
An Algorithmic Approach to Missing Data Problem in
Modeling Human Aspects in Software Development

Gul Calikli
Data Science Laboratory

Dept. of Mechanical and Industrial Engineering
Ryerson University

gcalikli@ryerson.ca

Ayse Bener
Data Science Laboratory

Dept. of Mechanical and Industrial Engineering
Ryerson University

ayse.bener@ryerson.ca

ABSTRACT
Background: In our previous research, we built defect pre-
diction models by using confirmation bias metrics. Due to
confirmation bias developers tend to perform unit tests to
make their programs run rather than breaking their code.
This, in turn, leads to an increase in defect density. The
performance of prediction model that is built using confir-
mation bias was as good as the models that were built with
static code or churn metrics.
Aims: Collection of confirmation bias metrics may result
in partially “missing data” due to developers’ tight sched-
ules, evaluation apprehension and lack of motivation as well
as staff turnover. In this paper, we employ Expectation-
Maximization (EM) algorithm to impute missing confirma-
tion bias data.
Method: We used four datasets from two large-scale com-
panies. For each dataset, we generated all possible missing
data configurations and then employed Roweis’ EM algo-
rithm to impute missing data. We built defect prediction
models using the imputed data. We compared the perfor-
mances of our proposed models with the ones that used com-
plete data.
Results: In all datasets, when missing data percentage is
less than or equal to 50% on average, our proposed model
that used imputed data yielded performance results that are
comparable with the performance results of the models that
used complete data.
Conclusions: We may encounter the “missing data” prob-
lem in building defect prediction models. Our results in this
study showed that instead of discarding missing or noisy
data, in our case confirmation bias metrics, we can use ef-
fective techniques such as EM based imputation to overcome
this problem.

Categories and Subject Descriptors
D.4.8 [Software Engineering]: Performance—modeling and
prediction; D.m [Software Engineering]: Miscellaneous—
software psychology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE ’13, October 9, 2013, Baltimore, USA
Copyright 2013 ACM 978-1-4503-2016-0/13/10 ...$15.00.

General Terms
Algorithms, Human Factors, Measurement

Keywords
Software defect prediction, handling missing data, Expecta-
tion Maximisation (EM) algorithm, confirmation bias

1. INTRODUCTION
Along with many researchers in the community [16, 21],

we have been building models, which employ data mining
and Artificial Intelligence (AI) techniques to guide software
developers, testers and project managers in decision mak-
ing under uncertainty [22, 34, 35]. Such models use mostly
product and process attributes of software to uncover certain
patterns in software development process. The ultimate goal
is to better allocate resources, to find more defects, improve
product and process quality, to better estimate cost and du-
ration of the project, to prioritize release decisions, and so
forth.

On the other hand, besides product and process attributes,
people aspect is also among the three pillars of software de-
velopment (3Ps). Software development is a domain that is
very much people dependent. Calling it an engineering field,
and making it process driven does not change this fact much.
Therefore, we need to better understand people in this pro-
cess as individuals. In the literature there are prediction
models, which employ people related aspects, such as or-
ganizational complexity [23], developer experience [40], and
social interaction among developers [3]. However, among
people related aspects, the thought processes and problem
solving skills of people also have a significant impact on soft-
ware quality [29, 32]. While solving problems in daily life,
people use heuristics to solve problems. When heuristics fail
to produce a correct judgment, it results in cognitive biases.
Cognitive biases, which are defined as patterned deviations
of human thought from the laws of logic and mathematics,
are a likely cause of software defects [29].

As a starting point to better understand people as individ-
uals, we have so far focused on a specific type of cognitive
bias namely confirmation bias [5, 6, 7, 8]. Confirmation
bias is defined as the tendency of people to seek evidence
that verifies a hypothesis rather than seeking evidence to
falsify a hypothesis and it might show up during daily soft-
ware engineering activities [29]. In our recent research, we
measured the confirmation biases of developers and testers
in four different organizations in Canada and Turkey [5, 6,
7, 8]. For this purpose, we conducted written and interac-

tive tests with 227 subjects consisting of a pilot group of 28
people and 199 software engineers (i.e. developers, testers,
analysts and project managers). As a result of the empiri-
cal analysis based on the outcomes of these tests, we found
a direct correlation between confirmation biases of develop-
ers and the defect proneness of the code [7]. In our recent
research, we also used confirmation bias metrics to build
a defect prediction model and by using only confirmation
bias metrics, we obtained defect prediction results, which
are comparable with the results obtained by using static
code and churn metrics [7]. Confirmation bias is just one
aspect of cognitive biases, and biases are just tiny aspect
of human cognition. Therefore, our results encourage us
to deepen our understanding of people’s cognition to bet-
ter understand the blind spots in software development and
to use people’s cognitive metrics to build various prediction
models.

Data collection in software development organizations has
always been a problem [17, 35]. Collecting data through
interviews and tests from the development team may also be
quite challenging. As a result, during field studies involving
people (i.e., software engineers), we may encounter “missing
data” problem due to one or more of the following reasons:

• Tight Schedules: In many cases, developers have
tight schedules to rush the code for the new release
and therefore they may see the data collection process
as waste of time.

• Evaluation Apprehension: Evaluation apprehen-
sion is a common problem and it is a threat to con-
struct validity [36]. Many people are anxious about be-
ing evaluated, and some people are even phobic about
testing and measurement situations. Due to evaluation
apprehension, tests may not reflect actual performance
subjects leading to noisy data. Moreover, people may
not be willing about taking tests due to their anxiety
about being evaluated, in which case we encounter the
“missing data” problem.

• Staff Turnover: Some of the reused components of
the software may have been coded by developers who
left the company.

• Lack of Motivation: Developers may not see the
direct benefit of participating such filed studies in their
daily work. [17].

One way of tackling “missing data” problem is to use Ar-
tificial Intelligence (AI) techniques. There are various AI
techniques that were used to handle missing data problem
in other domains such as computer vision, robotics, health
care, entertainment, etc. to build models/recommendation
systems [2, 4, 19, 24, 33]. In empirical software engineer-
ing literature, some methods have been employed to handle
missing data problem in especially cost estimation models
[28, 30, 37]. In this paper, instead of ignoring incomplete
data while building defect prediction models, we handle the
“missing data” problem by employing Roweis’ Expectation-
Maximisation [26] algorithm.

The rest of the paper is organized as follows: In section
II we talk about confirmation bias as a human aspect in
software development and the methodology to quantify con-
firmation bias. Section III discusses missing data problem

in building prediction models. Section IV explains our pro-
posed algorithm to handle the missing data problem. Details
of our empirical work are given in Section V. We present
the results of our empirical work in Section VI and address
threats to validity in Section VII. Finally, we conclude and
mention future research directions in Section VIII.

2. CONFIRMATION BIAS AS A HUMAN AS-
PECT IN SOFTWARE DEVELOPMENT

In cognitive psychology, confirmation bias is defined as
the tendency of people to seek for evidence that could verify
their hypotheses rather than seeking for evidence that could
falsify them. The term confirmation bias was first used by
Peter Wason in his rule discovery experiment [38] and later
in his selection task experiment [39].

In Wason’s Rule Discovery Task, subjects are asked to
discover a simple rule about triples of numbers [38]. The
experimental procedure can be explained as follows: Ini-
tially, the subject is given a record sheet on which the triple
“2 4 6” is written and (s)he is told that “2 4 6” conforms to
this rule. In order to discover the rule, the subject is asked
to write down triples together with the reasons of his/her
choice on the record sheet. After each instance, the exam-
iner tells the subject whether the instance conforms to the
rule or not. The subject can announce the rule only when
(s)he is highly confident. If the subject fails to discover the
rule at the first attempt, (s)he can continue giving instances
together with reasons for his/her choice. This procedure
continues iteratively until either the subject discovers the
rule or (s)he wishes to give up. However, if the subject can-
not discover the rule in 45 min, the experimenter aborts the
procedure. Wason designed this experiment in such a way
that subjects mostly shows a tendency to focus on a set of
triples that were most specific than the correct rule. Con-
sequently, the discovery of the correct rule is possible only
by following a hypothesis testing strategy, which includes
tendency to refute hypotheses [25].

In Wason’s Selection Task, the subject is given four cards,
where each card has a letter on one side and a number on the
other side. These four cards are placed on a table showing
D, K, 3, 7, respectively. Given the rule “Every card that has
a D on one side has a 3 on the other side”, the subject is
asked which card(s) must be turned over to find out whether
the rule is true or false [39].

2.1 Confirmation Bias in Relation to Software
Development

Due to confirmation bias, developers may perform only
the unit tests that make their program work rather than
breaking the code. This may lead to an increase in software
defect density. Ideally, during all levels of software testing,
including unit testing, a systematic hypothesis testing pro-
cedure should be followed similar to the one followed by a
scientist performing experiments in his/her laboratory. In
general, scientific inferences are based on the principle of
eliminating hypotheses while provisionally accepting the re-
maining ones. Therefore, similar to a scientist, a software
developer should try test scenarios starting from the ones
that are less likely to fail the code and then move to test
scenarios that aim for the code to fail. In most cases, there
are an infinite number of scenarios that require following a
strategy to select the appropriate tests. Therefore, within

the context of software development and testing, we extend
the definition of confirmation bias to include one or both
of the following: (1) the tendency to verify software code
and (2) the incompetency to apply strategies to try to fail
software code.

2.1.1 Wason’s Rule Discovery Task in Relation to De-
veloper Performance

There are similarities between Wason’s rule discovery task
and functional (black-box) testing that are performed by
software developers to test the functional units of their codes
during unit testing. This similarity is also mentioned by
Teasley et al. [32]. According to the findings of Wason’s
rule discovery task, the subjects have a tendency to select
many triples (i.e., test cases) that are consistent with their
hypotheses and few tests that are inconsistent with them.
Similarly, program testers may select many test cases con-
sistent with the program specifications (positive tests) and a
few that are inconsistent with them (negative tests). More-
over, the number of possible test cases is either infinite or
too large to be tested within a limited amount of time. Con-
sequently, a strategic approach must be followed that covers
both positive and negative test cases while trying to make
the code fail during testing in order to find as many defects
as possible.

2.1.2 Wason’s Selection Task in Relation to Devel-
oper Performance

Wason’s selection task measures the capability of the sub-
ject to use logical rules such as modus ponens and modus
tollens as well as his/her tendency to refute a given state-
ment. In unit testing when covering possible scenarios, log-
ical reasoning is required. Moreover, testing the correctness
of conditional statements in the source code during white
box testing also requires logical reasoning skills. In order
to explain the analogy between Wason’s selection task and
white box testing, we extend the example given by Stacy and
MacMillian [29] as follows: Suppose a developer wants to
make sure that every instance of a class named “Controller”
has been initialized throughout his/her code. In unit testing,
the developer would perform a test that could be thought of
as checking the validity of the following hypothesis: “If an
instance’s class is Controller, then it has been initialized.”
In that case, we can categorize parts of the code that may
need to be tested as follows:

• category #1: The parts of the code with instances of
Controller that may or may not be initialized.

• category #2: The parts of the code with instances of
a class other than Controller that may or may not be
initialized.

• category #3: The parts of the code with initialized
instances whose class is unknown.

• category #4: The parts of the code with uninitialized
instances whose class is unknown.

Logical expression for the hypothesis“If an instance’s class
is Controller, then it has been initialized” would be “if p,
then q”, where p stands for the phrase “an instance’s class is
Controller” and q stands for the phrase “it (class) has been
initialized”. According to modus ponens, given that p is
true, “if p then q” is true only if q is true. Therefore, one

must check all instances of the class “Controller” to guar-
antee that they have all been initialized. This means that
the parts of the code that fall into category #1 must be
tested. However, this is not adequate. Since “if p, then q” is
equivalent to “if not-q, then not-p”, one must also check the
validity of the negated form of the hypothesis, which is“If an
instance has not been initialized, then the class of that in-
stance is not Controller”. According to modus tollens, given
that not-q is true, not-p must also be true. This means that
every instance that has not been initialized must be checked
to find out whether the class of that instance is “Controller”
or not. Therefore, a developer must also test the parts of
the code that fall into category #4.

2.2 Methodology to Quantify Confirmation Bias
In order to perform empirical analysis, it was necessary to

quantify/measure confirmation biases of software engineers.
For this purpose, we developed a methodology to define a
confirmation bias metrics set and to extract metrics values.
Details of our methodology to define and extract confirma-
tion bias metrics can be found in our previous work [7] and
it mainly consists of the following steps:

2.2.1 Preparation of the Confirmation Bias Test
Confirmation bias test consists of written questions and

an interactive question. Interactive question is Wason’s Rule
Discovery Task itself [39], while written test is based on Wa-
son’s Selection Task [38]. Written test consists of two parts:
the first part consists of 7 abstract and 7 thematic questions.
Abstract questions requires logical reasoning skills to be an-
swered correctly, while real life experience and/or memory
cueing [12] can help to answer thematic questions correctly.
Both abstract and thematic questions were prepared based
on the experiments conducted in cognitive psychology liter-
ature experiments to show the exitance of confirmation bias
among people [12, 38, 39]. The second part of the test con-
sists of 9 thematic questions with software development and
testing theme. Initially, we administered confirmation test
to a pilot group consisting of 28 Computer Engineering PhD
candidates. Half of the participants in the pilot group had
at least two years of commercial software product develop-
ment experience. After pilot study, we administered the test
to software engineers in various large scale companies and
Small Medium Enterprises (SMEs). In addition to a pilot
group consisting of 28 subjects, so far we have administered
the confirmation bias test to 199 software engineers (129 de-
velopers, 26 testers, 32 analysts and 12 project managers)
from 4 large scale companies and 3 SMEs.

2.2.2 Formation of the Confirmation Bias Metrics Set
Some of the metrics in the metrics set were inherited from

cognitive psychology literature, while the rest were defined
as a result of the observations we made during the adminis-
tration of the confirmation bias test. The initial metric suite
was formed concurrently with the preparation of the inter-
active question and the set of written questions. Statistical
analysis and feature selection techniques helped to eliminate
metrics that displayed a lower level of significance in the
measurement/quantification of confirmation bias. Our met-
rics set evolved as our research progressed [5, 6, 8] and took
its final form in [7]. Table 1 lists the final set of metrics ob-
tained from interactive question and the written questions.

Table 1: Confirmation Bias Metrics Set
Metric Explanation Test Type
NA Number of rule announcements Interactive
TI Duration of interactive question session (in minutes) Interactive
Indelim/enum Eliminative/enumerative by Wason Interactive
Fnegative Frequency of negative instances Interactive
FIR Immediate rule announcement frequency Interactive
avgLIR Average length of immediate rule announcements Interactive
Instances/T ime Number of instances given per unit time Interactive
UnqReasons/T ime Number of unique reasons given per unit time Interactive
Rules/T ime Number of rules announced per unit time Interactive
UnqRules/T ime Number of unique rules that are announced per unit time Interactive
SAbs Score in abstract questions Written
STh Score in thematic questions Written
SSW Score in the second part of the written question set Written
TTh−Abs Time it takes to answer the first part of the written question set Written
TSW Time it takes to answer the second part of the written question set Written
ABSCompleteInsight Number of abstract questions answered with complete insight Written
ABSPartialInsight Number of abstract questions answered with partial insight Written
ABSNoInsight Number of abstract questions answered with no insight Written
ThCompleteInsight Number of thematic questions answered with complete insight Written
ThPartialInsight Number of thematic questions answered with partial insight Written
ThNoInsight Number of thematic questions answered with no insight Written
NFalsifier Total number of answers with only falsifying tendency Written
NV erifier Total number of answers with only verifying tendency Written
NMatcher Total number of answers with only matching tendency Written
NNone Total number of answers with no defined tendency Written

3. MISSING DATA PROBLEM IN PREDIC-
TION MODELS

Handling missing and noisy data has been a long time
research problem in the field of artificial intelligence and
data mining. Various imputation techniques have been used
to deal with missing data while building prediction models
in domains such as computer vision [4, 19], robotics [33],
health care [24] and software cost/effort estimation [9, 28,
30]. Recommender systems, which are integral part of the e-
commerce web sites such as Netflix and Amazon, and social
web sites such as YouTube are often based on statistical
models that are estimated from data sets containing a very
high portion of missing ratings [2].

In the literature, there are various studies, which attempt
to form a taxonomy of the techniques to handle missing
data [10, 18]. According to the taxonomy proposed by Little
and Rubin [18], we can categorize missing data methods as
follows:

• Procedures Based on Completely Recorded Units:
This method consists of discarding incompletely recorded
parts of the data and only analyze the complete parts
of the data. This method may give satisfactory results
only in the case of small amount of missing data and
it is very likely to lead to biases.

• Weighting Procedures: This method is used in the
case of non-response in survey data. Such methods
are not recommended except in special cases where
the amount of missing information is limited [18].

• Imputation Based Procedures: Among these pro-
cedures, commonly used ones are “hot-deck imputa-

tion”, where recorded units in the sample are used
to substitute values; “mean imputation”, where means
from sets of recorded values are submitted; regression
imputation, where the missing data are estimated by
predicted value from the regression on the known part
of the data. However, as indicated by Dempster [11]
this kind of procedures have some pitfalls, since the
imputed data have substantial biases.

• Model-Based Procedures: These procedures are
based on defining a model for the observed data and
basing inferences on the likelihood or posterior distri-
bution under that model. Advantages of these ap-
proaches are flexibility and the avoidance of ad-hoc
methods.

Another category of methods to handle missing data con-
sists of machine learning techniques such as multi-layer per-
ceptrons (MLP), self-organizing maps (SOM) k-nearest neigh-
bour (kNN) [15, 31], decision trees [27] and Linear Discrim-
inant Analysis (LDA) [1]. Moreover, there are various tech-
niques, which are used to handle missing data in software
cost estimation models such as mean imputation, list-wise
deletion (LD), kNN, and Expectation Maximization (EM)
algorithms. EM algorithms proved to be very powerful tech-
niques [18, 37] leading to highest accuracy results [37].

Among the model based approaches, EM algorithm is con-
ceptually and computationally simple. Unlike ad-hoc inter-
polation methods, the EM algorithm estimates the maxi-
mum likelihood of the missing data directly at each iter-
ation [13]. EM algorithm is so closely tied to the intuitive
idea of filling in missing values and iterating. In other words,
the EM algorithm handles missing data problem as follows:

1) Replace missing values by estimated values, 2) estimate
parameters, 3) re-estimate the missing values assuming the
new parameter estimates are correct, 3) re-estimate param-
eters, and continue iterating until convergence.

In our case, amount of missing data is high, consisting of
the entire confirmation bias metrics for each entry. There-
fore, rather than methods such as discarding missing data,
weighting procedures and imputation based procedures, EM
algorithms are suitable, in order to handle this specific miss-
ing data problem in our hand. However, one of the main
drawbacks of EM algorithms is that it can be very slow to
converge with large fractions of missing data. [18]. In some
cases, the M-step may not have closed form so that the the-
oretical simplicity of the EM Algorithm does not convert to
practical simplicity. In such cases the efficiency can be in-
creased by combining the EM algorithm with various other
techniques [20]. In this research, we employ a variation of
EM algorithm, which is capable of efficiently handling miss-
ing data problem with large data in high dimensions.

4. ROWEIS’ EM ALGORITHM
Compared to other variations of the EM algorithm, which

rely on complete-data computations, Roweis’ EM algorithm
allows simple and efficient computation to handle the miss-
ing data problem while dealing with large data in high di-
mensions (e.g. up to 217 data points in 212 dimensions) [26].
Roweis’ algorithm also inspired Bell et al. to develop their
prize winning matrix factorization algorithm to improve the
accuracy of large recommender systems in the presence of
high amount of missing data such as Netflix Cinematch [2].
For these all these reasons, we decided to employ Roweis’
EM algortihm to deal with developers’ missing confirmation
bias data, while building defect prediction models.

Roweis’ algorithm originally aimed to perform PCA fac-
torization in the presence of missing data. However, the
algorithm can be employed to directly handle the missing
data problem, as it was done by Bell et al. [2]. In order
to explain the fundamentals of Roweis’ algorithm, we must
refer to the goal of PCA, which is to find a mapping from
the data Y in the original d-dimensional space to a new k-
dimensional space where k < d, such that there is minimum
loss of information.

X = wTY (1)

Equation 1 is equivalent to Y = CX, where C is equal to
(wT)−1. We can reformulate equation 1 as X = C−1Y =
C−1IY , where I = (CT)−1CT is the identity matrix. As a
result the, “Expectation” step (E-step) of Roweis’ algorithm
can be formulated as:

X = (CTC)−1CTY (2)

In Equation 2, Y is a dxn matrix of the original data
and X is kxn matrix of the unknown states. The columns
of C will span the first k principle components of Y . The
“Maximization” step (M-step) of the algorithm can be refor-
mulated as in Equation 3:

C = Y XT (XXT)−1 (3)

During the E-step of the EM algorithm, for any data entry
y in the data matrix Y with some of its coordinates (i.e. at-
tributes) missing, a unique pair x∗ and y∗ can be calculated

Figure 1: Pseudocode for Roweis’ EM Algorithm

such that ||Cx − y|| is minimized. In other words, missing
values can be imputed by solving the least squares problem
for ||Cx− y = 0||.

5. EMPIRICAL STUDY

5.1 Datasets
In this study, we used datasets from four different projects

as shown in Table 2. In order to build the defect predic-
tion model, we took into account only the source code files
whose development activities can be traced through the ver-
sion control system. Only these active source code files were
tested by the testing teams. Therefore, project managers
needed guidance about defect-prone parts of these files to
efficiently allocate their testing resources within tight re-
lease deadlines. In Table 2, the total number of main-
tained/developed files, file types and defect rates are listed
for each dataset. The defect rate is the ratio of the number
of defective files to the number of active files.

Dataset ERP belongs to a project group that consists of
six developers who are employees of the largest ISV (in-
dependent software vendor) in Turkey. The software devel-
oped by this project group is an enterprise resource planning
(ERP) software. The snapshot of the software that was re-
trieved from the version management system dates back to
March 2011, and it consists of 3,199 java files. The remaining
three datasets come from the largest wireless telecom oper-

Table 2: Properties of datasets.
Dataset # of Active Files Defect Density # of Developers
ERP 3199 0.07 6
Telecom1 826 0.11 7
Telecom2 1481 0.03 4
Telecom4 63 0.05 10

ator (GSM) company in Turkey. Dataset Telecom1 consists
of four versions of a software product that is used to launch
new campaigns. On average, 545 java files exist in a single
version, and they make modifications to 206 files per version
(also on average). The remaining two datasets come from
the billing and charging system. Among these two projects,
the Telecom2 dataset is relatively a new one, and it consists
of both java and JSP files. The modification and updates
involve all existing source code files in the project as well as
the creation of new files.

Dataset Telecom3 is extracted from the database transac-
tions system. This software package has been developed and
maintained since the inception of the GSM company in 1994
and consists of PL/SQL files. Similar to Telecom1, only the
files that are maintained are taken into account in the defect
prediction analysis.

5.2 Methodology
Our goal in this research is to compare the defect pre-

diction performance of a model that is built with the com-
plete set of confirmation bias metrics with the models that
are built with incomplete set of confirmation bias metrics.
Therefore, we built prediction models for the complete form
of each dataset. For each dataset, we also generated par-
tially missing datasets corresponding to each possible com-
bination of missing developers. This resulted in the forma-
tion of 2N − 2 different missing data configurations. Later,
we imputed each partially missing data by using Roweis’
EM algorithm and used the imputed dataset to build defect
prediction models.

5.2.1 Construction of the Prediction Model
In this study, we used the Näıve Bayes algorithm since

it combines signals coming from different attributes and it
also performs well in software defect prediction [16, 21]. As
shown in Table 2, the datasets are imbalanced; the number
of defective files is far less than the number of defect-free
files. Therefore, we used the under-sampling method, which
is the most suitable sampling method for our datasets [21].
In order to overcome ordering effects, we shuffled the data
ten times, and a ten-fold cross validation was used for each
ordering configuration of input data. Therefore, for each
ordering configuration, we created ten stratified bins: nine
of these ten bins are used as training sets, and the last one is
used as the test set [14]. As a result, during each experiment,
the Näıve Bayes algorithm with under-sampling is executed
10X10 = 100 times for each dataset.

We formed the defect prediction analysis at the granu-
larity level of “file” since defect data were not available at
the granularity level of “method” in either of the two soft-
ware companies. Each file is developed by a group, which
consists of one or more developers. Therefore, in the input
data, which is used to build the prediction models, each file
is represented by the confirmation bias metrics of the corre-

sponding developer group. We used three different operators
to calculate the minimum, maximum and average values of
the metrics of developers who committed code to the same
source file. Assuming that Adi represents the ith confirma-
tion bias metric value of dth developer, d ∈ Gj means that
dth developer is among the group of developers who created
and/or modified jth source file, and and finally, Sop

ji repre-

sents the resulting ith confirmation bias metric value of jth

source file when operator op is applied. op can be one of the
operators min , max or avg which are used to find mini-
mum, maximum and average values of the ith confirmation
bias metric respectively. We can formulate the definition for
the min, max and avg operators as follows:

Smax
ji = max(Adi|∀d ∈ Gj) (4)

Smin
ji = min(Adi|∀d ∈ Gj) (5)

Savg
ji =

∑
d

(Adi|∀d ∈ Gj)/
∑
d

(1|∀d ∈ Gj) (6)

5.2.2 Formation of Datasets with Partially Missing
Data

As we have already stated, our goal in this experiment is to
compare the performance of prediction models that are built
with complete and partially complete data. In order to make
a comparison, we assume that confirmation bias metrics of
a subgroup of developers is unknown. This implies that
confirmation bias metrics of any file created and/or updated
by any member of this subgroup of developers is missing. 2N

is the total number of subsets of the set of developers, where
N is the total number of developers. After we exclude the
empty set and the complete set of developers, we obtain 2N−
2 missing data configurations. In other words, we exclude
the following two cases: 1) Confirmation bias metrics of all
developers are known, and 2)Confirmation bias metrics of
none of the developers are known.

For each incomplete data set, we employ Roweis’ EM Al-
gorithm. The pseudo code, which explains the details of
Roweis’ EM Algorithm, is given in Figure 1. Output of
Roweis’ Algorithm is the imputed form of the incomplete
dataset (i.e., Yimputed = CX). We build defect prediction
models using each of these imputed confirmation bias met-
ric sets as input. This results in the formation of 2N − 2
defect predictors. Prediction performance of each of these
predictors is compared with the performance of the predic-
tion model that is built using the complete confirmation bias
metric set. Percentage of missing data (i.e. missing %) for
each incomplete data set can be calculated as follows:

missing% = Nmissing/(Nmissing + Ncomplete) (7)

In Equation 7, Ncomplete is total number of complete entries
in the data set, and Nmissing corresponds to total number of
entries with missing confirmation bias metric values. Each
entry in the data set corresponds to a source code file and it
consists of the confirmation bias metric values of the group
of developers who created and/or updated that file. Confir-
mation bias metric values of each developer are estimated
from the outcomes of confirmation bias tests. In order to
calculate confirmation bias metric values of each developer
group we use, the operators defined by the Equations 4, 5
and 6. Therefore, missing confirmation bias developers, who
created and/or updated a source code file, automatically im-
plies that confirmation bias metrics for the developer group
of that file are completely missing. In other words, the en-
try in the data set corresponding to that file is completely
missing.

5.2.3 Performance Measurement Criteria
In order to evaluate the performance of the defect predic-

tors built by using different metric suite combinations, we
used the well-known performance measures which are prob-
ability of detection, false-alarm rate and balance [21].

Probability of detection (pd) measures how good a pre-
dictor is in finding defective modules, where modules can
be files, methods or packages depending on the granularity
level. In the ideal case, we expect a predictor to catch all
defective modules/files. This implies that pd is equal to 1.

Probability of false alarms (pf) measures false alarm rates,
when predictor classifies defect-free modules as defective. In
the ideal case, we expect a predictor to classify none of the
defect-free modules as defective. In other words, the value
of pf is equal to 0.

Balance (bal) is formulated to be the Euclidean distance
from the sweet spot (pd = 1 and pf = 0) normalized by the
maximum possible distance to this spot. In practice, the
ideal case where a defect predictor has high probability of
detecting defective files and low probability of false alarm is
very rare. Therefore, we try to balance between pd and pf
values. It is desirable that predictor performance is close to
the sweet spot as much as possible.

bal = 1−
√

(1− pd)2 + (0− pf)2√
2

(8)

Pd and pf values are calculated using Confusion Matrix
that is given in Table 3. In the confusion matrix, TP is the
number of correctly classified defective modules, FP is the
number of non defective modules that are classified to be
defective, FN is the number of defective modules that are
classified to be non-defective and finally TN is the number
of correctly classified non-defective modules. Formulations
for pd and pf in terms of confusion matrix values is given
below:

pd = TP/(TP + FN) (9)

pf = FP/(FP + TN) (10)

6. EMPIRICAL STUDY RESULTS
As mentioned previously, for each dataset we prepared

2N − 2 missing data configurations, where N is the total

Table 3: Confusion matrix TP:True Positives,
FN:False Negatives, FP:False Positives, TN:True
Negatives

Defective Non-Defective
(Predicted) (Predicted)

Defective (Actual) TP FN
Non-Defective (Actual) FP TN

Table 4: Defect Prediction Performance Results
with Missing Data for ERP Dataset

Missing % pd pf balance
0% 0.91 0.31 0.74
(0− 10]% 0.77 0.29 0.68
(10− 20]% 0.74 0.29 0.67
(20− 30]% 0.72 0.29 0.66
(30− 40]% 0.70 0.31 0.65
(40− 50]% 0.67 0.31 0.64
(50− 60]% 0.62 0.16 0.68
(60− 70]% 0.60 0.20 0.63
(70− 80]% 0.64 0.28 0.58
(80− 90]% 0.76 0.46 0.52

number of developers, who work in the project correspond-
ing to that dataset. For each missing data configuration
of a given dataset, we built defect prediction models after
handling missing data by employing Roweis’ EM algorithm.
We also built defect prediction models for the complete form
of that dataset. The results of the corresponding missing
data configurations are presented in Tables 4, 5, 6 and 7 for
datasets ERP, Telecom1, Telecom2 and Telecom3, respec-
tively. In Tables 4, 5, 6 and 7, defect prediction results of
the complete form of the mentioned datasets (i.e., Missing%
= 0) are also given.

As shown in Tables 4-7, we categorized prediction perfor-
mance results of missing data configurations of each dataset
with respect to the corresponding missing data percentage
estimated by Equation 7. For categorization purposes, we
formed nine missing data percentage ranges (n1, n2]. For in-
stance, if a missing data configuration results in 15% missing
data, then the corresponding defect prediction performance
results belong to the missing data percentage range (10, 20],
since 15% is grater than 10% and less than or equal to 20%.
However, there might not be any missing data configura-
tions, which fall within a missing data percentage range
(n1, n2]. In dataset Telecom1, none of the missing data con-
figurations results in a missing data percentage, which falls
within the range 80% − 90%. On the other hand, none of
the missing data configurations in the dataset Telecom2 fall
in the ranges (0, 10], (10, 20], (30, 40] or (70, 80]. This is due
to only 12 missing data configurations (i.e. there are only 4
developers) in dataset Telecom2. This amount is small com-
pared to the total number of missing data configurations in
the rest of the datasets.

As shown in Table 4 imputed form of the dataset ERP
yields lower pd values compared to the pd values obtained
for dataset’s complete form. On the other hand, a decrease
in the false positives (i.e. pf values) is observed especially for
missing data percentage values that are greater then 50%.
A similar trend is observed also in the dataset Telecom1, as
shown in Table 5. The reason why pf values fall as miss-

Table 5: Defect Prediction Performance Results
with Missing Data for Telecom1 Dataset

Missing % pd pf balance
0% 0.66 0.38 0.62
(0− 10]% 0.65 0.33 0.64
(10− 20]% 0.62 0.32 0.63
(20− 30]% 0.60 0.31 0.63
(30− 40]% 0.58 0.31 0.61
(40− 50]% 0.56 0.31 0.58
(50− 60]% 0.50 0.28 0.54
(60− 70]% 0.46 0.26 0.51
(70− 80]% 0.40 0.22 0.48
(80− 90]% – – –

ing data percentage increases can be explained by the un-
even distribution of the work load among developers in both
projects ERP and Telecom1. In the project group of dataset
Telecom1, there were two developers, who contributed 79%
and 87% of the source code, respectively (i.e. top develop-
ers). Moreover, Telecom 1 project members launch a new
release of their software every ten days on average. Taking
all these factors into account, especially these two top devel-
opers had a significant amount of workload, while we were
administering the confirmation bias tests. We had to re-
schedule test dates of these developers 3 and 4 times respec-
tively. Finally, we had the opportunity to administer con-
firmation bias test to these top developers, they were men-
tally tired and reluctant to take the test. Especially, during
the interactive test, one of these developers announced the
same rule by whether exactly repeating the rule itself or
re-formulating/rewording it for 45 minutes. The other de-
veloper terminated the interactive test after having tried for
15 minutes. As a result, the tests did not reflect the ac-
tual performance results of these two developers. Hence, as
the missing percentage introduced in the data increases, the
missing confirmation bias metrics belonging to these two
developers are imputed. These imputed values are closer
to developers’ actual performance, which they would have
exhibited, if they had taken the test under normal circum-
stances. As a result of being mentally exhausted, noise was
introduced to the confirmation bias data. Our results sup-
port that using imputation techniques can also be useful in
order to remove noise in the data.

As it can be seen from the Table 6, the prediction perfor-
mance results obtained for missing data percentages, which
are in the ranges (20− 30]% and (40− 50]% are comparable
with the results obtained for complete data.

In the results of Dataset Telecom3, we observe decrease
in pd and an increase in pf , which is in line with our ex-
pectations as information content degrades in the presence
of missing data. Unlike dataset Telecom1, there is an even
distribution in terms of work loads among developers of Tele-
com3 software project. Moreover, duration between two
consequent releases of this software project is six months,
which is considerably long compared to that of the Telecom1
project, which is only 10 days. Therefore, the developers of
Telecom3 project had enough time to take the confirmation
bias test. In addition to this, during the administration of
the confirmation bias tests, we also observed that these de-
velopers were highly motivated to take the test.

Table 6: Defect Prediction Performance Results
with Missing Data for Telecom2 Dataset

Missing % pd pf balance
0% 0.60 0.35 0.61
(0− 10]% – – –
(10− 20]% – – –
(20− 30]% 0.69 0.47 0.57
(30− 40]% – – –
(40− 50]% 0.60 0.40 0.57
(50− 60]% 0.66 0.52 0.52
(60− 70]% 0.65 0.50 0.51
(70− 80]% – – –
(80− 90]% 0.53 0.42 0.43

Table 7: Defect Prediction Performance Results
with Missing Data for Telecom3 Dataset

Missing % pd pf balance
0% 0.93 0.15 0.85
(0− 10]% 0.94 0.21 0.78
(10− 20]% 0.93 0.22 0.77
(20− 30]% 0.92 0.27 0.72
(30− 40]% 0.91 0.32 0.67
(40− 50]% 0.88 0.25 0.72
(50− 60]% 0.93 0.27 0.72
(60− 70]% 0.89 0.28 0.70
(70− 80]% 0.89 0.34 0.64
(80− 90]% 0.89 0.38 0.60

7. THREATS TO VALIDITY
Methodology for the definition and extraction of confir-

mation bias metrics was defined in our previous research.
Therefore, threats to validity regarding the definition and
extraction of confirmation bias metrics was defined in our
previous paper [7]. In this section, we explain the three ma-
jor threats to the validity of our experiments: construct, in-
ternal and external. To avoid the construct validity threats
in relation to measurement artifacts, we used three popu-
lar performance measures in software defect prediction re-
search: the probability of detection (pd), the probability of
false positives (pf) and balance values (bal). In order to
avoid internal validity threats, we shuffled data ten times
and used ten-fold cross validation for each ordering con-
figuration of the input data to overcome ordering effects.
Moreover, during under-sampling we shuffled each portion
of the dataset ten times (which was used as an input to
the Näıve Bayes algorithm). As a result, the Näıve Bayes
algorithm with under-sampling was executed 100 times for
each dataset during each experiment. In order to externally
validate our results, we used datasets from four different
developer groups, three of which were from a telecommuni-
cation company and one from an ISV specialized in the ERP
domain. Hence, our datasets cover two different software de-
velopment domains. We were also able to collect datasets
from two different project groups within the telecommunica-
tions company. One project group developed software that
is responsible for launching GSM tariff campaigns to its cus-
tomers and mainly consists of user interfaces (Dataset Tele-
com1). The remaining two projects (Datasets Telecom2 and
Telecom3) come from the billing and charging system pri-

marily comprised of database transactions, and there is no
direct interaction with the customer via user interfaces.

8. CONCLUSIONS AND FUTURE WORK
In empirical software engineering, it is crucial to under-

stand how people make decisions and solve problems through-
out the software development process. However, we mostly
encounter the“missing data”problem during empirical stud-
ies, which involve people. In this paper, we proposed a so-
lution to deal with the “missing data” problem.

In our recent research, we have particulary focused on peo-
ple’s decision making process, the cognition. Human cogni-
tion is a complex process to understand and model. We took
into account only one trait of human cognition called confir-
mation bias. The reason why we picked confirmation bias is
two folds: Firstly, it is one of the most researched topics in
cognitive psychology including the grounded work by Wa-
son and its extensive variations over the last sixty years [38,
39]. Secondly, there is empirical evidence showing the ex-
istence of confirmation bias among developers/testers [32].
In our recent research, we used confirmation bias metrics
to build defect prediction models and by using only confir-
mation bias metrics, we obtained defect prediction results,
which are comparable with the results obtained by using
static code and churn metrics [7].

While building models/tools to guide software profession-
als in decision making, in most cases data is partially avail-
able or noisy. We argue that we need to find mechanisms
to deal with this problem effectively, if we would like to
help software engineers to run their operations more effec-
tively and efficiently. In this paper, we employed an EM
algorithm to impute missing confirmation bias metrics. Our
empirical results showed that by using EM algorithm to im-
pute missing confirmation bias metrics values and then by
using the imputed data to build defect prediction models, we
can achieve prediction results that are comparable with the
results obtained by using complete data (i.e., confirmation
bias metrics values).

Our future direction will be to include other cognitive bias
types as well as to investigate different techniques to handle
the “missing data” problem.

9. ACKNOWLEDGMENTS
The authors would like to thank Turgay Aytac and Ayhan

Inal from Logo Business Solutions as well as to Turkcell
A.S. This research is supported in part by NSERC Discovery
Grant No: 402003-2012.

10. REFERENCES
[1] E. Acuna and C. Rodriguez. The treatment of missing

values and its effect in the classifier accuracy. In
Classification, Clustering and Data Mining
Applications, pages 639–648, 2004.

[2] R. Bell, Y. Koren, and C. Volinsky. Modeling
relationships at multiple scales to improve accuracy of
large recommender systems. In Proceedings of the 13th
International Conference on Knowledge Discovery and
Data Mining, pages 95–104. ACM SIGKDD, 2007.

[3] C. Bird, N. Nagappan, H. Gall, B. Murphy, and
P. Devanbu. Putting it all together: Using
socio-technical networks to predict failures. In
Proceedings of the 17th International Symposium on

Software Reliability Engineering, Raleigh, NC, Nov.
2009.

[4] A. M. Buchanan and A. W. Fitzgibbon. Damped
newton algorithms for matrix factorization with
missing data. In Proceedings of the 2005 Conference
on Computer Vision and Pattern Recognition, pages
187–190. IEEE Computer Society, 2005.

[5] G. Calikli, B. Arslan, and A. Bener. Confirmation bias
in software development and testing: An analysis of
the effects of company size, experience and reasoning
skills. In Proceedings of the 22nd Annual Psychology of
Programming Interest Group Workshop (PPIG ’10),
Leganes, Spain, September 2010b.

[6] G. Calikli and A. Bener. Empirical analyses factors
affecting confirmation bias and the effects of
confirmation bias on software developer/tester
performance. In Proceedings of the 5th International
Workshop on Predictor Models in Software
Engineering, New York, NY, USA, 2010.

[7] G. Calikli and A. Bener. Influence of confirmation
biases of developers on software quality: An empirical
study. Software Quality Journal, 21(2):377–416, March
2013.

[8] G. Calikli, A. Bener, and B. Arslan. An analysis of the
effects of company culture, education and experience
on confirmation bias levels of software developers and
testers. In Proceedings of the 32nd International
Conference on Software Engineering (ICSE ’10), pages
187–190, New York, NY, USA, November 2010a.

[9] M. H. Cartwright. Dealing with missing software
project data. In Proceedings of the 9th International
Software Metrics Symposium, pages 154–165,
September 2003.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. Journal of Royal Statistical Society, Series
B, 39(1):1–38, 1977.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Introduction. In in Incomplete Data in Sample
Surveys (Volume 2): Theory and Bibliography, pages
3–10. New York: Academic Press, 1983.

[12] J. S. B. T. Evans, S. E. Newstead, and R. M. Byrne.
Human Reasoning: The Psychology of Deduction.
Lawrence Erlbaum Associates Ltd, East Sussex, UK,
1993.

[13] Z. Ghahramani and M. I. Jordan. Supervised learning
from incomplete data via an em approach. In
Advances in Neural Information Processing Systems,
pages 120–127. Morgan Kaufmann, 1994.

[14] M. A. Hall and G. Holmes. Benchmarking attribute
selection for discrete class data mining. IEEE
Transactions on Knowledge and Data Engineering,
15:1437–1447, 2003.

[15] J. M. Jerez, I. Molina, P. J. Garcia-Laencina, E. Alba,
N. Ribelles, M. Martin, and L. Franco. Missing data
imputation using statistical and machine learning
methods in a real breast cancer problem. Journal of
Artificial Intelligence in Medicine, 50(2):105–115, July
2010.

[16] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.

IEEE Transactions on Software Engineering,
34(4):485–496, July 2008.

[17] T. C. Lethbridge, S. E. Sim, and J. Singer. Studying
software engineers: Data collection techniques for
software field studies. Journal of Empirical Software
Engineering, 10:311âĂŞ341, March 2005.

[18] R. J. A. Little and D. B. Rubin. Statistical Analysis
with Missing Data. John Wiley and Sons, Hoboken,
New Jersey, 2002.

[19] M. Marques and J. Costeira. Estimating 3d from
degegenerate sequences with missing data. Journal of
Computer Vision and image Understanding,
113(2):261–272, February 2009.

[20] G. J. McLachlan and T. Krishnan. The EM Algorithm
and Extensions. John Wiley and Sons, New York,
USA, 1997.

[21] T. Z. Menzies, C. J. Hihn, and K. Lum. Data mining
static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering, 33(1):2–13,
Jan. 2007.

[22] A. Misirli-Tosun, B. Caglayan, A. Mirasky, A. Bener,
and N. Ruffolo. Different strokes for different folks: A
case study on software metrics for different defect
categories. In Proceedings of the 2nd Workshop on
Emerging Trends in Software Metrics, pages 45–51,
Waikiki, Honolulu, HI, May 2011.

[23] N. Nagappan, B. Murphy, and V. R. Basili. The
influence of organizational structure on software
quality: An empirical case study. In Proceedings of the
30th International Conference on Software
Engineering, pages 521–530, Lepizig, Germany, May
2008.

[24] C. M. Norrisa, W. A. Ghalia, M. L. Knudtsona,
C. Naylora, and L. Saundersa. Dealing with missing
data in observational health care outcome analyses.
Journal of Clinical Epidemiology, 53(4):377–383, April
2000.

[25] F. Poletiek. Hypothesis-testing behaviour. Psychology
Press, East Sussex, UK, 2001.

[26] S. Roweis. Em algorithms for pca and spca. In in
Advances in Neural Information Processing Systems,
pages 626–632. MIT Press, 1998.

[27] M. Saar-tsechansky, F. Provost, and R. Caruana.
Handling missing values when applying classification
models. Journal of Machine Learning Research.
Forthcoming.

[28] P. Sentas and L. Angelis. Categorical missing data
imputation for software cost estimation by
multinomial logistic regression. Journal of Systems
and Software, 79(3):404–414, March 2006.

[29] W. Stacy and J. Macmillan. Cognitive bias in software
engineering. Communication of the ACM, 38(6):57–63,
June 1995.

[30] K. Strike, K. E. Emam, and N. Madhavji. Software
cost estimation with incomplete data. IEEE
Transactions on Software Engineering,
27(10):890–908, 2001.

[31] N. Suguna and K. G. Thanushkodi. Predicting missing
attribute values using k-means clustering. Journal of
Computer Science, 7(2):216–224, 2011.

[32] B. F. Teasley, L. M. Leventhal, C. R. Mynatt, and

D. S. Rohlman. Positive test bias in software
engineering professionals: What is right and what’s
wrong. In Proceedings of the 5th Workshop on
Empirical Studies of Programmers., Palo Alto, CA,
December 1993.

[33] A. Thobbi and W. Sheng. Imitation learning of arm
gestures in presence of missing data for humanoid
robots. In Humanoids’10, pages 92–97, 2010.

[34] A. Tosun, B. Turhan, and A. Bener. Ensemble of
software defect predictors: A case study. In
Proceedings of the 2nd International Symposium on
Empirical Software Engineering and Measurement,
Kaiserslautern, Germany, October 2008.

[35] A. Tosun, B. Turhan, and A. Bener. Practical
considerations in deploying ai for defect prediction: A
case study within the turkish telecommunication
industry. In Proceedings of the 5th International
Conference on Predictor Models in Software
Engineering, Vancouver, BC, Canada, May 2009.

[36] W. M. Trochim and J. P. Donnelly. The Research
Methods Knowlege Base. Atomic Dog/Cengage
Learning, 2006.

[37] B. Twala, M. C. , and M. Shepperd. Ensemble of
missing data techniques to improve software
prediction accuracy. In Proceedings of the 28th
International Conference on Software Engineering,
pages 84–89. ACM, 2006.

[38] P. Wason. On the failure to eliminate hypotheses in a
conceptual task. Quarterly Journal of Experimental
Psychology, 12:129–140, June 1968.

[39] P. Wason. Reasoning about a rule. Quarterly Journal
of Experimental Psychology, 20:273–281, June 1968.

[40] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Using
developer information as a factor for fault prediction.
In Proceedings of the 1st International Workshop on
Predictor Models in Software Engineering, pages 1–7,
Feb. 2007.

