objectives) associated with

the Transfer Objective, the Orbit-placement Objective and

with the group of Scientific Objectives [5]. Due to space

limitations, in this paper we present only the autonomy

requirements associated with the Orbit-placement

Objective. For the complete GAR model, refer to [5].

The Orbit-placement Objective is to place both MMO

and MPO into their operational orbits around Mercury.

When approaching Mercury, the BepiColombo Transfer

Module will be separated by releasing the module’s

SEPM. Then, the BepiColombo Composite Module will

use the MMO’s rocket engines (mainly the CPM) and the

weak stability boundary capture mechanism to move the

spacecraft into polar orbit around Mercury (see Section

3). When the MMO orbit is reached, the MPO will

separate and lower its altitude to its own operational orbit.

To derive the autonomy requirements assisting that

objective, we need to identify the appropriate category of

GAR (Generic Autonomy Requirements) that might be

applied. Considering the Orbit-placement Objective, the

BepiColombo mission falls in the category of

Interplanetary Missions using Low-thrust Trajectories

[4]. Such missions use spacecraft for orbit control

activities in geostationary orbits, drag compensation in

low orbits, planetary orbit missions and missions to

comets and asteroids. These missions often have a

complex mission profile utilizing ion propulsion in

combination with multiple gravity-assist manoeuvers

(similar to BepiColombo). Therefore, by considering the

Orbit-placement Objective specifics, we derive the

autonomy requirements for that objective, by applying

GAR for Interplanetary Missions using Low-thrust

Trajectories [4]:

 self-* requirements (autonomicity):

o self-jettison: the Transfer Module shall

automatically release its SEPM when the right

jettison attitude is reached; the Composite

Module shall automatically release MMO when

the polar orbit is reached.

o self-capture: the Composite Module shall

autonomously determine a steering law and use

low thrust to achieve capture around Mercury.

o self-escape: the Composite Module shall

autonomously acquire the escape procedure and

use it to leave Mercury if necessary;

o self-low-thrust-trajectory: autonomously determi-

ne a steering law for a thrust vector and use low

thrust to bring the Composite Module into polar

orbit; autonomously determine a steering law for

a thrust vector and use low thrust to bring MPO

into its orbit.

o self-protection: both the Composite Module and

MPO shall autonomously detect the presence of

high solar irradiation and: 1) protect the

electronics on board and instruments; 2) get

away if possible by using electric propulsion

and/or chemical propulsion.

o self-thermal-control: both MMO and MPO shall

maintain the onboard equipment and the

spacecraft structure in proper temperature range.

o self-scheduling: both the Composite Module and

MPO shall autonomously determine what task to

perform next in the course of pursuing the Orbit-

placement Objective: 1) jettison; 2) start and stop

engines; 3) spin-up by using thrusters; 4) moving

by using thrusters.

 knowledge: central force field physics; steering

law model for weak stability boundary capture;

MMO orbit; MPO orbit; maximum rate of change

of orbital energy for MMO and MPO; maximum

rate of change of orbital inclination for MMO and

MPO; instruments onboard together with their

characteristics (acceptable levels of radiation);

Base on Earth; propulsion system (chemical

propulsion rockets); communication links, data

transmission format, communication mechanisms

onboard; gravitational forces (Sun gravity and

Mercury gravity);

 awareness (for both the Composite Module and

MPO): Mercury capture awareness; Mercury

escape awareness; trajectory velocity awareness;

Mercury’s magnetic field awareness; Mercury’s

gravitational force awareness; Sun’s gravitational

force awareness; awareness of the spacecraft’s

position on the projected trajectory perturbations;

radiation awareness; instrument awareness;

sensitive to thermal stimuli; data-transfer

awareness; speed awareness; communication

awareness.

 monitoring (for both the Composite Module and

MPO): the environment around Mercury (e.g.,

radiation level, Mercury, the Sun); planned

operations (status, progress, feasibility, etc.).

 adaptability (for both the Composite Module and

MPO): adapt the low thrust trajectories to orbit

and/or altitude perturbations.

 dynamicity (for both the Composite Module and

MPO): dynamic near-body environment; dynamic

trajectory following procedure; dynamic

communication links.

 robustness (for both the Composite Module and

MPO): robust to solar irradiation; robust to

temperature changes (high temperature amplitude);

robust to orbit-placement trajectory perturbations;

robust to communication losses.

 resilience (for both the Composite Module and

MPO): resilient to magnetic field changes.

 mobility (for both the Composite Module and

MPO): trajectory maneuvers for avoiding orbit

and/or altitude perturbations.

Following the ARE process, next we merge the self-*

requirements derived by GAR with the goals models

produced by GORE to derive self-* objectives providing

mission behavior alternatives with respect to the

BepiColombo Mission Objectives. The self-* objectives

assisting the BepiColombo’s Orbit-placement Objective

are [5]: self-jettison (2 variants), self-capture, self-escape,

self-low-thrust-trajectory (2 variants), self-protection (4

variants), self-thermal-control (2 variants) and self-

scheduling (3 variants). The self-protection objectives are

as following [5]:
 Self-protection_1: Autonomously detect the

presence of high solar irradiation and protect

(eventually turn off or shade) the electronics and

instruments on board.

Actors: BepiColombo composite module, the Sun,

Base on Earth, radiation, shades, power system.

Targets: electronics and instruments.

 Self-protection_2: Autonomously detect the

presence of high solar irradiation and get away if

possible by using chemical propulsion.

Actors: BepiColombo composite module, CPM,

Mercury, the Sun, Base on Earth, solar irradiation.

Targets: safe position around Mercury.

 Self-protection_3: Autonomously detect the

presence of high solar irradiation and protect

(eventually turn off or shade) the electronics and

instruments on board.

Actors: MPO, the Sun, Base on Earth, solar

irradiation, shades, power system.

Targets: electronics and instruments.

 Self-protection_4: Autonomously detect the

presence of high solar irradiation and get away if

possible by using chemical propulsion.

Actors: MPO, CPM, Mercury, the Sun, Base on

Earth, solar irradiation.

Targets: safe position around Mercury.

3.3. ARE – Requirements Specification

The next step after deriving the autonomy requirements

per system’s objectives (see Section 3.2) shall be their

specification, which can be considered as a form of formal

specification or requirements recording. The formal

notation to be used for requirements recording must cope

with ARE, i.e., it should be expressive enough to handle

both the goals models produced by GORE and the

requirements generated by GAR. KnowLang [6] is formal

method having all the necessary features required to

handle such a task. The process of requirements

specification with KnowLang goes over a few phases:

1) Initial knowledge requirements gathering -

involves domain experts to determine the basic

notions, relations and functions (operations) of

the domain of interest.

2) Behavior definition - identifies situations and

behavior policies as "control data" helping to

identify important self-adaptive scenarios.

3) Knowledge structuring - encapsulates domain

entities, situations and behavior policies into

KnowLang structures like concepts, properties,

functionalities, objects, relations, facts and rules.

When specifying autonomy requirements with

KnowLang, an important factor to take into consideration

is to know how the KnowLang framework handles these

requirements at runtime. KnowLang comes with a special

KnowLang Reasoner [6] that operates on the specified

requirements and provides the system with awareness

capabilities. The reasoner supports both logical and

statistical reasoning based on integrated Bayesian

networks. The KnowLang Reasoner is supplied as a

component hosted by the system (e.g., the BepiColombo's

MMO spacecraft) and thus, it runs in the system’s

operational context as any other system’s component.

However, it operates in the knowledge representation

context (KR Context) and on the KR symbols (represented

knowledge). The system talks to the reasoner via special

ASK and TELL Operators allowing for knowledge queries

and knowledge updates. Upon demand, the KnowLang

Reasoner can also build up and return a self-adaptive

behavior model as a chain of actions to be realized in the

environment or in the system itself [6].

In this section, we present the KnowLang [6]

specification of the BepiColombo autonomy requirements.

Note that both the specification models and accompanying

rationale presented in this section are partial and intended

to demonstrate how KnowLang copes with the different

autonomy requirements. Moreover, a full specification

model of the BepiColombo is too large to be presented

here and it is beyond this paper’s objectives.

3.3.1. Knowledge. KnowLang [6] is exclusively

dedicated to knowledge specification where the latter is

specified as a Knowledge Base (KB) comprising a variety

of knowledge structures, e.g., ontologies, facts, rules, and

constraints. Here, in order to specify the autonomy

requirements of BepiColombo, the first step is to specify

the KB representing both the external (space, Mercury,

the Sun, etc.) and internal (spacecraft systems - MMO,

MPO, etc.) worlds of the BepiColombo Mission. The

BepiColombo KB shall contain a few ontologies

structuring the knowledge domains of MMO, MPO,

BepiColombo Composite Module, BepiColombo Transfer

Module, and BepiColombo's operational environment

(space) (see Section 3.1). Note that these domains are

described via domain-relevant concepts and objects

(concept instances) related through relations. To handle

explicit concepts like situations, goals, and policies, we

grant some of the domain concepts with explicit state

expressions (a state expression is a Boolean expression

over ontology). Note that being part of the autonomy

requirements, knowledge plays a very important role in

the expression of the other autonomy requirements:

autonomicity, knowledge, awareness, monitoring,

adaptability, dynamicity, robustness, resilience, and

mobility outlined by GAR (see Section 2.1 and Section

3.2.2).

To express the autonomy requirements of

BepiColombo, we specified the necessary knowledge as

following. Figure 2, depicts a graphical representation of

the MMO Thing concept tree relating most of the concepts

within the MMO Ontology. Note that the relationships

within a concept tree are "is-a" (inheritance), e.g., the Part

concept is an Entity and the Tank concept is a Part and

consecutively Entity, etc.

Propulsion_module

Deck

Nutation_damper

Communication_software

Entity

Mechanics

<<concept>> Thing

Property

Virtual Entity

Goal

Sensor

Part

Event

Software

System

Fluid

Behavior

CPU

Control_software

Quantity

EnergyVelocity Phenomenon

Action

Policy

Charge Level

Situation

Light

Altitude

Memory

Composite

Electronics

Electrical

Solar_cell

Thermal_ctrl_system

Battery

Engine

Computer

<<Metaconcept>> MMO_Thing

State

Instrument

Software_driver
Thrust_Tube

Tank

Electrical_engine

Chemicall_engine

Electric_motor

Instrument_software

BulkheadRadiator

Communication_system

PanelAntenna

Insulator

Magnetometer

MSASI

PWI

MDM

MPPE

KnowLang_reasoner

Temperature

Irradiation

Shield

Knowledge

KB

Heat_flux

APM

Magnetic_field

ECM

HGA

ADPMGA

Extendible_mechanism

Science

Orbit

Gas

Task

MMO_Spacecraft

UHF

SEPM CPM

Thrust_system

Figure 2. MMO Ontology: MMO_Thing Concept Tree

The following is a sample of the KnowLang

specification representing the concepts of the MMO's

propulsion modules: SEPM and CPM. As specified, the

concepts in a concept tree might have properties of other

concepts, functionalities (actions associated with that

concept), states (Boolean expressions validating a specific

state), etc. The IMPL{} specification directive references

to the implementation of the concept in question, i.e., in

the following example SEPMSystem is the software

implementation (presuming a C++ class) of the MMO's

SEPM.

 CONCEPT SEPM {

 CHILDREN {}

 PARENTS { MMO..System }

 STATES {

 STATE Operational {

 this.solar_cells.Functional AND this.gas_tank.Functional AND

 this.el_engine.Operational AND this.control_soft.Functional }

 STATE Forwarding { IS_PERFORMING(this.forward) }

 STATE Reversing { IS_PERFORMING(this.forward) }

 STATE Started { LAST_PERFORMED(this, this.start) }

 STATE Stopped { LAST_PERFORMED(this, this.stop) }

 }

 PROPS {

 PROP solar_cells {TYPE {MMO..Solar_cell} CARDINALITY {200}}

 PROP gas_tank { TYPE {MMO..Tank} CARDINALITY {1}}

 PROP el_engine { TYPE{MMO..Electrical_Engine} CARDINALITY {1}}

 PROP control_soft {TYPE{MMO..Control_Softare} CARDINALITY {1}}

 }

 FUNCS {

 FUNC reverse { TYPE {MMO..Action.ReverseSEPM } }

 FUNC forward { TYPE {MMO..Action.ForwardSEPM } }

 FUNC start { TYPE {MMO..Action.StartSEPM } }

 FUNC stop { TYPE {MMO..Action.StopSEPM } }

 }

 IMPL { MMO.SEPMSystem } }

 CONCEPT CPM {

 CHILDREN {}

 PARENTS { MMO..System }

 STATES {

 STATE Operational {

 this.gas_tank.Functional AND this.chem_engine.Operational AND

this.control_soft.Functional }

 STATE Forwarding { IS_PERFORMING(this.forward) }

 STATE Reversing { IS_PERFORMING(this.forward) }

 STATE Started { LAST_PERFORMED(this, this.stop) }

 STATE Stopped { LAST_PERFORMED(this, this.start) }

 }

 PROPS {

 PROP gas_tank { TYPE {MMO..Tank} CARDINALITY {1} }

 PROP chem_engine{TYPE{MMO.Chemcl_Engine} CARDINALITY {1}}

 PROP control_soft{TYPE{MMO.Control_Software} CARDINALITY{1}}

 }

 FUNCS {

 FUNC reverse { TYPE {MMO..Action.ReverseCPM } }

 FUNC forward { TYPE {MMO..Action.ForwardCPM } }

 FUNC start { TYPE {MMO..Action.StartCPM } }

 FUNC stop { TYPE {MMO..Action.StopCPM } }

 }

 IMPL { MMO.CPMSystem }

 }

As mentioned above, the states are specified as

Boolean expressions. For example, the state Forwarding

is true while the propulsion model is performing the

reverse function. The KnowLang operator

IS_PERFORMING evaluates actions and returns true if an

action is currently performing. Similarly, the operator

LAST_PERFORMED evaluates actions and returns true if

an action is the last successfully performed action by the

concept realization (a concept realization is an object

instantiated from that concept, e.g., the SEPM object or

the CPM object). A complex state, might be expressed as

a function of other states. For example, the Operational

state is expressed as a Boolean function of a few other

states, particularly, states of the concept properties, e.g.,

the CPM is operational if its gas tank is functional, its

chemical engine is operational and its control software is

functional:

this.gas_tank.Functional AND this.chem_engine.Operational AND

this.control_soft.Functional

As mentioned before, states are extremely important

to the specification of goals (objectives), situations, and

policies. For example, states help the KnowLang

Reasoner determine at runtime whether the system is in a

particular situation or a particular goal (objective) has

been achieved.

The MMO_Thing concept tree (see Figure 2) is the

main concept tree of the MMO Ontology. Note that due to

space limitations, Figure 2 does not show all the concept

tree branches. Moreover, some of the concepts in this tree

are "roots" of other trees. For example, the Action

concept, expressing the common concept for all the

actions that can be realized by MMO, is the root of

another concept tree (not shown here) where actions are

grouped by subsystem. The following is a partial

specification of the MMO Spacecraft concept. Note this

concept "is-a" system, i.e., it inherits the System concept.

A system, according to the MMO ontology (see Figure 2)

is a complex concept that joins the properties of four other

concepts: Electronics, Mechanics, Electrical, and

Software. Note that to specify MMO states, we used

metrics. Metrics are intended to handle the monitoring

autonomy requirements (see Section 3.3.3).

CONCEPT MMO_Spacecraft {

 CHILDREN {}

 PARENTS { MMO..System }

 STATES {

 STATE Orbiting {}

 STATE InTransfer {}

 STATE InOrbitPlacement {}

 STATE InJettison {}

STATE InHighIrradiation { MMO..Metric.OutsideRadiation.VALUE > 50 }

STATE InHeatFlux { MMO..Metric.OutsideTemp.VALUE > 150 }

STATE AtPolarOrbit { LAST_PERFORMED(this, this.moveToPolarOrbit) }

STATE ArrivedAtMercury { MMO..Metric.MercuryAltitude.VALUE = 0.39 }

STATE EarthCommunicationLost { MMO..Metric.EarthSignal.VALUE = 0 } }

 PROPS {

 PROP sepm { TYPE {MMO..SEPM} CARDINALITY {1} }

 PROP cpm { TYPE {MMO..CPM} CARDINALITY {1} }

 PROP upper_deck { TYPE {MMO..Deck} CARDINALITY {1} }

 PROP lower_deck { TYPE {MMO..Deck} CARDINALITY {1} }

 PROP thrust_tube {TYPE {MMO..Thrust_Tube} CARDINALITY {1}}

 PROP bulkhead { TYPE {MMO..Bulkhead} CARDINALITY {4} }

….

 }

 FUNCS {

FUNC moveToPolarOrbit { TYPE {MMO..Action.GoToPolarOrbit} }

FUNC waitForInstrFromEarth { TYPE {MMO..Action.WaitForInstructions} }

 }

 IMPL { MMO.MMOSystem }

}

In the KnowLang specification models, we use

concept instances to represent the real domain entities,

e.g., the MMO antenna:

FINAL OBJECT antenna_1 {

 INSTANCE_OF { MMO..Antenna } }

Note that the concept instances are considered as

objects, and are structured in object trees [6]. The latter

are a conceptualization of how objects existing in the

world of interest are related to each other. The

relationships in an object tree are based on the principle

that objects have properties, where the value of a property

is another object, which in turn also has properties.

Therefore, the MMO object trees (due to space

limitations, not shown here) are the realization of concepts

in the MMO ontology domain. To better understand the

relationship between concepts and objects, we may think

of concepts as similar to the OOP classes and objects as

instances of these classes.

3.3.2. Autonomicity. To specify the self-*objectives

(autonomicity requirements), we use goals, policies, and

situations. These are defined as explicit concepts in

KnowLang and for the MMO Ontology we specified them

under the concepts Virtual_entity→Phenomenon→

Knowledge (see Figure 2). Figure 3, depicts a concept tree

with some of the goals (objectives) related to MMO. Note

that most of these goals were directly interpolated from

the goals models (see Section 3.2.1) and more

specifically, from the goals model for self-* objectives

assisting the Orbit-placement Objective (see Section

3.2.2).

<<concept>> Goal

<<concept>> MMOArrive_At_Mercury

<<concept>> MMOStart_Orbit_Placement

<<Metaconcept>> MMO_Goal

<<concept>> MMOOrbit_Placement

<<concept>> MMOSelf_Jettison

<<concept>> MMOSelf-Thermal-Control

<<concept>> MMOSelf-Scheduling

<<concept>> MMOSelf-Low-Thrust-Trajectory

<<concept>> MMOSelf-Protection

<<concept>> MMOSelf_Escape

<<concept>> MMOSelf_Capture

Figure 3. MMO Ontology: MMO_Goal Concept Tree

KnowLang specifies goals as functions of states

where any combination of states can be involved [6]. A

goal has an arriving state (Boolean function of states) and

an optional departing state (another Boolean function of

states). A goal with departing state is more restrictive, i.e.,

it can be achieved only if the system departs from the

specific goal's departing state.

The following code samples present the specification

of three simple goals. Note that their arriving and

departing states are single MMO states, but also can be

Boolean functions involving more than one state. Recall

that the states used to specify these goals are specified as

part of the MMO_Spacecraft concept (see Section 3.3.1).

CONCEPT_GOAL MMOOrbit_Placement {

 SPEC {

 DEPART { MMO_Spacecraft.STATES.InOrbitPlacement }

 ARRIVE { MMO_Spacecraft.STATES.AtPolarOrbit }

}}

CONCEPT_GOAL MMOArrive_At_Mercury {

 SPEC { ARRIVE { MMO_Spacecraft.STATES.ArrivedAtMercury } }

}

CONCEPT_GOAL MMOStart_Orbit_Placement {

 SPEC {

 DEPART { MMO_Spacecraft.STATES.ArrivedAtMercury }

 ARRIVE { MMO_Spacecraft.STATES.InOrbitPlacement }

}}

The following code sample presents the specification

of a goal with an arriving state expressed as a Boolean

function over two MMO_Spacecraft states:

InHighIrradiation and AtPolarOrbit.

CONCEPT_GOAL MMOSelf-Protection {

 SPEC {

 ARRIVE { NOT MMO_Spacecraft.STATES.InHighIrradiation AND

MMO_Spacecraft.STATES.AtPolarOrbit} } }

In order to achieve specified goals (objectives), we

need to specify policies triggering actions that will change

the system states, so the desired ones, required by the

goals, will become effective [6]. All the policies in

KnowLang descend from the explicit Policy concept (see

Figure 2). Note that policies allow the specification of

autonomic behavior (autonomic behavior can be

associated with autonomy requirements). As a rule, we

need to specify at least one policy per single goal, i.e., a

policy that will provide the necessary behavior to achieve

that goal. Of course, we may specify multiple policies

handling same goal (objective), which is often the case

with the self-* objectives and let the system decides which

policy to apply taking into consideration the current

situation and conditions.

The following is a specification sample showing a

simple policy called BringMMOToOrbit - as the name

says, this policy is intended to bring MMO into polar

orbit. As shown, the policy is specified to handle the goal

MMOOrbit_Placement_Done and is triggered by the

situation ArrivedAtMercury. Further, the policy triggers

unconditionally (the CONDITONS {} directive is empty)

the execution of the GoToPolarOrbit action.

CONCEPT_POLICY BringMMOToOrbit {

 SPEC {

 POLICY_GOAL { MMO..MMOOrbit_Placement_Done }

 POLICY_SITUATIONS { MMO..ArrivedAtMercury }

 POLICY_RELATIONS { MMO..Policy_Situation_2 }

 POLICY_ACTIONS { MMO..Action.GoToPolarOrbit }

 POLICY_MAPPINGS {

 MAPPING {

 CONDITIONS {}

 DO_ACTIONS { MMO..Action.GoToPolarOrbit } }

 }

} } }

The following specifies the MMOProtect_spacecraft

policy intended to handle the MMOSelf_Protection

objective with similar probability distribution.

Probabilities are recomputed after every action execution,

and thus the behavior change accordingly.

CONCEPT_POLICY MMOProtect_Spacecraft {

 SPEC {

 POLICY_GOAL { MMO..MMOSelf-Protection }

 POLICY_SITUATIONS { MMO..HighIrradiation }

 POLICY_RELATIONS { MMO..Policy_Situation_3 }

 POLICY_ACTIONS {

MMO..Action.CoverInstruments, MMO..Action.TurnOffElectronics,

MMO..Action.MoveSpacecraftUp, MMO..Action.MoveSpacecraftDown}

 POLICY_MAPPINGS {

 MAPPING {

 CONDITIONS { MMO..Metric.SolarRadiation.VALUE < 90 }

 DO_ACTIONS {

MMO..Action.ShadeInstruments, MMO..Action.TurnOffElectronics }

 }

 MAPPING {

 CONDITIONS { MMO..Metric.SolarRadiation.VALUE >= 90 }

 DO_ACTIONS { MMO..Action.MoveSpacecraftUp }

 PROBABILITY {0.5}

 }

 MAPPING {

 CONDITIONS { MMO..Metric.SolarRadiation.VALUE >= 90 }

 DO_ACTIONS { MMO..Action.MoveSpacecraftDown }

 PROBABILITY {0.4}

 }

 MAPPING {

 CONDITIONS { MMO..Metric.SolarRadiation.VALUE >= 90 }

 DO_ACTIONS {

 GENERATE_NEXT_ACTIONS(MMO..MMO_Spacecraft) }

 PROBABILITY {0.1}

} } } }

As mentioned above, policies are triggered by

situations. Therefore, while specifying policies handling

system objectives, we need to think of important situations

that may trigger those policies. A single policy requires to

be associated with (related to) at least one situation, but

for polices handling self-* objectives we eventually need

more situations. Actually, because the policy-situation

relation is bidirectional, it is maybe more accurate to say

that a single situation may need more policies, those

providing alternative behaviors. To increase the goal-

oriented autonomicity, in this policy’s specification, we

used the special KnowLang operator

GENERATE_NEXT_ACTIONS, which will automatically

generate the most appropriate actions to be undertaken by

the MMO spacecraft. The action generation is based on

the computations performed by a special reward function

implemented by the KnowLang Reasoner. The KnowLang

Reward Function (KLRF) observes the outcome of the

actions to compute the possible successor states of every

possible action execution and grants the actions with

special reward number considering the current system

state (or states, if the current state is a composite state)

and goals. KLRF is based on past experience and uses

Discrete Time Markov Chains [11] for probability

assessment after action executions.

Situations are specified with states and possible

actions. To consider a situation effective (the system is

currently in that situation), its associated states must be

respectively effective (evaluated as true). For example, the

situation ArrivedAtMercury is effective if the MMO

Spacecraft state ArrivedAtMercury is effective.

CONCEPT_SITUATION ArrivedAtMercury {

 CHILDREN {}

 PARENTS {MMO..Situation}

 SPEC {

 SITUATION_STATES { MMO_Spacecraft.STATES.ArrivedAtMercury }

 SITUATION_ACTIONS { MMO..Action.GoToPolarOrbit,

 MMO..Action.WaitForInstructions, MMO..Action.ScheduleNewTask }

}}

The actions define what can be performed once the

system falls in a particular situation. For example, the

ArrivedAtMercury situation has three possible actions:

GoToPolarOrbit, WaitForInstructions, ScheduleNewTask.

3.3.3. Monitoring. The monitoring autonomy

requirement is handled via the explicit Metric concept. In

general, a self-adaptive system has sensors that connect it

to the world and eventually help it listen to its internal

components. These sensors generate raw data that

represent the physical characteristics of the world. In our

approach, we assume that MMO’s sensors are controlled

by a software driver (e.g., implemented in C++) where

appropriate methods are used to control a sensor and read

data from it. By specifying a Metric concept, we introduce

a class of sensors to the KB, and by specifying instances

of that class, we represent the real sensors. KnowLang

allows the specification of four types of metrics [6]:

 RESOURCE - measure resources like capacity;

 QUALITY - measure qualities like performance,

response time, etc.;

 ENVIRONMENT - measure environment

qualities and resources;

 ENSEMBLE - measure complex qualities and

resources where the metric might be a function of

multiple metrics.

 The following is a specification of a metric used to

assist in the specification of states and policy conditions.

CONCEPT_METRIC OutsideRadiation {

 SPEC {

 METRIC_TYPE { ENVIRONMENT }

 METRIC_SOURCE { RadiationMeasure.OutsideRadiation }

 DATA { DATA_TYPE { MMO..Sievert } VALUE { 1 } } } }

3.3.4. Awareness. The awareness autonomy requirements

are handled by the KnowLang Reasoner (see Section 5.2.

in D02-02, v.2.2). However, still we need to specify

concepts and objects that will support the reasoner in its

awareness capabilities. For example, we need to specify

metrics that support both self- and environment

monitoring (see Section 5.3.3). Next by specifying states

where metrics are used we introduce awareness

capabilities for self-awareness and context-awareness.

Finally, with the specification of situations (see Section

5.3.2) we introduce the basis for situational awareness.

Other classes of awareness could draw attention to

specific states and situations, such as operational

conditions and performance (operational awareness),

control processes (control awareness), interaction

processes (interaction awareness), and navigation

processes (navigation awareness).

3.3.5. Resilience, Robustness, Mobility, Dynamicity

and Adaptability. Resilience, robustness, mobility,

dynamicity and adaptability autonomy requirements might

be handled by specifying special soft goals. For example,

the requirement “robustness: robust to communication

losses” and “resilience: resilient to solar radiation”.

These requirements can be specified as soft-goals leading

the system towards “reducing and copying with

communication losses” and “preventing the MMO from

taking self-protective actions if the radiation is relatively

low”. Note that specifying soft goals is not an easy task.

The problem is that there is no clear-cut satisfaction

condition for a soft-goal. Soft-goals are related to the

notion of satisfaction. Unlike regular goals, soft-goals can

seldom be accomplished or satisfied. For soft-goals,

eventually, we need to find solutions that are “good

enough” where soft-goals are satisficed to a sufficient

degree. Thus, when specifying robustness and resilience

autonomy requirements we need to set the desired degree

of satisfaction, e.g., by using probabilities and/or policy

conditions.

Mobility, dynamicity and adaptability might also be

specified as soft-goals, but with relatively high degree of

satisfaction. These three types of autonomy requirements

represent important quality requirements that the system

in question need to meet to provide conditions making

autonomicity possible. Thus, their degree of satisfaction

should be relatively high. Eventually, adaptability

requirements might be treated as hard goals because they

determine what parts of the system in question can be

adapted (not how).

4. Conclusion

In this paper, we presented an Autonomy Requirements

Engineering (ARE) approach intended to solve this

problem. The proposed ARE model uses GORE approach

to elicit and define the system goals, and then applies a

special Generic Autonomy Requirements (GAR) model to

derive and define assistive and often alternative goals

(objectives) the system may pursue in the presence of

factors threatening the achievement of the initial system

goals. Once identified, the autonomy requirements might

be further specified with a proper formal notation. This

approach has been used in a joint project with ESA on

identifying the autonomy requirements for the ESA’s

BepiColombo Mission. In this paper, we presented a case

study where ARE was applied by putting GAR in the

context of space missions to derive autonomy

requirements and goals models incorporating

autonomicity via self-* objectives.

Future work is mainly concerned with further

development of the ARE model and further adaptation of

KnowLang to validate autonomy requirements.

Acknowledgements

This work was supported by ESTEC ESA (contract

No. 4000106016), by the European Union FP7 Integrated

Project Autonomic Service-Component Ensembles

(ASCENS), and by Science Foundation Ireland grant

03/CE2/I303_1 to Lero - the Irish Software Engineering

Research Centre at University of Limerick, Ireland.

References

[1] E. Vassev and M. Hinchey, “The Challenge of Developing

Autonomic Systems”, IEEE Computer, IEEE Computer Society,

43 (12), 2010, pp. 93–96.

[2] A. Van Lamsweerde, “Requirements Engineering in the Year

00: A Research Perspective”, Proceedings of the 22nd IEEE

International Conference on Software Engineering (ICSE-00),

ACM, 2000, pp. 5–19.

[3] R. Grard, M. Novara, and G. Scoon, BepiColombo - A

Multidisciplinary Mission to a Hot Planet, ESA Bulletin, ESA,

103, 2000, pp. 11–19.

[4] E. Vassev and M. Hinchey, “On the Autonomy

Requirements for Space Missions”, Proceedings of the 16th

IEEE International Symposium on Object/Component/Service-

oriented Real-time Distributed Computing Workshops

(ISCORCW 2013), IEEE Computer Society, 2013, to appear.

[5] E. Vassev and M. Hinchey, “Autonomy Requirements

Engineering: A Case Study on the BepiColombo Mission”,

Proceedings of the C* Conference on Computer Science &

Software Engineering (C3S2E '13), ACM, 2013, to appear.

[6] E. Vassev and M. Hinchey, “Knowledge Representation and

Reasoning for Self-adaptive Behavior and Awareness”, TCCI -

Special Issue on ICECCS 2012, Springer, 2013, pending.

[7] ESA, BepiColombo Mercury Mission to be Launched in

2015. Feb 28, 2012, url: http://sci.esa.int/science-e/www/object/

index.cfm?fobjectid=50105

[8] M. Novara, “The BepiColombo ESA cornerstone mission to

Mercury”, Acta Astronautica, 51(1-9), 2002, pp. 387–395.

[9] H. Yamakawa et al., “Current Status of the

BepiColombo/MMO Spacecraft Design”, Advances in Space

Research, 33(12), 2004, pp. 2133-2141.

[10] J. Benkhoff, “BepiColombo: Overview and Latest

Updates”, European Planetary Science Congress, EPSC

Abstracts, 7, 2012.

[11] W. J. Ewens and G. R. Grant, “Stochastic Processes (i):

Poison Processes and Markov Chains”, Statistical Methods in

Bioinformatics, 2nd ed., Springer, 2005.

	Autonomy requirements engineering

