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Does Treewidth Help in Modal Satisfiability? (Extended Abstract)
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Abstract. Many tractable algorithms for solving the Constraint Satisfaction Problem (Csp) have been
developed using the notion of the treewidth of some graph derived from the input Csp instance. In
particular, the incidence graph of the Csp instance is one such graph. We introduce the notion of an
incidence graph for modal logic formulae in a certain normal form. We investigate the parameterized
complexity of modal satisfiability with the modal depth of the formula and the treewidth of the incidence
graph as parameters. For various combinations of Euclidean, reflexive, symmetric and transitive models,
we show either that modal satisfiability is Fpt, or that it is W[1]-hard. In particular, modal satisfiability
in general models is Fpt, while it is W[1]-hard in transitive models. As might be expected, modal
satisfiability in transitive and Euclidean models is Fpt.

1 Introduction

Treewidth as a parameter has been very successful in obtaining Fixed Parameter Tractable (Fpt) algorithms
for many classically intractable problems. One such class of problems is constraint satisfaction and closely
related problems like satisfiability in propositional logic and the homomorphism problem [8, 30]. There have
been recent extensions to quantified constraint satisfaction [6, 27]. In such problems, treewidth is used as a
measure of modularity inherent in the given problem instance and algorithms make use of the modularity to
increase their efficiency. Understanding the extent to which treewidth can be stretched in such problems is an
active area of research [24, 15]. This work explores the applicability of such techniques to modal satisfiability.

Apart from having many applications (reasoning about knowledge [10], programming [28] and hardware
verification [29] etc.), modal logics have nice computational properties [33, 14]. Many tools have been built
for checking satisfiability of modal formulae [21, 26], despite being intractable in the classical sense (Pspace-
complete or Np-complete in most cases). Complexity of modal logic decision problems is well studied [23, 17,
16]. Another motivation for this work is to strengthen the complexity classification of modal logics through
the refined analysis offered by parameterized complexity.

Our results: It is known that any modal logic formula can be effectively converted into a Conjunctive
Normal Form (CNF) [9, 20]. Given a modal logic formula in CNF, we associate a graph with it. Restricted
to propositional CNF formulae (which are modal formulae with modal depth 0), this graph is precisely the
incidence graph associated with propositional CNF formulae (see [30] for details). We prove that

1. with the treewidth of the graph and the modal depth of the formula as parameters, satisfiability in
general models is Fpt,

2. with treewidth and modal depth as parameters, satisfiability in transitive models is W[1]-hard and
3. with treewidth as the parameter, satisfiability in models that are Euclidean1 and any combination of

reflexive, symmetric and transitive is Fpt.

Since modal formulae of modal depth 0 contain all propositional formulae, bounding modal depth alone will
not give Fpt results (unless Ptime=Np). The main idea behind our Fpt results is to express satisfiability of
a modal formula in Monadic Second Order (MSO) logic over the formula’s associated graph and then apply
Courcelle’s theorem [7]. Modal formulae with low treewidth are quite powerful, capable of encoding complex
problems (see the conclusion for relevant pointers). On the other hand, modal formulae with low treewidth
contain propositional CNF formulae of low treewidth, which arise naturally in many practical applications.
See [12, Section 1.4] and references therein for some context on this.

Related work: In [16], Halpern considers the effect of bounding different parameters (such as the number
of propositional variables, modal depth etc., but not treewidth) on complexity. In [25], Nguyen shows that
satisfiability of many modal logics reduce to Ptime under the restriction of Horn fragment and bounded
modal depth. In [1], Achilleos et. al. consider parameterized complexity of modal satisfiability in general
models with the number of propositional variables and other structural aspects (but not treewidth) as

1 A binary relation 7→ is Euclidean if ∀x, y, z, x 7→ y and x 7→ z implies y 7→ z.
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parameters. In [2], Adler et. al. associate treewidth with First Order (FO) formulae and use it to obtain a
Fpt algorithm for model checking.

The Complexity of satisfiability of modal logics follow a pattern. In [18], Halpern et. al. prove that with
the addition of Euclidean property, complexity of (infinitely) many modal logics drop from Pspace-hard
to Np-complete. [19] is another work in this direction. Similar pattern is observed in graded modal logics
[22]. With treewidth and modal depth as parameters, our results indicate similar behaviour in the world of
parameterized complexity — satisfiability in transitive models is W[1]-hard, while satisfiability in Euclidean
and transitive models is Fpt, even with treewidth as the only parameter. However, more work is needed
in this direction. First, the results in [18, 19] hold for infinitely many cases while we consider only a few
fixed cases. Second, satisfiability in general models is Pspace-complete and drops to Np-complete with
the addition of Euclidean property. In our setting, satisfiability in general models is already Fpt (but see
conclusion for a discussion about why satisfiability in general models is not Fpt unless Ptime=Np, when
treewidth is the only parameter).

2 Preliminaries

Let N denote the set of natural numbers. For k ∈ N, we denote the set {1, . . . , k} by [k]. We use standard
notation about parameterized complexity like Fpt algorithms, Fpt reductions and W[1]-hardness from [13].
We will also use notation and definitions of relational structures and their tree decompositions from [13]: a
relational vocabulary τ is a set of relation symbols. Each relation symbol R has an arity arity(R) ≥ 1. A
τ -structure S consists of a set D called the domain and an interpretation RS ⊆ Darity(R) of each relation
symbol R ∈ τ . A graph is an {E}-structure, where E is a binary edge relation. A tree is a graph without
cycles. A path decomposition is a tree decomposition [13, Definition 11.23] whose underlying tree is a path.
The pathwidth of a structure is the minimum of the widths of all path decompositions. It is known that
computing optimal tree and path decompositions of a relational structure is Fpt when parameterized by
treewidth; cf. [13, Corollary 11.28] and [5].

Courcelle’s theorem ([13, Theorem 11.37]) states that given a relational structure and a MSO sentence,
checking whether the MSO sentence is true in the structure is Fpt when parameterized by the treewidth of
the structure and the length of the sentence.

We use standard notation for modal logic from [3]: well formed modal logic formulae are defined by the
grammar φ ::= q ∈ Φ | ⊥ | ¬φ | φ ∨ ψ | ♦φ | �φ, where Φ is a set of propositional variables. A Kripke
model for the basic modal language is a triple M = (W, 7→, V l), where W is a set of worlds, 7→ is a binary
accessibility relation on W and V l : W × Φ → {⊤,⊥} is a valuation function. For w, v ∈ W , if w 7→ v,
v is said to be a successor of w. The pair (W, 7→) is called the frame A underlying M. If 7→ is reflexive,
then A and M are said to be a reflexive frame and a reflexive model respectively. Similar nomenclature is
followed for other properties of 7→. The relation 7→ is Euclidean if for all w1, w2, w3, w1 7→ w2 and w1 7→ w3

implies w2 7→ w3. We denote the fact that a modal formula φ is satisfied at a world w in a model M by
M, w |= φ. For q ∈ Φ, M, w |= q iff V l(w, q) = ⊤. Negation ¬ and disjunction ∨ are treated in the standard
way. For any formula φ, M, w |= ♦φ (M, w |= �φ) iff some (all) successor(s) v of w satisfy M, v |= φ. A
modal formula φ is satisfiable if there is a model M and a world w in M such that M, w |= φ. A world
w′ is said to be reachable from w if there are worlds w1, w2, . . . , wm such that w 7→ w1 7→ · · · 7→ wm 7→ w′.
It is well known that if some modal formula is satisfied at some world w in some Kripke model, discarding
worlds not reachable from w does not affect satisfiability [3, Proposition 2.6]. Henceforth, if some modal
formula is satisfied at some world w in some Kripke model M, we will assume that M consists of only those
worlds reachable from w. Satisfiability in general, reflexive and transitive models are all Pspace-complete
[23], while in equivalence models, it is Np-complete [23].

The modal depth md(φ) of a modal formula φ is inductively defined as follows. md(q) = md(⊥) = 0.
md(¬φ) = md(φ). md(φ ∨ ψ) = max{md(φ),md(ψ)}. md(♦φ) = md(�φ) = md(φ) + 1. We will use the
Conjunctive Normal Form (CNF) for modal logic defined in [20]:

literal ::= q | ¬q | �clause | ♦CNF

clause ::= literal | clause ∨ clause | ⊥

CNF ::= clause | CNF ∧ CNF

where q ranges over Φ. Any arbitrary modal formula φ can be effectively transformed into CNF preserving
satisfiability [9]. A CNF is a conjunction of clauses and a clause is a disjunction of literals. A literal is either
a propositional variable, a negated propositional variable or a formula of the form �clause or ♦CNF . If one
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of the many literals in a clause is ⊥, then ⊥ can be ignored without affecting satisfiability. A literal of the
form ♦⊥ can similarly be ignored. However, a clause that has ⊥ as the only literal cannot be ignored since
�⊥ is satisfied by a world in some Kripke model iff that world has no successors. Henceforth, we will assume
that ⊥ occurs only inside sub-formulae of the form �⊥.

Suppose φ is a modal formula in CNF. If φ is of the form clause1 ∧ clause2 ∧ · · · ∧ clausem, then
clause1, clause2, . . . , clausem and all literals appearing in these clauses are said to be at level md(φ). If
�clause1 is a literal at some level i, then clause1 and all literals occurring in clause1 are said to be at level
i − 1. If ♦CNF is a literal at some level i and CNF is of the form clause1 ∧ clause2 ∧ · · · ∧ clausem′ , then
clause1, clause2, · · · , clausem′ and all literals appearing in these clauses are said to be at level i − 1. Note
that a single propositional variable can occur in the form of a literal at different levels. The concept of level
is similar to the concept of distance defined in [26]. The process of checking satisfiability we describe in
section 3 can be considered a variant of the level-based bottom-up algorithm given in [26], which is also
implicitly used in [1, Theorem 5]. It requires more work and combination of other ideas to prove that this
process can be formalized in MSO logic.

3 Modal satisfiability in general models

In this section, we will associate a relational structure with a modal CNF formula. We show that checking
satisfiability of a modal CNF formula is Fpt, parameterized by modal depth and the treewidth of the
associated relational structure. We begin with an example modal CNF formula.

Consider the modal CNF formula {¬q ∨� [r ∨ ¬s]} ∧ {q ∨ ♦⊥} ∧ {r ∨ ♦ [¬s]} ∧ {¬r ∨ ♦ [(t ∨ ¬s) ∧ (r)]}.
Its modal depth is 1 and has 4 clauses at level 1. Figure 1 shows a graphical representation of this formula,
which is very similar to the formula’s syntax tree. The 4 clauses at level 1 are represented by e1, e2, e3 and
e4. e1 represents the clause {¬q ∨� [r ∨ ¬s]}. Since ¬q occurs as a literal in this clause, there is a dotted
arrow from e1 to q. � [r ∨ ¬s] (represented by e9) also occurs as a literal in clause e1 and hence there is an
arrow from e1 to e9. e4 represents the fourth clause at level 1, which contains ♦ [(t ∨ ¬s) ∧ (r)] as a literal.
This ♦CNF formula is represented by e10. The two clauses (t ∨ ¬s) and (r) are represented by e7 and e8
respectively and are connected to e10 by arrows. The propositional variable r occurs as literal at 2 levels,
indicated as Lv0 and Lv1.

s r t

e5 e6 e7 e8

e9 q r e10

e1 e2 e3 e4

Lv1

Lv0

Fig. 1. Relational structure associated with the modal formula {¬q ∨� [r ∨ ¬s]}∧{q ∨ ♦⊥}∧{r ∨ ♦ [¬s]}∧
{¬r ∨ ♦ [(t ∨ ¬s) ∧ (r)]}

Now we will formalize the above example. The intuition behind the following definition is to represent
all clauses and literals of a modal CNF formula by the domain elements of a relational structure. Binary
relations are used to indicate which literals occur in which clause (and which clauses occur in which literal).
Unary relations are used to indicate which elements represent literals and which elements represent clauses.
This will enable us to reason about clauses, literals and their dependencies using MSO formulae over the
relational structure.

Definition 3.1. Given a modal CNF formula φ, we associate with it a relational structure S(φ). It will
have one domain element for every clause in φ. It will have one domain element for every literal of the
form �clause or ♦CNF in φ. It will also have one domain element for every propositional variable used in
φ. There are no domain elements representing the propositional constant ⊥. They will be handled as special
cases.

The relational structure will have two binary relations Oc (occurs) and Oc (occurs negatively). Oc(e1, e2)
iff e1 represents a clause and e2 represents a propositional variable occurring negated as a literal in the
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clause represented by e1. If e1 represents a clause, then Oc(e1, e2) iff e2 represents a literal (occurring in the
clause represented by e1) of the form �clause, ♦CNF or a non-negated propositional variable. If e1 represents
a literal of the form �clause, then Oc(e1, e2) iff e2 represents the corresponding clause. If e1 represents a
literal of the form ♦CNF, then Oc(e1, e2) iff e2 represents a clause in the corresponding CNF. Finally, the
following unary relations are present:

Cl : contains all domain elements representing clauses
Lt : all domain elements representing literals
U : all literals of the form �⊥
B� : all literals of the form �clause
D⋄ : all literals of the form ♦CNF

(Lvi)0≤i≤md(φ) : all clauses and literals at level i

For clauses and literals of the form �clause or ♦CNF , there is one domain element for every occurrence of
the clause or literal. For example, if the literal ♦(q1 ∧ q2) occurs in two different positions of a big formula
φ, the two occurrences will be represented by two different domain elements in S(φ). In contrast, different
occurrences of a literal that is just a propositional variable will be represented by the same domain element.
In the rest of the paper, whenever we refer to the treewidth of a modal CNF formula φ, we mean the
treewidth of S(φ).

If e1 represents a clause, Oc(e1, e2) means that the clause represented by e1 can be satisfied by satisfying
the literal represented by e2. Oc(e1, e2) means that the clause represented by e1 can be satisfied by setting
the propositional variable represented by e2 to false.

If Cℓ0 ⊆ Cl ∩ Lv0 is a subset of domain elements representing clauses at level 0, let CNF (Cℓ0) be the
modal CNF formula that is the conjunction of clauses represented by domain elements in Cℓ0. We will now
see how to check satisfiability of CNF ({e7, e8}) in Fig. 1 and describe the generalization of this process given
in (1) below. We use cℓ and lt for first order variables intended to represent clauses and literals respectively.
First of all, there must be a subset T r0 ⊆ {r, s, t} = Lt∩Lv0 that will be set to ⊤, as written in the beginning
of (1). Then, we must check that this assignment satisfies each clause cℓ in Cℓ0, written as ∀cℓ ∈ Cℓ0 in (1).
To check that the clause represented by e7 is satisfied, either a positively occurring literal like t must be set
to ⊤ and hence in T r0 (written as “∃lt ∈ T r0 : Oc(cℓ, lt)” in (1)) or a negatively occurring literal like s must
be set to ⊥ and hence not in T r0 (“∃lt ∈ (Lt ∩ Lv0) \ T r0 : Oc(cℓ, lt)” in (1)). A similar argument applies to
e8 as well.

ξ[0](Cℓ0)
△
= ∃T r0 ⊆ (Lt ∩ Lv0) : ∀cℓ ∈ Cℓ0 :

[

(∃lt ∈ T r0 : Oc(cℓ, lt)) ∨
(

∃lt ∈ (Lt ∩ Lv0) \ T r0 : Oc(cℓ, lt)
)] (1)

ξ[i](Cℓi)
△
= ∃T ri ⊆ (Lt ∩ Lvi) : ∀cℓ ∈ Cℓi :

[

(∃lt ∈ T ri : Oc(cℓ, lt)) ∨
(

∃lt ∈ (Lt ∩ Lvi) \ T ri : Oc(cℓ, lt)
)]

∧[Cmi−1 = {cℓ′ ∈ (Cl ∩ Lvi−1) | ∃lt
′ ∈ T ri ∩B�, Oc(lt′, cℓ′)} ⇒

∀lt ∈ T ri ∩D⋄ : Dmi−1 = {cℓ ∈ (Cl ∩ Lvi−1) | Oc(lt, cℓ)} ⇒
ξ[i− 1](Dmi−1 ∪ Cmi−1)]

(2)

Checking satisfiability at higher levels is slightly more complicated. Suppose Cℓi ⊆ Cl ∩ Lvi is a subset
of clauses at level i. We will take Cℓ1 = {e1, e3, e4} from Fig. 1 as an example. If some world w in some
Kripke model M satisfies CNF (Cℓ1), there must be some subset T r1 of literals at level 1 satisfied at w
(“∃T ri ⊆ (Lt ∩ Lvi)” in (2)). As before, we check that for every clause represented in Cℓ1 (“∀cℓ ∈ Cℓi”
in (2)), there is either a positively occurring literal in T r1 (“∃lt ∈ T ri : Oc(cℓ, lt)” in (2)) or a negatively
occurring literal not in T r1 (“∃lt ∈ (Lt ∩ Lvi) \ T ri : Oc(cℓ, lt)” in (2)). Next, we must check that the
literals we have chosen to be satisfied at w (by putting them into T r1) can actually be satisfied. Suppose
T r1 was {e9, q, r, e10}. Since e9 represents a literal of the form �clause (with the clause represented by
domain element e5), we are committed to satisfy the clause represented by e5 in any world succeeding w.
Let Cm0 = {e5} be the set of clauses occurring at level 0 that we have committed to as a result of choosing
corresponding �clause literals to be in T r1 (“Cmi−1 = {cℓ′ ∈ (Cl ∩ Lvi−1) | ∃lt′ ∈ T ri ∩ B�, Oc(lt′, cℓ′)}”
in (2)). Now, since we have also chosen e10 to be in T r1 and e10 represents a ♦CNF formula, there is a
demand to create a world w′ that succeeds w and satisfies the corresponding CNF formula. We have to
check that every such demand in T r1 can be satisfied (“∀lt ∈ T ri ∩D⋄” in (2)) by creating successor worlds.
In case of the demand created by e10, {e7, e8} = Dm0 is the set of clauses in the demanded CNF formula
(“Dmi−1 = {cℓ ∈ (Cl ∩ Lvi−1) | Oc(lt, cℓ)}” in (2)). Our aim now is to create a successor world w′ in which
all clauses represented in Dm0 are satisfied. However, w′ is a successor world and we have already committed
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to satisfying all clauses represented in Cm0 in all successor worlds. Hence, we actually check if the clauses
represented in Cm0∪Dm0 are satisfiable by inductively invoking ξ[0](Dm0∪Cm0) (“ξ[i−1](Dmi−1∪Cmi−1)”
in (2)).

For the sake of clarity, we have skipped handling literals of the form �⊥ in the above discussion. They
will be handled in the formal arguments that follow.

Lemma 3.2. The property ξ[i](Cℓi) can be written in a MSO logic formula of size linear in i. If φ is
any modal formula in CNF and Cℓi is any subset of domain elements representing clauses at level i, then
CNF (Cℓi) is satisfiable iff ξ[i](Cℓi) is true in S(φ).

Proof. We will prove the first claim by induction on i. Formula (3) below is same as (1) written in formal
MSO syntax. (4) is a formal MSO statement of (2) and two additional conditions for handling literals of
the form �⊥ and ♦⊥. We will prove that the length |ξ[i]| of ξ[i] is linear in i. Let c be the length of ξ[i]
without length of ξ[i− 1] counted. As can be seen, |ξ[0]| ≤ c. Inductively assume that |ξ[i− 1]| ≤ ic. Then,
|ξ[i]| = c+ |ξ[i− 1]|. Hence, |ξ[i]| ≤ c+ ic = c(i+ 1).

We will now prove the second claim by induction on i.
Base case i = 0: The modal formula CNF (Cℓ0) is a propositional CNF formula. Suppose ξ[0](Cℓ0) is true

in S(φ). Hence, there is a subset T r0 of domain elements that satisfy the last four conditions of ξ[0] defined
in (3). The second condition ∀x (T r0(x) ⇒ (Lt(x) ∧ Lv0(x))) ensures that all domain elements in T r0 are also
in Lt and Lv0. Hence, all domain elements in T r0 represent literals at level 0. Since the only literals at level 0
are propositional variables or their negations, T r0 is in fact a subset of propositional variables. Consider the
Kripke model M with a single world w at which, all propositional variables in T r0 are set to ⊤ and all others
are set to ⊥. We will now prove that all clauses represented in Cℓ0 are satisfied in w. Let cℓ be some element
in Cℓ0 representing some clause. Since Cℓ0(cℓ) is true and S(φ) satisfies the last three conditions of ξ[0], we
have that either ∃lt (T r0(lt) ∧Oc(cℓ, lt)) or ∃lt

(

Lt(lt) ∧ Lv0(lt) ∧ ¬T r0(lt) ∧Oc(cℓ, lt)
)

is true in S(φ). In the
first case, Oc(cℓ, lt) means that lt is a positively occurring literal in the clause cℓ and T r0(lt) means that lt
is in T r0 (and hence it is set to ⊤ in w, satisfying clause cℓ). In the second case, Oc(cℓ, lt) ∧ Lt(lt) ∧ Lv0(lt)
means that lt is a literal negatively occurring in clause cℓ and ¬T r0(lt) means that lt is not in T r0 (and hence
it is set to ⊥ in w, again satisfying clause cℓ).

Now suppose that there is a Kripke model M and a world w such that M, w |= CNF (Cℓ0). We will prove
that ξ[0](Cℓ0) is true in S(φ). The first requirement is to find a suitable subset T r0 of domain elements. We
will set T r0 to be the set of precisely those domain elements that represent propositional variables occurring
at level 0 and set to ⊤ in the world w. This will ensure that the condition ∀x (T r0(x) ⇒ (Lt(x) ∧ Lv0(x))) in
ξ[0] is satisfied. Now we have to prove that last three conditions of ξ[0] are satisfied. So let cℓ ∈ Cℓ0 be any
domain element so that it satisfies Cℓ0(cℓ). We have to now prove that this cℓ satisfies one of the last two
conditions of ξ[0]. Since cℓ ∈ Cℓ0, it represents a clause in φ occurring at level 0. Since M, w |= CNF (Cℓ0), the
clause represented by cℓ is satisfied in w. Hence there is either a positively occurring propositional variable set
to ⊤ in w (so that it is in T r0, thus satisfying ∃lt (T r0(lt) ∧Oc(cℓ, lt))) or a negatively occurring propositional
variable set to ⊥ in w (so that it is not in T r0, thus satisfying ∃lt

(

Lt(lt) ∧ Lv0(lt) ∧ ¬T r0(lt) ∧Oc(cℓ, lt)
)

).
This completes the base case.

ξ[0](Cℓ0)
△
= ∃T r0

{
∀x (T r0(x) ⇒ (Lt(x) ∧ Lv0(x)))
∧∀cℓ Cℓ0(cℓ) ⇒
[

∃lt (T r0(lt) ∧Oc(cℓ, lt))
∨∃lt

(

Lt(lt) ∧ Lv0(lt) ∧ ¬T r0(lt) ∧Oc(cℓ, lt)
)

]
}

(3)

Induction step: Suppose Cℓi is a subset of domain elements representing clauses occurring at level i and
ξ[i](Cℓi) is true in S(φ). We will build a Kripke model M and prove that it has a world w such that M, w |=
CNF (Cℓi). We will start with a single world w. Since ξ[i](Cℓi) is true in S(φ), there must be a subset T ri of do-
main elements satisfying the last eleven conditions of ξ[i](Cℓi). The condition ∀x (T ri(x) ⇒ (Lt(x) ∧ Lvi(x)))
ensures that all domain elements in this T ri represent literals occurring at level i. Let PV (T ri) ⊆ T ri be
those domain elements in T ri that represent propositional variables. Similarly, let BL(T ri) and DL(T ri) be
the domain elements in T ri representing literals of the form �clause and ♦CNF respectively. In our world w,
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set all propositional variables in PV (T ri) to ⊤ and set all others to ⊥. Now, w satisfies all literals represented
in PV (T ri). We will later prove how to satisfy literals represented in BL(T ri) and DL(T ri) in the world w.

Now, assuming that all literals represented in T ri are satisfied at w, we will prove that M, w |= CNF (Cℓi).
This part of the proof is similar to the base case. If cℓ is any clause in Cℓi, it satisfies Cℓi(cℓ) and hence
either ∃lt (T ri(lt) ∧Oc(cℓ, lt)) or ∃lt

(

Lt(lt) ∧ Lvi(lt) ∧ ¬T ri(lt) ∧Oc(cℓ, lt)
)

is true in S(φ). In the first case,
a positively occurring literal at level i is in T ri, and since all literals in T ri are satisfied at w, the clause
represented by cℓ is also satisfied at w. In the second case, a negatively occurring literal at level i is not
in T ri. Since only propositional variables can occur negatively in clauses, we can in fact conclude that a
negatively occurring propositional variable is not in T ri. Since all propositional variables not in T ri are set
to ⊥ in w, the clause represented by cℓ is satisfied in w.

ξ[i](Cℓi)
△
= ∃T ri

{
∀x (T ri(x) ⇒ (Lt(x) ∧ Lvi(x)))
∧∀cℓ Cℓi(cℓ) ⇒
[

∃lt (T ri(lt) ∧Oc(cℓ, lt))
∨∃lt

(

Lt(lt) ∧ Lvi(lt) ∧ ¬T ri(lt) ∧Oc(cℓ, lt)
)

]
∧∃x(T ri(x) ∧D ⋄ (x)) ⇒ ∀y (T ri(y) ⇒ ¬U(y))
∧∀x ((T ri(x) ∧D ⋄ (x)) ⇒ ¬U(x))
∧∃Cmi−1

[
∀cℓ (Cmi−1(cℓ) ⇔ ∃lt (T ri(lt) ∧B�(lt) ∧Oc(lt, cℓ)))
∧∀lt ((T ri(lt) ∧D ⋄ (lt))) ⇒
[

∃Dmi−1∀cℓ
′ (Dmi−1(cℓ

′) ⇔ ((Cmi−1(cℓ
′)) ∨Oc(lt, cℓ′)))

∧ξ[i− 1](Dmi−1)
]

]
}

(4)

Now we will prove that literals represented in BL(T ri) and DL(T ri) can be satisfied in w by adding
appropriate successor worlds. First note that since ∀x ((T ri(x) ∧D ⋄ (x)) ⇒ ¬U(x)) is true in S(φ), no
element x in T ri represents a literal of the form ♦⊥ (since U is the unary relation containing all domain
elements representing literals of the form �⊥ or ♦⊥). Second, note that since ∃x(T ri(x) ∧ D ⋄ (x)) ⇒
∀y (T ri(y) ⇒ ¬U(y)) is true in S(φ), if DL(T ri) is not empty, then no element in BL(T ri) represents a
literal of the form �⊥. Therefore, we can hope to add a new successor for each literal represented by some
element lt in DL(T ri), satisfying the CNF formula in the literal represented in lt as well as all clauses in
literals represented in BL(T ri). Now we will prove that this can actually be done.

Since ξ[i](Cℓi) is true in S(φ), there is a subset Cmi−1 of domain elements satisfying the last four
conditions of ξ[i](Cℓi). The condition ∀cℓ (Cmi−1(cℓ) ⇔ ∃lt (T ri(lt) ∧B�(lt) ∧Oc(lt, cℓ))) ensures that Cmi−1

contains exactly those domain elements representing some clause clause1 at level i− 1 such that �clause1 is
a literal in T ri (and hence �clause1 is in BL(T ri)). An element lt satisfies T ri(lt)∧D ⋄ (lt) iff lt ∈ DL(T ri).
Hence, the condition ∀lt ((T ri(lt) ∧D ⋄ (lt))) ⇒ [· · · ] ensures that the last two conditions of ξ[i](Cℓi) is
true for every element lt in T ri representing a literal of the form ♦CNF occurring at level i. Consider
any one such element lt. The condition ∃Dmi−1∀cℓ

′ (Dmi−1(cℓ
′) ⇔ ((Cmi−1(cℓ

′)) ∨Oc(lt, cℓ′))) ensures that
Dmi−1 contains exactly those elements representing some clause clause1 (occurring at level i− 1) such that
�clause1 is represented in BL(T ri) or clause1 occurs in the CNF formula in the ♦CNF literal represented
by lt. Since ξ[i− 1](Dmi−1) is true, we can apply the induction hypothesis and conclude that there is some
Kripke model M′ and a world w′ such that M′, w′ |= CNF (Dmi−1). Now, w

′ satisfies the CNF formula in
the ♦CNF literal represented by lt. For every literal of the form �clause1 in BL(T ri), w

′ satisfies clause1.
Now, we add the Kripke model M′ to M and make w′ a successor of w. We repeat this procedure for every
element lt in DL(T ri). Now, for every literal in T ri of the form ♦CNF , there is a successor of w that satisfies
the corresponding CNF formula (we have already proved that literals of the form ♦⊥ will not be present in
T ri). For every literal in T ri of the form �clause, all successors of w will satisfy the corresponding clause
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(we have already proved that if there is a literal of the form �⊥ in T ri, then T ri will not have any literals
of the form ♦CNF and hence we will not add any successor worlds to w).

Now we will prove the other direction of the induction step. Suppose Cℓi is a subset of domain elements
representing clauses occurring at level i and that there is a Kripke model M and a world w such that
M, w |= CNF (Cℓi). We will prove that ξ[i](Cℓi) is true in S(φ). To begin with, we will choose T ri to be
the set of precisely those domain elements that represent literals occurring at level i that are satisfied at w.
If literals of the form �⊥ occur at level i, then they will also be included in T ri by definition if there are
no successor worlds at w. Now we will prove that last eleven conditions of ξ[i](Cℓi) are true in S(φ). The
condition ∀x (T ri(x) ⇒ (Lt(x) ∧ Lvi(x))) is true since all elements x in T ri are representing literals (Lt(x))
at level i (Lvi(x)). Next we will prove that the condition ∀cℓCℓi(cℓ) ⇒ [. . . ] is true. Let cℓ be some arbitrary
element in Cℓi. Since cℓ represents a clause that is satisfied at the world w, there must be either a positively
occurring literal that is satisfied at w (and hence the domain element representing that literal will be in T ri,
thus implying that ∃lt (T ri(lt) ∧Oc(cℓ, lt)) is true in S(φ)) or there must be a negatively occurring literal
that is not satisfied at w. In the latter case, since only propositional variables can occur negatively, we can
in fact conclude that there is a negatively occurring propositional variable that is set to ⊥ at w (and hence
not in T ri), which implies that ∃lt

(

Lt(lt) ∧ Lvi(lt) ∧ ¬T ri(lt) ∧Oc(cℓ, lt)
)

is true in S(φ).
Next we will prove that the condition ∀x ((T ri(x) ∧D ⋄ (x)) ⇒ ¬U(x)) is true. If any element x is in T ri

(T ri(x)) and represents a literal of the form ♦CNF (D ⋄ (x)), then x will not represent ♦⊥ (¬U(x)) since x
represents a literal that is satisfied at w and ♦⊥ cannot be satisfied.

Next we will prove that the condition ∃x(T ri(x)∧D ⋄ (x)) ⇒ ∀y (T ri(y) ⇒ ¬U(y)) is true. Suppose there
is some element x in T ri that represents a literal of the form ♦CNF (∃x(T ri(x) ∧D ⋄ (x))). Since the literal
represented by x is satisfied at w, there is a successor world in which the corresponding CNF formula is
satisfied. Since w has successor worlds, it cannot satisfy �⊥ and hence none of the elements in T ri represent
literals of the form �⊥ (∀y (T ri(y) ⇒ ¬U(y))).

Finally, we will prove that the condition ∃Cmi−1[. . . ] is true. Let us first construct the set Cmi−1.
For any element cℓ (∀cℓ), we will put cℓ in Cmi−1 iff (Cmi−1(cℓ) ⇔) there is some element lt (∃lt) in T ri

(T ri(lt)) representing a literal of the form �clause (B�(lt)) such that cℓ represents the corresponding clause
(Oc(lt, cℓ)). The condition ∀cℓ (Cmi−1(cℓ) ⇔ ∃lt (T ri(lt) ∧B�(lt) ∧Oc(lt, cℓ))) is true in S(φ) by construction.
Next we will prove that the condition ∀lt ((T ri(lt) ∧D ⋄ (lt))) ⇒ [. . . ] is true. Suppose lt is any element in
T ri representing a literal of the form ♦CNF 1 (D ⋄ (lt)). Since ♦CNF 1 is satisfied at the world w, there is a
successor world w′ that satisfies the corresponding CNF 1 formula. Let Dmi−1 be the set that includes some
element cℓ′ iff (∀cℓ′Dmi−1(cℓ

′) ⇔) cℓ′ is in the set Cmi−1 constructed above (Cmi−1(cℓ
′)) or it represents a

clause occurring in the CNF 1 formula contained in the ♦CNF 1 literal represented by lt (Oc(lt, cℓ′)). Dmi−1

satisfies the condition ∀cℓ′ (Dmi−1(cℓ
′) ⇔ ((Cmi−1(cℓ

′)) ∨Oc(lt, cℓ′))) by construction. If cℓ′ is any element in
Dmi−1, then it represents some clause1 at level i−1 such that clause1 occurs in the CNF 1 formula contained
in the ♦CNF 1 literal represented by lt or �clause1 appears in T ri. Hence, all clauses represented in Dmi−1

are satisfied at w′ (since w′ is a successor of w that satisfies CNF 1 and all literals of the form �clause
represented in T ri are satisfied at w). By the induction hypothesis, we conclude that ξ[i− 1](Dmi−1) is true
in S(φ). ⊓⊔

Theorem 3.3. Given a modal CNF formula φ, there is a Fpt algorithm that checks if φ is satisfiable in
general models, with treewidth of S(φ) and modal depth of φ as parameters.

Proof. Given φ, S(φ) can be constructed in polynomial time. To check that all clauses of φ at level md(φ) are
satisfiable in some worldw of some Kripke modelM, we check whether the formula ∃Cℓmd(φ)∀cℓ(Cℓmd(φ)(cℓ) ⇔
(Cl(cℓ) ∧Lvmd(φ)(cℓ))) ∧ ξ[md(φ)](Cℓmd(φ)) is true in S(φ). By Lemma 3.2, this is possible iff φ is satisfiable
and length of the above formula is linear in md(φ). An application of Courcelle’s theorem will give us the
Fpt algorithm. ⊓⊔

3.1 On the relevance of treewidth for modal logic

Informally, treewidth is a measure of how close a graph is to being a tree. Given a modal logic formula φ,
the associated structure S(φ) is very similar to the syntax tree of φ. The structure S(φ) is not a tree (i.e., it
has cycles) because a single propositional variable may be shared by many clauses of the formula. Thus, if
very few variables are shared across clauses, S(φ) is very close to a tree, i.e., S(φ) will have small treewidth.
In the example of Fig. 1, if we replace q and s by r, the number of shared variables will increase. As can be
seen in Fig. 2, the number of cycles will also increase. For example, e1 was not part of any cycle in Fig. 1
but forms a cycle with e9, e5 and r in Fig. 2.
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Fig. 2. Relational structure associated with the modal formula {¬r ∨� [r]} ∧ {r ∨ ♦⊥} ∧ {r ∨ ♦ [¬r]} ∧
{¬r ∨ ♦ [(t ∨ ¬r) ∧ (r)]}

Treewidth is a very fundamental concept and naturally arises in many contexts, even in industrial ap-
plications like software verification [32]. Applications of treewidth related techniques to propositional logic
is extensively studied — see [12, Section 1.4] and references therein. Modal logic being a natural and very
useful extension of propositional logic, we might expect some benefit by exploring applicability of treewidth
related techniques to modal logic.

The set of modal formulas with small treewidth is powerful enough to encode complex formulas. In [1,
Lemma 1], there is a translation of propositional CNF formulae into equivalent modal formulae. We can
verify that the resulting modal formula always has a small constant treewidth (the resulting modal formula
uses only one propositional variable). Hence, the restriction of bounded treewidth is not a severe one. Given
a formula φ, S(φ) can be computed in Ptime. Though computing treewidth of S(φ) is Np-complete, it is
Fpt when parameterized by treewidth.

4 Models with Euclidean property

In this section, we will investigate the parameterized complexity of satisfiability in Euclidean models. The
main observation leading to the Fpt algorithm is the fact that if a modal formula is satisfied in a Euclidean
model, then it is satisfied in a rather simple model. As proved in [22], if a modal formula is satisfied at some
world w0 in some Euclidean model M, then it is satisfied in a model whose underlying frame is of the form
(W ∪ {w0}, 7→) where W ×W ⊆7→. Therefore, almost all worlds are successors of almost all other worlds. If
one world satisfies a formula �clause1, then almost all worlds satisfy the formula clause1 (and hence satisfy
�clause1 as well). If one world satisfies a formula ♦CNF 1, then almost all worlds satisfy ♦CNF 1 as well.
Thus, most of the worlds are very similar to each other and we can reason about them using small MSO
formulae. This holds even if we add more properties like reflexivity, transitivity etc. The rest of this section
is devoted to proving the following theorem.

Theorem 4.1. Let φ be a modal CNF formula. With treewidth of S(φ) as parameter, there is a Fpt al-
gorithm for checking whether φ is satisfiable in a Kripke model that satisfies Euclidean property and any
combination of reflexivity, symmetry and transitivity.

We will drop all unary relations (Lvi)0≤i≤md(φ). Instead, we will have one unary relation P v containing all
domain elements representing propositional variables and one unary relation H l containing all other domain
elements. This will not change the treewidth of S(φ). To make the presentation easier to follow, we will use
informal description of MSO formulae. Let Cℓ1 and GCℓ be sets of clauses (we will see later that clauses in
GCℓ will be satisfied in almost all worlds of a model). The following MSO formula checks if all clauses in
Cℓ1 are satisfiable in a model in which, all worlds satisfy all clauses in GCℓ.

χ(Cℓ1, GCℓ)
△
= ∃T r ⊆ (Lt ∩D⋄) : ∃T r0 ⊆ P v :
Gℓt = {lt ∈ (Lt ∩B�) | ∃cℓ ∈ GCℓ ∧Oc(lt, cℓ)}
∧∀cℓ ∈ (Cℓ1 ∪GCℓ) :

∃lt ∈ (Gℓt ∪ T r ∪ T r0) : Oc(cℓ, lt)
∨∃lt ∈ P v \ T r0 : Oc(cℓ, lt)

∧∀lt ∈ T r : ∃T r1 ⊆ P v :
Dm = {cℓ′ ∈ Cl | Oc(lt, cℓ′)} ⇒
∀cℓ ∈ (Dm ∪GCℓ) :

∃lt′ ∈ (T r ∪Gℓt ∪ T r1) : Oc(cℓ, lt′)

∨∃lt′ ∈ P v \ T r1 : Oc(cℓ, lt′)

(5)
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Lemma 4.2. Let Cℓ1 and GCℓ be sets of clauses occurring in a modal CNF formula φ. If χ(Cℓ1, GCℓ) is
true in S(φ), then there is a Kripke model M and a world w in it such that:

1. w satisfies all clauses in Cℓ1,
2. all worlds in M satisfy all clauses in GCℓ,
3. the accessibility relation 7→ in M is the equivalence relation on the set of all worlds in M and
4. if a new world satisfying all clauses in GCℓ is added to M (making it accessible from all existing worlds

of M), w will still satisfy all clauses in Cℓ1.

Proof. Suppose χ(Cℓ1, GCℓ) is true in S(φ). We will build a Kripke model M satisfying the required proper-
ties. To begin with, there must be a set T r of literals of the form ♦CNF and a set T r0 of propositional variables
such that the rest of the formula χ(Cℓ1, GCℓ) is true in S(φ). LetGℓt = {lt ∈ (Lt ∩B�) | ∃cℓ ∈ GCℓ ∧Oc(lt, cℓ)}
be the set of literals of the form �clause such that the corresponding clause is in GCℓ. We will start with
one world w in our model in which precisely those propositional variables are set to ⊤ that are in the set
T r0. We will then add exactly one world wi for each literal lti in T r. For any literal lti in T r, there will be
a subset T r1 of propositional variables such that last four conditions of χ(Cℓ1, GCℓ) are true in S(φ). In the
world wi, we will set precisely those propositional variables to ⊤ that are in the set T r1 corresponding to lti.
Our model consists of the above worlds and the accessibility relation 7→ is the equivalence relation on the set
of all worlds. For any literal lti ∈ T r (which is of the form ♦CNF ), let Dmi = {cℓ′ ∈ Cl | Oc(lti, cℓ

′)} be the
set of clauses that make up the corresponding CNF formula. By induction on modal depth of any clause cℓ,
we will prove that if cℓ ∈ Cℓ1 ∪GCℓ, then cℓ is satisfied in w and if cℓ ∈ Dmi ∪GCℓ, then cℓ is satisfied in wi.

In the base case, modal depth of cℓ is 0. We will first prove that if cℓ ∈ Cℓ1 ∪ GCℓ, then cℓ is satisfied
in w. Suppose ∃lt ∈ (Gℓt ∪ T r ∪ T r0) : Oc(cℓ, lt) is true in S(φ). If lt ∈ Gℓt ∪ T r, then lt will have modal
depth at least 1 (because it is of the form �clause or ♦CNF ) and hence modal depth of cℓ (which contains
lt as a sub-formula) will also be more than 1. Hence, lt ∈ T r0. This means that lt is a propositional variable
set to ⊤ in w that occurs positively in cℓ and hence cℓ is satisfied in w. If ∃lt ∈ P v \ T r0 : Oc(cℓ, lt) is
true in S(φ), then there is a propositional variable set to ⊥ in w that occurs negatively in cℓ and hence,
cℓ is satisfied in w. Now, we will take up the case of cℓ ∈ Dmi ∪ GCℓ. In the formula χ(Cℓ1, GCℓ), suppose
∃lt′ ∈ (T r∪Gℓt∪T r1) : Oc(cℓ, lt′) is true in S(φ). As before, lt′ has be to in T r1, which means that there is a
propositional variable set to ⊤ at wi that occurs positively in cℓ. Hence, cℓ is satisfied in wi. If on the other
hand, ∃lt′ ∈ P v \ T r1 : Oc(cℓ, lt′) is true, then there is a propositional variable set to ⊥ at wi that occurs
negatively in cℓ. Hence, cℓ is satisfied in wi.

For the induction step, suppose cℓ ∈ (Cℓ1∪GCℓ). Suppose that in S(φ), the formula ∃lt ∈ (Gℓt∪T r∪T r0) :
Oc(cℓ, lt) is true. If lt ∈ Gℓt, then it is of the form �clause such that the corresponding clause (of modal
depth lower than cℓ) is in GCℓ. By the induction hypothesis, all worlds in M will satisfy all clauses in GCℓ of
modal depth less than cℓ (and by condition 4 of the lemma, all new worlds added will also satisfy all clauses
in GCℓ) and hence �clause is satisfied in w and hence cℓ is satisfied in w. If lt ∈ T r, then lt is a literal of
the form ♦CNF such that there is a world wi in M added to satisfy the corresponding CNF formula. All
clauses in this CNF formula (which form the set Dmi) have modal depth less than cℓ and by the induction
hypothesis, they are all satisfied at wi. Hence, wi satisfies the corresponding CNF formula, and hence w
satisfies the corresponding ♦CNF formula (since wi is a successor of w) and hence cℓ is satisfied at w. If
lt ∈ T r0, then lt is a propositional variable set to ⊤ in w and that occurs positively in cℓ. Hence, cℓ is satisfied
in w. On the other hand, if ∃lt ∈ P v \ T r0 : Oc(cℓ, lt) is true in S(φ), then lt is a propositional variable set
to ⊥ in w and that occurs negatively in cℓ. Hence, in this case also, cℓ is satisfied in w.

Finally, for the induction step, suppose cℓ ∈ Dmi ∪ GCℓ. Suppose that in S(φ), the formula ∃lt′ ∈
(T r ∪ Gℓt ∪ T r1) : Oc(cℓ, lt′) is true. If lt′ ∈ Gℓt, then it is of the form �clause such that the corresponding
clause (of modal depth lower than cℓ) is in GCℓ. By the induction hypothesis, all worlds in M will satisfy
all clauses in GCℓ of modal depth less than cℓ (and by condition 4 of the lemma, all new worlds added will
also satisfy all clauses in GCℓ) and hence �clause is satisfied in wi and hence cℓ is satisfied in wi. If lt

′ ∈ T r,
then lt′ is a literal of the form ♦CNF such that there is a world wi′ in M added to satisfy the corresponding
CNF formula. All clauses in this CNF formula (which form the set Dmi′) have modal depth less than cℓ

and by the induction hypothesis, they are all satisfied at wi′ . Hence, wi′ satisfies the corresponding CNF
formula, and hence wi satisfies the corresponding ♦CNF formula (since wi′ is a successor of wi) and hence
cℓ is satisfied at wi. If lt

′ ∈ T r1, then lt
′ is a propositional variable set to ⊤ in wi and that occurs positively

in cℓ. Hence, cℓ is satisfied in wi. On the other hand, if ∃lt′ ∈ P v \T r1 : Oc(cℓ, lt′) is true in S(φ), then lt′ is a
propositional variable set to ⊥ in wi and that occurs negatively in cℓ. Hence, in this case also, cℓ is satisfied
in wi. This completes the induction step and hence the proof. ⊓⊔
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The following formula makes use of χ(Cℓ1, GCℓ) to check if a set of clauses Cℓ0 is satisfiable in an
Euclidean model.

χ(Cℓ0)
△
= ∃T r0 ⊆ Lt : ∀lt ∈ T r0 : ∃cℓ ∈ Cℓ0 : Oc(cℓ, lt)

∧∀cℓ ∈ Cℓ0 :
∃lt ∈ T r0 : Oc(cℓ, lt)
∨∃lt ∈ P v \ T r0 : Oc(cℓ, lt)

∧Cm0 = {cℓ ∈ Cl | ∃lt ∈ (T r0 ∩B�) ∧Oc(lt, cℓ)} ⇒
∃GCℓ ⊆ (Cl) : ∀cℓ ∈ GCℓ : ∃lt ∈ (Lt ∩B�) : Oc(lt, cℓ)
∧∀lt ∈ (T r0 ∩D⋄) :

Dm0 = {cℓ ∈ Cl | Oc(lt, cℓ)} ⇒
χ(Dm0 ∪ Cm0, GCℓ)

(6)

Lemma 4.3. Let Cℓ0 be a set of clauses occurring in a modal CNF formula φ. CNF (Cℓ0) is satisfiable at a
world w in an Euclidean model M in which w is not its own successor iff χ(Cℓ0) is true in S(φ).

Proof. Suppose χ(Cℓ0) is true in S(φ). We will build an Euclidean Kripke model M satisfying CNF (Cℓ0).
We will begin with a single world w. In w, precisely those propositional variables are set to ⊤ that appear in
the set T r0 that witnesses truth of χ(Cℓ0) in S(φ). For now, we will assume that literals of the form ♦CNF
and �clause in T r0 will be satisfied in w by addition of suitable worlds. If cℓ is any clause in Cℓ0, then either
∃lt ∈ T r0 : Oc(cℓ, lt) or ∃lt ∈ P v \ T r0 : Oc(cℓ, lt) is true. In the former case, a propositional variable that is
set to ⊤ at w or a literal of the form ♦CNF or �clause that is satisfied in w occurs in cℓ and hence cℓ is
satisfied in w. In the later case, a propositional variable set to ⊥ in w occurs negatively in cℓ and hence cℓ is
satisfied in w.

As promised, we will now add suitable successors such that all literals of the form ♦CNF and �clause
in T r0 are satisfied at w. Let Cm0 = {cℓ ∈ Cl | ∃lt ∈ (T r0 ∩ B�) ∧ Oc(lt, cℓ)} be the set of clauses we
have committed to satisfy in all successors of w by choosing the corresponding �clause to be in T r0. For
any literal lt of the form ♦CNF in T r0 ∩ D⋄, let Dm0 = {cℓ ∈ Cl | Oc(lt, cℓ)} be the set of clauses in the
corresponding CNF formula. Since χ(Dm0 ∪ Cm0, GCℓ) is true in S(φ), there is a model M1 and a world
w1 in it as specified in Lemma 4.2, such that w1 satisfies all clauses in Dm0 ∪ Cm0 and all worlds in M1

satisfy all clauses in GCℓ. Let (M1, w1), (M2, w2), . . . be the models given by Lemma 4.2 for the demand
sets created by each of the literals of the form ♦CNF in T r0 ∩D⋄. Adding all worlds of M1,M2, . . . to M
and making w1, w2, . . . successors of w will result in all literals of the form ♦CNF in T r0∩D⋄ being satisfied
at w in M. Since w1, w2, . . . all satisfy all clauses in Cm0, all literals of the form �clause in T r0 ∩ B� are
also satisfied at w in M. Making all worlds other than w successors of all worlds other than w will ensure
that M is based on an Euclidean frame. Condition 4 of Lemma 4.2 will ensure that due to the additional
accessibility relation pairs created, the worlds w1, w2, . . . will not stop satisfying clauses required to satisfy
the demands created by literals in T r0.

Now, suppose that CNF (Cℓ0) is satisfied in an Euclidean model. We will prove that χ(Cℓ0) is true in
S(φ). As proved in [22], CNF (Cℓ0) is satisfied in a model M at a world w such that the underlying frame of
M is of the form (W ∪ {w}, 7→) such that W ×W ⊆7→. As stated in the lemma, w is not its own successor.
If w was the successor of any other world, then Euclidean property will force w to be its own successor,
hence w can not be the successor of any other world. To prove that χ(Cℓ0) is true in S(φ), we will first
construct a set T r0 of literals. Since CNF (Cℓ0) is satisfied at w, for every clause in Cℓ0, there must be a
literal occurring in that clause satisfied at w. Let T r0 be the set of such literals of the form �clause or ♦CNF
and the propositional variables set to ⊤ in w and occurring positively in some clause in Cℓ0. The condition
∀lt ∈ T r0 : ∃cℓ ∈ Cℓ0 : Oc(cℓ, lt) is true by construction of T r0. If cℓ is any clause in Cℓ0, then either

1. there is some literal of the form �clause or ♦CNF or a positively occurring propositional variable that
occurs in cℓ and present in T r0 (in which case ∃lt ∈ T r0 : Oc(cℓ, lt) is true) or

2. there is a negatively occurring propositional variable that is set to ⊥ in w (in which case ∃lt ∈ P v \T r0 :
Oc(cℓ, lt) is true).

Let Cm0 = {cℓ ∈ Cl | ∃lt ∈ (T r0 ∩ B�) ∧ Oc(lt, cℓ)} be the set of clauses that are satisfied in all
successors of w. Let GCℓ = {cℓ ∈ Cl | ∃lt ∈ (Lt ∩ B�) ∧ Oc(lt, cℓ) ∧ M, w′ |= lt, w′ 6= w} be the set of
all clauses such that corresponding �clause formula is satisfied at some world w′ other than w. Since all
worlds other than w are successors of w′, all worlds other than w satisfy all clauses in GCℓ. The condition
∀cℓ ∈ GCℓ : ∃lt ∈ (Lt ∩ B�) : Oc(lt, cℓ) is true by construction of GCℓ. Note that GCℓ and T r0 ∩ D⋄ will
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be empty if w has no successors, hence the rest of χ(Cℓ0) is vacuously true. For any literal lt ∈ T r0 ∩ D⋄,
let Dm0 = {cℓ ∈ Cl | Oc(lt, cℓ)} be the set of clauses in the CNF formula contained in lt. In M, there is a
successor w1 of w that satisfies all clauses in Dm0 ∪Cm0. We will prove that χ(Dm0 ∪Cm0, GCℓ) is true in
S(φ).

We first select a subset T r ⊆ (Lt∩D⋄) so that the rest of the formula χ(Dm0∪Cm0, GCℓ) can be satisfied.
Let T r = {lt ∈ (Lt∩D⋄) | M, w′ |= lt, w′ 6= w} be the set of literals of the form ♦CNF such that some world
w′ other than w satisfies the ♦CNF formula (since w is not a successor of w′, some other world w′′ succeeding
w′ will satisfy the corresponding CNF formula). Let T r0 be the set of propositional variables set to ⊤ in
the world w1 mentioned above. Let Gℓt = {lt ∈ (Lt ∩B�) | ∃cℓ ∈ GCℓ ∧Oc(lt, cℓ)} be the set of literals of the
form �clause such that the corresponding clause is in GCℓ. Let cℓ be any clause in Dm0 ∪Cm0 ∪GCℓ. Since
w1 satisfies cℓ, there must be a literal lt occurring in cℓ such that lt is satisfied in w1.

1. If lt is of the form �clause, then it is in Gℓt and hence ∃lt ∈ Gℓt : Oc(cℓ, lt) is true.
2. If lt is of the form ♦CNF , then it is in T r and hence ∃lt ∈ T r : Oc(cℓ, lt) is true.
3. If lt is a positively occurring propositional variable, then ∃lt ∈ T r0 : Oc(cℓ, lt) is true.
4. If lt is a negatively occurring propositional variable, then ∃lt ∈ P v \ T r0 : Oc(cℓ, lt) is true.

Let lt ∈ T r be any literal of the form ♦CNF in T r. By definition of T r, there is some world w′ other than w
such that w′ satisfies the corresponding CNF formula. Let T r1 be the set of propositional variables set to ⊤
in w′ and let Dm = {cℓ′ ∈ Cl | Oc(lt, cℓ′)} be the set of clauses in the CNF formula in lt. Let cℓ be any clause
in Dm ∪GCℓ. Since w′ satisfies cℓ, there must be a literal lt′ occurring in cℓ such that lt′ is satisfied in w′.

1. If lt′ is of the form �clause, then it is in Gℓt and hence ∃lt′ ∈ Gℓt : Oc(cℓ, lt′) is true.
2. If lt′ is of the form ♦CNF , then it is in T r and hence ∃lt′ ∈ T r : Oc(cℓ, lt′) is true.
3. If lt′ is a positively occurring propositional variable, then ∃lt′ ∈ T r1 : Oc(cℓ, lt′) is true.
4. If lt′ is a negatively occurring propositional variable, then ∃lt′ ∈ P v \ T r1 : Oc(cℓ, lt′) is true.

⊓⊔

Suppose a modal formula is satisfied at a world w in an Euclidean model where w is its own successor.
Then Euclidean property will force the accessibility relation 7→ to be the equivalence relation on the set of all
worlds. Hence, any �clause literal chosen to be satisfied in w will result in all worlds (including w) satisfying
the corresponding clause. This can be easily handled by modifying χ(Cℓ0) as follows.

χ′(Cℓ0)
△
= ∃T r0 ⊆ Lt :

∃GCℓ ⊆ (Cl) : ∀cℓ ∈ GCℓ : ∃lt ∈ (Lt ∩B�) : Oc(lt, cℓ)
∧∀cℓ ∈ (Cℓ0 ∪GCℓ) :

∃lt ∈ T r0 : Oc(cℓ, lt)

∨∃lt ∈ P v \ T r0 : Oc(cℓ, lt)
∧∀lt ∈ (T r0 ∩D⋄) :

Dm0 = {cℓ ∈ Cl | Oc(lt, cℓ)} ⇒
χ(Dm0, GCℓ)

(7)

Now to check if a modal formula φ is satisfiable in an Euclidean model, we just have to check if χ(Cℓ0)∨χ
′(Cℓ0)

is true in S(φ), where Cℓ0 is the set of clauses at the highest level. An application of Courcelle’s theorem
will give us the Fpt algorithm. Note that in this case, the size of the MSO formula we need to check is
independent of modal depth.

To check if a modal formula φ is satisfiable in a reflexive and Euclidean model, we just check if χ′(Cℓ0)
is true in S(φ).

Suppose a modal formula φ is satisfied at some world w in an Euclidean and symmetric model. If w has
any other successors, then Euclidean property will force all worlds reachable from w to be successors of w
and w to be a successor of all worlds reachable from w. This is same as a reflexive and Euclidean model and
can be handled by χ′(Cℓ0). If w has no other successors but is its own successor it can again be handled by
χ′(Cℓ0). If w has no successors and is not its own successor, then all clauses of φ at the highest level are
satisfied at w by literals of the form �clause or propositional variables. This can be easily checked by a small
MSO formula.

4.1 Euclidean and transitive models

Suppose we want to check satisfiability of a modal CNF formula in models that are both Euclidean and
transitive. As seen above, the modal CNF formula is satisfied in a model with an underlying frame of the
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form (W ∪{w}, 7→) where W ×W ⊆7→. In addition, all other worlds are successors of w. Hence any literal of
the form �clause satisfied at w will result in all other worlds satisfying the corresponding clause. This can
be handled by modifying χ(Cℓ) as follows.

χ′′(Cℓ0)
△
= ∃T r0 ⊆ Lt : ∀lt ∈ T r0 : ∃cℓ ∈ Cℓ0 : Oc(cℓ, lt)

∧∀cℓ ∈ Cℓ0 :
∃lt ∈ T r0 : Oc(cℓ, lt)
∨∃lt ∈ P v \ T r0 : Oc(cℓ, lt)

∧Cm0 = {cℓ ∈ Cl | ∃lt ∈ (T r0 ∩B�) ∧Oc(lt, cℓ)} ⇒
∃GCℓ ⊆ (Cl) : ∀cℓ ∈ GCℓ : ∃lt ∈ (Lt ∩B�) : Oc(lt, cℓ)
∧∀lt ∈ (T r0 ∩D⋄) :

Dm0 = {cℓ ∈ Cl | Oc(lt, cℓ)} ⇒
χ(Dm0 ∪ Cm0, GCℓ ∪ Cm0)

(8)

The Euclidean property is very strong in the sense that it makes the complexity of infinitely many
modal logics drop from Pspace-hard to Np-complete [18]. One might hope for extending the results of this
section to any modal logic whose frames is a subset of Euclidean frames. The results in [18] use semantic
characterizations while our MSO formulae can only reason about syntax of modal logic formulae. Even
though there is a close relation between the syntax and semantics of modal logic of Euclidean frames (which
have been used to obtain the results of this section), it seems difficult to exploit this relation to obtain Fpt
algorithms for arbitrary extensions of modal logic of Euclidean frames. It remains to be seen if other tools
from the theory of MSO logic on graphs can be used to achieve this.

5 Reflexive models

As an example of how the basic technique described in section 3 can be extended to satisfiability in models
satisfying some other properties, we will show satisfiability in reflexive models. We will need the following
MSO formula to define the set of vertices reachable from a given vertex in a finite directed acyclic graph.

R(x,X)
△
= ∀y (y ∈ X) ⇔

[
Oc(x, y)
∨∃z ∈ X : Oc(z, y)

]

(9)

Lemma 5.1. Let G be a finite directed acyclic graph in which, Oc is the binary relation represented by the
directed edges. Let x be a vertex and X be a subset of vertices in G. Then, X is the set of precisely those
vertices reachable from x by a directed path of length 1 or more iff R(x,X) defined in (9) is true in G.

Proof. Suppose X is the set of precisely those vertices reachable from x by a directed path of length 1 or
more. If some vertex y is in X (i.e., there is a directed path of length 1 or more from x to y), we will prove
that Oc(x, y) ∨ ∃z ∈ X : Oc(z, y) is true in G. If the length of the path from x to y is 1, there is an edge
from x to y, making Oc(x, y) true in G. If the directed path between x and y is at least 2 and is of the form
x→ y′ → · · · → y′′ → y, then we can take y′′ as witness for z in ∃z ∈ X : Oc(z, y), making ∃z ∈ X : Oc(z, y)
true in G. On the other hand, suppose Oc(x, y) ∨ ∃z ∈ X : Oc(z, y) is true in G for some vertex y. We will
prove that y is in X (i.e., there is a directed path of length 1 or more from x to y). Suppose Oc(x, y) is true
in G. Then there is an edge from x to y, which is a directed path of length 1. Suppose ∃z ∈ X : Oc(z, y) is
true G, then there is a directed path of length 1 or more from x to z (since z is in X). Appending the edge
from z to y to this path gives us a path of length 2 or more from x to y.

Now, suppose that ∀y (y ∈ X) ⇔ [Oc(x, y) ∨ (∃z ∈ X : Oc(z, y))] is true in G. We will prove that X
is the set of precisely those vertices reachable from x by a directed path of length 1 or more. We will first
prove that X does not contain any vertex not reachable from x. Suppose to the contrary that there is a
vertex y in X not reachable from x. Since y ∈ X , Oc(x, y) ∨ (∃z ∈ X : Oc(z, y)) is true in G. Since Oc(x, y)
cannot be true (as that would mean y is reachable from x), there is some z1 ∈ X with Oc(z1, y). Since z1
is in X , Oc(x, z1) ∨ (∃z ∈ X : Oc(z, z1)) is true. Since Oc(x, z1) cannot be true (as that would mean y is
reachable from x), there is some z2 ∈ X with Oc(z2, z1). The vertex z2 has to be distinct from y and z1 since
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otherwise, the fact that G is devoid of directed cycles is violated. Continuing this type of reasoning leads us
to an infinite sequence y, z1, z2, . . . of distinct vertices, contradicting the fact that G is a finite graph. Hence,
X does not contain any vertex not reachable from x. Next we will prove that every vertex y reachable from
x is in X , by induction on the length i of the shortest directed path from x to y. In the base case i = 1, there
is an edge from x to y, which means that Oc(x, y) is true in G, and R(x,X) forces y to be in X . Suppose
there is a directed path of length i+1 from x to y. Let z be the vertex preceding y in this path. Since there
is a directed path of length at most i from x to z, we can use induction hypothesis conclude that z ∈ X .
Since there is an edge from z to y, ∃z ∈ X : Oc(z, y) is true in G, and again R(x,X) forces y to be in X . ⊓⊔

Let Cℓi be some set of domain elements representing clauses at level at most i. The property ζ[i](Cℓi)
defined below checks if there is a reflexive Kripke model M and a world w in it that satisfies all clauses in
Cℓi.

ζ[0](Cℓ0)
△
= ∃T r0 ⊆ (Lt ∩ Lv0) : ∀cℓ ∈ Cℓ0 :

[

(∃lt ∈ T r0 : Oc(cℓ, lt)) ∨
(

∃lt ∈ (Lt ∩ Lv0) \ T r0 : Oc(cℓ, lt)
)] (10)

ζ[i](Cℓi)
△
= ∃T ri ⊆ Lt :

∀lt ∈ T ri ∃cℓ ∈ Cℓi : ∃X : (R(cℓ, X) ∧ lt ∈ X)
∧Cmi−1 = {cℓ′ ∈ Cl | ∃lt′ ∈ T ri ∩B�, Oc(lt′, cℓ′)} ⇒
∀cℓ ∈ Cℓi ∪ Cmi−1 :

[

(∃lt ∈ T ri : Oc(cℓ, lt)) ∨
(

∃lt ∈ Lt \ T ri : Oc(cℓ, lt)
)]

∧∀lt ∈ T ri ∩D⋄ : Dmi−1 = {cℓ ∈ Cl | Oc(lt, cℓ)} ⇒
ζ[i − 1](Dmi−1 ∪Cmi−1)

(11)

Lemma 5.2. The property ζ[i](Cℓi) can be written in a MSO logic formula of size linear in i. If φ is any
modal formula in CNF and Cℓi is any subset of domain elements representing clauses at level at most i, then
CNF (Cℓi) is satisfiable in a reflexive model iff ζ[i](Cℓi) is true in S(φ).

Proof. We will prove the first claim by induction on i. We will prove that the length |ζ[i]| of ζ[i] is linear in
i. Let c be the length of ζ[i] without the length of ζ[i − 1] counted. As can be seen, |ζ[0]| ≤ c. Inductively
assume that |ζ[i− 1]| ≤ ic. Then, |ζ[i]| = c+ |ζ[i − 1]|. Hence, |ζ[i]| ≤ c+ ic = c(i+ 1).

We will now prove the second claim by induction on i.
Base case i = 0: Suppose ζ[0](Cℓ0) is true in S(φ). Hence, there is a subset T r0 of domain elements

that satisfy all the conditions of ζ[0] defined in (10). Since all domain elements in T r0 represent literals
at level 0 and the only literals at level 0 are propositional variables or their negations, T r0 is in fact a
subset of propositional variables. Consider the reflexive Kripke model M with a single world w at which, all
propositional variables in T r0 are set to ⊤ and all others are set to ⊥. We will now prove that all clauses
represented in Cℓ0 are satisfied in w. Let cℓ be some element in Cℓ0 representing some clause. We have that
either ∃lt ∈ T r0 : Oc(cℓ, lt) or ∃lt ∈ (Lt ∩ Lv0) \ T r0 : Oc(cℓ, lt) is true in S(φ). In the first case, a positively
occurring propositional variable is set to ⊤ in w and in the second case, a negatively occurring propositional
variable is set to ⊥ in w.

Now suppose that there is a reflexive Kripke model M and a world w such that M, w |= CNF (Cℓ0). We
will prove that ζ[0](Cℓ0) is true in S(φ). The first requirement is to find a suitable subset T r0 of domain
elements. We will set T r0 to be the set of precisely those domain elements that represent propositional
variables occurring at level 0 and set to ⊤ in the world w. Since every clause cℓ in Cℓ0 is satisfied in w,
either there is a positively occurring propositional variable set to ⊤ in w or there is a negatively occurring
propositional variable set to ⊥ in w. In the first case ∃lt ∈ T r0 : Oc(cℓ, lt) is true and in the second case
∃lt ∈ (Lt ∩ Lv0) \ T r0 : Oc(cℓ, lt) is true in S(φ). This completes the base case.

Induction step: Suppose Cℓi is a subset of domain elements representing clauses occurring at level at
most i and ζ[i](Cℓi) is true in S(φ). We will build a reflexive Kripke model M and prove that it has a world
w such that M, w |= CNF (Cℓi). We will start with a single world w. Since ζ[i](Cℓi) is true in S(φ), there
must be a subset T ri of domain elements satisfying all the conditions of ζ[i](Cℓi). Since ∀lt ∈ T ri ∃cℓ ∈
Cℓi : ∃X : (R(cℓ, X) ∧ lt ∈ X) is true in S(φ), all literals in T ri are reachable from some clause in Cℓi in
S(φ). Hence, all literals in T ri are at level at most i. Let Cmi−1 = {cℓ′ ∈ Cl | ∃lt′ ∈ T ri ∩B�, Oc(lt′, cℓ′)} be
the set of clauses that we are committed to satisfy in all successors of w (that includes w as well) as a result
of chosing the corresponding �clause to be in T ri. All clauses in Cmi−1 are at level at most i− 1. For each
literal lt1 of the form ♦CNF in T ri, let Dmi−1 = {cℓ ∈ Cl | Oc(lt1, cℓ)} be the set of clauses occurring in lt1.
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Since all clauses in Dmi−1 ∪ Cmi−1 are at level at most i − 1 and ζ[i − 1](Dmi−1 ∪ Cmi−1) is true in S(φ),
we can apply induction hypothesis to conclude that there is a reflexive Kripke model M1 and a world w1

in it that satisfies all clauses in Dmi−1 ∪ Cmi−1. Add all such models M1,M2, . . . to our Kripke model M
we are constructing and make the worlds w1, w2, . . . successors of w. In w, set precisely those propositional
variables to ⊤ that occur in T ri. Let cℓ be any clause in Cℓi ∪ Cmi−1. Now, we will prove by induction on
modal depth of cℓ that in M, the world w satisfies cℓ. If ∃lt ∈ Lt \ T r : Oc(cℓ, lt) is true, then a propositional
variable not in T ri occurs negatively in cℓ. Since this propositional variable is set to ⊥ in w, cℓ is satisfied
at w. If ∃lt ∈ T ri : Oc(cℓ, lt) is true and lt is a propositional variable, then it is set to ⊤ in w and occurs
positively in cℓ. If ∃lt ∈ T ri : Oc(cℓ, lt) is true and lt is of the form �clause, then the corresponding clause
is in Cmi−1 and hence true in all successors of w (including w itself, by induction on modal depth of cℓ). If
∃lt ∈ T ri : Oc(cℓ, lt) is true and lt is of the form ♦CNF , then we would have added a world to satisfy the
corresponding CNF formula.

Now we will prove the other direction of the induction step. Suppose Cℓi is a subset of domain elements
representing clauses occurring at level at most i and that there is a reflexive Kripke model M and a world
w such that M, w |= CNF (Cℓi). We will prove that ζ[i](Cℓi) is true in S(φ). To begin with, we will choose
T ri to be the set of precisely those literals occurring at level i or below that are satisfied at w and occur
as subformulas of some clause in Cℓi. This will ensure that ∀lt ∈ T ri ∃cℓ ∈ Cℓi : ∃X : (R(cℓ, X) ∧ lt ∈ X)
is true in S(φ). Let Cmi−1 = {cℓ′ ∈ Cl | ∃lt′ ∈ T ri ∩ B�, Oc(lt′, cℓ′)} be the set of clauses such that the
corresponding �clause is in T ri. The world w satisfies all clauses in Cℓi and since w is its own successor, it
also satisfies all clauses in Cmi−1. Hence, if cℓ is any clause in Cℓi ∪Cmi−1, some literal occurring in cℓ must
be satisfied in w. Therefore, ∀cℓ ∈ Cℓi ∪ Cmi−1 :

[

(∃lt ∈ T ri : Oc(cℓ, lt)) ∨
(

∃lt ∈ Lt \ T ri : Oc(cℓ, lt)
)]

is true
in S(φ).

Let lt be any literal of the form ♦CNF in T ri and let Dmi−1 = {cℓ ∈ Cl | Oc(lt, cℓ)} be the set of clauses in
the corresponding CNF formula. Since w satisfies lt, there must be a successor w′ of w that satisfies all clauses
in Dmi−1 and also all clauses in Cmi−1 since w′ is a successor of w. Since all clauses in Dmi−1∪Cmi−1 are at
level at most i− 1 and w′ is a world in a reflexive Kripke model that satisfies all clauses in Dmi−1 ∪Cmi−1,
we can apply induction hypothesis to conclude that ζ[i− 1](Dmi−1 ∪ Cmi−1) is true in S(φ). ⊓⊔

Theorem 5.3. Given a modal CNF formula φ, there is a Fpt algorithm that checks if φ is satisfiable in
reflexive models, with the treewidth of S(φ) and the modal depth of φ as parameters.

Proof. Given φ, S(φ) can be constructed in polynomial time. To check that all clauses of φ at level
md(φ) are satisfiable in some world w of some reflexive Kripke model M, we check whether the formula
∃Cℓmd(φ)∀cℓ(Cℓmd(φ)(cℓ) ⇔ (Cl(cℓ) ∧ Lvmd(φ)(cℓ))) ∧ ζ[md(φ)](Cℓmd(φ)) is true in S(φ). By Lemma 5.2, this
is possible iff φ is satisfiable in a reflexive model. The length of the above formula is linear in md(φ). An
application of Courcelle’s theorem will give us the Fpt algorithm. ⊓⊔

6 Transitive models

In transitive models, formulae with small modal depth can check properties of all worlds reachable from
a given world. To formalize this into a W[1]-hardness proof, we introduce the parameterized Partitioned
Weighted Satisfiability (p-Pw-Sat ) problem. An instance of p-Pw-Sat problem is a triple (F , part : Φ →
[k], tg : [k] → N), where F is a propositional CNF formula, part partitions the set of propositional variables
into k parts and we need to check if there is a satisfying assignment that sets exactly tg(p) variables to ⊤
in each part p. Parameters are k and pathwidth of the primal graph of F (one vertex for each propositional
variable, an edge between two variables iff they occur together in a clause). The following lemma can be
proved by a Fpt reduction from the Number List Coloring Problem [11].

Lemma 6.1. The p-Pw-Sat problem is W[1]-hard when parameterized by the number of parts k and the
pathwidth of the primal graph.

Proof. We will give a Fpt reduction from the Number List Coloring Problem (Nlcp). An instance of Nlcp
is a graph G = (V,E), a set of colors Sv for each vertex v ∈ V and a target function tg : ∪v∈V Sv → N. We
need to check if G can be properly colored (every adjacent pair of vertices get different colors) such that every
vertex v is colored from its set Sv and there are exactly tg(ℓ) vertices colored with ℓ for every ℓ ∈ ∪v∈V Sv.
In [11], it is proved that even for graphs of pathwidth 2, Nlcp is W[1]-hard when parameterized by total
number of colors in ∪v∈V Sv.
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Given an instance of Nlcp with a graph of pathwidth 2, we associate with it an instance of p-Pw-Sat
with the set of propositional variables {qℓv | v ∈ V, ℓ ∈ Sv}. Every color ℓ ∈ ∪v∈V Sv is a partition of the
set of propositional variables and contains the variables {qℓv | ℓ ∈ Sv}. Target function is the same as target
function of the Nlcp instance. The CNF formula is the conjunction of the following formulae:

atLeast
△
=
∧

v∈V

(

∨

ℓ∈Sv

qℓv

)

atMost
△
=
∧

v∈V

∧

ℓ 6=ℓ′∈Sv

(

¬qℓv ∨ ¬qℓ
′

v

)

proper
△
=

∧

(v,u)∈E

∧

ℓ∈Sv∩Su

(

¬qℓv ∨ ¬qℓu
)

Suppose the given Nlcp instance is a Yes instance. In the associated p-Pw-Sat instance, set qℓv to ⊤ iff the
vertex v receives color ℓ in the witnessing coloring. Since every vertex gets a color from its set, the formula
atLeast above is satisfied. Since every vertex gets at most one color, the formula atMost is satisfied. If (v, u)
is any edge in the graph, then since v and u get different colors in the witnessing coloring, the formula proper
above is also satisfied. Since target function of the p-Pw-Sat instance is same as the target function of the
Nlcp instance, the target function of p-Pw-Sat is also satisfied.

On the other hand, suppose that the instance of p-Pw-Sat is a Yes instance. Color a vertex v with
the color ℓ iff the propositional variable qℓv is set to ⊤ in the witnessing satisfying assignment. The formula
atLeast ensures that every vertex gets at least one color from its set, while the formula atMost ensures that
every vertex gets at most one color. If (v, u) is an edge in G and ℓ is a common color between Sv and Su,
then the formula proper above ensures that at least one of the vertices v, u do not get the color ℓ. Hence,
the coloring given to the graph G is proper. Again since target function of the p-Pw-Sat instance is same
as the target function of the Nlcp instance, the target function of Nlcp is also satisfied.

Now, it is left to prove that parameters of the p-Pw-Sat instance is bounded by some functions of the
parameters of the Nlcp instance. First parameter of the p-Pw-Sat instance is the number of partitions,
which is same as the total number of colors in the Nlcp instance (and later is a parameter of the Nlcp
instance). Second parameter is the pathwidth of the primal graph of the CNF formula. Consider any path
decomposition of width 2 of the graph G in the Nlcp instance. For every bag B and every vertex v in the
bag, replace v by the set {qℓv | ℓ ∈ Sv}. We claim that the resulting decomposition is a path decomposition
of the primal graph of the CNF formula in the p-Pw-Sat instance. It is sufficient to prove that for every
clause in the CNF formula, there is a bag containing all propositional variables occurring as literals in that
clause. For any clause in the formula atLeast or atMost associated with a vertex v, any bag that contained
the vertex v before replacement will meet the above criteria. For a clause in the formula proper associated
with an edge (v, u), any bag that contained the vertices v and u before replacement will suffice. In the new
path decomposition, number of elements in any bag is at most 3 times the total number of colors in the
Nlcp instance. Hence, the pathwidth of the primal graph of the CNF formula in the p-Pw-Sat instance is
also bounded by a function of the parameters of the Nlcp instance. ⊓⊔

Theorem 6.2. With treewidth and modal depth as parameters, modal satisfiability in transitive models is
W[1]-hard.

The rest of this section is devoted to a proof of the above theorem, which is by a Fpt reduction from p-Pw-
Sat to satisfiability of modal CNF formulae in transitive models. Given an instance (F , part : Φ → [k], tg :
[k] → N) of p-Pw-Sat problem with the pathwidth of the primal graph of F being pw, we construct a modal
CNF formula φF of modal depth 2 in Fpt time such that the pathwidth (and hence the treewidth) of S(φF )
is bounded by a function of pw and k and p-Pw-Sat is a Yes instance iff φF is satisfiable in a transitive
model. Suppose the propositional variables used in F are q1, q2, . . . , qn. The idea is that if φF is satisfied
at some world w0 in some transitive model M, then M, w0 |= F . To check that the required targets of the
number of variables set to true in each partition are met, φF will force the existence of worlds w1, w2, . . . , wn

arranged as w0 7→ w1 7→ w2 7→ · · · 7→ wn. In the formula φF , we will maintain a counter for each partition of
the propositional variables. At each world wi, if qi is true, we will force the counter corresponding to part(qi)
to increment. At the world wn, the counters will have the number of variables set to ⊤ in each partition. We
will then verify in the formula φF that these counts meet the given target. Such counting tricks have come
under standard usage in complexity theoretic arguments of modal logic. The challenge here is to implement
the counting in a modal formula of small pathwidth.
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In a p-Pw-Sat instance containing n propositional variables and k partitions, we will denote the number
of variables in partition p by n[p]. We first construct an optimal path decomposition of the primal graph
of F in Fpt time. We will name the variables occurring in the first bag as q1, . . . , qi. We will name the
variables newly introduced in the second bag as qi+1, . . . , qi′ and so on. In the rest of the construction, we
will use this same ordering q1, . . . , qn of the propositional variables. This will be important to maintain the
pathwidth of the resulting modal formula low. The modal CNF formula φF will use all the propositional
variables q1, . . . , qn used by F and also use the following additional variables:

– t↑1, . . . , t↑k, f↑1, . . . , f↑k: partition indicators.

– For each partition p, tr0p, . . . , tr
n[p]
p , f l

0
p, . . . , f l

n[p]
p : counters to count the number of variables set to ⊤ and

⊥ in partition p.

– d0, . . . , dn+1: depth indicators.

The modal CNF formula φF is the conjunction of the formulae described below. For clarity, we have used
the shorthand notation ⇒ but they can be easily converted to CNF. Also for notational convenience, we will
use part(i) instead of part(qi). Φ(p) is the set of variables among {q1, . . . , qn} in partition p. The formula
determined ensures that all successors of w0 preserve the assignment of q1, . . . , qn. The formula depth ensures
that for all i, di ∧ ¬di+1 holds in the world wi.

In wi−1, if qi is set to ⊤, we want to indicate that in wi, the counter for partition part(i) should be
incremented. We will indicate this in the formula setCounter by setting the variable t↑part(i) to ⊤. Similar
indication is done for the counter keeping track of variables set to ⊥ in partition p.

determined
△
=

n
∧

i=1

qi ⇒ �qi ∧

n
∧

i=1

¬qi ⇒ �¬qi

depth
△
= ♦(d1 ∧ ¬d2) ∧

n−1
∧

i=1

� [(di ∧ ¬di+1) ⇒ ♦(di+1 ∧ ¬di+2)]

setCounter
△
= (q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f↑part(1))

∧
n
∧

i=2

�
{

[di−1 ∧ ¬di] ⇒ [(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f↑part(i))]
}

incCounter
△
= (t↑part(1) ⇒ �tr1part(1)) ∧ (f↑part(1) ⇒ �f l

1
part(1))

∧

k
∧

p=1

n[p]−1
∧

j=0

�[t↑p ⇒ (trjp ⇒ �trj+1
p )] ∧�[f↑p ⇒ (f l

j
p ⇒ �f l

j+1
p )]

targetMet
△
=

k
∧

p=1

�[dn ⇒ (trtg(p)p ∧ ¬trtg(p)+1
p )]

∧

k
∧

p=1

�[dn ⇒ (f l
n[p]−tg(p)
p ∧ ¬f l

n[p]−tg(p)+1
p )]

Variables tr0p, . . . , tr
n[p]
p implement the counter keeping track of variables set to ⊤ in partition p. If j variables

in Φ(p) ∩ {q1, . . . , qi} are set to ⊤, then we want trjp to be set to ⊤ in wi. To maintain this, in wi−1, if it is
indicated that a counter is to be incremented (by setting t↑p to ⊤), we will force all successors of wi−1 to
increment the trp counter in the formula incCounter. Finally, we check that at wn, all the targets are met
in the formula targetMet.

The modal CNF formula φF we need is the conjunction of F , the formulae defined above and the
miscellaneous formulae below (which ensure that counters are initiated properly and are monotonically non-
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decreasing).

determined′
△
=

k
∧

p=1

tr0p ⇒ �tr0p ∧

k
∧

p=1

f l
0
p ⇒ �f l

0
p

countInit
△
= d0 ∧ ¬d1 ∧

k
∧

p=1

(¬tr1p ∧ ¬f l
1
p ∧ tr

0
p ∧ f l

0
p)

depth′
△
=

k
∧

p=1

n[p]
∧

j=0

[

�(trjp ⇒ �trjp) ∧�(f l
j
p ⇒ �f l

j
p)
]

countMonotone
△
=

n
∧

i=1

�(di ⇒ di−1) ∧

k
∧

p=1

n[p]
∧

j=2

[

�(trjp ⇒ trj−1
p ) ∧�(f l

j
p ⇒ f l

j−1
p )

]

Lemma 6.3. If a p-Pw-Sat instance is a Yes instance, then the modal formula constructed above is sat-
isfied in a transitive Kripke model.

Proof. We will construct a transitive Kripke model using the satisfying assignment f that satisfies F while
meeting the given target. The model M consists of worlds w0, w1, . . . , wn arranged as w0 7→ w1 7→ w2 7→
· · · 7→ wn. In all worlds, qi is set to f(qi) for all i, thus ensuring that M, w0 |= F ∧ determined. In
wi, {d0, . . . , di} are set to ⊤ and {di+1, . . . , dn+1} are set to ⊥ for all i between 0 and n, thus ensuring
that M, w0 |= depth ∧ d0 ∧ ¬d1, the last two clauses coming from the formula depth′. It also ensures
that M, w0 |=

∧n

i=1 �(di ⇒ di−1), which is part of countMonotone. We will set tr0p and f l
0
p to ⊤ in all

worlds and tr1p and f l
1
p to ⊥ in w0 for all partitions p, thus ensuring M, w0 |= countInit ∧ determined′. At

wi−1, we will set t↑part(i) to qi’s value in the same world and f↑part(i) to ¬qi’s value. This will ensure that
M, w0 |= setCounter.

At wi, for any partition p, if j variables in Φ(p) ∩ {q1, . . . , qi} are set to ⊤, then we will set {tr0p, . . . , tr
j
p}

to ⊤ and {trj+1
p , . . . , tr

n[p]
p } to ⊥. If j′ variables in Φ(p) ∩ {q1, . . . , qi} are set to ⊥, we will set {f l

0
p, . . . , f l

j′

p }

to true and {f l
j′+1
p , . . . , f l

n[p]
p } to ⊥. For any p 6= part(i+ 1), we will set t↑p and f↑p to ⊥ at wi. These will

ensure that M, w0 |= incCounter ∧ depth′ ∧ countMonotone.
Combined with the above settings of all propositional variables in M, it is easy to check that the fact

that f meets the target for each partition implies M, w0 |= targetMet. ⊓⊔

Lemma 6.4. Suppose the modal CNF formula φF constructed above is satisfied at some world w0 of some
transitive Kripke model M. Then M contains distinct worlds w1, . . . , wn such that for each i between 1 and
n, wi is a successor of wi−1. Moreover, {d0, . . . , di} are set to ⊤ and {di+1, . . . , dn+1} are set to ⊥ in wi.
For any partition p, if j variables in Φ(p) ∩ {q1, . . . , qi} are set to ⊤ in w0, then {tr0p, . . . , tr

j
p} are all set to

⊤ in wi. If j
′ variables in Φ(p) ∩ {q1, . . . , qi} are set to ⊥ in w0, then {f l

0
p, . . . , f l

j′

p } are all set to ⊤ in wi.

Proof. We will first prove the existence of worlds w1, . . . , wi by induction on i.
Base case i = 1: Since M, w0 |= depth, there must be a successor w1 of w0 that satisfies d1 ∧ ¬d2. Since

M, w0 |= countInit, w0 satisfies d0 ∧ ¬d1 and hence w1 can not be same as w0. Since M, w0 |= �(d3 ⇒ d2)
(part of countMonotone) and w1 is a successor of w0, we get M, w1 |= d3 ⇒ d2. Since d2 is set to ⊥ in w1,
this means that d3 is also set to ⊥ in w1. Similar reasoning can be used to prove that all of {d2, . . . , dn+1}
are set to ⊥ in w1. The fact that M, w1 |= d1 ⇒ d0 means that d0 is set to ⊤ in w1 (since d1 is set to ⊤ in
w1).

Induction step: Assume that worlds w1, . . . , wi exist in M with the stated properties. Hence, wi satisfies
di ∧ ¬di+1. Since w0 satisfies depth and wi is a successor of w0 (by transitivity), there must be a successor
wi+1 of wi that satisfies di+1 ∧ ¬di+2. Since all worlds w0, . . . , wi satisfy ¬di+1, wi+1 is distinct from all of
them. The fact that wi+1 satisfies di′ ⇒ di′−1 for all i′ (these formulae are part of countMonotone formula
satisfied by w0) can be used to show that all of d0, . . . , di+1 are set to ⊤ in wi+1 and all of di+2, . . . , dn+1

are set to ⊥ in wi+1.
We will now prove the second claim of the lemma, which is about values of {tr0p, . . . , tr

j
p} in wi. We will

first prove that trjp is set to ⊤ by induction on i.
Base case i = 1: If q1 is not in part p, there is nothing to prove (tr0

part(1) is set to ⊤ in all worlds). If q1
is in part p and q1 is set to ⊥, there is nothing to prove. If q1 is in part p and q1 is set to ⊤, then since w0
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satisfies setCounter, we get M, w0 |= q1 ⇒ t↑part(1). Since, q1 is set to ⊤ and part(1) = p, we get that t↑p is
set to ⊤ in w0. Since w0 satisfies incCounter, we get M, w0 |= t↑p ⇒ �tr1p and hence M, w0 |= �tr1p. Since
w1 is a successor of w0, we conclude that in w1, tr

1
p is set to ⊤.

Induction step: Case 1: qi is not in part p and none of the variables in Φ(p) ∩ {q1, . . . , qi} are set to to ⊤
in wi. In this case, there is nothing to prove.

Case 2: qi is not in part p and some 1 ≤ j < i variables in Φ(p) ∩ {q1, . . . , qi} are set to ⊤. By the
induction hypothesis, trjp is set to ⊤ in wi−1. Now M, w0 |= depth′. Hence M, w0 |= �(trjp ⇒ �trjp), and

hence M, wi−1 |= trjp ⇒ �trjp (since wi−1 is a successor of w0), and hence M, wi−1 |= �trjp (since trjp is set

to ⊤ in wi−1), and hence M, wi |= trjp (since wi is a successor of wi−1).
Case 3: qi is in part p and qi is set to ⊥. If none of the variables in Φ(p) ∩ {q1, . . . , qi} are set to ⊤, then

the argument is similar to case 1. If some 1 ≤ j < i variables in Φ(p) ∩ {q1, . . . , qi} are set to ⊤, then the
argument is similar to case 2.

Case 4: qi is in part p and qi is set to ⊤. We know that wi−1 satisfies di−1 ∧ ¬di. Since w0 satisfies
setCounter, we have M, w0 |= �

{

[di−1 ∧ ¬di] ⇒ [qi ⇒ t↑part(i)]
}

, and hence M, wi−1 |= [di−1 ∧ ¬di] ⇒
[qi ⇒ t↑part(i)] (since wi−1 is a successor of w0), and hence M, wi−1 |= qi ⇒ t↑p (since M, wi−1 |= di−1∧¬di),
and hence M, wi−1 |= t↑p (since M, wi−1 |= qi). Since w0 satisfies incCounter and wi−1 is a successor of w0,
we get M, wi−1 |= t↑p ⇒ (trj−1

p ⇒ �trjp). We have already seen that t↑p is set to ⊤ in wi−1 and trj−1
p is set

to ⊤ in wi−1 by the induction hypothesis (j is at least 1 since qi is in part p and is set to ⊤). Hence, we get
M, wi−1 |= �trjp. Since wi is a successor of wi−1, we conclude that trjp is set to ⊤ in wi.

Now, since w0 satisfies �(trjp ⇒ trj−1
p ) (this is part of countMonotone) and wi is a successor of w0, we

get M, wi |= trjp ⇒ trj−1
p . Since trjp is set to ⊤ in wi, it follows that trj−1

p is also set to ⊤ in wi. Similarly,

tr0p, . . . , tr
j
p are all set to ⊤ in wi.

The proof for values of {f l
0
p, . . . , f l

j′

p } is symmetric to the proof of values of {tr0p, . . . , tr
j
p}. ⊓⊔

Theorem 6.5. If φF constructed above is satisfied in a transitive model, then the p-Pw-Sat instance is a
Yes instance.

Proof. Suppose φF is satisfied in some world w0 of a transitive model. Since F is part of φF , the assignment
to {q1, . . . , qn} induced by w0 satisfies F . We claim that this assignment also meets the targets. If not, we
will derive a contradiction. For some partition p, suppose there are more than tg(p) variables set to ⊤. Then

by Lemma 6.4, tr
tg(p)+1
p will be set to ⊤ in wn, contradicting the fact that w0 satisfies targetMet. For some

partition p, if there are less than tg(p) variables set to ⊤, then there will be more than n[p]− tg(p) variables

set to ⊥. By Lemma 6.4, tr
n[p]−tg(p)+1
p will be set to ⊤ in wn, again contradicting the fact that w0 satisfies

targetMet. ⊓⊔

Given an instance of p-Pw-Sat problem, the formula φF described above can be constructed in Fpt
time. To complete the proof of Theorem 6.2, we will prove that the pathwidth of φF is bounded by some
function of k and pw. φF has been carefully constructed to keep pathwidth low.

Lemma 6.6. Pathwidth of S(φF ) is at most 4pw + 2k + 5.

Proof. Given an optimal path decomposition of the primal graph of F , depth counters can be added to the
bags without increasing their size much since the order of depth counters is same as the order of q1, . . . , qn.
There are only 2k partition indicators t↑1, . . . , t↑k, f↑1, . . . , f↑k, so they can also be added to the bags without
increasing their size very much. However, the set of 2n partition counters (of the form trjp or f l

j
p) has to be

added carefully to maintain the size of the bags. Formulas of φF have been carefully designed to enable this.
The key observation is that the only “link” between q1, . . . , qn and partition counters are partition indicators
and there are only 2k of them. The following proof relies on this observation.

Consider an optimal path decomposition of the primal graph of F with each bag containing at most pw
elements. Ensure that for all i with 1 ≤ i < n, there is a bag containing both qi and qi+1 or there is a bag
with qi such that the next bag contains qi+1 (call this the continuity property). If this is not the case for
some i, consider the last bag B containing qi and the first bag B′ containing qi+1. No bag that is between B
and B′ will introduce any new variable (if it did, that new variable would have been qi+1 according to our
order). Hence, all the bags in between B and B′ are subsets of B. Hence, they can all be removed and B′

can become the bag immediately after B. The resulting decomposition is still a path decomposition of the
primal graph of F with each bag containing at most pw elements. Moreover, the order of variables q1, . . . , qn
does not change due to the change we have made in the path decomposition. This new decomposition has a
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bag containing qi such that the next bag contains qi+1. Now, we can repeat the above process until we get
a path decomposition with the continuity property.

For any i with 1 ≤ i ≤ n, let Bi be a bag containing the propositional variable qi. We will expand this
path decomposition by adding variables used in φF such that for every clause that appears in φF , there is
a bag that contains all propositional variables appearing in that clause. Each of these expanded bags will
have at most 4pw+2k elements. We will then show how to expand this into a path decomposition of S(φF ),
by adding at most 6 elements to each bag (creating duplicate copies of existing bags if required). This will
prove that the pathwidth of S(φF ) is at most 4pw + 2k + 5.

First, in each bag B and each element qi in it, add di−1, di and di+1. Note that due to continuity prop-
erty of the decomposition we started with, the expanded decomposition still retains the property that all
bags containing an element forms a connected component, even after adding depth counters d0, . . . , dn+1.
Next, add t↑1, . . . , t↑k, f↑1, . . . , f↑k to all the bags. We will refer to the bag containing qi, di−1, di and
di+1 as Bi. Now, we have a decomposition with each bag containing at most 4pw + 2k elements, and
the last bag contains dn. To this bag, we will append 2k paths serially. For 1 ≤ p ≤ k, (2p − 1)th

path will be as follows: {dn, t↑1, . . . , t↑k, f↑1, . . . , f↑k, tr
0
p, tr

1
p}− {dn, t↑1, . . . , t↑k, f↑1, . . . , f↑k, tr

1
p, tr

2
p}− · · · −

{dn, t↑1, . . . , t↑k, f↑1, . . . , f↑k, tr
n[p]−1
p , tr

n[p]
p }. We will refer to these bags as B1

p , . . . , B
n[p]
p . 2pth path is similar,

with f lp variables replacing trp variables. We will refer to these bags in 2pth path as B1′

p , . . . , B
n[p]′

p . Each of
these new bags has at most 2k+ 3 elements, and the whole decomposition still retains the property that for
any element, the set of bags containing that element forms a connected component.

Now we will show how to expand the above decomposition into a path decomposition of S(φF ). We have
to add clauses and literals occurring in φF and ensure that for any pair of elements Oc(e1, e2) or Oc(e1, e2),
there is a bag containing both e1 and e2. To achieve this, we may have to “augment” an existing bag with
new elements. If Bi is a bag in the path decomposition · · · −Bi − . . . , augmenting Bi with elements e1 and
e2 means that we add another bag · · · −B′

i −Bi − . . . with B′
i containing all elements of Bi and in addition

containing e1 and e2. If we ensure that these new elements introduced during augmentation is never added
to any other bag in the decomposition, augmentation will not violate the path decomposition’s property
that for any element, the set of bags containing that element forms a connected component. Now, we will go
through each sub-formula of φF and prove that all its clauses, literals and Oc pairs are already represented in
the path decomposition we have constructed above or that the decomposition can be augmented to represent
them.

– Clauses in F : For each clause in F , the propositional variables in that clause form a clique in the primal
graph of F . Hence, there is a bag B in the new decomposition that contains all propositional variables
occurring in that clause. Augment B with a new domain element representing the clause.

– determined: Here, the clauses are of the form ¬qi∨�qi and qi∨�¬qi. Augment the bag Bi containing qi
with 3 domain elements, one for the clause ¬qi ∨�qi itself, one for the literal �qi and one for the clause
in this literal that contains qi as its only literal. Perform similar augmentation for the clause qi ∨�¬qi.

– depth: For ♦(d1 ∧ ¬d2), augment the bag B1 containing d1 and d2 with 4 domain elements representing
literals and clauses of ♦(d1 ∧ ¬d2). Augment the bag Bi+1 containing di, di+1 and di+2 with 6 elements
representing literals and clauses of �[¬di ∨ di+1 ∨ ♦(di+1 ∧ ¬di+2)].

– setCounter: Augment the bag B1 containing q1 and t↑part(1) with one element representing the clause
¬q1 ∨ t↑part(1). Do a similar augmentation for the clause q1 ∨ f↑part(1). �(q ∧ r) is equivalent to �q ∧
�r. Hence, the latter part of setCounter can be split into clauses �(¬di−1 ∨ di ∨ ¬qi ∨ t↑part(i)) and
�(¬di−1 ∨ di ∨ qi ∨ f↑part(i)). Augment the bag Bi containing di−1, di, qi, t↑part(i) and f↑part(i) with 6
elements representing clauses and literals of these two clauses.

– incCounter: Augment the bag B1
part(1) containing t↑part(1) and tr1

part(1) with 3 elements representing

clauses and literals of (¬t↑part(1) ∨ �tr1
part(1)). Similarly augment the bag B1′

part(1) for (¬f↑part(1) ∨

�f l
1
part(1)). Augment the bag Bj+1

p containing t↑p, tr
j
p and trj+1

p with 6 elements representing literals

and clauses of �(¬t↑p ∨ ¬trjp ∨�trj+1
p ). Similarly augment Bj+1′

p for �(¬f↑p ∨ ¬f l
j
p ∨�f l

j+1
p ).

– targetMet: Augment the bag B
tg(p)+1
p containing dn, tr

tg(p)
p and tr

tg(p)+1
p with 6 elements for the literals

and clauses in �(¬dn ∨ tr
tg(p)
p ) and �(¬dn ∨ ¬tr

tg(p)+1
p ). Similarly augment B

n[p]−tg(p)+1′

p for �(¬dn ∨

f l
n[p]−tg(p)
p ) and �(¬dn ∨ ¬f l

n[p]−tg(p)+1
p )

– determined′: Augment the bag B1
p containing tr0p with 3 elements representing literals and clauses of

¬tr0p ∨�tr0p. Similarly augment B1′

p for ¬f l
0
p ∨�f l

0
p.
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– countInit: Augment the bag B1 containing d0 and d1 with 2 elements representing the clauses in d0∧¬d1.
Augment the bag B1

p containing tr0p and tr
1
p with 2 elements representing the clauses in ¬tr1p∧tr

0
p. Similarly

augment B1′

p for ¬f l
1
p ∧ f l

0
p.

– depth′: Augment the bag Bj
p containing trjp with 6 elements representing literals and clauses of �(¬trjp ∨

�trjp). Similarly augment Bj′

p for �(¬f l
j
p ∨�f l

j
p).

– countMonotone: Augment the bag Bi containing di and di−1 with 3 elements representing literals and
clauses of �(¬di ∨ di−1). Augment the bag Bj

p containing trjp and trj−1
p with 3 elements representing

literals and clauses of �(¬trjp ∨ tr
j−1
p ). Similarly augment Bj′

p for �(¬f l
j
p ∨ f l

j−1
p ). ⊓⊔

In the absence of transitivity, the above reduction would require a formula of modal depth that depends on
n (and hence it would no longer be a Fpt reduction). The above hardness proof will however go through
for any class of transitive frames that has paths of unbounded length of the form w1 7→ w2 7→ · · · 7→ wn

without any reverse paths2. See [31] for some context on such classes of transitive frames of unbounded
depth. Readers familiar with frames with no branching to the right (axiom .3) may infer that the above
hardness proof will also go through for K4.3 frames.

7 Conclusions and Future Work

By expressing satisfiability of modal formulae as a MSO property, we obtained a Fpt algorithm for modal
satisfiability in general models with treewidth and modal depth as parameters. Due to the dependence of
the constructed MSO sentence on modal depth, the Fpt algorithm obtained in section 3 has a running
time with a tower of 2’s whose height is O(md(φ)). Unless, Ptime=Np, such dependence on modal depth
cannot be avoided due to the following observation. In [1, Lemma 1], it is shown how to encode an arbitrary
propositional CNF formula into an equivalent modal formula (the propositional formula is satisfiable iff the
modal formula is satisfiable in a general model). This modal formula has some very low modal depth h

such that any function growing slower than a tower of 2’s of height h − 5 is a polynomial in the size of
the propositional formula. The treewidth of this modal formula can be verified to be a constant. This also
proves that unless Ptime=Np, modal satisfiability in general models is not Fpt when treewidth is the only
parameter.

We can work out a composition algorithm [4], and hence conclude that with treewidth and modal depth
as parameters, there is no polynomial kernel for modal satisfiability in general models.

One direction for future research is towards meta classification as done in [19], instead of the case by
case analysis of this work. We can also consider variations in treewidth, such as having different domain
elements representing same propositional variable at different levels in S(φ). Other variations are modal
circuits instead of modal formulae and generalizations of primal/dual graphs instead of incidence graphs.

Acknowledgements. The author wishes to thank Kamal Lodaya, Geevarghese Philip and Saket Saurabh
for helpful discussions, pointers to related work and feedback on the draft. The author also thanks anonymous
referees of a previous version of this paper for catching some subtle errors and suggesting extensions.

References

[1] A. Achilleos, M. Lampis, and V. Mitsou. Parameterized modal satisfiability. In ICALP, volume 6199 of LNCS,
pages 369–380, 2010.

[2] I. Adler and M. Weyer. Tree-width for first order formulae. In CSL, volume 5771 of LNCS, pages 71–85, 2009.
[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CUP, 2001.
[4] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels. J.

Comput. Syst. Sci., 75(8):423–434, 2009.
[5] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs.

J. Alg., 21(2):358–402, 1996.
[6] H. Chen. Quantified constraint satisfaction and bounded treewidth. In R. L. de Mántaras and L. Saitta, editors,
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