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Abstract

We present a linear-time algorithm for deciding first-order (FO) prop-
erties in classes of graphs with bounded expansion, a notion recently intro-
duced by Nešetřil and Ossona de Mendez. This generalizes several results
from the literature, because many natural classes of graphs have bounded
expansion: graphs of bounded tree-width, all proper minor-closed classes
of graphs, graphs of bounded degree, graphs with no subgraph isomorphic
to a subdivision of a fixed graph, and graphs that can be drawn in a fixed
surface in such a way that each edge crosses at most a constant number
of other edges. We deduce that there is an almost linear-time algorithm
for deciding FO properties in classes of graphs with locally bounded ex-
pansion.

More generally, we design a dynamic data structure for graphs belong-
ing to a fixed class of graphs of bounded expansion. After a linear-time
initialization the data structure allows us to test an FO property in con-
stant time, and the data structure can be updated in constant time after
addition/deletion of an edge, provided the list of possible edges to be
added is known in advance and their simultaneous addition results in a
graph in the class. All our results also hold for relational structures and
are based on the seminal result of Nešetřil and Ossona de Mendez on the
existence of low tree-depth colorings.
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1 Introduction

A celebrated theorem of Courcelle [1] states that for every integer k ≥ 1 and
every property Π definable in monadic second-order logic (MSOL) there is a
linear-time algorithm to decide whether a graph of tree-width at most k satisfies
Π. While the theorem itself is probably not useful in practice because of the
large constants involved, it does provide an easily verifiable condition that a
certain problem is (in theory) efficiently solvable. Courcelle’s result led to the
development of a whole new area of algorithmics, known as algorithmic meta-
theorems; see the surveys [17, 18]. For specific problems there is very often
a more efficient implementation, for instance following the axiomatic approach
of [27].

While the class of graphs of tree-width at most k is fairly large, it does
not include some important graph classes, such as planar graphs or graphs of
bounded degree. Courcelle’s theorem cannot be extended to these classes unless
P=NP, because testing 3-colorability is NP-hard for planar graphs of maximum
degree at most four [16] and yet 3-colorability is expressible in monadic second
order logic.

Thus in an attempt at enlarging the class of input graphs, we have to restrict
the set of properties to be tested. One of the first results in this direction was
a linear-time algorithm of Eppstein [10, 11] for testing the existence of a fixed
subgraph in planar graphs. He then extended his algorithm to minor-closed
classes of graphs with locally bounded tree-width [12]. Since testing containment
of a fixed subgraph can be expressed in first order logic by a Σ1-sentence, this
can be regarded as a precursor to first order (FO) property testing. Prior to
our work, the following were the most general results:

• a linear-time algorithm of Seese [28] to test FO properties of graphs of
bounded degree,

• a linear-time algorithm of Frick and Grohe [14] for deciding FO properties
of planar graphs,

• an almost linear-time algorithm of Frick and Grohe [14] for deciding FO
properties for classes of graphs with locally bounded tree-width,

• a fixed parameter algorithm of Dawar, Grohe and Kreutzer [2] for deciding
FO properties for classes of graphs locally excluding a minor, and

• a linear-time algorithm of Nešetřil and Ossona de Mendez [21] for deciding
Σ1-properties for classes of graphs with bounded expansion.

Our main theorem and its corollary generalize these five results. In order to state
them we need a couple of definitions. All graphs and digraphs in this paper are
finite and have no loops or parallel edges. However, digraphs are permitted
to have two edges joining the same pair of vertices in opposite directions. For
an integer r ≥ 0, a graph H is an r-shallow minor of a graph G if H can be
obtained from a subgraph of G by contracting vertex-disjoint subgraphs of radii
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at most r (and removing the resulting loops and parallel edges). A class G
of graphs has bounded expansion if there exists a function f : N → R

+ such
that for every integer r ≥ 0 every r-shallow minor G of a member of G satisfies
|E(G)|/|V (G)| ≤ f(r). A preliminary version of our main theorem can be stated
as follows.

Theorem 1. Let G be a class of graphs with bounded expansion, and let Π be
a first-order property of graphs. Then there exists a linear-time algorithm that
decides whether a graph from G satisfies Π.

In fact, we prove a more general theorem (Theorem 3): there exists a linear-
time algorithm for L-structures “guarded” by a member of G, and we design
several data structures that allow the L-structure to be modified and support
FO property testing in constant time.

Using known techniques we derive the following corollary from Theorem 1.
A class G of graphs has locally bounded expansion if there exists a function
g : N×N → R

+ such that for every two integers d, r ≥ 0, for every graph G ∈ G
and for every vertex v ∈ V (G), every r-shallow minor H of the d-neighborhood
of v in G satisfies |E(H)|/|V (H)| ≤ g(d, r), where the d-neighborhood of v is
the subgraph of G induced by vertices at distance at most d from v. We say
that there exists an almost linear-time algorithm to solve a problem Π if for
every ε > 0 there exists an algorithm to solve Π with running time O(n1+ε),
where n is the size of the input instance.

Corollary 2. Let G be a class of graphs with locally bounded expansion, and let
Π be a first-order property of graphs. Then there exists an almost linear-time
algorithm that correctly decides whether a graph from G satisfies Π.

We announced our results in the survey paper [6]. Dawar and Kreutzer [3]
posted an independent proof of Theorem 1 and a proof of Corollary 2 for the
more general classes of nowhere-dense graphs (introduced below). However, the
proofs in [3] are incorrect. A correct proof of Theorem 1, different from ours,
appears in [17].

Thus it remains an interesting open problem whether Corollary 2 can be
generalized to the more general classes of nowhere-dense graphs. This is of sub-
stantial interest from the point of view of fixed parameter tractability, because
nowhere density of classes of graphs gives a natural limitation (subject to a
widely believed complexity-theory assumption). Indeed, we prove the following
in Theorem 5 below. Let L be a language consisting of one binary relation
symbol and let G be a class of graphs closed under taking subgraphs that is not
nowhere dense. We prove that if testing whether an input graph from G satisfies
a given Σ1-sentence ϕ is fixed parameter tractable when parameterized by the
size of ϕ, then FPT=W[1].

In the rest of this section we introduce terminology and state all our results.
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1.1 Logic theory definitions

Our logic terminology is standard, except for the following. All function symbols
have arity one, and hence all functions are functions of one variable. If L is a
language, then an L-term is simple if it is a variable or it is of the form f(x)
where f is a function symbol and x is a variable. An L-formula is simple if all
terms appearing in it are simple. The rest of our logic terminology is standard,
and so readers familiar with it may skip the rest of this subsection.

A language L consists of a disjoint union of a finite set Lr of relation symbols
and a finite set Lf of function symbols. Each relation symbol R ∈ Lr is associ-
ated with an integer a(R) ≥ 0, called the arity of R. In this paper all function
symbols have arity one.

If L is a language, then an L-structure A is a triple (V, (RA)R∈Lr , (fA)f∈Lf )
consisting of a finite set V and for each m-ary relation symbol R ∈ Lr a set
RA ⊆ V m, the interpretation of R in A, and for each function symbol f ∈ Lf

a function fA : V → V of one variable, the interpretation of f in A. We define
V (A) := V . For example, graphs may be regarded as L-structures, where L is
the language consisting of a single binary relation. We define the size |A| of A
to be |V (A)| +

∑

R∈Lr |RA| + |Lf ||V (A)|. If L contains no function symbols,
then an L-substructure of an L-structure A = (V, (RA)R∈Lr ) is an L-structure
A′ = (V ′, (RA′

)R∈Lr) where V ′ ⊆ V and RA′

⊆ RA ∩ V ′a(R). A language L′

extends a language L if every function symbol of L is a function symbol of L′

and the same holds for relation symbols, which also retain the same arity. If a
language L′ extends a language L, A is an L-structure and A′ is an L′-structure
such that V (A) = V (A′) and A and A′ have the same interpretations of symbols
of L, then we say that A′ is an expansion of A.

Assume that we have an infinite set of variables. An L-term is defined as
follows:

1. each variable is an L-term, and

2. if f ∈ Lf and t is an L-term, then f(t) is an L-term.

Each L-term is obtained by a finite number of applications of these two rules.
We say that an L-term is simple if it is a variable or is of the from f(x) where
f ∈ Lf and x is a variable. A term t appears in a term t′ if either t = t′ or
t′ = f(t′′) for some f ∈ Lf and t appears in t′′.

An atomic L-formula ϕ is either the symbol ⊤ (which represents a tautol-
ogy); or its negation ⊥; or R(t1, . . . , tm), where R is an m-ary relation symbol
of L and t1, . . . , tm are L-terms; or t1 = t2, where t1 and t2 are L-terms. A
term t appears in ϕ if it appears in one of the terms t1, . . . , tm. An L-formula
is defined recursively as follows: every atomic L-formula is an L-formula, and if
ϕ1 and ϕ2 are L-formulas and x is a variable, then ¬ϕ1, ϕ1 ∨ϕ2, ϕ1 ∧ϕ2, ∃x ϕ1

and ∀x ϕ1 are L-formulas. Every L-formula is obtained by a finite application
of these rules. We write t1 6= t2 as a shortcut for ¬(t1 = t2).

A term t appears in an L-formula ϕ1 ∨ ϕ2 if it appears in ϕ1 or ϕ2, and we
define appearance for the other cases analogously. An L-formula is simple if all
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terms appearing in it are simple. A variable x appears freely in an L-formula
ϕ if either ϕ is atomic and x appears in ϕ; or ϕ = ϕ1 ∨ ϕ2 or ϕ = ϕ1 ∧ ϕ2

and x appears freely in at least one of the formulas ϕ1 and ϕ2; or ϕ = ∃y ϕ′ or
ϕ = ∀y ϕ′, x is distinct from y and x appears freely in ϕ′. Occurrences of x in the
formula ϕ not inside the scope of a quantifier bounding x, i.e., those that witness
that x appears freely in ϕ, are called free and the variables that appear freely
in ϕ are also referred to as free variables. If ϕ is a formula, then the notation
ϕ(x1, . . . , xn) indicates that all variables that appear freely in ϕ are among
x1, . . . , xn. An L-sentence is an L-formula such that no variable appears freely in
it. A Σ1-L-sentence is an L-formula of the form ∃x1, . . . , xnϕ(x1, . . . , xn) where
the L-formula ϕ(x1, . . . , xn) is quantifier-free. If ϕ(x1, . . . , xn) is an L-formula
and A is an L-structure, then for v1, . . . , vn ∈ V (A), we define A |= ϕ(v1, . . . , vn)
in the usual way. We denote the length of a formula ϕ by |ϕ|. Finally, a property
Π of L-structures is called a first order property if there exists an L-sentence
ϕ such that every L-structure A has property Π if and only if A |= ϕ. The
property Π is a Σ1-property if ϕ can be chosen to be a Σ1-L-sentence.

1.2 Classes of sparse graphs

The notion of a class of graphs of bounded expansion was introduced by Nešetřil
and Ossona de Mendez in [19] and in the series of journal papers [20, 21, 22].
Examples of classes of graphs with bounded expansion include proper minor-
closed classes of graphs, classes of graphs with bounded maximum degree, classes
of graphs excluding a subdivision of a fixed graph, classes of graphs that can be
embedded on a fixed surface with bounded number of crossings per edge and
many others, see [24]. Many structural and algorithmic properties generalize
from proper minor-closed classes of graphs to classes of graphs with bounded
expansion, see [6, 25].

Nešetřil and Ossona de Mendez [23] defined a class G of graphs to be nowhere-
dense if for every ε > 0 and every integer r there exists a real number K such
that if G is an r-shallow minor of a member of G, then |E(G)| ≤ K|V (G)|1+ε.
(It follows from [23, Corollary 3.3] that this definition is indeed equivalent to
the one given in [23].) It can be shown that every class of graphs with (locally)
bounded expansion is nowhere-dense [23], but the converse is false: the class
G of graphs G with no cycles of length less than ∆(G) is nowhere-dense but it
fails to have bounded expansion; the class of graphs obtained from graphs G in
G by adding a vertex adjacent to all vertices of G is a class of nowhere-dense
graphs that does not have locally bounded expansion. One can also define a
“locally nowhere-dense” class of graphs, but it turns out that such classes are
nowhere-dense [23].

If L is a language, then the Gaifman graph of an L-structure A is the undi-
rected graph GA with vertex set V (GA) = V (A) and an edge between two
distinct vertices a, b ∈ V (A) if and only if there exist R ∈ Lr and a tuple
(a1, . . . , ar) ∈ RA such that a, b ∈ {a1, . . . , ar} or there exists a function f ∈ Lf

such that b = fA(a) or a = fA(b). We say that the relational structure A is
guarded by a graph G if V (G) = V (A) and GA is a subgraph of G. Observe
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that if G belongs to a class of graphs with bounded expansion, then every sub-
graph of G has a vertex of bounded degree, and hence the number of complete
subgraphs of G is linear in |V (G)| by a result of [29]. It follows that the size |A|
of any L-structure A guarded by a graph belonging to a fixed class of graphs
with bounded expansion is O(|V (A)|).

Our model of computation is the standard RAM model with addition and
subtraction as arithmetic operations. An L-structure A is represented in the
straightforward way by listing all elements of V (A), the images of elements
under functions of A, and listing all tuples of all relations of A. However, we
will need to be able to decide in constant time whether a given tuple satisfies
the interpretation of a relation in an L-structure, and we now explain how to do
that for L-structures guarded by d-degenerate graphs. Let d be a fixed integer.
A graph G is called d-degenerate if every subgraph of G has a vertex of degree d
or less. Thus if G is a class of graphs of bounded expansion, then there exists an
integer d such that every member of G is d-degenerate: indeed, every subgraph
G′ of G has average degree at most 2f(0), where f is the function from the
definition of classes of graphs of bounded expansion, and consequently G′ has
a vertex of degree at most 2f(0). Now let A be an L-structure guarded by a
d-degenerate graph G. Since G is d-degenerate, its vertices can be numbered
v1, v2, . . . , vn in such a way that for each i = 1, 2, . . . , n the vertex vi has at
most d neighbors among v1, . . . , vi−1. Now each t-tuple (vi1 , vi2 , . . . , vit), where
i1 < i2 < · · · < it, will be associated with the vertex vit . Then each vertex is
associated with at most d(d−1) · · · (d−t+2) distinct t-tuples. For each relation
we compute the associations at the beginning of the computation, and then we
can answer in constant time queries of the form whether a given t-tuple belongs
to a given relation.

1.3 Our results

We first state versions of Theorem 1 and Corollary 2 for L-structures. Theorem 1
and Corollary 2 are immediate consequences.

Theorem 3. Let G be a class of graphs with bounded expansion, L a language
and ϕ an L-sentence. There exists a linear-time algorithm that decides whether
an L-structure guarded by a graph G ∈ G satisfies ϕ.

Corollary 4. Let G be a class of graphs with locally bounded expansion, L a
language and ϕ an L-sentence. There exists an almost linear-time algorithm
that decides whether an L-structure guarded by a graph G ∈ G satisfies ϕ.

Our approach differs from the methods used to prove the results from [2, 14,
28] mentioned above and is based on a seminal result of Nešetřil and Ossona de
Mendez [20] on the existence of low tree-depth colorings for graphs with bounded
expansion, stated below in a form suitable for our purposes as Theorem 11.

We also consider dynamic setting and design the following data structures,
where the last one can be viewed as a dynamic version of Theorem 3.
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• For every class G of graphs with bounded expansion, an integer d0 and a
language L, we design a data structure such that given a graph G ∈ G on n
vertices and an L-structure guarded by A the data structure is initialized
in time O(n) and supports:

– adding a tuple to a relation of A in time O(1) provided A stays
guarded by G,

– removing a tuple from a relation of A in time O(1),

– answering whether A |= ϕ for a Σ1-L-sentence ϕ with at most d0 vari-
ables in time O(|ϕ|) and outputting one of the satisfying assignments,
and

• for every class G of nowhere-dense graphs, every integer d0, and every
language L we design a data structure such that for every ε > 0, given
a graph G ∈ G on n vertices and an L-structure guarded by A, the data
structure is initialized in time O(n1+ǫ) and supports:

– adding a tuple to a relation of A in time O(nε) provided A stays
guarded by G,

– removing a tuple from a relation of A in time O(nε), and

– answering whether A |= ϕ for a Σ1-L-sentence ϕ with at most d0
variables in time O(|ϕ|) and if so, outputting one of the satisfying
assignments, and

• for every class G of graphs with bounded expansion, a language L and
an L-sentence ϕ, we design a data structure such that that given a graph
G ∈ G on n vertices and an L-structure guarded by A the data structure
is initialized in time O(n) and supports:

– adding a tuple to a relation of A in time O(1) provided A stays
guarded by G,

– removing a tuple from a relation of A in time O(1),

– answering whether A |= ϕ in time O(1).

The first of these data structures is needed in our linear-time algorithm for
3-coloring triangle-free graphs on surfaces [9], also see [7]. The first two data
structures are presented in Theorems 22 and 23 in Section 5, and the third one
is presented in Theorem 26 in Section 6.

1.4 A hardness result

Theorem 1 and Corollary 2 fall within the realm of fixed parameter tractability
(FPT). We say that a decision problem Π parameterized by a parameter t is
fixed parameter tractable if there exists an algorithm for Π with running time
O(f(t)nc), where n is the size of the input, f is an arbitrary function and c is
a constant independent of t. Analogously to the polynomial hierarchy starting
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with the classes P and NP, there exists a hierarchy of classes FPT ⊆ W[1] ⊆
W[2] ⊆ · · · of parameterized problems, where FPT is the class of problems that
are fixed parameter tractable. See e.g. [5, 13, 26] for more details.

Theorem 5. Let G be a class of graphs closed under taking subgraphs. If G
is not nowhere-dense and the problem of deciding Σ1-properties in G is fixed
parameter tractable when parametrized by the length of the formula that defines
the property, then FPT=W[1].

Proof. An r-subdivision of a graph G is the graph obtained from G by subdi-
viding every edge exactly r times. Since G is not nowhere-dense and G is closed
under taking subgraphs, there exists an integer r such that G contains an r-
subdivision of every graph [23]. Since the existence of a subgraph isomorphic
to an r-subdivision of the complete graph Km is a Σ1-property for every m, we
derive from the hypothesis of the theorem that there exists an FPT algorithm
A to decide the existence of an r-subdivision of the complete graph Km in an
input graph from G, where the problem is parameterized by m. This implies
that testing the existence of a complete subgraph of order m is fixed parameter
tractable for general graphs G, because it is equivalent to testing whether the r-
subdivision of G has a subgraph isomorphic to the r-subdivision of Km, and the
latter can be tested using the algorithm A. But testing the existence of a Km

subgraph is a well-known W[1]-complete problem [4], and hence FPT=W[1], as
desired.

Dawar and Kreutzer [3] proved the related result that if G fails to be nowhere
dense in an “effective” way and deciding FO properties in G is fixed parameter
tractable, then FPT=AW[∗].

The paper is organized as follows. In the next section we review results
about classes of graphs with bounded expansion and classes of nowhere-dense
graphs that will be needed later. In Section 3 we prove Theorem 3 and in
Section 4 we use it to deduce Corollary 4. In Section 5 we present the first two
data structures mentioned earlier in this section, and in the final Section 6 we
present the third data structure.

A conference version of this article appeared in [8].

2 Classes of graphs with bounded expansion

In this section, we survey results on classes of graphs with bounded expansion
and classes of nowhere-dense graphs that we need in the paper. Let G be a
graph, and let r ≥ 0 be an integer. Let us recall that a graph H is an r-
shallow minor of G if H can be obtained from a subgraph of G by contracting
vertex-disjoint subgraphs of radii at most r and deleting the resulting loops and
parallel edges. Following Nešetřil and Ossona de Mendez we denote by ∇r(G)
the maximum of |E(G′)|/|V (G′)| over all r-shallow minors G′ of G. Thus ∇0(G)
is the maximum of |E(G′)|/|V (G′)| taken over all subgraphs G′ of G. Since
every subgraph of G has a vertex of degree at most 2∇0(G), we see that G is
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(2∇0(G) + 1)-colorable and that it has an orientation with maximum in-degree
at most 2∇0(G). Clearly, such an orientation can be found in linear time in a
greedy way. Thus we have the following.

Lemma 6. For every class G of graphs of bounded expansion there exists an
integer K such that every graph G ∈ G is K-colorable and has an orientation
with maximum in-degree at most K − 1. Furthermore, a K-coloring of G and
an orientation with maximum in-degree K − 1 can be found in linear time.

Let D be a directed graph, and let D′ be a directed graph obtained from D
by adding, for every pair of vertices x, y ∈ V (D),

• the edge xy ifD has no edge from x to y and there exists a vertex z ∈ V (D)
such that D has an edge oriented from x to z and an edge oriented from
z to y (transitivity), and

• either the edge xy or the edge yx if x is not adjacent to y and there exists
a vertex z such that D has an edge oriented from x to z and an edge
oriented from y to z (fraternality).

We call D′ an oriented augmentation of D and the underlying undirected graph
of D′ the augmentation of D. The following is a result of Nešetřil and Ossona
de Mendez [20, Lemma 5.2]. A self-contained proof may be found in [6].

Theorem 7. There exist polynomials f0, f1, f2, . . . with the following property.
Let D be an orientation of an undirected graph G, let D have maximum in-
degree at most ∆, and let G′ be the augmentation of D. Then ∇r(G

′) ≤
fr(∇2r+1(G),∆) for all r ≥ 0.

Let G be a graph. Consider the following sequence of directed graphs: Let
D0 be an orientation of G with maximum in-degree at most 2∇0(G) + 2 and
assume that we have constructed D0, D1, . . . , Dk−1. (An alert reader may be
wondering why we added the extra factor of +2 to the bound on the in-degree.
The reason for that will become clear in the proof of Lemma 18.) Let Gk be
the augmentation of Dk−1, and let Dk be an oriented augmentation of Dk−1

chosen in such a way that the maximum in-degree of the subgraph formed by
the edges added according to the fraternality rule is at most 2∇0(Gk). This is
possible, because Gk itself has an orientation with maximum in-degree at most
2∇0(Gk). We say that Gk is a k-th augmentation of G. If Dk−1 has in-degree
at most ∆, then Dk has in-degree at most ∆ +∆2 + 2∇0(Gk), and Theorem 7
implies that ∇r(Gk) ≤ fr(∇2r+1(Gk−1),∆) for all r ≥ 0. Thus we arrive at the
following result of Nešetřil and Ossona de Mendez.

Theorem 8. Let G be a class of graphs, let k ≥ 0 be an integer, and let Gk be
the class of all k-th augmentations of members of G.

(i) If G has bounded expansion, then Gk has bounded expansion.

(ii) If G is nowhere dense, then Gk is nowhere dense.
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Please note that statement (ii) above needs that the functions f0, f1, . . .
referenced in Theorem 7 are polynomials. It also follows that if G belongs to a
class of graphs of bounded expansion, then D1, D2, . . . , Dk and Gk can be found
in linear time. We state that as a lemma for future reference.

Lemma 9. For every class G of graphs of bounded expansion and for every fixed
integer k there exists a linear-time algorithm that computes a k-th augmentation
of G ∈ G and the directed graphs D1, D2, . . . , Dk as in the definition of k-th
augmentation.

For nowhere dense graphs we have the following analogue.

Lemma 10. For every nowhere dense class G of graphs and for every fixed
integer k there exists an almost linear-time algorithm that computes a k-th aug-
mentation of G ∈ G and the directed graphs D1, D2, . . . , Dk as in the definition
of k-th augmentation.

An out-branching is a rooted directed tree where every edge is directed away
from the root. A rooted forest F is a directed graph such that every weak
component is an out-branching (recall that a weak component of a directed
graph is any minimal subgraph with no incoming or outgoing edge). A subforest
of F is a subgraph F ′ of F such that if v is a vertex included in F ′, then the
path between the root of the tree of F containing v and the vertex v is also
contained in F ′. The depth of a vertex v of a rooted forest F is the number of
vertices on the path from the root of the tree containing v to the vertex v. The
depth of a rooted forest F is the maximum depth of a vertex of F . Finally, if F
is a rooted forest F , then the subtree of a vertex v is the subgraph of F induced
by all vertices reachable from v.

The closure of a rooted forest F is the undirected graph with vertex-set V (F )
and edge-set all pairs of distinct vertices joined by a directed path in F . The
tree-depth of an (undirected) graph G is the smallest integer s such that G is
a subgraph of the closure of a rooted forest of depth s. For an integer d ≥ 1 a
vertex coloring of a graph G is a low tree-depth coloring of order d if for every
s = 1, 2, . . . , d the union of any s color classes induces a subgraph of G of tree-
depth at most s. In particular, every low tree-depth coloring of order d of G is a
proper coloring of G. If s ∈ {1, 2, . . . , d} and H is the subgraph of G induced by
s color classes, then there exists a rooted forest F of depth at most s such that
H is a subgraph of the closure of F . If for all s and all subgraphs H as above
the forest F can be chosen in such a way that its closure is a subgraph of some
fixed graph G′, then we say that the low tree-depth coloring is G′-compliant,
and we refer to the corresponding forests F as depth-certifying forests.

The following theorem follows from [20, Lemma 6.2]. In the interest of clarity
we give a proof.

Theorem 11. Let G be a graph, let d be an integer, let k := 3(d+ 1)2, let G′

be a k-th augmentation of G, and let c be a proper coloring of G′. Then c is a
G′-compliant low tree-depth coloring of G of order d.
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Proof. Let s ∈ {1, 2, . . . , d} and let H ′ be a subgraph of G induced by the union
of s color classes of the coloring c. If H ′ has tree-depth at least s+1, then let H
be a subgraph of H ′ of tree-depth exactly s+ 1; otherwise, let H := H ′. Since
H is s-colorable, it does not have a complete subgraph on s+1 vertices. By [6,
Lemma 2] applied to every component of H and taking both d and p in that
lemma to be s+ 1 we deduce that H has tree-depth at most s and that it has
a depth-certifying forest whose closure is a subgraph of G′. Thus H = H ′, and
the lemma follows.

In fact, it follows from the proof that the depth-certifying forests can be
found in linear-time, formally as follows.

Theorem 12. Let d ≥ 1 be an integer, and let k := 3(d+ 1)2. There exists an
algorithm with the following specifications:
Input: An integer s ∈ {1, 2, . . . , d}, a graph G and directed graphs D0, D1, . . . , Dk

as in the definition of k-th augmentation, a proper coloring c of the underlying
undirected graph G′ of Dk (so that G′ is a k-th augmentation of G), and a sub-
graph H of G′ that is the union of s color classes of c.
Output: A rooted forest F of depth at most s such that H is a subgraph of the
closure of F and the closure of F is a subgraph of G′.
Running time: O(|V (G′)|+ |E(G′)|).

3 Deciding FO properties in linear time

In this section, we prove Theorem 3. We start with a lemma which allows us to
remove quantifiers from an FO formula (Lemma 17). However, we need more
definitions. Let L be a language and let X be a set of L-terms. AnX-template T
is a rooted forest with vertex set V (T ) equipped with a mapping αT : X → V (T )
such that α−1

T (w) 6= ∅ for every vertex w of T with no descendants. If ϕ is a
quantifier-free L-formula, then a ϕ-template is an X-template where X is the
set of all terms appearing in ϕ. Two X-templates T and T ′ are isomorphic if
there exists a bijection f : V (T ) → V (T ′) such that

• f is an isomorphism of T and T ′ as rooted forests; in particular, w is a
root of T if and only if f(w) is a root of T ′, and

• f(αT (t)) = αT ′(t) for every L-term t ∈ X .

The number of non-isomorphic X-templates of a given depth is finite, as
stated in the next proposition. The proof is straightforward and is left to the
reader.

Proposition 13. For every finite set of terms X and every integer d, there
exists an integer K such that there are at most K non-isomorphic X-templates
of depth at most d.

Let L be a language and letX be a set of L-terms with variables {x1, . . . , xn}.
An embedding of an X-template T in a rooted forest F is a mapping ν : V (T ) →
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V (F ) such that ν(r) is a root of F for every root r of T and ν is an isomorphism
of T and the subforest of F with vertex set ν(V (T )). Let S be an L-structure
guarded by the closure of F , and v1, . . . , vn ∈ V (S). We say that the embed-
ding ν is (v1, . . . , vn)-admissible for S if for every term t(x1, . . . , xn) ∈ X , we
have ν(αT (t)) = t(v1, . . . , vn), where t(v1, . . . , vn) denotes the element of V (S)
obtained by substituting vi for xi in the term t and evaluating the interpreta-
tions in S of the function symbols in the term t (in particular, if xi ∈ X , then
ν(αT (xi)) = vi). We say that the elements v1, v2, . . . , vn (in the order listed) are
compatible with T, F and S if there exists a (v1, . . . , vn)-admissible embedding
of T in F for S. We will need the following lemma.

Lemma 14. Let d ≥ 1 be an integer, let F be a rooted forest of depth at most d,
let L be a language, let ϕ(x1, . . . , xn) be a quantifier-free L-formula, let S be an
L-structure guarded by the closure of F , and let v1, . . . , vn ∈ V (S). Then there
exists a ϕ-template T of depth at most d such that v1, . . . , vn are compatible with
T, F and S.

Proof. Let X be the set of all L-terms that appear in ϕ, and let Y be the set
of all evaluations t(v1, . . . , vn) of all terms t(x1, . . . , xn) from X . Let T be the
smallest subforest of F that includes all vertices from Y and the root of every
component of F that includes an element of Y . For a term t(x1, . . . , xn) in X
let αT (t) := t(v1, . . . , vn), and let ν be the identity mapping V (T ) → V (F ).
Then T is a ϕ-template and ν is a (v1, . . . , vn)-admissible embedding of T in F
for S, as desired.

We remark that in the previous lemma T and ν are unique. If F is a rooted
forest, then a function p : V (F ) → V (F ) is the F -parent function if p(v) is the
parent of v unless v is a root of F ; if v is a root of F , p(v) is set to be equal to
v.

We now show that it can be tested by a quantifier-free formula whether there
exists an admissible embedding.

Lemma 15 (Testing admissibility). Let L be a language that includes a function
symbol p and let X be a finite set of L-terms with variables x1, . . . , xn. If T is
an X-template, then there exists a quantifier-free formula ξT (x1, . . . , xn) such
that for every rooted forest F and every L-structure S guarded by the closure of
F such that the interpretation pS of p in S is the F -parent function, and for
every n-tuple v1, . . . , vn ∈ V (S), the L-structure S satisfies ξT (v1, . . . , vn) if and
only if v1, . . . , vn are compatible with T, F and S.

Proof. Let q : V (T ) → V (T ) be the T -parent function, and let d be the depth
of T . Set ξT (x1, . . . , xn) to be the conjunction of all formulas

• pk(t) = pk
′

(t′) if qk(αT (t)) = qk
′

(αT (t
′)), and

• pk(t) 6= pk
′

(t′) if qk(αT (t)) 6= qk
′

(αT (t
′)),

12



for all pairs of not necessarily distinct terms t, t′ ∈ X and all pairs of integers k
and k′, 0 ≤ k, k′ ≤ d+1 (note that including the formulas with t = t′ allows for
testing the depth of t in F ). Here pk denotes the function p iterated k times.

It is straightforward to show that for v1, . . . , vn ∈ V (S), a (v1, . . . , vn)-
admissible embedding for S of T in F exists if and only if S |= ξT (v1, . . . , vn).

The following lemma is the core of our algorithmic arguments as it allows
replacing an existentially quantified subformula with a quantifier-free formula.
Recall that an L-term is simple if it is a variable or a function image of a variable,
and an L-formula is simple if all terms appearing in it are simple.

Lemma 16. Let d ≥ 0 be an integer, L a language, ϕ(x0, . . . , xn) a simple
quantifier-free L-formula that is a conjunction of atomic formulas and their
negations, and T a ϕ-template. There exist a language L that extends L and a
(not necessarily simple) quantifier-free L-formula ϕT (x1, . . . , xn) such that the
following holds:

• L is obtained from L by adding a function symbol p and finitely many
relation symbols U0, . . . , UK of arity at most one, and

• for every rooted forest F of depth at most d and every L-structure S
guarded by the closure of F , there exists an L-structure S such that S is an

expansion of S, pS is the F -parent function and the relations US
0 , . . . , U

S
K

can be computed (by listing the singletons they contain) in linear time
given F and S, and for all v1, . . . , vn ∈ V (S)

S |= ϕT (v1, . . . , vn) if and only if S |= ϕ(v0, v1, . . . , vn) for some
v0 ∈ V (S) such that v0, v1, . . . , vn are compatible with T, F and S.

Proof. Let T be a ϕ-template of depth at most d, let q be the T -parent function,
and let X be the set of all terms appearing in ϕ. Let ξT be the formula from
Lemma 15 applied to the language obtained from L by adding the function
symbol p. We will have to distinguish two cases depending on whether the
following condition is satisfied:

(1) The tree of T containing the vertex αT (x0) also contains an αT -image of

a term in which another variable appears.

Let K be an integer such that every vertex of T has at most K children
and T has at most K weak components, and let L be obtained from L by
adding a function symbol p and relation symbols U0, . . . , UK . If (1) holds, then
U0, . . . , UK will have arity one; otherwise U0 will have arity one and U1, . . . , UK

will have arity zero. The construction of ϕT (x1, . . . , xn) will proceed in several
steps.

Let t = f(xi) be an L-term appearing in ϕ, for some function symbol f ∈ Lf

and a variable xi with 0 ≤ i ≤ n. (Since ϕ is simple, every L-term appearing
in ϕ is either a variable or of this form.) If αT (t) is neither an ancestor nor a
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descendant of αT (xi), then for every rooted forest F of depth at most d, every
L-structure S guarded by the closure of F and every choice of v1, . . . , vn ∈ V (S),
there is no (v0, . . . , vn)-admissible embedding for S of T into F , because vi and
fS(vi) are adjacent in the Gaifman graph of S; in particular, one is a descendant
of the other in F . Hence, if we set ϕT to ⊥, then ϕT satisfies the conclusion of
the lemma. Since ϕ is simple, we may assume the following:

(2) If the variable xi appears in a term t ∈ X , then αT (t) is an ancestor or

a descendant of αT (xi).

Assume now that αT (x0) is an ancestor of a vertex αT (t), say q
k(αT (t)) =

αT (x0) for k ≥ 0, where t ∈ X is an L-term such that x0 does not appear in t.
In that case let ϕT be the formula obtained from ϕ ∧ ξT by replacing each x0
with the term pk(t). Clearly, for every L-structure S that is an expansion of S
we have S |= ϕT (v1, . . . , vn) if and only if there is a choice of v0 in V (F ) such
that S |= ϕ(v0, . . . , vn) and v0, . . . , vn are compatible with T, F and S. Since ϕ
is simple, we may assume the following:

(3) Every L-term t ∈ X such that αT (t) is contained in the subtree of αT (x0)
is x0 or a function image of x0.

We now define an auxiliary formula ϕ′ to be the formula obtained from ϕ
by replacing all atomic formulas of the form:

• t = t′, where t and t′ are terms such that αT (t) 6= αT (t
′), and

• R(t1, . . . , tm) such that αT (t1), . . . , αT (tm) are not the vertices of a clique
in the closure of T ,

by ⊥.

(4) Let S be an L-structure guarded by the closure of a rooted forest F , and
assume that there exists a (v0, . . . , vn)-admissible embedding ν of T in

F for S. Then S |= ϕ(v0, . . . , vn) if and only if S |= ϕ′(v0, . . . , vn).

We notice that, by the existence of ν, the atomic formulas that got replaced by
the definition of ϕ′ are not satisfied by S. This proves (4).

We will now complete the proof under the assumption that (1) holds. Let
v be the nearest ancestor of αT (x0) in T such that there exists a term tv ∈ X
such that x0 does not appear in tv and v is an ancestor of αT (tv). Note that
v 6= αT (x0) by (3). Let dv be the depth of v in T , dx0

the depth of αT (x0)
and m the number of children of v in T . Let t1, . . . , tm−1 be terms such that
αT (ti), 1 ≤ i ≤ m − 1, are vertices of different subtrees rooted at a child of v
and not containing αT (x0). Observe that the variable x0 does not appear in t1,
. . . , tm−1 by (2).
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Let X0 be the subset of X consisting of the terms mapped by αT to a vertex
of the unique subtree of T that is rooted at a child of v and includes αT (x0).
Note that all terms in X0 contain x0 by (3) and the choice of v. Let T0 be
the template obtained from T by taking the minimal rooted subtree containing
αT (X0) and the root of the tree containing αT (x0), and restricting the function
αT to the terms containing x0. Further, let X ′

0 be the subset of X consisting
the terms t such that αT (t) lies on the path of T from a root to v. Observe that
the construction of ϕ′ implies that

(5) if a term from X0 appears in an atomic formula of ϕ′, then every term

that appears in that atomic formula belongs to X0 ∪X ′
0.

Let ϕ′′(x1, x2, . . . , xn) be the formula obtained from ϕ′ by removing atomic
formulas containing at least one term from X0 and replacing each term t ∈ X ′

0

containing x0 with pk(tv), where k is the integer such that αT (t) = qk(αT (tv)).
It follows from (2) that the variable x0 does not appear in ϕ′′. Let T ′ be the
template obtained from T by taking the minimal subforest containing all the
terms without x0 and restricting the function αT to such terms. The formula
ϕT will then be the conjunction of the following formulas:

(a) the formula ϕ′′(x1, . . . , xn),

(b) the formula ξT ′ from Lemma 15 applied to the template T ′, the language
L and the set of L-terms X \X0, and

(c) the formulas

¬

(

∧

i∈Y

U0(p
ki−1(ti))

)

∨ U|Y |+1(p
k(tv))

for all subsets Y of the set {1, . . . ,m − 1} where k is the integer such
that qk(αT (tv)) = v and ki, i = 1, . . . ,m − 1, are the integers such that
qki(αT (ti)) = v (we note here that a conjunction over an empty set is true
by convention).

This completes the definition of ϕT .

Let F be a rooted forest of depth at most d, and let S be an L-structure
guarded by the closure of F . We need to define an L-structure S such that S is

an expansion of S and pS is the F -parent function. To do so we need to define

the interpretations US
0 , U

S
1 , . . . , U

S
K .

We define the unary relation US
0 (w) to be the set of elements w of F at

depth dv + 1 such that the subtree of w in F contains an element v0 at depth
dx0

(in F ) with the following properties:

• there is a (v0)-admissible embedding of the template T0 in F for S, and
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• all atomic formulas and their negations from the conjunction ϕ′ that have
at least one term from X0 are true with x0 = v0 and the terms t ∈ X ′

0,

say αT (t) = qk(αT (x0)), replaced with (pS)k(v0).

The relation US
0 (w) can be computed as follows: for every element v0 ∈ V (S)

at depth dx0
of F , evaluate all terms in X0 by substituting v0 for x0 and testing

whether the tree T0 and the rooted subtree of F containing the values of the
terms are isomorphic as rooted trees (this can be done in time linear in the size
of T0 which is constant). If they are isomorphic, evaluate the atomic formulas in
the conjunction ϕ′ with at least one term from X0 with the terms in X ′

0 replaced

with (pS)k(v0). If each of them appearing non-negated in ϕ′ is true and each
appearing in a negation is false, add the ancestor w of v0 at depth dv + 1 in F
to U0 (note that w and v0 coincide if their depths are the same). This produces
a valid result by (5). Since the time spent by checking every vertex v0 at depth

dx0
of F is constant, the time needed to compute US

0 is linear.

For i = 1, 2, . . . ,K we define the unary relation US
i (w) to be the set of

elements w of F at depth dv such that US
0 (w

′) is true for at least i children w′

of w. Clearly, the relations US
i (w), 1 ≤ i ≤ K, can be computed in linear time

when the relation US
0 has been determined.

We now verify that the formula ϕT has the desired properties. Let v1,
v2, . . . , vn ∈ V (S). Suppose first that S |= ϕT (v1, . . . , vn). Thus S satisfies
the formulas listed in (a)–(c) above. Since S |= ξT ′(v1, v2, . . . , vn) there exists
a (v1, . . . , vn)-admissible embedding ν′ of T ′ in F for S. Let Y be the set of

all integers i ∈ {1, 2, . . . ,m− 1} such that US
0 (ν

′(αT ′(pki−1(ti)))) holds, where
ki is as in (c) above. Since S satisfies the formula in (c) corresponding to the

set Y we deduce that the vertex ν′(v) has a son w such that US
0 (w) is true

and the subtree of F rooted in w does not contain the value of any term in
X \X0. In particular, the subtree rooted in w contains a vertex v0 such that
ν′ can be extended to a (v0, . . . , vn)-admissible embedding of T in F for S
and all atomic formulas in the conjunction ϕ′ containing a term from X0 are
satisfied with x0 = v0. The atomic formulas of ϕ′ not containing a term from
X0 appear in ϕ′′ and they are satisfied by S since S |= ϕ′′(v1, . . . , vn). Thus
S |= ϕ′(v0, v1, . . . , vn), and hence S |= ϕ(v0, v1, . . . , vn) by (4).

On the other hand, assume that there exists v0 ∈ V (S) such that S |=
ϕ(v0, . . . , vn) and there exists a (v0, . . . , vn)-admissible embedding ν of T into F
for S. From (4) it follows that S |= ϕ′(v0, . . . , vn), and hence S |= ϕ′′(v1, . . . , vn).
The restriction of ν to T ′ shows that S |= ξT ′(v1, . . . , vn). Let w be the son

of ν(v) whose subtree contains v0. It follows that US
0 (w). The existence of w

shows that the formulas listed in item (c) are satisfied by S. Thus S satisfies
all formulas in (a)–(c), and hence it follows that S |= ϕT (v1, . . . , vn). This
completes the proof under the assumption that (1) holds.

The complementary case when (1) does not hold is handled similarly. In this

case, the predicate US
0 is defined for the roots of the trees of F , and the nullary

predicates US
1 , . . . , U

S
K are such that such that US

i is true if US
0 (r) is satisfied
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for at least i roots r of the trees in F .

We now prove a lemma that forms the core of our first algorithm.

Lemma 17 (Quantifier elimination lemma). Let d ≥ 0 be an integer, L a lan-
guage and ϕ(x1, . . . , xn) a simple L-formula of the form ∃x0 ϕ′(x0, . . . , xn) such
that ϕ′(x0, . . . , xn) is a quantifier-free L-formula with free variables x0, . . . , xn.
There exist a language L and a quantifier-free (not necessarily simple) L-formula
ϕ such that the following holds:

• L is obtained from L by adding a function symbol p and finitely many
relation symbols of arity one, and

• for every rooted forest F of depth at most d and every L-structure S
guarded by the closure of F , there exists an L-structure S such that S
is an expansion of S and for every v1, . . . , vn ∈ V (S),

S |= ϕ(v1, . . . , vn) if and only if S |= ϕ(v1, . . . , vn)

where pS is the F -parent function and the interpretations in S of the new
relation symbols can be computed (by listing the singletons they contain)
in linear time given F and S.

Proof. Let d, L and ϕ′ be fixed. We assume without loss of generality that the
formula ϕ′ is in the disjunctive normal form and all the variables x0, . . . , xn
appear in ϕ′. Let F be a rooted forest of depth at most d, and let S be an
L-structure.

The proof proceeds by induction on the length of ϕ′. If ϕ′ is a disjunction
of two or more conjunctions, i.e., ϕ′ = ϕ1 ∨ ϕ2, we apply induction to the
formulas ∃x0ϕ1 and ∃x0ϕ2. We obtain languages L1 and L2, and for i = 1, 2 an
Li-formula ϕi and an Li-structure Si. We assume that the new unary relation

symbols of L1 and L2 are distinct and set L
r
= Lr

1∪L
r
2, L

f
= Lf

1 = Lf
2 = Lf∪{p}

and ϕ = ϕ1 ∨ ϕ2. We define the L-structure S by V (S) = V (S) and by taking
the interpretations of symbols from S1 and S2.

Thus in the remainder of the proof we may assume that ϕ′ is a conjunction.
Let v1, v2, . . . , vn ∈ V (S). By Lemma 14 we have S |= ϕ(v1, . . . , vn) if and
only if there exist v0 ∈ V (S) and a ϕ′-template T of depth at most d such
that S |= ϕ′(v0, . . . , vn) and there exists an embedding of T into F that is
(v0, . . . , vn)-admissible for S. By Proposition 13 the number of ϕ′-templates of
depth at most d is bounded by a function of ϕ and d. By Lemma 16, for every
ϕ′-template T of depth at most d, there exist a language LT , a quantifier-free
LT -formula ϕT and an LT -structure ST that is an expansion of S such that
for every v1, . . . , vn ∈ V (S), ST |= ϕT (v1, . . . , vn) if and only if there exists v0
such that there is a (v0, v1, . . . , vn)-admissible embedding of T in F for S and
S |= ϕ′(v0, v1, . . . , vn). We may assume that for distinct ϕ′-templates T and T ′,
if a function or a relation symbol belongs both LT and LT ′ , then it belongs to L.
Let L be the language consisting of all function and relation symbols of all LT ,
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let the formula ϕ be obtained as the disjunction of the L-formulas ϕT , where
the disjunction runs over all choices of ϕ′-templates T , and let the L-structure
S be obtained by taking the union of the interpretations of all ST . Then L, ϕ
and S are as desired.

In order to apply Lemma 17, the given formula needs to be simple but the
lemma produces a formula that need not be simple. The following lemma copes
with this issue.

Lemma 18. Let G be a class of graphs of bounded expansion, L a language
and ϕ(x1, . . . , xn) an L-formula with q quantifiers. There exist a class G′ of
graphs of bounded expansion, a language L′ that extends L, and a simple L′-
formula ϕ′(x1, . . . , xn) with q quantifiers with the following properties. For
every L-structure A guarded by a graph G ∈ G, there exists an L′-structure
A′ guarded by a graph G′ ∈ G′ such that V (G) = V (G′), A′ is an expan-
sion of A and A |= ϕ(v1, . . . , vn) if and only if A′ |= ϕ′(v1, . . . , vn) for any
v1, . . . , vn ∈ V (A) = V (A′). Moreover, an L′-structure A′ and graph G′ satis-
fying the above specifications can be computed in time O(|V (G)|).

Proof. We may assume that ϕ is not simple, for otherwise there is nothing to
prove. Let f and g be function symbols of L such that the L-term g(f(t))
appears in ϕ for some L-term t. Let G1 be the class of all first augmentations
of members of G; then G1 has bounded expansion by Theorem 8. Let L1 be
the extension of L obtained by adding a new function symbol h, and for an
L-structure A we define an L1-structure A1 as the expansion of A, where the
interpretation of h is defined by hA1(v) = gA(fA(v)) for all v ∈ V (A). Let ϕ1

be obtained from ϕ by replacing all appearances of g(f(t)) by h(t). Then clearly
A |= ϕ(v1, . . . , vn) if and only if A1 |= ϕ′(v1, . . . , vn) for all v1, . . . , vn ∈ V (A) =
V (A1). Let D′ be an orientation of G of maximum in-degree 2∇0(G), and let
D be obtained from D′ by adding all directed edges with head v and tail fA(v)
and all directed edges with head v and tail gA(v). Since the orientation D′ can
be obtained in a greedy way, this step can be performed in time O(|V (G)| +
|E(G)|) = O(|V (G)|). Let G1 be the augmentation of D. Then G1 is a first
augmentation of G (here we make use of the term “+2” in the definition of an
augmentation) and A1 is guarded by G1. By repeating this construction at most
k times, where k is the maximum number of function compositions appearing
in ϕ, we arrive at a desired formula ϕ′. Since each step requires linear time, the
total running time is linear, as desired.

We are now ready to prove Theorem 3; we prove it in a stronger form needed
in Section 4.

Theorem 19. Let G be a class of graphs with bounded expansion, L a language
and ϕ(x1, . . . , xn) an L-formula. There exist a language L, class G of graphs
with bounded expansion, a quantifier-free L-formula ϕ(x1, . . . , xn) and an algo-
rithm A such that the following holds. Given an L-structure A guarded by a
graph G ∈ G the algorithm A finds a graph G ∈ G with V (G) = V (G) and an
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L-structure A guarded by G such that V (A) = V (A) and for all v1, . . . , vn ∈
V (A) = V (A)

A |= ϕ(v1, . . . , vn) if and only if A |= ϕ(v1, . . . , vn).

The running time of the algorithm A is O(|V (G)|). In particular, if n = 0, the
algorithm decides whether A |= ϕ.

Proof. It suffices to show the existence of L, G, ϕ and A satisfying the specifi-
cations of the theorem, except that rather than being quantifier-free, ϕ has one
fewer quantifier than ϕ. A proof of the theorem is then obtained by iterating
this argument.

If ϕ is quantifier-free, then there is nothing to prove. Hence, we may and will
assume that ϕ contains at least one quantifier. By Lemma 18 we may assume
that ϕ is simple.

Since ∀x ψ is equivalent to ¬∃x ¬ψ, we can assume that ϕ contains a subfor-
mula ξ(x1, x2, . . . , xN ) of the form ∃x0ψ(x0, x1, . . . , xN ), where ψ is a formula
with variables x0, x1, . . . , xN and with no quantifiers. We will define a desired
formula by replacing the subformula ξ of ϕ by a different formula.

LetX be the set of all L-terms that apear in ξ, let k := 3(|X |2+1)2, and let G
be the class of all k-th augmentations of members of G. By Theorem 8 the class G
has bounded expansion. By Lemma 6 there exists an integer K such that every
member of G is K-colorable. Let L′ be the language obtained from L by adding
K unary relation symbols C1, C2, . . . , CK , and for each function symbol f of L
anotherK unary relation symbols Cf,1, Cf,2, . . . , Cf,K . (Their interpretations in
a structure A will be used to encode a givenK-coloring of the graph guardingA.)
Let Λ be the set of all mappings X → {1, 2, . . . ,K}, and let α ∈ Λ. For a term
t ∈ X of the form xi let Et := Cα(t)(t), and for t ∈ X of the form f(xi) let Et :=
Cf,α(t)(xi). Let ϕα denote the L′-formula

∧

t∈X Et, and let ξα(x1, x2, . . . , xN )

denote the formula ∃x0(ψ(x0, x1, . . . , xN )∧ϕα(x0, x1, . . . , xN )). Let Lα and ξα
be a language and a formula obtained by applying Lemma 17 to the language
L′ and the formula ξα. Finally, let L be the language obtained by taking the
union of all function and relation symbols of L and all the languages Lα, and
let ϕ be the L-formula obtained from ϕ by replacing the subformula ξ of ϕ by
the disjunction of ξα over all α ∈ Λ. We will show that ϕ is as desired.

To prove this let G ∈ G, let A be an L-structure guarded by G, let G ∈ G
be a k-th augmentation of G, let D1, D2, . . . , Dk be as in the defintion of k-th
augmentation, and let c be a K-coloring of G. The coloring c exists by our
choice of K, and G,D1, D2, . . . , Dk and c can be computed in linear time by
Lemmas 6 and 9. Let A′ be the L′-structure defined by saying that it is an
expansion of A, that CA′

i consists of all v ∈ V (A′) such that c(v) = i, and that

CA′

f,i consists of all v ∈ V (A′) such that c(fA′

(v)) = i.

(1) For all v1, v2, . . . vN ∈ V (A) we have A |= ξ(v1, v2, . . . vN ) if and only if

there exists α ∈ Λ such that A′ |= ξα(v1, v2, . . . vN ).
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To prove (1) we note that the “if” part is clear. To prove the “only if” part let
A |= ξ(v1, v2, . . . vN ). Thus there exists v0 ∈ V (A) such thatA |= ψ(v0, v1, . . . vN ).
Let t ∈ X . If t is a variable xi, then let α(t) := c(vi), and if t is of the form f(xi)
for a function symbol f , then let α(t) := c(fA(vi)). Then A

′ |= ξα(v1, v2, . . . vN ),
as desired. This proves (1).

For α ∈ Λ let Aα be an L′-structure defined as follows. We let V (Aα) be
the set of all v ∈ V (A) such that c(v) ∈ α(X). For a function symbol f in the
language L′ let fAα(v) := fA(v) if both c(v) and c(fA(v)) belong to α(X), and
let fAα(v) := v otherwise. For a relation symbol R in L′ of arity l let RAα be
the subset of RA consisting of all l-tuples whose every element belongs to α(X).

(2) For all α ∈ Λ and all v1, v2, . . . vN ∈ V (A) we have A′ |= ξα(v1, v2, . . . vN )
if and only if Aα |= ξα(v1, v2, . . . vN ).

To prove (2) we first notice that A′ |= ϕα(v0, v1, . . . vN ) andAα |= ϕα(v0, v1, . . . vN )
are both equivalent to c(vi) = α(xi) for every L-term in X of the form xi and
c(fA′

(vi)) = α(f(xi)) for every L-term in X of the form f(xi), in which case
c(vi) ∈ α(X) for every L-term in X of the form xi and fA′

(vi) = fAα(vi)
and c(fA′

(vi)) ∈ α(X) for every L-term in X of the form f(xi). So, A′ |=
ϕα(v0, v1, . . . vN ) if and only if Aα |= ϕα(v0, v1, . . . vN ) (note that if fA′

(vi) 6=
fAα(vi) for some i, then Ef(xi) fails for both A

′ and Aα). We deduce that (2)
holds.

For α ∈ Λ let Hα be the subgraph of G induced by vertices v such that
c(v) ∈ α(X). By Theorem 11 there exists a rooted forest Fα of depth at most
|X | such that Hα is a subgraph of the closure of Fα and the closure of Fα is
a subgraph of G. Thus Aα is guarded by the closure of Fα. By Theorem 12
the rooted forest Fα can be found in linear time, because |E(G′)| = O(|V (G)|)
by Theorem 7. Let Aα be an Lα-structure as in Lemma 17 applied to the L′-
structure Aα and rooted forest Fα. Then Aα is guarded by the closure of Fα

and

(3) for all α ∈ Λ and all v1, v2, . . . vn ∈ V (A) we have Aα |= ξα(v1, v2, . . . vn)
if and only if Aα |= ξα(v1, v2, . . . vn).

Let A be an L-structure defined as follows. Let f be a function symbol

from L. If f belongs to L, then fA(v) := fA(v), and if f belongs to Lα, then

fA(v) := fAα(v). We define the interpretations of relation symbols analogously.
Since Aα is guarded by the closure of Fα and the closure of Fα is a subgraph of
G, we deduce that A is guarded by G.

(4) For all v1, v2, . . . vn ∈ V (A) we have A |= ξ(v1, v2, . . . vn) if and only if

there exists α ∈ Λ such that Aα |= ξα(v1, v2, . . . vn).

The proof of (4) is clear.

It follows from claims (1)–(4) that A is as desired, and the construction
shows that it can be computed from G and A in time O(|V (G)|).
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4 Deciding FO properties in graphs with locally

bounded expansion

The following theorem uses a result of Gaifman [15] that FO properties are local
in a certain sense. The theorem is implicit in [14] (see also [17]).

Theorem 20. Let G be a class of graphs and for an integer d ≥ 0 let Gd be the
class of graphs consisting of all induced subgraphs of d-neighborhoods of graphs
in G. Let Gd have bounded expansion for all integers d ≥ 0. Furthermore, let
L be a language and L′ the language obtained from L by adding a new binary
relation symbol. Suppose that for every d and every L′-formula ϕ′(x), there
exists a linear-time algorithm that lists all elements v of an input L′-structure
guarded by a graph from Gd that satisfy ϕ′(v). Then, for every L-sentence ϕ
there exists an almost linear-time algorithm that decides whether an input L-
structure guarded by a graph from G satisfies ϕ.

Proof. We show how to modify the proof of [14, Theorem 1.2] to yield a proof of
this theorem. The proof of [14, Theorem 1.2] relies on Lemma 4.4, Corollary 6.3,
Corollary 8.2 and Lemma 8.3 from the same paper, and those assume that G
has “bounded local tree-width”. In our context Lemma 4.4 would be needed
to justify that for every L-formula ψ(x) and every integer d ≥ 0 there exists a
linear-time algorithm that given an L-structure A guarded by a member of Gd

computes the set of all v ∈ V (A) such that A |= ψ(v). This follows from the
hypothesis of the theorem instead. (Here we do not need the extension L′.)

Corollary 6.3 and Corollary 8.2 apply in our setting without any alterations
with the same proofs, using the fact that for every fixed integer d every graph
G ∈ Gd has at most O(|V (G)|) edges by Lemma 6.

Finally, in Lemma 8.3, we need to be able to compute, in linear time for
every fixed r, given an L-structure A and v ∈ V (A), the set of elements of
V (A) at distance at most r in the Gaifman graph of A. This can be derived
by applying the hypothesis of the theorem to the L′-structure A′, where A′ is
the expansion of A defined by saying that the interpretation of the new binary
relation is adjacency in the Gaifman graph of A. This relation can be computed
in linear time. To carry out the last step of the algorithm of Lemma 8.3 we
apply Theorem 3.

Proof of Corollary 4. Let G, L and ϕ be as in Corollary 4, and let Gd be as in
Theorem 20. In particular, the class Gd has bounded expansion for every d.
By Theorem 19, for every integer d and every L′-formula ϕ′(x), there exist a
language L′′ and a quantifier-free L′′-formula ϕ′′(x) such that every L′-structure
A guarded by a graph from Gd can be transformed in linear time to an L′′-
structure A′ with V (A) = V (A′) such that A |= ϕ′(v) if and only if A′ |= ϕ′′(v)
for every v ∈ V (A). In particular, it is possible to list in linear time all v ∈ V (A)
such that A′ |= ϕ′′(v) since evaluating the latter formula requires constant time.
So, the assumptions of Theorem 20 are satisfied.

21



5 Dynamic data structures for Σ1-queries

In this section, we provide two data structures for answering Σ1-queries. The
update time is constant but the price we have to pay is that the graph that
guards the relational structure must be fixed before the computation starts.
Before we start our exposition, we need to introduce more definitions.

Let L be a language with no function symbols. For an integer k ≥ 1, a
k-labelled L-structure is a pair (S, σ), where S is an L-structure and σ is an
injective mapping dom(σ) → V (S), where dom(σ) ⊆ {1, 2, . . . , k − 1}.

The trunk of a k-labelled L-structure (S, σ) is the k-labelled L-structure
(S′, σ), where S′ is obtained from S by removing all tuples (v1, . . . , vt) with
v1, . . . , vt ∈ dom(σ) from each relation of S. A k-labelled L-structure (S, σ) is
hollow if it is equal to its trunk. Two k-labelled L-structures (S1, σ1) and (S2, σ2)
are k-isomorphic if dom(σ1) = dom(σ2) and their trunks are isomorphic by way
of an isomorphism f : V (S1) → V (S2) such that σ2(i) = f(σ1(i)) for every
i ∈ dom(σ1). In particular, every k-labelled L-structure is k-isomorphic to its
trunk.

Suppose now that an L-structure S is guarded by the closure of a rooted tree
T . For a vertex v of T at depth d, let PT (v) denote the vertex-set of the path
from the root of T to v and T 〈v〉 the vertex-set of the subtree of v (including
v itself). Then, S〈v〉 denotes the set of all d-labelled L-structures (S′, σ) such
that S′ is an induced substructure of S with elements only in PT (v)∪ T 〈v〉 and
dom(σ) consists of all integers i ∈ {1, 2, . . . , d− 1} such that V (S′) includes an
element at depth i, in which case σ(i) is equal to that element.

We are now ready to prove a lemma that contains the core of our data
structure.

Lemma 21. Let L be a language with no function symbols, d0 a fixed integer and
F a rooted forest of depth at most d0. There exists a data structure representing
an L-structure S guarded by the closure of F such that

• the data structure is initialized in linear time,

• the data structure representing an L-structure S can be changed to the one
representing an L-structure S′ by adding or removing a tuple from one of
the relations in constant time provided that S′ is guarded by the closure of
F , and

• the data structure decides in time bounded by O(|ϕ|) whether a given Σ1-L-
sentence ϕ with at most d0 variables is satisfied by S, and if so, it outputs
one of the satisfying assignments.

Proof. For every vertex v of F at depth d, we will store the following two lists:

• for every relation symbol R of L the list of all tuples τ ∈ RS such that τ
includes v and all elements of τ belong to PT (v), where T is the tree of F
containing v, and
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• the list of all (non-d-isomorphic) d-labelled hollow L-structures with at
most d0 elements that are d-isomorphic to a d-labelled L-structure con-
tained in S〈v〉.

Since there are only finitely many non-d-isomorphic d-labelled L-structures with
at most d0 elements for every d ≤ d0, the length of each list of the second type
is bounded by a constant depending only on d0 and L. If v is a non-leaf vertex
of F , there will be a third list associated with v:

• the list of all (non-isomorphic) (d+1)-labelled hollow L-structures (S′, σ)
with at most d0 elements that are isomorphic to a member of the second
list of at least one child of v; for each such (S′, σ), there will be stored the
list of all children of v whose second list contains a member isomorphic to
(S′, σ).

In addition, there will be a global list of all (non-isomorphic) L-structures with
at most d0 elements that appear as induced L-substructures in S.

Let us describe how all these lists are initialized. The initialization of the
first type of list is trivial: just put each tuple contained in one of the relations
to the list of its element that is farthest from the root. This can clearly be done
in constant time per tuple.

Initialization of other types of lists is more difficult. Fix a tree T of F . We
proceed from the leaves towards the root of T . Let v be a vertex of T at depth d.
If v is a leaf of T at depth d, then the second list of v contains only those hollow
d-labelled L-structures (S′, σ) with V (S′) ⊆ PT (v) such that if v ∈ V (S′), then
S′ contains relations with their tuples from S containing v and elements from
V (S′), and if v 6∈ V (S′), then all relations of S′ are empty. This can be done in
linear time as for each tuple in every relation one determines whether its element
of the largest depth is a leaf and, if so, it includes the tuple to the structures at
that leaf.

Suppose now that v is not a leaf of T . The third list associated with v
can be initialized by merging the second type of lists of children of v. (This
needs time linear in the number of the children, but the sum of the numbers of
children of all vertices is linear in |T |. This will require linear time for the whole
structure since the number of non-d-isomorphic d-labelled hollow L-structures
with at most d0 elements is bounded, and thus the size of each list of the second
type is bounded.) We next describe how it can be decided whether a d-labelled
hollow L-structure (S′, σ) should be contained in the list of v of the second
type. Assume that S〈v〉 contains a d-labelled hollow L-structure (S′′, σ′′) that
is d-isomorphic to (S′, σ).

Then V (S′′) can be decomposed into disjoint subsets V0, V1, . . . , Vm such
that V0 = V (S′′) ∩ PT (v), each of the sets Vi, i = 1, . . . ,m, is fully contained
in a subtree of a child vi of v, and different subsets V1, . . . , Vm are contained in
different subtrees. Observe that each tuple of a relation of S′′ has its elements
in V0 ∪ Vi for some i = 1, . . . ,m. Moreover, the only tuples in such relations
with all elements from V0 are those that contain v.
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Hence, the existence of (S′′, σ′′) can be tested by considering all partitions
of V (S′) into disjoint subsets V0, V1, . . . , Vm such that σ(dom(σ)) ⊆ V0, |V0 \
σ(dom(σ))| ≤ 1, every tuple in a relation of S′ has its elements in V0 ∪ Vi for
some i = 1, . . . ,m, and two additional conditions are satisfied. To state those
conditions let i ∈ {1, 2, . . . ,m} and let us define (Si, σi) to be the (d + 1)-
labelled hollow L-structure such that Si is the substructure of S induced by
V0 ∪ Vi, dom(σi) = dom(σ) ∪ {d} if V0 \ σ(dom(σ)) 6= ∅ and dom(σi) = dom(σ)
otherwise, σi(j) = σ(j) for every j ∈ dom(σ) and σi(d) is the unique element of
V0 \ σ(dom(σ)) if the latter set is not empty. The two remaining conditions are
that there exist distinct children v1, . . . , vm of v such that the second list of vi
has a member isomorphic to (Si, σi) and that for each relation symbol R of L
the tuples in RS′

containing σ(d) are precisely the tuples listed in the first list
for R and v.

We now describe how to test the existence of children v1, . . . , vm. Let W be
the set of children of v such that for all i ∈ {1, 2, . . . ,m}: if v has at most m
children with their second list containing a (d + 1)-labelled hollow L-structure
(d+ 1)-isomorphic to (Si, σi), then W contains all such children of v (here, we
use the lists of the third type). If v has more than m such children, then W
contains arbitrary m of these children. Clearly, |W | ≤ m2 ≤ d20. In order to
test the existence of such children v1, . . . , vm of v, we form an auxiliary bipartite
subgraph B: one part of B is formed by the numbers 1, . . . ,m and the other part
by children of v contained in W . A child w ∈ W is joined to a number i if the
second list of w contains a (d+1)-labelled hollow L-structure (d+1)-isomorphic
to (Si, σi).

If B has a matching of size m, then this matching determines the choice
of children v1, . . . , vm. On the other hand, if such children exist, B contains a
matching of size m: indeed, if vi ∈ W , then i is matched with vi, and if vi 6∈W ,
then v has at leastm children whose second list contains a (d+1)-labelled hollow
L-structure (d+1)-isomorphic to (Si, σi), in which case i may be matched with
one of those children that is not matched with any i′ < i.

Since the order of B is at most m2 + m and the number of disjoint non-
empty partitions of V (S′) to V0, . . . , Vm is bounded, testing the existence of a
d-labelled hollow L-structure S′′ can be performed in constant time for v.

It remains to construct the global list containing L-structures S0 with at
most d0 elements that are isomorphic to an induced substructure of S. We
proceed similarly as when determining the lists of inner elements of the forest
F . For every L-structure S′ with at most d0 elements, we compute the list of
trees of F that contain S′, i.e., S′ is contained in the second list of the root of
F . Now, S0 is an induced substructure of S′ if and only if there exist element-
disjoint L-structures S′

1, . . . , S
′
m such that V (S0) = V (S′

1) ∪ · · · ∪ V (S′
m) and

S′
1, . . . , S

′
m appear in m mutually distinct trees of F . For each such partition of

S0 into S′
1, . . . , S

′
m, we can test whether S′

1, . . . , S
′
m appear in the list of roots

of m distinct trees of F using the auxiliary bipartite graph described earlier.
Since all structures involved contain at most d0 elements, this phase requires
time linear in the number of trees of F .

We have shown that the data structure can be initialized in linear time. Let
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us now focus on updating the structure and answering queries. Consider a tuple
(v1, . . . , vk) that is added to a relation RS or removed from a relation RS . Let r
be the root of the tree T in F that contains all the elements v1, . . . , vk and assume
that v1, . . . , vk appear in this order on a path from r. By the definition, the
only lists affected by the change are those associated with vertices on the path
PT (vk). Recomputing each of these lists requires constant time (we proceed
in the same way as in the initialization phase except we do not have to run
through the children of the vertices on the path to determine which of them
contain particular k-labelled hollow L-substructure S′ in their lists). Since the
number of vertices on the path PT (vk) is at most d0, updating the data structure
requires constant time only.

It remains to describe how queries are answered. Let ϕ be a Σ1-sentence
with d ≤ d0 variables. We generate all possible L-structures S0 with |V (S0)| ≤ d
and check whether they satisfy the formula ϕ. Let S0 be the set of those that
satisfy ϕ. The set S0 can be generated in time O(|ϕ|) since L and d0 are fixed.

Observe that S satisfies ϕ if and only if it has an induced substructure
isomorphic to a structure in S0 (here, we use that L has no function symbols).
This can be tested in constant time by inspecting the global list. Providing the
satisfying assignment can be done in constant time if during the computation
for each substructure we store a certificate why it was included in the list (which
requires constant time overhead only).

We are now ready to describe the data structures. We start with the one for
graphs with bounded expansion.

Theorem 22. Let L be a language with no function symbols, d0 a fixed integer
and G a class of graphs with bounded expansion. There exists a data structure
representing an L-structure S guarded by a member of G such that

• given a graph G ∈ G and an L-structure S guarded by G, the data structure
is initialized in linear time,

• if an L-structure S′ is obtained from S by adding or removing a tuple from
one of the relations, then the data structure representing S can be changed
to the one representing S′ in constant time provided that both S and S′

are guarded by G, and

• the data structure allows testing in time bounded by O(|ϕ|) whether a
given Σ1-L-sentence ϕ with at most d0 variables is satisfied by S, and if
so, outputting one of the satisfying assignments.

Proof. Let k := 3(d0 + 1)2, and let G′ be the class of all k-th augmentations of
members of G. Then G′ has bounded expansion by Theorem 8. Let K be as
in Lemma 6 applied to G′. Thus K depends only on G and d0. Given G ∈ G
we compute, in linear time using Lemma 9, a k-th augmentation G′ of G and
directed graphs D1, D2, . . . , Dk as in the definition of k-th augmentation. Then
we compute a K-coloring c of G′ in linear time by Lemma 6. Let X be the set
of all subsets of {1, 2, . . . ,K} of size d0. By Theorem 11 c is a G′-compliant low
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tree-depth coloring of G of order d0, and by Theorem 12 we can find in linear
time, for each X ∈ X , a rooted forest FX such that the subgraph HX of G
induced by vertices v with c(v) ∈ X is a subgraph of the closure of FX . Now
given X ∈ X and an L-structure S guarded by G, let SX denote the induced
substructure of S induced by the set V (HX) ⊆ V (S). Then SX is guarded by
the closure of FX . Since ϕ is a Σ1-L-sentence, we have

(1) S |= ϕ if and only if SX |= ϕ for some X ∈ X .

Thus S will be represented by the collection {SX}X∈X of induced substruc-
tures. Updates will be done using Lemma 21, and testing whether S |= ϕ will
be done using (1) and Lemma 21.

The following is a variation of the above theorem for nowhere dense graphs.

Theorem 23. Let L be a language with no function symbols, d0 a fixed integer,
ε a positive real number and G a class of nowhere-dense graphs. There exists
a data structure representing an L-structure S guarded by a member of G such
that

• given an n-vertex graph G ∈ G and an L-structure S guarded by G, the
data structure is initialized in time O(n1+ε),

• if an L-structure S′ is obtained from S by adding or removing a tuple from
one of the relations, then the data structure representing S can be changed
to the one representing S′ in time O(nε) provided that both S and S′ are
guarded by G, and

• the data structure allows testing in time bounded by O(|ϕ|) whether a
given Σ1-L-sentence ϕ with at most d0 variables is satisfied by S, and if
so, outputting one of the satisfying assignments.

Proof. Let ε > 0. The proof makes use of the data structure from Theorem 22,
which we will refer to as the old data structure. The parameters of the latter
are now slightly different. The class G′ is nowhere dense by Theorem 8. Thus
K is no longer a constant; instead, we may select K to satisfy K = O(nǫ/d0),
where n = |V (G)|. The computation of G′ takes time O(n1+ε) by Lemma 10.
The computation of c takes time O(|V (G′)| + |E(G′)|) = O(n1+ε), because G′

is nowhere dense. Since |X | = O(nε), the old data structure allows updates in
time O(nε) and testing S |= ϕ for Σ1-L-sentences ϕ in time O(|ϕ|nε). During
initialization and after every update we use the old data structure to compute or
recompute the set S of all isomorphism classes of L-structures A with |V (A)| ≤
d0 such that A is isomorphic to an induced substructure of S. This can be done
in time O(nε), because the size of S is bounded. Now S |= ϕ if and only if
A |= ϕ for some A ∈ S. The set S will form the new data structure, which can
be used to answer queries of the form S |= ϕ in time O(|ϕ|).
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6 Dynamic data structure for first order prop-

erties

In this section, we present our dynamic data structure for testing FO properties.
The main result of this section reads as follows:

Theorem 24. Let G be a class of graphs with bounded expansion, L a language
and ϕ an L-sentence. There exists a data structure that, given an n-vertex
graph G ∈ G and an L-structure A guarded by G, is initialized in time O(n) and
supports the following operations:

• adding a tuple to a relation of A in constant time provided A stays guarded
by G,

• removing a tuple from a relation of A in constant time, and

• answering in constant time whether A |= ϕ.

Note that in Theorem 24, we do not allow to change function values of
functions from L to simplify our exposition; this does not present a loss of
generality as one can model functions as binary relations. We first establish a
dynamized version of Lemma 16.

Lemma 25. Let d ≥ 0 be an integer, L a language, ϕ(x0, . . . , xn) a simple
quantifier-free L-formula that is a conjunction of atomic formulas and their
negations, and T a ϕ-template. There exist a language L that extends L and a
(not necessarily simple) quantifier-free L-formula ϕT (x1, . . . , xn) such that the
following holds:

• L is obtained from L by adding a function symbol p and finitely many
relation symbols U0, . . . , UK of arity at most one,

• for every rooted forest F of depth at most d and every L-structure S
guarded by the closure of F , there exists an L-structure S such that S
is an expansion of S and for every v1, . . . , vn ∈ V (S),

S |= ϕT (v1, . . . , vn) if and only if S |= ϕ(v0, v1, . . . , vn) for some
v0 ∈ V (S) such that v0, v1, . . . , vn are compatible with T, F, S,

where pS is the F -parent function and the relations US
0 , . . . , U

S
K can be

computed (by listing the singletons they contain) in linear time given F
and S, and

• adding or removing a tuple to or from a relation of S results in adding
and/or removing a constant number of singletons to or from unary rela-

tions among US
0 , . . . , U

S
k , and the changes to all relations US

0 , . . . , U
S
k can

be computed in constant time, provided S stays guarded by the closure of
F .
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Proof. We construct L,ϕT and S as in the proof of Lemma 16. We need to

describe how the relations US
0 , . . . , U

S
k can be updated in constant time after

adding/removing a tuple to/from a relation of S. Let us consider in more detail
the main case analyzed in the proof of Lemma 16; we leave to the reader the
case mentioned at the end of the proof of Lemma 16 as the arguments are
completely analogous. Recall (see the proof of Lemma 16 for notation) that
U0(w) is the unary relation containing elements w of F at depth dv + 1 such
that the subtree of w in F contains an element v0 at depth dx0

(in F ) with the
following properties:

• there is a (v0)-admissible embedding of the template T0 in F for S, and

• all atomic formulas appearing in the conjunction ϕ′ with at least one
term from X0 are true with x0 = v0 and the terms t ∈ X ′

0, say αT (t) =

qk(αT (x0)), replaced with (pS)k(v0).

Since none of the functions of S changes, the first condition cannot change
when adding/removing a tuple to/from a relation of S. The second condition
can change only when a tuple containing a term from X0 is added/removed
to/from a relation. But this can result only in a single element (the one at
depth dv + 1 on the path in T containing all the elements of the altered tuple)
to be added to or removed from U0. Based on the tuple we add or remove, we
can identify this vertex. The existence of v0 (which must be at depth determined
by the template T0) is tested using the data structure introduced in the proof
of Lemma 21: the values of all terms from X0 with x0 = v0 are in the subtree
of w and those in X ′

0 are on the path from w to the root. The existence of v0
is equivalent to the existence of an induced subtree comprised of the path from
the root to w and a subtree of w witnessing that the atomic formulas listed in
the second condition are satisfied. The data structure introduced in the proof of
Lemma 21 allows testing the existence of one of these “witnessing” subtrees in
constant time (assuming the formula ϕ is fixed). So, we can update the relation
U0 in constant time.

Once the relation U0 is updated, the relations U1, . . . , Uk can be updated in
constant time as well: we keep a counter at every vertex at depth dv determining
the number of children of that vertex in U0.

Next we prove a dynamized version of Theorem 19 (we state the theorem in
the variant with no free variables for simplicity).

Theorem 26. Let G be a class of graphs with bounded expansion, L a language,
ϕ an L-sentence, and let L, G, ϕ and A be as in Theorem 19. Let A and B be
L-structures guarded by a graph G ∈ G, let B be obtained from A by adding or
deleting a tuple τ from the relation RA of A, and let A,G and B,G be the output
of the algorithm A when given A,G and B,G, respectively, as input. Then B
can be computed from the knowledge of A and τ in constant time.

Proof. The proof follows from the proof of Theorem 19, using Lemma 17 with
the proviso that in the proof of Lemma 17 we use Lemma 25 instead of Lemma 16.
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An important fact is that A and B have the same interpretations of functions.
We observe that every change in S results in a constant number of changes
in S and these changes can be identified in constant time. Hence, in the in-
ductive proof of Theorem 19, a single change in A results in constantly many
changes to the structure obtained in the first inductive step, which result in
constantly many changes to the structure obtained in the second inductive step
(each change in the structure obtained in the first inductive step yields only con-
stantly many changes), and so on. Since the time to update the final L-structure
A is constant for each of constantly many choices that propagate through the
induction from a single change of A, the overall update time is constant.

Theorem 24 follows immediately from Theorem 26.
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