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CĂTĂLIN HRIŢCU
Inria, Paris-Rocquencourt, France

LEONIDAS LAMPROPOULOS
University of Pennsylvania, Philadelphia, USA

ANTAL SPECTOR-ZABUSKY
University of Pennsylvania, Philadelphia, USA

ARTHUR AZEVEDO DE AMORIM
University of Pennsylvania, Philadelphia, USA

MAXIME DÉNÈS
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Abstract

Information-flow control mechanisms are difficult both to design and to prove correct. To reduce
the time wasted on doomed proof attempts due to broken definitions, we advocate modern random
testing techniques for finding counterexamples during the design process. We show how to use
QuickCheck, a property-based random-testing tool, to guide the design of increasingly complex
information-flow abstract machines, leading up to a sophisticated register machine with a novel and
highly permissive flow-sensitive dynamic enforcement mechanism that is sound in the presence of
first-class public labels. We find that both sophisticated strategies for generating well-distributed
random programs and readily falsifiable formulations of noninterference properties are critically
important for efficient testing. We propose several approaches and evaluate their effectiveness on a
collection of injected bugs of varying subtlety. We also present an effective technique for shrinking
large counterexamples to minimal, easily comprehensible ones. Taken together, our best methods
enable us to quickly and automatically generate simple counterexamples for more than 45 bugs.
Moreover, we show how testing guides the discovery of the sophisticated invariants needed for the
noninterference proof of our most complex machine.
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1 Introduction
Secure information-flow control (IFC) is nearly impossible to achieve by careful design alone. The
mechanisms involved are intricate and easy to get wrong: static type systems must impose numerous
constraints that interact with other typing rules in subtle ways (Sabelfeld and Myers 2003), while
dynamic mechanisms must appropriately propagate taints and raise security exceptions when nec-
essary (Austin and Flanagan 2009, 2010; Fenton 1974; Sabelfeld and Russo 2009). In a dynamic
setting, allowing IFC labels to vary dynamically (i.e., performing flow-sensitive analysis) can lead to
subtle information leaks through the labels themselves (Russo and Sabelfeld 2010; Zheng and Myers
2007); these leaks are particularly hard to avoid if labels are observable inside the language (Hriţcu
et al. 2013a; Stefan et al. 2011). This intricacy makes it hard to be confident in the correctness of
such mechanisms without detailed proofs; however, carrying out these proofs while designing the
mechanisms can be an exercise in frustration, with a great deal of time spent attempting to verify
broken definitions! The question we address in this paper is: Can we use modern testing techniques
to discover bugs in IFC enforcement mechanisms quickly and effectively? If so, then we can use test-
ing to catch most errors during the design phase, postponing proof attempts until we are reasonably
confident that the design is correct.

To answer this question, we undertake two case studies. The first is aimed at extending a sim-
ple abstract stack-and-pointer machine to track dynamic information flow and enforce termination-
insensitive noninterference (Sabelfeld and Myers 2003). Although this machine is simple, the ex-
ercise is nontrivial. While even simpler notions of dynamic taint tracking are well studied for both
high- and low-level languages, it has only recently been shown (Austin and Flanagan 2009; Sabelfeld
and Russo 2009) that dynamic checks are capable of soundly enforcing strong security properties.
Moreover, until recently (Azevedo de Amorim et al. 2014; Bichhawat et al. 2014a; Hriţcu et al.
2013b), sound dynamic IFC has been studied only in the context of high-level languages (Austin and
Flanagan 2009; Bichhawat et al. 2014b; Hedin and Sabelfeld 2012; Hriţcu et al. 2013a; Sabelfeld
and Russo 2009; Stefan et al. 2011); the unstructured control flow of a low-level machine poses
additional challenges.

We show how QuickCheck (Claessen and Hughes 2000), a popular property-based testing tool,
can be used to formulate and test noninterference properties of our abstract machine, quickly find a
variety of missing-taint and missing-exception bugs, and incrementally guide the design of a correct
version of the machine. One significant challenge is that both the strategy for generating random
programs and the precise formulation of the noninterference property have a dramatic impact on
the time required to discover bugs; we benchmark several variations of each to identify the most
effective choices. In particular, we observe that checking the unwinding conditions (Goguen and
Meseguer 1984) of our noninterference property can be much more effective than directly testing
the original property.

The second case study demonstrates the scalability of our techniques by targeting the design
of a novel and highly permissive flow-sensitive dynamic IFC mechanism. This experiment targets a
more sophisticated register machine that is significantly more realistic than the first and that includes
advanced features such as first-class public labels and dynamically allocated memory with mutable
labels. We still quickly find all introduced flaws. Moreover, we can use testing to discover the
sophisticated invariants required by a complex noninterference proof.

Our results should be of interest both to researchers in language-based security, who can now
add random testing to their tools for debugging subtle IFC enforcement mechanisms and their non-
interference proofs; and to the random-testing community, where our techniques for generating and
shrinking random programs may be useful for checking other properties of abstract machines. Our
primary contributions are: (1) a demonstration of the effectiveness of random testing for discovering
counterexamples to noninterference in low-level information-flow machines; (2) a range of program
generation strategies for finding such counterexamples; (3) an empirical comparison of how effective
combinations of these strategies and formulations of noninterference are in finding counterexamples;
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(4) an effective methodology for shrinking large counterexamples to smaller, more readable ones;
(5) a demonstration that these techniques can speed the design of a state-of-the-art flow-sensitive
dynamic IFC mechanism that is highly permissive and sound even though labels are observable; (6)
a demonstration that our techniques can aid in discovering the complex invariants involved in the
noninterference proofs for this novel IFC mechanism; (7) a mechanized noninterference proof for
this mechanism.

Sections 2 to 7 gradually introduce our testing methodology using the simple stack machine as
the running example. Section 8 shows that our methodology scales up to the more realistic register
machine with advanced IFC features. Section 9 presents related work and section 10 concludes and
discusses future work. Accompanying Haskell code associated to this paper and the Coq proofs
mentioned in Section 8 and Appendix B are available online at https://github.com/QuickChick.

A preliminary version of this work appeared in the proceedings of the ICFP 2013 confer-
ence (Hriţcu et al. 2013b). Section 8 of this paper and the contributions therein (points 5 to 7 above)
are new. The other sections have also been improved and extended with additional counterexamples.

2 Basic IFC
We begin by introducing the core of our abstract stack machine. In §5 we will extend this sim-
ple core with control flow (jumps and procedure calls), but the presence of pointers already raises
opportunities for some subtle mistakes in information-flow control.

Some notation: we write [ ] for the empty list and x : xs for the list whose first element is x and
whose tail is xs; we also write [x0, x1, . . . , xn] for the list x0 : x1 : · · · : xn : [ ]. If xs is a list and
0 ≤ j < |xs|, then xs(j) selects the j th element of xs and xs[j := x] produces the list that is like xs
except that the j th element is replaced by x.

2.1 Bare stack machine
The most basic variant of our stack machine (without information-flow labels) has seven instructions:

Instr ::= Push n | Pop | Load | Store | Add | Noop | Halt

The n argument to Push is an integer (an immediate constant).
A machine state S is a 4-tuple consisting of a program counter pc (an integer), a stack s (a list of

integers), a memory m (another list of integers), and an instruction memory i (a list of instructions),
written pc s m i . Since i is cannot change during execution we will often write just pc s m
for the varying parts of the machine state.

The single-step reduction relation on machine states, written S ⇒ S′, is defined by the following
rules:

i(pc) = Noop

pc s m ⇒ pc+1 s m
(BARE-NOOP)

i(pc) = Push n

pc s m ⇒ pc+1 n : s m
(BARE-PUSH)

i(pc) = Pop

pc n : s m ⇒ pc+1 s m
(BARE-POP)

i(pc) = Load m(p) = n

pc p : s m ⇒ pc+1 n : s m
(BARE-LOAD)

https://github.com/QuickChick
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i(pc) = Store m′ = m[p := n]

pc p : n : s m ⇒ pc+1 s m′
(BARE-STORE)

i(pc) = Add

pc n1 : n2 : s m ⇒ pc+1 (n1+n2) : s m
(BARE-ADD)

This relation is a partial function: it is deterministic, but some machine states don’t step to anything.
Such a stuck machine state is said to be halted if i(pc) = Halt and failed in all other cases (e.g., if
the machine is trying to execute an Add with an empty stack, or if the pc points outside the bounds
of the instruction memory). We write⇒∗ for the reflexive, transitive closure of⇒. When S ⇒∗ S′
and S′ is a stuck state, we write S ⇓ S′.

2.2 Stack machine with labeled data
In a (fine-grained) dynamic IFC system (Austin and Flanagan 2009; Azevedo de Amorim et al.
2014; Bichhawat et al. 2014b; Hedin and Sabelfeld 2012; Hriţcu et al. 2013a; Sabelfeld and Russo
2009; Stefan et al. 2011) security levels (called labels) are attached to runtime values and propagated
during execution, enforcing the constraint that information derived from secret data does not leak
to untrusted processes or to the public network. Each value is protected by an individual IFC label
representing a security level (e.g., secret or public). We now add labeled data to our simple stack
machine. Instead of bare integers, the basic data items in the instruction and data memories and the
stack are now labeled integers of the form n@`, where n is an integer and ` is a label:

` ::= L | H

We read L as “low” (public) and H as “high” (secret). We order labels by L v H and write `1 ∨ `2
for the join (least upper bound) of `1 and `2.

The instructions are exactly the same except that the immediate argument to Push becomes a
labeled integer:

Instr ::= Push n@` | Pop | Load | Store | Add | Noop | Halt

Machine states have the same shape as the basic machine, with the stack and memory now being
lists of labeled integers. The set of initial states of this machine, Init, contains states of the form
0 [ ] m0 i , where m0 can be of any length and contains only 0@L. We use Halted to denote the

set of halted states of the machine, i.e., i(pc) = Halt.

2.3 Noninterference (EENI)
We define what it means for this basic IFC machine to be “secure” using a standard notion of
termination-insensitive noninterference (Austin and Flanagan 2009; Azevedo de Amorim et al. 2014;
Hriţcu et al. 2013a; Sabelfeld and Myers 2003); we call it end-to-end noninterference (or EENI) to
distinguish it from the stronger notions we will introduce in §6. The main idea of EENI is to directly
encode the intuition that secret inputs should not influence public outputs. By secret inputs we mean
integers labeled H in the initial state; because of the form of our initial states, such labeled integers
can appear only in instruction memories. By secret outputs we mean integers labeled H in a halted
state. More precisely, EENI states that for any two executions starting from initial states that are
indistinguishable to a low observer (or just indistinguishable) and ending in halted states S1 and S2,
the final states S1 and S2 are also indistinguishable. Intuitively, two states are indistinguishable if
they differ only in integers labeled H . To make this formal, we define an equivalence relation on
states compositionally from equivalence relations over their components.

2.1 Definition:
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• Two labeled integers n1@`1 and n2@`2 are said to be indistinguishable, written n1@`1 ≈
n2@`2, if either `1 = `2 = H or else n1 = n2 and `1 = `2 = L.

• Two instructions i1 and i2 are indistinguishable if they are the same, or if i1 = Push n1@`1,
and i2 = Push n2@`2, and n1@`1 ≈ n2@`2.

• Two lists (memories, stacks, or instruction memories) xs and ys are indistinguishable if they
have the same length and xs(i) ≈ ys(i) for all i such that 0 ≤ i < |xs|.

For machine states we have a choice as to how much of the state we want to consider observable;
we choose (somewhat arbitrarily) that the observer can only see the data and instruction memories,
but not the stack or the pc. (Other choices would give the observer either somewhat more power—
e.g., we could make the stack observable—or somewhat less—e.g., we could restrict the observer to
some designated region of “I/O memory,” or extend the architecture with I/O instructions and only
observe the traces of inputs and outputs (Azevedo de Amorim et al. 2014).)

2.2 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 = pc2 s2 m2 i2 are indistin-
guishable with respect to memories, written S1 ≈mem S2, if m1 ≈ m2 and i1 ≈ i2.

2.3 Definition: A machine semantics is end-to-end noninterfering with respect to some sets of states
Start and End and an indistinguishability relation≈, written EENIStart,End,≈, if for any S1, S2 ∈ Start
such that S1 ≈ S2 and such that S1 ⇓ S′1, S2 ⇓ S′2, and S′1, S

′
2 ∈ End, we have S′1 ≈ S′2.

We take EENIInit,Halted,≈mem
as our baseline security property; i.e., we only consider executions

starting in initial states and ending in halted states, and we use indistinguishability with respect
to memories. The EENI definition above is, however, more general, and we will consider other
instantiations of it later.

2.4 Information-flow rule design with QuickCheck
Our next task is to enrich the rules for the step function to take information-flow labels into account.
For most of the rules, there are multiple plausible ways to do this, and some opportunities for subtle
mistakes even with these few instructions. To illustrate the design methodology we hope to support,
we first propose a naive set of rules and then use counterexamples generated using QuickCheck and
our custom generation and shrinking techniques (described in detail in the following sections) to
identify and help repair mistakes until no more can be found.

i(pc) = Noop

pc s m ⇒ pc+1 s m
(NOOP)

i(pc) = Push n@`

pc s m ⇒ pc+1 n@` : s m
(PUSH)

i(pc) = Pop

pc n@` : s m ⇒ pc+1 s m
(POP)

i(pc) = Load m(p) = n@`n

pc p@`p : s m ⇒ pc+1 n@`n : s m
(LOAD*)

i(pc) = Store m′ = m[p := n@`n]

pc p@`p : n@`n : s m ⇒ pc+1 s m′
(STORE*AB)

i(pc) = Add

pc n1@`1 : n2@`2 : s m ⇒ pc+1 (n1+n2)@L : s m
(ADD*)



6

The NOOP rule is the same as in the unlabeled machine. In the PUSH and POP rules, we simply
change from bare to labeled integers; luckily, this obvious adaptation happens to be correct. But
now our luck runs out: the simple changes that we’ve made in the other rules will all turn out to
be wrong. (We include a star in the names of incorrect rules to indicate this. The rule STORE*AB
actually contains two bugs, which we refer to as A and B; we will discuss them separately later.)
Fortunately, QuickCheck can rapidly pinpoint the problems, as we will see.

Figure 1 shows the first counterexample that QuickCheck gives us when we present it with the
step function defined by the six rules above and ask it to try to invalidate the EENI property. (The
LATEX source for all the figures was generated automatically by our QuickCheck testing infrastruc-
ture.) The first line of the figure is the counterexample itself: a pair of four-instruction programs,
differing only in the constant argument of the second Push. The first program pushes 0@H , while
the second pushes 1@H , and these two labeled integers are indistinguishable. We display the two
programs, and the other parts of the two machine states, in a “merged” format. Pieces of data that
are the same between the two machines are written just once; at any place where the two machines
differ, the value of the first machine is written above the value of the second machine, separated by
a horizontal line. The rest of the figure shows what happens when we run this program. On the
first step, the pc starts out at 0; the memory, which has two locations, starts out as [0@L, 0@L]; the
stack starts out empty; and the next instruction to be executed (i(pc)) is Push 1@L. On the next
step, this labeled integer has been pushed on the stack and the next instruction is either Push 0@H
or Push 1@H; one or the other of these labeled integers is pushed on the stack. On the next, we
Store the second stack element (1@L) into the location pointed to by the first (either 0@H or 1@H),
so that now the memory contains 1@L in either location 0 or location 1 (the other location remains
unchanged, and contains 0@L). At this point, both machines halt. This pair of execution sequences
shows that EENI fails: in the initial state, the two programs are indistinguishable to a low observer
(their only difference is labeled H), but in the final states the memories contain different integers at
the same location, both of which are labeled L.

Thinking about this counterexample, it soon becomes apparent what went wrong with the Store
instruction: since pointers labeled H are allowed to vary between the two runs, it is not safe to store
a low integer through a high pointer. One simple but draconian fix is simply to stop the machine if
it tries to perform such a store (i.e., we could add the side-condition `p = L to the rule). A more
permissive option is to allow the store to take place, but require it to taint the stored value with the
label on the pointer:

i(pc) = Store m′ = m[p := n@(`n∨`p)]
pc p@`p : n@`n : s m ⇒ pc+1 s m′

(STORE*B)

Unfortunately, QuickCheck’s next counterexample (Figure 2) shows that this rule is still not quite
good enough. This counterexample is quite similar to the first one, but it illustrates a more subtle
point: our definition of noninterference allows the observer to distinguish between final memory
states that differ only in their labels.1 Since the STORE*B rule taints the label of the stored integer
with the label of the pointer, the fact that the Store changes different locations is visible in the fact
that a label changes from L to H on a different memory location in each run. To avoid this issue,
we adopt the “no sensitive upgrades” rule (Austin and Flanagan 2009; Zdancewic 2002), which
demands that the label on the current contents of a memory location being stored into are above the
label of the pointer used for the store —i.e., it is illegal to overwrite a low value via a high pointer
(and trying to do so results in a fatal failure). Adding this side condition brings us to a correct version
of the STORE rule.

1See the first clause of Definition 2.1. One might imagine that this could be fixed easily by changing the definition
so that whether a label is high or low is not observable—i.e., n@L ≈ n@H for any n. Sadly, this is known not to
work (Fenton 1974; Russo and Sabelfeld 2010). (QuickCheck can also find a counterexample, which we present in §A.1.
The counterexample relies on control flow, which is only introduced in §5.)



7

i =
[

Push 1@L,Push 0
1

@H, Store,Halt
]

pc m s i(pc)

0 [0@L, 0@L] [ ] Push 1@L
1 [0@L, 0@L] [1@L] Push 0

1
@H

2 [0@L, 0@L]
[
0
1

@H, 1@L
]

Store

3
[
1
0

@L, 0
1

@L
]

[ ] Halt

Figure 1: Counterexample to STORE*AB

i =
[

Push 0@L,Push 0
1

@H, Store,Halt
]

pc m s i(pc)

0 [0@L, 0@L] [ ] Push 0@L
1 [0@L, 0@L] [0@L] Push 0

1
@H

2 [0@L, 0@L]
[
0
1

@H, 0@L
]

Store

3
[
0@H

L
, 0@ L

H

]
[ ] Halt

Figure 2: Counterexample to STORE*B

i(pc) = Store m(p) = n′@`′n `p v `′n m′ = m[p := n@(`n∨`p)]
pc p@`p : n@`n : s m ⇒ pc+1 s m′

(STORE)

The next counterexample found by QuickCheck (Figure 3) points out a straightforward problem
in the ADD* rule: adding 0@L to 0@H yields 0@L. The problem is that the taints on the arguments
to Add are not propagated to its result. The Store is needed in order to make the difference observable.
The easy (and standard) fix is to use the join of the argument labels as the label of the result:

i(pc) = Add

pc n1@`1 : n2@`2 : s m ⇒ pc+1 (n1+n2)@(`1∨`2) : s m
(ADD)

i =

[
Push 0

1
@H,Push 0@L,Add,Push 0@L, Store,

Halt

]
pc m s i(pc)

0 [0@L] [ ] Push 0
1

@H

1 [0@L]
[
0
1

@H
]

Push 0@L

2 [0@L]
[
0@L, 0

1
@H

]
Add

3 [0@L]
[
0
1

@L
]

Push 0@L

4 [0@L]
[
0@L, 0

1
@L
]

Store

5
[
0
1

@L
]

[ ] Halt

Figure 3: Counterexample to ADD*
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i =

[
Push 0@L,Push 1@L,Push 0@L, Store,Push 0

1
@H,

Load, Store,Halt

]
pc m s i(pc)

0 [0@L, 0@L] [ ] Push 0@L
1 [0@L, 0@L] [0@L] Push 1@L
2 [0@L, 0@L] [1@L, 0@L] Push 0@L
3 [0@L, 0@L] [0@L, 1@L, 0@L] Store
4 [1@L, 0@L] [0@L] Push 0

1
@H

5 [1@L, 0@L]
[
0
1

@H, 0@L
]

Load

6 [1@L, 0@L]
[
1
0

@L, 0@L
]

Store

7
[
1
0

@L, 0@L
]

[ ] Halt

Figure 4: Counterexample to LOAD*

The final counterexample found by QuickCheck (Figure 4) alerts us to the fact that the LOAD*
rule contains a similar mistake to the original STORE*AB rule: loading a low value through a high
pointer should taint the loaded value. The program in Figure 4 is a little longer than the one in
Figure 1 because it needs to do a little work at the beginning to set up a memory state containing
two different low values. It then pushes a high address pointing to one or the other of those cells
onto the stack; loads (different, low addresses) through that pointer; and finally stores 0@L to the
resulting address in memory and halts. In this case, we can make the same change to LOAD* as we
did to STORE*AB: we taint the loaded integer with the join of its label and the address’s label. This
time (unlike the case of Store, where the fact that we were changing the memory gave us additional
opportunities for bugs), this change gives us the correct rule for Load,

i(pc) = Load m(p) = n@`n

pc p@`p : s m ⇒ pc+1 n@(`n ∨ `p) : s m
(LOAD)

and QuickCheck is unable to find any further counterexamples.

2.5 More bugs
The original IFC version of the step rules illustrate one set of mistakes that we might plausibly have
made, but there are more possible ones:

i(pc) = Push n@`

pc s m ⇒ pc+1 n@L : s m
(PUSH*)

i(pc) = Store m′ = m[p := y@L]

pc p@`p : n@`n : s m ⇒ pc+1 s m′
(STORE*C)

Although it is unlikely that we’d write these rather silly rules by accident, it is worth including them
in our experiments because they can be invalidated by short counterexamples and thus provide useful
data points for less effective testing strategies.

We will also gather statistics for a partially fixed but still wrong rule for Store, in which the
no-sensitive-upgrades check is performed but the result is not properly tainted:

i(pc) = Store m(p) = n′@`′n `p v `′n m′ = m[p := n@`n]

pc p@`p : n@`n : s m ⇒ pc+1 s m′
(STORE*A)
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3 QuickCheck
We test noninterference using QuickCheck (Claessen and Hughes 2000), a tool that tests properties
expressed in Haskell. Often, QuickCheck is used to test properties that should hold for all inhabitants
of a certain type. QuickCheck repeatedly generates random values of the desired type, instantiates
the property with them, and checks it directly by evaluating it to a Boolean. This process continues
until either a counterexample is found or a specified timeout is reached. QuickCheck supplies default
test data generators for many standard types. Additionally, the user can supply custom generators
for their own types. In order to test EENI, for example, we needed to define custom generators for
labeled integers, instructions, and machine states (each of which depends on the previous generator:
machine states contain instructions, some of which contain labeled integers). The effectiveness of
testing (i.e., mean time to discover bugs) depends on the sophistication of these generators, a topic
we explore in detail in §4.

QuickCheck properties may also be guarded by preconditions; EENI is an example of why this is
necessary, as it only applies to pairs of indistinguishable initial machine states that both successfully
execute to halted states. Testing a property with a precondition proceeds similarly: a sequence of
random values are generated and tested, up to a user-specified maximum. The difference is that if
there is a precondition, it is instantiated with the random value first. If the precondition does not
hold, this random value is summarily discarded. If the precondition does hold, then the rest of the
property is checked just as before. Although preconditions are very useful, too high a proportion of
discards can lead to very ineffective testing or a badly skewed distribution of test cases (since some
kinds of test case may be discarded much more often than others). To help diagnose such problems,
QuickCheck can collect statistics about the tests it tried.

When a test fails, the failing test case is often large, containing many irrelevant details. Quick-
Check then tries to shrink the test case, by searching for a similar but smaller test case that also fails.
To do this, it greedily explores a number of “shrinking candidates”: modifications of the original
failing test case that are “smaller” in some sense. The property is tested for each of these, and as
soon as a failure is found, that candidate becomes the starting point for a new shrinking search (and
the other candidates are discarded). Eventually this process terminates in a failing test case that is
locally minimal: none of its shrinking candidates fails. This failing case is then reported to the user.
It is often very much smaller than the original randomly generated test case, and it is thus easy to
use it to diagnose the failure because it (hopefully) contains no irrelevant details. Just like genera-
tion strategies, shrinking strategies are type dependent; they are defined by QuickCheck for standard
types, and by the user for other types. We discuss the custom shrinking strategies we use for machine
states in §7.

4 State Generation Strategies
We are ready now to begin exploring ways to generate potential counterexamples. At the outset, we
need to address one fundamental issue. Noninterference properties quantify over a pair of indistin-
guishable starting states: ∀S1, S2 ∈ Start. S1 ≈ S2 =⇒ . . . . This is a very strong precondition,
which is extremely unlikely to be satisfied for independently generated states. Instead, we generate
indistinguishable pairs of states together. The first state is generated randomly using one of the tech-
niques described later in this section. The second is obtained by randomly varying the “high parts”
of the first. We refer to the second state as the variation of the first. The resulting pair thus satisfies
indistinguishability by construction. Note that when implemented correctly this does not compro-
mise completeness: by generating a random state and randomly varying we still guarantee that it is
possible to generate all pairs of indistinguishable states. Naturally, the resulting distributions will
depend on the specifics of the generation and variation methods used, as we shall see.

Since EENI considers only executions that start at initial states, we only need to randomly gen-
erate the contents of the instruction memory (the program that the machine executes) together with
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Generation strategy Naive Weighted Sequence Sequence ByExec
Smart integers? NO NO NO YES YES

ADD* 83247.01 5344.26 561.58 30.05 0.87
PUSH* 3552.54 309.20 0.21 0.07 0.01
LOAD* — — 73115.63 2258.93 4.03
STORE*A — — 38036.22 32227.10 1233.51
STORE*B 47365.97 1713.72 0.85 0.12 0.25
STORE*C 7660.07 426.11 0.41 0.31 0.02

MTTF arithmetic mean — — 18619.15 5752.76 206.45
MTTF geometric mean — — 69.73 13.33 0.77

Average tests / second 24129 11466 8541 7915 3284
Average discard rate 79% 62% 65% 59% 4%

Figure 5: Comparison of generation strategies for the basic machine. The first part of the table shows the
mean time to find a failing test case (MTTF) in milliseconds for each bug. The second part lists the arithmetic
and geometric mean for the MTTF over all bugs. The third part shows the number of tests per second and the

proportion of test cases that were discarded because they did not satisfy some precondition.

Average number of execution steps: 0.47

74% stack underflow
21% halt

4% load or store out of range

Figure 6: Execution statistics for naive instruction generation. Executions fail early, and the main reason for
failure is stack underflow.

the size of the data memory (in initial states, the contents of the memory are fixed and the stack is
guaranteed to be empty).

Figure 5 offers an empirical comparison of all the generation strategies described in this section.
For a given test-generation strategy, we inject the bugs from §2 one at a time into the machine defini-
tion and measure the time spent on average until that bug is found (mean time to failure, or MTTF).
Tests were run one at a time on seven identical machines, each with 4× 2.4 GHz Intel processors
and 11.7 GB of RAM; they were running Fedora 18 and GHC 7.4.1, and using QuickCheck 2.7.6.
We run each test for 5 minutes (300 seconds) or until 4000 counterexamples are found, whichever
comes first.

4.1 Naive instruction generation
The simplest way to generate programs is by choosing a sequence of instructions independently
and uniformly. We generate individual instructions by selecting an instruction type uniformly (i.e.,
Noop, Push, etc.) and then filling in its fields using QuickCheck’s built-in generators. Labels are
also chosen uniformly. We then build the instruction memory by sampling a number (currently a
random number between 20 and 50) of instructions from this generator.

The first column of Figure 5 shows how this strategy performs on the bugs from §2. Disappoint-
ingly, but perhaps not too surprisingly, naive instruction generation can only find four of the six bugs
within 5 minutes. How can we do better?

One obvious weakness is that the discard rate is quite high, indicating that one or both machines
often fail to reach a halted state. By asking QuickCheck to collect statistics on the execution traces
of test cases (Figure 6), we can also see a second problem: the average execution length is only
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Average number of execution steps: 2.69

38% halt
35% stack underflow
25% load or store out of range

Figure 7: Execution statistics when generating instructions with a weighted distribution. The main reason for
failure is now Halt, followed by stack underflow.

Average number of execution steps: 3.86

37% halt
28% load or store out of range
20% stack underflow
13% sensitive upgrade

Figure 8: Execution statistics when generating sequences of instructions. Out-of-range addresses are now the
biggest reason for termination.

0.47 steps! Such short runs are not useful for finding counterexamples to EENI (at a minimum, any
counterexample must include a Store instruction to put bad values into the memory and a Halt so
that the run terminates, plus whatever other instructions are needed to produce the bad states). So
our next step is to vary the distribution of instructions so as to generate programs that run for longer
and thus have a chance to get into more interesting states.

4.2 Weighted distribution on instructions
Figure 6 shows that by far the most common reason for early termination is a stack underflow. After
a bit of thought, this makes perfect sense: the stack is initially empty, so if the first instruction that
we generate is anything but a Push, Halt, or Noop, we will fail immediately. Instead of a uniform
distribution on instructions, we can do better by increasing the weights of Push and Halt—Push to
reduce the number of stack underflows, and Halt because each execution must reach a halted state
to satisfy EENI’s precondition. The results after this change are shown in the second column of
Figure 5. Although this strategy still fails to find the LOAD* and STORE*A bugs in the allocated
time, there is a significant improvement on both discard rates and the MTTF for the other bugs. Run
length is also better, averaging 2.69 steps. As Figure 7 shows, executing Halt is now the main reason
for termination, with stack underflows and out-of-range accesses close behind.

4.3 Generating useful instruction sequences more often
To further reduce stack underflows we additionally generate sequences of instructions that make
sense together. For instance, in addition to generating single Store instructions, we also generate se-
quences of the form [Push n@`,Push ma@`′, Store], where ma is a valid memory address. We also
generate such sequences for the other two instructions that use stack elements: [Push ma@`,Load]
where ma is a valid memory address, and [Push n1@`1,Push n2@`2,Add]. The results are shown
in the third column of Figure 5. With sequence generation we can now find all bugs, faster than
before. Programs run for slightly longer (3.86 steps on average). As expected, stack underflows are
less common than before (Figure 8) and out-of-range addresses are now the second biggest reason
for termination.
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Average number of execution steps: 4.22

41% halt
21% stack underflow
21% load or store out of range
15% sensitive upgrade

Figure 9: Execution statistics when using smart integers with sequences of instructions. The percentage of
address out of range errors has halved.

4.4 Smart integers: generating addresses more often
To reduce the number of errors caused by out-of-range addresses, we additionally give preference
to valid memory addresses, i.e., integers within (data and instruction) memory bounds, when gen-
erating integers. We do this not only when generating the state of the first machine, but also when
varying it, since both machines need to halt successfully in order to satisfy the precondition of EENI.
Column four of Figure 5 shows the results after making this improvement to the previous generator.
We see an improvement on the MTTF. The average run length is now 4.22 steps, and the percentage
of address-out-of-range errors is decreased (Figure 9).

4.5 Generation by execution
We can go even further. In addition to weighted distributions, sequences, and smart integers, we
try to generate instructions that do not cause a crash. In general (for more interesting machines)
deciding whether an arbitrary instruction sequence causes a crash is undecidable. In particular we
cannot know in advance all possible states in which an instruction will be executed. We can only
make a guess—a very accurate one for this simple machine. This leads us to the following gener-
ation by execution strategy: We generate a single instruction or a small sequence of instructions,
as before, except that now we restrict generation to instructions that do not cause the machine to
crash in the current state. When we find one, we execute it to reach a new state and then repeat
the process to generate further instructions. We continue until we have generated a reasonably sized
instruction stream (currently, randomly chosen between 20–50 instructions). We discuss how this
idea generalizes to machines with nontrivial control flow in §5.3.

As we generate more instructions, we increase the probability of generating a Halt instruction,
to reduce the chances of the machine running off the end of the instruction stream. As a result, (i) we
maintain low discard ratios for EENI since we increase the probability that executions finish with a
Halt instruction, and (ii) we avoid extremely long executions whose long time to generate and run
could be more fruitfully used for other test cases.

The MTTF (last column of Figure 5) is now significantly lower than in any previous generation
method, although this strategy runs fewer tests per second than the previous ones (because both test
case generation and execution take longer). Figure 10 shows that 94% of the pairs both successfully
halt, which is in line with the very low discard rate of Figure 5, and that programs run for much
longer. Happily, varying a machine that successfully halts has a high probability of generating a
machine that also halts.

5 Control Flow
Up to this point, we’ve seen how varying the program generation strategy can make orders-of-
magnitude difference in the speed at which counterexamples are found for a very simple—almost
trivial—information-flow stack machine. Now we are ready to make the machine more interesting
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Generated Variation

Steps 11.60 11.26

95% halt halt
3% halt load or store out of range
1% halt sensitive upgrade

Figure 10: Execution statistics for generation by execution, broken down for the variations.

i =

[
Push 2

5
@H, Jump,Push 1@L,Push 0@L, Store,

Halt

]
pc m s i(pc)

0 [0@L] [ ] Push 2
5

@H

1 [0@L]
[
2
5

@H
]

Jump

Machine 1 continues. . .
2 [0@L] [ ] Push 1@L
3 [0@L] [1@L] Push 0@L
4 [0@L] [0@L, 1@L] Store
5 [1@L] [ ] Halt

Machine 2 continues. . .
5 [0@L] [ ] Halt

Figure 11: Counterexample to JUMP*AB: A textbook example of an implicit flow

and see how these techniques perform on the new bugs that arise, as well as how their perfor-
mance changes on the bugs we’ve already seen. In this section, we add Jump, Call, and Return
instructions—and, with them, the possibility that information can leak via the program’s control
flow.

5.1 Jumps, implicit flows, and the pc label
We first add a new Jump instruction that takes the first element from the stack and sets the pc to that
address:

i(pc) = Jump

pc n@`n : s m ⇒ n s m
(JUMP*AB)

(The jump target may be an invalid address. In this case, the machine will be stuck on the next
instruction.)

Note that this rule simply ignores the label on the jump target on the stack. This is unsound,
and QuickCheck easily finds the counterexample in Figure 11—a textbook case of an implicit
flow (Sabelfeld and Myers 2003). A secret is used as the target of a jump, which causes the in-
structions that are executed afterwards to differ between the two machines; one of the machines
halts immediately, whereas the other one does a Store to a low location and only then halts, causing
the final memories to be distinguishable.

The standard way to prevent implicit flows is to label the pc—i.e., to make it a labeled integer,
not a bare integer. Initial states have pc@`pc = 0@L, and after a jump to a secret address the label
of the pc becomes H:
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i =

[
Push 1@L,Push 4

6
@H, Jump,Halt,Push 0@L,

Store,Push 3@L, Jump

]
pc m s i(pc)

0@L [0@L] [ ] Push 1@L
1@L [0@L] [1@L] Push 4

6
@H

2@L [0@L]
[
4
6

@H, 1@L
]

Jump

Machine 1 continues. . .
4@H [0@L] [1@L] Push 0@L
5@H [0@L] [0@L, 1@L] Store
6@H [1@L] [ ] Push 3@L
7@H [1@L] [3@L] Jump
3@L [1@L] [ ] Halt

Machine 2 continues. . .
6@H [0@L] [1@L] Push 3@L
7@H [0@L] [3@L, 1@L] Jump
3@L [0@L] [1@L] Halt

Figure 12: Counterexample to JUMP*B: Jump should not lower the pc label

i(pc) = Jump

pc@`pc n@`n : s m ⇒ n@`n s m
(JUMP*B)

While the pc is (labeled) high, the two machines may be executing different instructions, and so we
cannot expect the machine states to correspond. We therefore extend the definition of ≈mem so that
all high machine states are deemed equivalent. (We call a state “high” if the pc is labeled H , and
“low” otherwise.)

5.1 Definition: Machine states S1 = pc1@`pc1
s1 m1 i1 and S2 = pc2@`pc2

s2 m2 i2 are
indistinguishable with respect to memories, written S1 ≈mem S2, if either `pc1

= `pc2
= H or else

`pc1
= `pc2

= L and m1 ≈ m2 and i1 ≈ i2.

The JUMP*B rule is still wrong, however, since it not only raises the pc label when jumping to
a high address but also lowers it when jumping to a low address. The counterexample in Figure 12
illustrates that the latter behavior is problematic. The fix is to label the pc after a jump with the join
of the current pc label and the label of the target address.

i(pc) = Jump

pc@`pc n@`n : s m ⇒ n@(`n ∨ `pc) s m
(JUMP)

With this rule for jumps QuickCheck no longer finds any counterexamples. Some readers may
find this odd: In order to fully address implicit flows, it is usually necessary to modify the rules for
memory stores to handle the case where the pc is labeled high (Austin and Flanagan 2009; Russo and
Sabelfeld 2010). The current machine doesn’t require this, but the reason is subtle: here, the pc can
go from L to H when we jump to a secret address, but it never goes from H to L! It doesn’t matter
what the machine does when the pc is high, because none of its actions will ever be observable—all
high machine states are indistinguishable.

To make things more interesting, we need to enrich the machine with some mechanism that
allows the pc to safely return to L after it has become H . One way to achieve this is to add Call and
Return instructions, a task we turn to next.
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5.2 Restoring the pc label with calls and returns
IFC systems (both static and dynamic) generally rely on control flow merge points (i.e., post-
dominators of the branch point in the control flow graph where the control was tainted by a secret) to
detect when the influence of secrets on control flow is no longer relevant and the pc label can safely
be restored. Control flow merge points are, however, much more evident for structured control fea-
tures such as conditionals than they are for jumps (as long as we don’t have exceptions (Bichhawat
et al. 2014a; Hriţcu et al. 2013a)). Moreover, since we are doing purely dynamic IFC we cannot dis-
tinguish between safe uses of jumps and unsafe ones (e.g., the one in Figure 12). So we keep jumps
as they are (only raising the pc label) and add support for structured programming and restoring the
pc label in the form of Call and Return instructions, which are of course useful in their own right.

To support these instructions, we need some way of representing stack frames. We choose a
straightforward representation, in which each stack element e can now be either a labeled integer
n@` (as before) or a return address, marked R, recording the pc (including its label!) from which
the corresponding Call was made. We also extend the indistinguishability relation on stack elements
so that return addresses are only equivalent to other return addresses and R(n1@`1) ≈ R(n2@`2) if
either `1 = `2 = H or else n1 = n2 and `1 = `2 = L (this is the same as for labeled integers). (High
return addresses and high integers need to be distinguishable to a low observer, as we discovered
when QuickCheck generated an unexpected counterexample, which we list in §A.3—understanding
it requires reading the rest of this section.)

We also need a way to pass arguments to and return results from a called procedure. For this,
we annotate the Call and Return instructions with a positive integer indicating how many integers
should be passed or returned (0 or 1 in the case of Return). Formally, Call k expects an address
n@`n followed by k integers ns on the stack. It sets the pc to n, labels this new pc by the join of
`n and the current pc label (as we did for Jump—we’re eliding the step of getting this bit wrong at
first and letting QuickCheck find a counterexample), and adds the return address frame to the stack
under the k arguments.

i(pc) = Call k ns = n1@`1 : . . . : nk@`k

pc@`pc n@`n : ns : s m ⇒ n@(`n ∨ `pc) ns : R((pc+1)@`pc) : s m
(CALL*B)

Return k′ traverses the stack until it finds the first return address and jumps to it. Moreover it
restores the pc label to the label stored in that R entry, and preserves the first k′ elements on the
stack as return values, discarding all other elements in this stack frame (like ns, ns′ stands for a list
of labeled integers; in particular it cannot contain return addresses).

i(pc) = Return k′ k′ ∈ {0, 1} ns = n1@`1 : . . . : nk′@`k′

pc@`pc ns : ns′ : R(n@`n) : s m ⇒ n@`n ns : s m
(RETURN*AB)

Finally, we observe that we cannot expect the current EENI instantiation to hold for this changed
machine, since now one machine can halt in a high state while the other can continue, return to a low
state, and only then halt. Since we cannot equate high and low states (see §A.2 for a counterexample;
again understanding it requires reading the rest of this section), we need to change the EENI instance
we use to EENIInit,Halted∩Low,≈mem

, where Low denotes the set of states with `pc = L. Thus, we only
consider executions that end in a low halting state.

After these changes, we can turn QuickCheck loose and start finding more bugs. The first one,
listed in Figure 13, is essentially another instance of the implicit flow bug, which is not surprising
given the discussion at the end of the previous subsection. We adapted the Store rule trivially to the
new setting, but that is clearly not enough:

i(pc) = Store m(p) = n′@`′n `p v `′n m′ = m[p := n@(`n∨`p)]
pc@`pc p@`p : n@`n : s m ⇒ (pc+1)@`pc s m′

(STORE*DE)

We need to change this rule so that the value written in memory is tainted with the current pc label:
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i =

[
Push 3

6
@H,Call 0,Halt,Push 1@L,Push 0@L,

Store,Return 0

]
pc m s i(pc)

0@L [0@L] [ ] Push 3
6

@H

1@L [0@L]
[
3
6

@H
]

Call 0

Machine 1 continues. . .
3@H [0@L] [R(2@L)] Push 1@L
4@H [0@L] [1@L,R(2@L)] Push 0@L
5@H [0@L] [0@L, 1@L,R(2@L)] Store
6@H [1@L] [R(2@L)] Return 0
2@L [1@L] [ ] Halt

Machine 2 continues. . .
6@H [0@L] [R(2@L)] Return 0
2@L [0@L] [ ] Halt

Figure 13: Counterexample to STORE*DE rule: Raising pc label is not enough to prevent implicit flows. Once
we have a mechanism (like Return) for restoring the pc label, we need to be more careful about stores in high

contexts.

i(pc) = Store m(p) = n′@`′n `p v `′n m′ = m[p := n@(`n∨`p∨`pc)]
pc@`pc p@`p : n@`n : s m ⇒ (pc+1)@`pc s m′

(STORE*E)

This eliminates the current counterexample; QuickCheck then finds a very similar one in which the
labels of values in the memories differ between the two machines (Figure 14). The usual way to
prevent this problem is to extend the no-sensitive-upgrades check so that low-labeled data cannot be
overwritten in a high context (Austin and Flanagan 2009; Zdancewic 2002). This leads to the correct
rule for stores:

i(pc) = Store m(p) = n′@`′n `p∨`pc v `′n m′ = m[p := n@(`n∨`p∨`pc)]
pc@`pc p@`p : n@`n : s m ⇒ (pc+1)@`pc s m′

(STORE)

The next counterexample found by QuickCheck (Figure 15) shows that returning values from a
high context to a low one is unsound if we do not label those values as secrets. To fix this, we taint
all the returned values with the pre-return pc label.

i(pc) = Return k′ k′ ∈ {0, 1} ns = n1@`1 : . . . : nk′@`k′
nspc = n1@(`1∨`pc) : . . . : nk′@(`k′∨`pc)

pc@`pc ns : ns′ : R(n@`n) : s m ⇒ n@`n nspc : s m
(RETURN*B)

The next counterexample, listed in Figure 16, shows (maybe somewhat surprisingly) that it is
unsound to specify the number of results to return in the Return instruction, because then the number
of results returned may depend on secret flows of control. To restore soundness, we need to pre-
declare at each Call whether the corresponding Return will return a value—i.e., the Call instruction
should be annotated with two integers, one for parameters and the other for results. Stack elements
e are accordingly either labeled values n@` or (labelled) pairs of a return address n and the number
of return values k.

e ::= n@` | R(n, k)@`

These changes lead us to the correct rules:
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i =

[
Push 3

6
@H,Call 0,Halt,Push 0@L,Push 0@L,

Store,Return 0

]
pc m s i(pc)

0@L [0@L] [ ] Push 3
6

@H

1@L [0@L]
[
3
6

@H
]

Call 0

Machine 1 continues. . .
3@H [0@L] [R(2@L)] Push 0@L
4@H [0@L] [0@L,R(2@L)] Push 0@L
5@H [0@L] [0@L, 0@L,R(2@L)] Store
6@H [0@H] [R(2@L)] Return 0
2@L [0@H] [ ] Halt

Machine 2 continues. . .
6@H [0@L] [R(2@L)] Return 0
2@L [0@L] [ ] Halt

Figure 14: Counterexample to STORE*D: Implicit flow via labels.

i(pc) = Call k k′ k′ ∈ {0, 1} ns = n1@`1 : . . . : nk@`k

pc@`pc n@`n : ns : s m ⇒ n@(`n ∨ `pc) ns : R(pc+1, k′)@`pc : s m
(CALL)

i(pc) = Return ns = n1@`1 : . . . : nk′@`k′
nspc = n1@(`1∨`pc) : . . . : nk′@(`k′∨`pc)

pc@`pc ns : ns′ : R(n, k′)@` : s m ⇒ n@` nspc : s m
(RETURN)

The final counterexample found by QuickCheck is quite a bit longer (see Figure 17). It shows
that we cannot allow instructions like Pop to remove return addresses from the stack, as does the
following broken rule (recall that e denotes an arbitrary stack entry):

i(pc) = Pop

pc@`pc e : s m ⇒ (pc+1)@`pc s m
(POP*)

To protect the call frames on the stack, we change this rule to only pop integers (all the other rules
can already only operate on integers).

i(pc) = Pop

pc@`pc n@`n : s m ⇒ (pc+1)@`pc s m
(POP)

5.3 Generation by execution and control flow
Generation by execution is still applicable in the presence of interesting control flow but we have
to make small modifications to the original algorithm. We still generate a single instruction or
sequence2 that does not crash, as before, and we execute it to compute a new state. However,
unlike before, while executing this newly generated sequence of instructions, it is possible to “land”
in a position in the instruction stream where we have already generated an instruction (e.g. via a
backward jump). If this happens then we keep executing the already generated instructions. If the
machine halts (or we reach a loop-avoiding cutoff) then we stop the process and return the so-far

2In addition to the instruction sequences from §4.3 we use two new sequences for Jump and Call: [Push ia@`, Jump] and
[Push nk@`k, . . . ,Push n1@`1,Push ia@`,Call k k’], where ia is a valid memory address.
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i =

[
Push 1@L,Push 7

6
@H,Call 1,Push 0@L, Store,

Halt,Push 0@L,Return 1

]
pc m s i(pc)

0@L [0@L] [ ] Push 1@L
1@L [0@L] [1@L] Push 7

6
@H

2@L [0@L]
[
7
6

@H, 1@L
]

Call 1

Machine 1 continues. . .
7@H [0@L] [1@L,R(3@L)] Return 1
3@L [0@L] [1@L] Push 0@L
4@L [0@L] [0@L, 1@L] Store
5@L [1@L] [ ] Halt

Machine 2 continues. . .
6@H [0@L] [1@L,R(3@L)] Push 0@L
7@H [0@L] [0@L, 1@L,R(3@L)] Return 1
3@L [0@L] [0@L] Push 0@L
4@L [0@L] [0@L, 0@L] Store
5@L [0@L] [ ] Halt

Figure 15: Counterexample to RETURN*AB: Return needs to taint the returned values.

generated instruction stream. If there are no more instructions to execute then we go on to generate
more instructions. There is one more possibility though: the machine may crash while executing
an already generated instruction. To address this issue, we make sure that we never generate an
instruction (e.g., a jump) that causes the machine to crash in a certain number of steps. We refer
to this number of steps as the lookahead parameter and in our experiments we use a lookahead of
2 steps. If we cannot generate any instruction satisfying this constraint, we retry with a smaller
lookahead, until we succeed.

Since it now becomes possible to generate instruction streams that cause the machine to crash
in some number of steps, one might be worried about the discard ratio for EENI. However, the ever
increasing probability of generating a Halt (discussed in §4.5) counterbalances this issue.

5.4 Finding the bugs
We experimentally evaluated the effectiveness of testing for this new version of the stack machine,
by adding the bugs discussed in this section to the ones applicable for the previous machine. The
results of generation by execution with lookahead for this machine are shown in the first column of
Figure 18. As we can see, all old bugs are still found relatively fast. It takes longer to find them when
compared to the previous machine, but this is to be expected: when we extend the machine, we are
also increasing the state space to be explored. The new control-flow-specific bugs are all found, with
the exception of POP*, which requires a larger timeout. Discard rates are much higher compared
to generation by execution in Figure 5, for two reasons. First, control flow can cause loops, so we
discard machines that run for more than 50 steps without halting. Detailed profiling revealed that
18% of the pairs of machines both loop, and loopy machines push the average number of execution
steps to 22. Second, as described previously, generation by execution in the presence of control flow
is much less accurate.
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i =

[
Push 0@L,Push 6

7
@H,Call 0,Push 0@L, Store,

Halt,Return 0,Push 0@L,Return 1

]
pc m s i(pc)

0@L [0@L] [ ] Push 0@L
1@L [0@L] [0@L] Push 6

7
@H

2@L [0@L]
[
6
7

@H, 0@L
]

Call 0

Machine 1 continues. . .
6@H [0@L] [R(3@L), 0@L] Return 0
3@L [0@L] [0@L] Push 0@L
4@L [0@L] [0@L, 0@L] Store
5@L [0@L] [ ] Halt

Machine 2 continues. . .
7@H [0@L] [R(3@L), 0@L] Push 0@L
8@H [0@L] [0@L,R(3@L), 0@L] Return 1
3@L [0@L] [0@H, 0@L] Push 0@L
4@L [0@L] [0@L, 0@H, 0@L] Store
5@L [0@H] [0@L] Halt

Figure 16: Counterexample to CALL*B and RETURN*B: It is unsound to choose how many results to return
on Return.

5.5 Alternative generation strategies
Generation by execution has proved effective in finding bugs. Even this method, however, required
some tuning, driven by experimental evaluation. For instance, our first implementations did not in-
volve gradually increasing the probability of Halt instructions. We also experimented with different
lookahead values. Larger lookaheads introduce significant overheads in generation as every gener-
ated instruction costs many steps of execution, and the payoff of lower discard rates was not worth
the increased generation cost.

We have also explored (and dismissed) several other generation strategies, and we outline two of
these below:

• Generation by forward execution. Generation by execution fills in the instruction stream in
patches, due to generated jumps. It is hence possible for the instruction stream to contain
“holes” filled with Noop instructions. An alternative strategy is to generate instructions in
a forward style only: if we generate a branch then we save the current state along with the
branch target, but keep generating instructions as if the branch was not taken. If we ever reach
the target of the branch we may use the saved state as a potentially more accurate state that we
can use to generate more instructions. This strategy delivered similar results as generation by
execution, but due to its more complicated nature we dismissed it and used the basic design
instead.

• Variational generation by execution. In this strategy, we first generate a machine with genera-
tion by execution. We then vary the machine and run generation by execution for the resulting
machine, in the hope that we can fill in the holes in the originally generated instruction stream
with instructions from a variational execution. As before, we did not find that the results
justified the generation overheads and complexity of this strategy.
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i =

 Push 5@L,Call 0 1,Push 0@L, Store,Halt,
Push 0@L,Push 8

9
@H,Call 0 0,Pop,Push 0@L,

Return


pc m s i(pc)

0@L [0@L] [ ] Push 5@L
1@L [0@L] [5@L] Call 0 1
5@L [0@L] [R(2, 1)@L] Push 0@L
6@L [0@L] [0@L,R(2, 1)@L] Push 8

9
@H

7@L [0@L]
[
8
9

@H, 0@L,R(2, 1)@L
]

Call 0 0

Machine 1 continues. . .
8@H [0@L] [R(8, 0)@L, 0@L,R(2, 1)@L] Pop
9@H [0@L] [0@L,R(2, 1)@L] Push 0@L
10@H [0@L] [0@L, 0@L,R(2, 1)@L] Return
2@L [0@L] [0@H] Push 0@L
3@L [0@L] [0@L, 0@H] Store
4@L [0@H] [ ] Halt

Machine 2 continues. . .
9@H [0@L] [R(8, 0)@L, 0@L,R(2, 1)@L] Push 0@L
10@H [0@L] [0@L,R(8, 0)@L, 0@L,R(2, 1)@L] Return
8@L [0@L] [0@L,R(2, 1)@L] Pop
9@L [0@L] [R(2, 1)@L] Push 0@L
10@L [0@L] [0@L,R(2, 1)@L] Return
2@L [0@L] [0@L] Push 0@L
3@L [0@L] [0@L, 0@L] Store
4@L [0@L] [ ] Halt

Figure 17: Counterexample to POP*: It is unsound not to protect the call stack.

6 Strengthening the Tested Property
The last few counterexamples in §5.2 are fairly long and quite difficult for QuickCheck to find, even
with the best test-generation strategy. In this section we explore a different approach: strengthening
the property we are testing so that counterexamples become shorter and easier to find. Figure 18 in
§5.4 summarizes the variants of noninterference that we consider and how they affect test perfor-
mance.

6.1 Making entire low states observable
Every counterexample that we’ve seen involves pushing an address, executing a Store instruction,
and halting. These steps are all necessary because of the choice we made in §2.3 to ignore the stack
when defining indistinguishability on machine states. A counterexample that leaks a secret onto the
stack must continue by storing it into memory; similarly, a counterexample that leaks a secret into
the pc must execute Store at least twice. This suggests that we can get shorter counterexamples by
redefining indistinguishability as follows:

6.1 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 = pc2 s2 m2 i2 are indistin-
guishable with respect to entire low states, written S1 ≈low S2, if either `pc1

= `pc2
= H or else

`pc1
= `pc2

= L, m1 ≈ m2, i1 ≈ i2, s1 ≈ s2, and pc1 ≈ pc2.
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Tested property EENI EENI EENI LLNI SSNI SSNI
Starting states Init Init QInit QInit All All
Equivalence relation ≈mem ≈low ≈low ≈low ≈full ≈full

Generation strategy ByExec2 ByExec2 ByExec2 ByExec2 Naive Tiny

ADD* 37.07 2.38 1.38 0.36 0.24 0.11
PUSH* 0.22 0.02 0.02 0.01 1.06 0.06
LOAD* 155.07 37.50 5.73 1.14 3.25 0.61
STORE*A 20018.67 18658.56 124.78 84.08 289.63 16.32
STORE*B 13.02 12.87 16.10 5.25 31.11 0.33
STORE*C 0.35 0.34 0.33 0.08 0.73 0.03
JUMP*A 48.84 7.58 5.26 0.08 1.45 0.09
JUMP*B 2421.99 158.36 104.62 2.80 16.88 0.49
STORE*D 13289.39 12295.65 873.79 232.19 8.77 1.13
STORE*E 1047.56 1129.48 717.72 177.75 2.26 0.29
CALL*A 3919.08 174.66 115.15 5.97 31.71 0.62
RETURN*A 12804.51 4698.17 1490.80 337.74 1110.09 3.10
CALL*B+RETURN*B 69081.50 6940.67 1811.66 396.37 1194.30 4.56
POP* — 51753.13 16107.22 1828.56 30.68 0.42

MTTF arithmetic mean — 6847.81 1526.75 219.46 194.44 2.01
MTTF geometric mean — 135.76 46.48 7.69 12.87 0.47

Average tests / second 2795 2797 2391 1224 8490 18407
Average discard rate 65% 65% 69% 0% 40% 9%

Figure 18: Experiments for control flow machine. MTTF given in milliseconds.

We now strengthen EENIInit,Halted∩Low,≈mem
, the property we have been testing so far, to

EENIInit,Halted∩Low,≈low
; this is stronger because ≈mem and ≈low agree on initial states, while for

halted states ≈low ⊂ ≈mem . Indeed, for this stronger property, QuickCheck finds bugs faster (com-
pare the first two columns of Figure 18).

6.2 Quasi-initial states
Many counterexamples begin by pushing values onto the stack and storing values into memory. This
is necessary because each test starts with an empty stack and low, zeroed memory. We can make
counterexamples easier to find by allowing the two machines to start with arbitrary (indistinguish-
able) stacks and memories; we call such states quasi-initial. Formally, the set QInit of quasi-initial
states contains all states of the form 0@L s m i , for arbitrary s, m, and i.

The advantage of generating more varied start states is that parts of the state space may be
difficult to reach by running generated code from an initial state; for example, to get two return
addresses on the stack, we must successfully execute two Call instructions (see e.g., Figure 17).
Thus, bugs that are only manifested in these hard-to-reach states may be discovered very slowly or
not at all. Generating “intermediate” states directly gives us better control over their distribution,
which can help eliminate such blind spots in testing. The disadvantage of this approach is that a
quasi-initial state may not be reachable from any initial state, so in principle QuickCheck may report
spurious problems that cannot actually arise in any real execution. In general, we could address such
problems by carefully formulating the important invariants of reachable states and ensuring that we
generate quasi-initial states satisfying them. In practice, though, for this extremely simple machine
we have not encountered any spurious counterexamples, even with quasi-initial states. (This is
different for the more complex register machine from §8; in that setting a generator for non-initial
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states needs to produce only states satisfying strong invariants associated with reachable states.)
Instantiating EENI with QInit, we obtain a stronger property EENIQInit,Halted∩Low,≈low

(stronger
because Init ⊂ QInit) that finds bugs faster, as column 3 of Figure 18 shows.

6.3 LLNI: Low-lockstep noninterference
While making the full state observable and starting from quasi-initial states significantly improves
EENI, we can get even better results by moving to a yet stronger noninterference property. The
intuition is that EENI generates machines and runs them for a long time, but it only compares the
final states, and only when both machines successfully halt; these preconditions lead to rather large
discard rates. Why not compare intermediate states as well, and report a bug as soon as intermediate
states are distinguishable? While the pc is high, the two machines may be executing different in-
structions, so their states will naturally differ; we therefore ignore these states and require only that
low execution states are pointwise indistinguishable. We call this new property low-lockstep non-
interference (or LLNI). We write S ⇒∗t when an execution from state S produces trace t (a list of
states). Since this is just a state-collecting variant of the reflexive transitive closure of⇒, we allow
partial executions and in particular do not require that the last state in the trace is stuck or halting.

6.2 Definition: A machine semantics is low-lockstep noninterfering with respect to the indistin-
guishability relation ≈ (written LLNI≈) if, for any quasi-initial states S1 and S2 with S1 ≈ S2,
S1 ⇒∗t1 , and S2 ⇒∗t2 , we have t1 ≈∗ t2, where indistinguishability on traces ≈∗ is defined induc-
tively by the following rules:

S1, S2 ∈ Low S1 ≈ S2 t1 ≈∗ t2
(S1 : t1) ≈∗ (S2 : t2)

(LOW LOCKSTEP)

S1 6∈ Low t1 ≈∗ t2
(S1 : t1) ≈∗ t2

(HIGH FILTER)

t ≈∗ [ ]
(END)

t1 ≈∗ t2
t2 ≈∗ t1

(SYMMETRY)

The rule LOW LOCKSTEP requires low states in the two traces to be pointwise indistinguishable,
while HIGH FILTER (together with SYMMETRY) simply filters out high states from either trace. The
remaining rule is about termination: because we are working with termination-insensitive noninter-
ference, we allow one of the traces to continue (maybe forever) even if the other has terminated. We
implement these rules in Haskell as a recursive predicate over finite traces.

In general, LLNI implies EENI (see Appendix B), but not vice versa. However, the correct ver-
sion of our machine does satisfy LLNI, and we have not observed any cases where QuickChecking
a buggy machine with LLNI finds a bug that is not also a bug with regard to EENI. Testing LLNI in-
stead of EENI leads to significant improvement in the bug detection rate for all bugs, as the results in
the fourth column Figure 18 show. In these experiments no generated machine states are discarded,
since LLNI applies to both successful (halting) executions and failing executions. The generation
strategies described in §4 apply to LLNI without much change; also, as for EENI, generation by
execution (with lookahead of 2 steps) performs better than the more basic strategies, so we don’t
consider those for LLNI.

6.4 SSNI: Single-step noninterference
Until now, we have focused on using sophisticated (and potentially slow) techniques for generating
long-running initial (or quasi-initial) machine states, and then checking equivalence for low halting
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states (EENI) or at every low step (LLNI). An alternative is to define a stronger property that talks
about all possible single steps of execution starting from two indistinguishable states.

Proofs of noninterference usually go by induction on a pair of execution traces; to preserve the
corresponding invariant, the proof needs to consider how each execution step affects the indistin-
guishability relation. This gives rise to properties known as “unwinding conditions” (Goguen and
Meseguer 1984); the corresponding conditions for our machine form a property we call single-step
noninterference (SSNI).

We start by observing that LLNI implies that, if two low states are indistinguishable and each
takes a step to another low state, then the resulting states are also indistinguishable. However, this
alone is not a strong enough inductive invariant to guarantee the indistinguishability of whole traces.
In particular, if the two machines perform a Return from a high state to a low state, we would need
to conclude that the two low states are equivalent without knowing anything about the original high
states. This indicates that, for SSNI, we can no longer consider all high states indistinguishable. The
indistinguishability relation on high states needs to be strong enough to ensure that if both machines
return to low states, those low states are also indistinguishable. Moreover, we need to ensure that if
one of the machines takes a step from a high state to another high state, then the old and new high
states are equivalent. The following definition captures all these constraints formally.

6.3 Definition: A machine semantics is single-step noninterfering with respect to the indistinguisha-
bility relation ≈ (written SSNI≈) if the following conditions are satisfied:

1. For all S1, S2 ∈ Low, if S1 ≈ S2, S1 ⇒ S′1, and S2 ⇒ S′2, then S′1 ≈ S′2;

2. For all S 6∈ Low if S ⇒ S′ and S′ 6∈ Low, then S ≈ S′;

3. For all S1, S2 6∈ Low, if S1 ≈ S2, S1 ⇒ S′1, S2 ⇒ S′2, and S′1, S
′
2 ∈ Low, then S′1 ≈ S′2.

Note that SSNI talks about completely arbitrary states, not just (quasi-)initial ones.
The definition of SSNI is parametric in the indistinguishability relation used, and it can take

some work to find the right relation. As discussed above, ≈low is too weak and QuickCheck can
easily find counterexamples to condition 3, e.g., by choosing two indistinguishable machine states
with i = [Return], pc = 0@H , and s =

[
R(0

1
, 0)@L

]
; after a single step the two machines have

distinguishable pcs 0@L and 1@L, respectively. On the other hand, treating high states exactly like
low states in the indistinguishability relation is too strong. In this case QuickCheck finds counterex-
amples to condition 2, e.g., a single machine state with i =

[
Pop

]
, pc = 0@H , and s = [0@L]

steps to a state with s = [], which would not be considered indistinguishable. These counterexam-
ples show that indistinguishable high states can have different pcs and can have completely different
stack frames at the top of the stack. So all we can require for two high states to be equivalent is that
their memories and instruction memories agree and that the parts of the stacks below the topmost
low return address are equivalent. This is strong enough to ensure condition 3.

6.4 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 = pc2 s2 m2 i2 are indistin-
guishable with respect to whole machine states, written S1 ≈full S2, if m1 ≈ m2, i1 ≈ i2,
`pc1

= `pc2
, and additionally

• if `pc1
= L then s1 ≈ s2 and pc1 ≈ pc2, and

• if `pc1
= H then cropStack s1 ≈ cropStack s2.

The cropStack helper function takes a stack and removes elements from the top until it reaches the
first low return address (or until all elements are removed). (As most of our definitions so far, this
definition is tailored to a 2-element lattice; we will generalize it to an arbitrary lattice in §8.4.)

The fifth column of Figure 18 shows that, even with arbitrary starting states generated completely
naively, SSNI≈full

performs very well. If we tweak the weights a bit and additionally observe that
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since we only execute the generated machine for only one step, we can begin with very small states
(e.g., the instruction memory can be of size 2), then we can find all bugs very quickly. As the last
column of Figure 18 illustrates, each bug is found in under 20 milliseconds. (This last optimization
is a bit risky, since we need to make sure that these very small states are still large enough to ex-
ercise all bugs we might have—e.g., an instruction memory of size 1 is not enough to exhibit the
CALL*B+RETURN*B bug using SSNI.) Compared to other properties, QuickCheck executes many
more tests per second with SSNI for both generation strategies.

6.5 Discussion
In this section we have seen that strengthening the noninterference property is a very effective way
of improving the effectiveness of random testing our IFC machine. It is not without costs, though.
Changing the security property required some expertise and, in the case of LLNI and SSNI, manual
proofs showing that the new property implies EENI, the baseline security property (see Appendix B).
In the case of LLNI and SSNI we used additional invariants of our machine (e.g., captured by ≈full )
and finding these invariants is the most creative part of doing a full security proof. While we could
use the counterexamples provided by QuickCheck to guide our search for the right invariants, for
more realistic machines the process of interpreting the counterexamples and manually refining the
invariants is significantly harder than for our very simple machine (see §8).

The potential users of our techniques will have to choose a point in the continuum between
testing and proving that best matches the characteristics of their practical application. At one end,
we present ways of testing the original EENI property without changing it in any way, by putting all
the smarts in clever generation strategies. At the other end, one can imagine using random testing
just as the first step towards a full proof of a stronger property such as SSNI. For a variant of our
simple stack machine, Azevedo de Amorim et al. (2014) did in fact prove recently in Coq that SSNI
holds, and did not find any bugs that had escaped our testing. Moreover, we proved in Coq that under
reasonable assumptions SSNI implies LLNI and LLNI implies EENI (see Appendix B).

7 Shrinking Strategies
The counterexamples presented in this paper are not the initial randomly generated machine states;
they are the result of QuickCheck shrinking these to minimal counterexamples. For example, ran-
domly generated counterexamples to EENI for the PUSH* bug usually consist of 20–40 instructions;
the minimal counterexample uses just 4 (see Figure 2). In this section we describe the shrinking
strategies we used.

7.1 Shrinking labeled values and instructions
By default, QuickCheck already implements a shrinking strategy for integers. For labels, we shrink
H to L, because we prefer to see counterexamples in which labels are only H if this is essential to
the failure. Values are shrunk by shrinking either the label or the contents. If we need to shrink both
the label and the contents, then this is achieved in two separate shrinking steps.

We allow any instruction to shrink to Noop, which preserves a counterexample if the instruction
was unnecessary; or to Halt, which preserves a counterexample if the bug had already manifested
by the time that instruction was reached. To avoid an infinite shrinking loop, we do not shrink Noop
at all, while Halt can shrink only to Noop. Instructions of the form Push n@` are also shrunk by
shrinking n@`. Finally, instructions of the form Call n n′ are shrunk by shrinking n or n′, or by
being replaced with Jump.
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7.2 Shrinking machine states
Machine states contain a data memory, a stack, an instruction memory and the pc. For data memo-
ries, we can simply shrink the elements using the techniques of the previous subsection. In addition,
we allow shrinking to remove arbitrary elements of the data memory completely. However, the
first element that we try to remove is the last one: removing other elements changes all subsequent
memory addresses, potentialy invalidating the counterexample. Stacks can be shrunk similarly: we
can shrink their data elements or remove them completely. We need to be extra clever in shrinking
return addresses—otherwise, it is very easy to obtain crashing states. This is elaborated in the next
subsection.

In the case of the instruction memory, we only try to remove Noop instructions, since removing
other instructions is likely to change the stack or the control flow fairly drastically, and is thus likely
to invalidate any counterexample. Other instructions can still be removed in two stages, by first
shrinking them to a Noop.

Finally, we choose not to shrink the pc. Generation by execution works by generating valid
instructions starting from the initial pc. Shrinking its address will most likely lead to immediate
failure. One strategy we considered is shrinking by execution, where we shrink by taking a step in
the machine. However, we didn’t get a lot of benefit from such an approach. Even worse, if the
indistinguishability relation is too coarse grained, then shrinking by execution can lead our states
past the point where they become distinct, but are still considered equivalent; such a counterexample
is not useful for debugging!

7.3 Shrinking variations
One difficulty that arises when shrinking noninterference counterexamples is that the test cases must
be pairs of indistinguishable machines. Shrinking each machine state independently will most likely
yield distinguishable pairs, which are invalid test cases, since they fail to satisfy the precondition of
the property we are testing. In order to shrink effectively, we need to shrink both states of a variation
simultaneously, and in the same way.

For instance, if we shrink one machine state by deleting a Noop in the middle of its instruction
memory, then we must delete the same instruction in the corresponding variation. Similarly, if a
particular element gets shrunk in a memory location, then the same location should be shrunk in the
other state of the variation, and only in ways that produce indistinguishable states. We have imple-
mented all of the shrinking strategies described above as operations on pairs of indistinguishable
states, and ensured that they generate only shrinking candidates that are also indistinguishable.

When we use the full state equivalence ≈full , we can shrink stacks slightly differently: we only
need to synchronize shrinking steps on the low parts of the stacks. Since the equivalence relation
ignores the high half of the stacks, we are free to shrink those parts of the two states independently,
provided that high return addresses don’t get transformed into low ones.

7.4 Optimizing shrinking
We applied a number of optimizations to make the shrinking process faster and more effective. One
way we sped up shrinking was by turning on QuickCheck’s “smart shrinking,” which optimizes the
order in which shrinking candidates are tried. If a counterexample a can be shrunk to any bi, but the
first k of these are not counterexamples, then it is likely that the first k shrinking candidates for bk+1

will not be counterexamples either, because a and bk+1 are likely to be similar in structure and so
to have similar lists of shrinking candidates. Smart shrinking just changes the order in which these
candidates are tried: it defers the first k shrinking candidates for bk+1 until after more likely ones
have been tried. This sped up shrinking dramatically in our tests.

We also observed that many reported counterexamples contained Noop instructions—in some
cases many of them—even though we implemented Noop removal as a shrinking step. On examin-
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ing these counterexamples, we discovered that they could not be shrunk because removing a Noop
changes the addresses of subsequent instructions, at least one of which was the target of a Jump
or Call instruction. So to preserve the behavior of the counterexample, we needed to remove the
Noop instruction and adjust the target of a control transfer in the same shrinking step. Since control
transfer targets are taken off the stack, and such addresses can be generated during the test in many
different ways, we simply allowed Noop removal to be combined with any other shrinking step—
which might, for example, decrement any integer on the initial stack, or any integer stored in the
initial memory, or any constant in a Push instruction. This combined shrinking step was much more
effective in removing unnecessary Noops.

Occasionally, we observed shrunk counterexamples containing two or more unnecessary Noops,
but where removing just one Noop led to a non-counterexample. We therefore used QuickCheck’s
double shrinking, which allows a counterexample to shrink in two steps to another counterexample,
even if the intermediate value is not a counterexample. With this technique, QuickCheck could
remove all unnecessary Noops, albeit at a cost in shrinking time.

We also observed that some reported test cases contained unnecessary sequences of instructions,
which could be elided together, but not one by one. We added a shrinking step that can replace any
two instructions by Noops simultaneously (and thus, thanks to double shrinking, up to four), which
solved this problem.

With this combination of methods, almost all counterexamples we found shrink to minimal ones,
from which no instruction, stack element, or memory element could be removed without invalidating
the counterexample.

8 Information-Flow Register Machine
We demonstrate the scalability of the techniques above by studying a more realistic information-flow
register machine. Beyond registers (§8.1), this machine includes advanced features such as first-class
public labels (§8.2) and dynamically allocated memory with mutable labels (§8.3). The combination
of these features makes the design of sound IFC rules highly non-trivial, and thus discovering flaws
early by testing even more crucial. The counterexamples produced by testing have guided us in
designing a novel and highly permissive flow-sensitive dynamic enforcement mechanism and in the
discovery of the sophisticated invariants needed for the final noninterference proof (§8.4). Most
importantly for the purpose of this paper, we experimentally evaluate the scalability of our best
generation strategy (generation by execution) and readily falsifiable formulations of noninterference
by testing this more complex machine (§8.5).

8.1 The core of the register machine
The core instructions of the new machine are very similar to those of the simple stack machine from
the previous sections:

Instr ::= Put n rd | Mov rs rd | Load rp rd | Store rp rs | Add r1 r2 rd | Mult r1 r2 rd |
Noop | Halt | Jump r | BranchNZ n r | Call r1 r2 r3 | Return

The main difference is that the instructions now take their arguments from and store their result into
registers. We use the meta-variable r to range over a finite set of register identifiers. The register
machine has no Pop instruction and the Push n@` instruction of the stack machine is replaced by
Put n rd, which stores the integer constant n into the destination register rd. Mov rs rd copies the
contents of register rs into register rd. Load rp rd and Store rp rs take the pointer from register rp,
and load the result into rd or store the value of rs into memory. On top of the familiar Add we also
add a multiplication instruction Mult. Noop, Halt, and Jump work as before, and we additionally add
a BranchNZ n r (“branch not zero”) instruction that performs a conditional relative jump by adding
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the integer n to the pc if the register r contains a non-zero integer value; otherwise the pc is simply
incremented.

While most instructions of the new machine only work with registers, the Call and Return in-
structions also use a (protected) call stack. We hard-code a simple calling convention in which the
values of all registers are passed from the callee to the caller, but only one register is used for passing
back a result value, while all the other registers are automatically restored to the values before the
call. Similarly to the simple stack machine, where to enforce noninterference it was necessary to
specify the number of returned values on calls, on the register machine the register in which the
result is returned and the label of the result are both specified on Call, saved on the stack, and used
on the corresponding Return.

The states of the register machine have the form pc@`pc rf cs m i and include the register
file (rf, mapping register identifiers and to their values) and the call stack (cs, a list of stack frames).
The labeled pc, the data memory m, and the instruction memory i (omitted by convention below)
are familiar from the stack machine. The stepping rules for most instructions above are simple; for
instance:

i(pc) = Mult r1 r2 rd rf [r1] = n1@`1 rf [r2] = n2@`2
rf ′ = rf [rd := (n1 × n2)@(`1∨`2)]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(MULT)

The interaction between public labels and Call and Return, however, is complex; we discuss it
in detail in §8.2. The precise structure of the data memory and the rules for Load and Store are
discussed in §8.3.

8.2 First-class public labels
First-class public labels are an important feature of several recent IFC systems for functional pro-
gramming languages (Hriţcu et al. 2013a; Stefan et al. 2011). They support the development of
realistic applications in which new principals and labels are created dynamically (Giffin et al. 2012),
and they are a key ingredient in recently proposed mechanisms for soundly recovering from IFC vi-
olations (Hriţcu et al. 2013a; Stefan et al. 2012). While for simplicity we consider neither dynamic
labels nor recoverable exceptions, our register machine does have first-class public labels. Enforcing
noninterference for public labels is highly non-trivial, especially in the presence of varying memory
labels (§8.3).

Even before that, adding a LabelOf rs rd instruction that puts in rd the label of the value in rs
as a public first-class value is unsound for a label lattice with at least three elements and a standard
mechanism for restoring the pc on control flow merge point (e.g., the Calls and Returns of the stack
machine in §5.2). In a functional language we would write the counterexample as follows:

LabelOf (if m then 0@M else 0@H)

This encodes the secret bit m protected by label M (where L vM v H) by varying the label of the
conditional’s result (M on the if branch and H on the else one), and then uses LabelOf to expose
that label. Note that the counterexample involves two different labels (in our case M and H) that
are higher or equal in lattice order (v) than the label of a secret (M ); a two-point lattice is not rich
enough.

To express the same counterexample on our low-level machine, consider two indistinguishable
states 0@L rf1 [ ] [ ] and 0@L rf2 [ ] [ ] differing only in the value of the r0 register, which
contains a secret bit labeled M : rf1[r0] = 0@M while rf2[r0] = 1@M . We use three more reg-
isters with the same value in both states: rf1[r1] = rf2[r1] = 3@L, rf1[r2] = rf2[r2] = 0@M ,
and rf1[r3] = rf2[r3] = 0@H . The instruction memory of both machines contains the following
program:

[Call r1 r3, LabelOf r3 r0, Halt, BranchNZ 2 r0, Mov r2 r3, Return]
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The Call transfers control to the BranchNZ instruction and specifies r3 as the return register. To-
gether with the Return, this ensures that the pc label is restored to L after branching on the secret bit
via BranchNZ. The BranchNZ ensures that the Mov is executed when r0 is 0@M (the first execution)
and skipped when r0 is 1@M (the second one). The pc is raised to M on the BranchNZ, but that
cannot have any effect on the Mov since the labels of the values in r2 and r3 are anyway higher or
equal than M . Similarly, the Return could potentially join the pc label M to the label of the returned
register r3, but that would again have no effect. After the Return, the pc is again labeled L and the
register r3 stores 0@M in the first execution and 0@H in the second. Executing LabelOf exposes
this label difference to the value level. In the end, the first machine halts with M@L in register r3,
while the second one halts with H@L in r3, a distinguishable difference.

Following Hriţcu et al. (2013a) and Stefan et al. (2011), we can solve this problem by separating
the choice of label (which needs to be done in a low context) from the computation of the labeled
data (which happens in a high context). Concretely, we require the programmer to specify the label
of the result of each procedure as part of the Call (in our simple instruction language the first-class
label is first put in a register with PutLabel, and only then passed to the Call). In the example above
the Return succeeds on both branches only if the Call is annotated with H , i.e., a label that is more
secure than the label of the result register on either branch:

[PutLabel H r4, Call r1 r3 r4, LabelOf r3 r0, Halt, BranchNZ 2 r0, Mov r2 r3, Return]

Regardless of which branch is chosen, the procedure will return 0@H in register r3, thus preventing
m from being leaked via the labels. Concretely, the new PutLabel instruction loads the label H into
register r4, and then this register is passed as a third argument to the Call. The Call saves the H
label in the new stack frame, and the Return checks that the pc label and the label of the result in r3
are both below or equal to H (which is trivially true on both branches) and then raises the label of
the result to H . The check performed on Return would fail at least on one of the branches if the Call
were wrongly annotated with L or M .

The rest of this subsection explains the part of our machine definition concerning first-class
public labels, culminating with the stepping rules for Call and Return. For the sake of brevity, in the
rest of this and the following subsections, as opposed to §2 and §5, we do not list wrong rules and
the QuickCheck-found counterexamples that have guided our search for the right formulations. For
testing, we consider labels drawn from a four-element diamond lattice:

` ::= L |M1 |M2 | H

where L v M1, L v M2, M1 v H , and M2 v H . The labels M1 and M2 are incomparable. This
four-element lattice was rich enough for finding all bugs introduced in the experiments from §8.5.
With this richer lattice our definition of “low” and “high” becomes relative to an arbitrary observer
label `: we call `1 low with respect to ` if `1 v ` and high otherwise. The noninterference proof
from §8.4 is parameterized over an arbitrary finite lattice.

The register machine works with labeled values v@`, where v is an integer n or a first-class label
` or a pointer (more on pointers in §8.3). Besides PutLabel and LabelOf, which we have seen above,
we add three more new instructions that work with first-class labels:

Instr ::= . . . | PutLabel ` rd | LabelOf rs rd | PcLabel rd | Join r1 r2 rd | FlowsTo r1 r2 rd

PcLabel returns the label of the pc, while Join and FlowsTo compute ∨ and v on first-class labels.
The stepping rules for these new instructions are all very simple:

i(pc) = PutLabel ` rd rf ′ = rf [rd := `@L]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(PUTLABEL)

i(pc) = LabelOf rs rd rf [rs] = n@` rf ′ = rf [rd := `@L]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(LABELOF)
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i(pc) = PcLabel rd rf ′ = rf [rd := `pc@L]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(PCLABEL)

i(pc) = Join r1 r2 rd rf [r1] = `1@`′1 rf [r2] = `2@`′2
rf ′ = rf [rd := (`1 ∨ `2)@(`′1 ∨ `′2)]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(JOIN)

i(pc) = FlowsTo r1 r2 rd rf [r1] = `1@`′1 rf [r2] = `2@`′2
n = if `1 v `2 then 1 else 0 rf ′ = rf [rd := n@(`′1 ∨ `′2)]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(FLOWSTO)

Note that result of the LabelOf instruction is a “label value” that is itself labeled L. So in a low
context the labels of values in registers—even labels on secret data—are public information.

The stepping rules for Call and Return are more complex. The Call r1 r2 r3 instruction has 3
register arguments: r1 stores the address of a procedure, r2 is marked as a result register and is not
restored on return, and r3 stores a first-class label that is used to label the result value on return. On
executing Call r1 r2 r3 the return address (pc+1), the contents of the whole register file (rf ), the
return register identifier r2, and the label in r3 (`), are all saved in a new stack frame, and control is
passed to the address in r1 (n):

i(pc) = Call r1 r2 r3 rf [r1] = n@`n rf [r3] = `@`′

pc@`pc rf cs m ⇒ n@(`pc ∨ `n) rf ((pc+1)@(`pc ∨ `′), rf, r2, `) : cs m
(CALL)

As was the case in §5.2, the address of the called procedure (n) can be influenced by secrets, so we
join its label (`n) to the pc label (`pc). Finally, since the label used to annotate the call (`) is first
class, it has itself a protecting label (`′), which we join to the label of the return address (pc+1).

On a Return the top frame on the call stack is popped, the saved pc and register file are restored
to their previous values, with the exception of the return register whose content is preserved, so that
a value is passed from the callee to the caller in this register.

i(pc) = Return rf [r] = v@` ` ∨ `pc v `′ ∨ `′pc rf ′′ = rf ′[r := v@`′]

pc@`pc rf (n@`′pc , rf ′, r, `′) : cs m ⇒ n@`′pc rf ′′ cs m
(RETURN)

The label check considers the total protection of a value as the join of its explicit label and the pc
label (Hriţcu et al. 2013a). This check ensures that the total protection of the returned value (v) after
the Return (label `′ ∨ `′pc) is at least as strong as its protection before the return (` ∨ `pc); in other
words, it prevents Return from declassifying the result, which would break noninterference.

8.3 Permissive flow-sensitive memory updates
Testing has helped us more easily explore the intricate space of IFC mechanisms and design a new
one that addresses a current research challenge in an interesting way. The challenge we address is al-
lowing the labels of the values in memory to vary at runtime yet still be observable. IFC systems that
allow labels to change during execution are usually called flow-sensitive, and are generally more per-
missive than flow-insensitive systems that require labels to be fixed once and for all. Devising flow-
sensitive dynamic IFC systems is, however, challenging. The first solutions proposed in the literature
used static analysis to soundly approximate the effects of branches not taken on IFC labels (Guernic
2007; Guernic et al. 2006; Russo and Sabelfeld 2010). Later, sound purely-dynamic flow-sensitive
monitors were proposed, based on dynamic checks called no-sensitive-upgrades (Austin and Flana-
gan 2009; Zdancewic 2002) (which we used for the stack machine in §5.2) and permissive up-
grades (Austin and Flanagan 2010; Bichhawat et al. 2014b). These checks are, however, not sound
when labels are observable (e.g., via the LabelOf instruction we introduced in §8.2); intuitively they
allow secret information to leak into the labels of the values in memory and ensure soundness by
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preventing these labels from being observed. We are aware of only one flow-sensitive IFC system
featuring public (i.e., observable) labels: the one recently proposed by Buiras et al. (2014). Our so-
lution is similar but in many ways more permissive than the one by Buiras et al. (2014); on the other
hand, their technique extends well to concurrency, while here we only study a sequential setting.
The precise connection to Buiras et al. (2014) is discussed throughout this subsection.

The main idea is simple: we associate a label with each memory block and this label protects
not only the values inside, but also their individual labels (Buiras et al. (2014) don’t store values in
blocks, but use a similar concept called “the label on the reference label”). This block label is chosen
by the programmer at allocation time and is fixed throughout execution, while the label on the values
in the block can vary more or less arbitrarily. The only restriction we impose is that label updates
can only happen in contexts that are less classified than the label of the memory block containing
the updated label. The rest of this subsection presents the technical details of our solution.

The register machine features a block-based memory model (Azevedo de Amorim et al. 2014;
Leroy and Blazy 2008; Leroy et al. 2012). As mentioned above, values include integers, first-class
labels, and pointers:

v ::= n | ` | (b, o)

A pointer is a pair (b, o) of a block identifier b and an integer offset o. The memory m is a partial
function from a block identifier to a labeled list of labeled values vs@`b; we call `b the block label.
The stepping rule for Load rp rd looks up the value of rp in the register file, and proceeds only if it
is a pointer (b, o) labeled `p:

i(pc) = Load rp rd rf [rp] = (b, o)@`p
m[b] = vs@`b vs[o] = v@`v rf ′ = rf [rd := v@`v]

pc@`pc rf cs m ⇒ (pc+1)@(`pc ∨ `p ∨ `b) rf ′ cs m
(LOAD)

It looks up the block identifier b in the memory m and if the block is allocated it obtains a list of
values vs labeled by the block label `b. The result of the Load is a labeled value v@`v obtained by
looking up at offset o in vs. The most interesting part is that the resulting pc label is the join of the
previous pc label `pc , the pointer label `p, and the block label `b. Intuitively, before the load, the
labels `b and `p protect the value v as well as its label `v . After the load, we could have protected the
value v by joining `b and `p to `v instead of the pc label and that would have been more permissive.
However, this would have left the label `v unprotected, and directly accessible via LabelOf, breaking
noninterference.

The stepping rule for Store takes a labeled value v@`v and writes it to memory, overwriting the
previous value at that location as well as its label.

i(pc) = Store rp rs rf [rp] = (b, o)@`p rf [rs] = v@`v
m[b] = vs@`b (`pc ∨ `p) v `b vs′ = vs[o := v@`v] m′ = m[b := vs′@`b]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf cs m′
(STORE)

Because the previous value is overwritten its label doesn’t need to be related in any way with the label
of the new value. This allows for arbitrary label changes in memory and is thus more permissive than
previous work based on upgrade operations that can only raise the label of a value in memory (Buiras
et al. 2014; Hedin and Sabelfeld 2012). The label check (`pc ∨ `p) v `b ensures that the label `b that
will protect v@`v after the store is high enough to prevent revealing information about the context
in which or the pointer through which this store happened. This ensures that no program can branch
on a secret and based on this change a labeled value in a memory block with a public block label,
since this would be observable via Load as soon as the branching ends and the pc label is restored.
Similarly, this ensures that no program can vary a pointer based on secrets and then use that pointer
to do a store to a block with a public block label, since that block can potentially also be accessible
via public pointers that can observe the stored value or its label. This is analogous to one of the
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checks performed for the upgrade operation of Buiras et al. (2014) (upgrade is further discussed
below); perhaps surprisingly this it the only check we need for our Store instruction.

Beyond Load and Store we have 8 other instructions that deal with pointers and memory:

Instr ::= . . . | Alloc rn rl rd | Write rp rs | Upgrade rp rl | Eq r1 r2 rd | GetOffset rp rd
| SetOffset rp ro rd | GetBlockSize rp rd | GetBlockLabel rp rd

The Alloc rn rl rd instruction allocates a fresh block of size rn with block label rl and stores in
rd a pointer to the first position in this block. The block is initially filled with 0@L:

i(pc) = Alloc rn rl rd rf [rn] = n@`n n > 0 rf [rl] = `@`′

fresh m (`pc ∨ `n ∨ `′) = b m′ = m[b := [0@L, 0@L, . . . , 0@L]@`]
rf ′ = rf [rd := (b, 0)@(`n ∨ `′)]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m′
(ALLOC)

The returned pointer is protected by both `n, the label of the requested block size, and by `′, the label
of the requested block label. If the requested block size is positive and there are still blocks left,
our Alloc rule succeeds; in particular the block label ` can be chosen arbitrarily. This allows us to
allocate a low block in high context, knowing that at the end of the high context access to these blocks
will only be possible through high pointers; this invariant is a cornerstone of our noninterference
proof (§8.4). This is more permissive than the reference allocation rule of Buiras et al. (2014), which
can only use “the current label” (roughly analogous to our pc label) as “the label on the reference
label” (analogous to our block label). We return to the fresh m . . . = b condition in §8.4.

Our Store instruction arbitrarily changes the label of the overwritten value. Inspired by Buiras
et al. (2014) we additionally provide a Write instruction that behaves the same as Store, just that it
keeps the label of the overwritten value unchanged:

i(pc) = Write rp rs rf [rp] = (b, o)@`p rf [rs] = v@`v m[b] = vs@`b vs[o]=v′@`′v
(`pc ∨ `p ∨ `v) v (`b ∨ `′v) vs′=vs[o := v@`′v] m′=m[b := vs′@`b]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf cs m′

(WRITE)

The label check is analogous to the one of Buiras et al. (2014); it can be broken into two parts: The
first part, (`pc ∨ `p) v (`b∨ `′v), is more permissive than the (`pc ∨ `p) v `b check of Store. Because
the write keeps the label `′v unchanged we do not need to additionally protect this label; we only
need to protect the new value v and for this `′v can help. This allows for instance writing in a high
context to a block with a low label as long as we overwrite a value previously labeled high; a Store
would be disallowed in this setting, because it could potentially leak information via a label change.
The second part of the check, `v v (`b ∨ `′v), ensures that the written value v is at least as protected
after the write (by the block label `b and the preserved value label `′v) as it was before the write (by
`v). This check was unnecessary for Store because the label of the stored value does not change.

Buiras et al. (2014) also have an upgrade operation that can raise the label of a value in memory
before entering a high context. This upgrade operation can in fact be faithfully encoded using our
Load and Store instructions (as well as judicious use of Call and Return). For the purpose of stress-
ing our testing methodology we chose to include this as a primitive instruction, with the following
(otherwise derivable) operational semantics rule:

i(pc) = Upgrade rp rl rf [rp] = (b, o)@`p rf [rl] = `@`′ `′pc = `pc ∨ `′
m[b] = vs@`b vs[o] = v′@`′v `′v v (` ∨ `b)

(`′pc ∨ `p) v `b vs′ = vs[o := v′@`] m′ = m[b := vs′@`b]

pc@`pc rf cs m ⇒ (pc+1)@`′pc rf ′ cs m′
(UPGRADE)

Perhaps surprisingly, this rule is more complex and more restrictive than our Store rule. Store does
not have to deal with the label `′ protecting the first-class label `, or with the label `′v of the value
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v′. In particular, our Store rule does not have the `′v v (` ∨ `b) check, because for a Store the value
v′ is overwritten, and thus does not need to be protected in any way. An important consequence of
this is that Store can change labels arbitrarily, while Upgrade can only change labels in a way that
does not diminish the total protection of the existing value in memory. Using Store to overwrite a
memory location with 0@` is thus a better way to change the label of a location whose value is no
longer relevant to `.

The remaining instructions are much simpler. Eq simply illustrates that all values, including
pointers, can be compared for equality. From an IFC perspective, the rule for Eq is the same as the
ones for for Add and Mult:

i(pc) = Eq r1 r2 rd rf [r1] = v1@`1 rf [r2] = v2@`2
if v1 == v2 then n = 1 else n = 0 rf ′ = rf [rd := n@(`1∨`2)]

pc@`pc rf cs m ⇒ pc+1@`pc rf ′ cs m
(EQ)

GetOffset and SetOffset allow direct access to the offset of any pointer:

i(pc) = GetOffset rp rd rf [rp] = (b, o)@`p rf ′ = rf [rd := o@`p]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(GETOFFSET)

i(pc) = SetOffset rp ro rd rf [rp] = (b, o′)@`p rf [ro] = o@`o
rf ′ = rf [rd := (b, o)@(`p ∨ `o)]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(SETOFFSET)

GetBlockSize rp rd returns the size of the block referenced by the pointer in rp:

i(pc) = GetBlockSize rp rd rf [rp] = (b, o)@`p
m[b] = vs@`b rf ′ = rf [rd := (length vs)@`b]

pc@`pc rf cs m ⇒ (pc+1)@(`pc ∨ `p) rf ′ cs m
(GETBLOCKSIZE)

The result has to be protected by the block label `b, which in turn has to be protected by the pointer
label `p. The latter is can only achieved by raising the pc by `p. Finally, GetBlockLabel rp rd returns
the label of the block referenced by the pointer in rp:

i(pc) = GetBlockLabel rp rd rf [rp] = (b, o)@`p
m[b] = vs@`b rf ′ = rf [rd := `b@`p]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(GETBLOCKLABEL)

8.4 Per-level allocation, stamps, reachability, and noninterference
Dynamic allocation in high contexts can cause the values of the pointers to differ between the two
executions considered by noninterference (Banerjee and Naumann 2005). We ensure soundness
by breaking up each pointer into a memory block identifier and an offset into the memory block.
While offsets are fully observable to the program, block identifiers are opaque and can only be
tested for equality. To further simplify the technical development we allocate block identifiers “per
level”, i.e., we assume that we have a separate allocator for each allocation context label. This
assumption ensures that, at the level of abstraction we consider here, allocations in high contexts
cannot influence the values of pointers allocated in low contexts, and we can thus use syntactic
equality to check indistinguishability of pointers. While this assumption on allocation might seem
unrealistic, previous work has shown formally that because block identifiers are opaque, this machine
can be realized by a lower-level machine with a single standard allocator (Azevedo de Amorim et al.
2014).

To understand per-level allocation, one needs to understand the structure of the block identifiers
we have already used in the previous subsection. Block identifiers are not opaque; they are pairs of
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a label `σ , which we will call a stamp, and an integer index i:

b ::= (`σ, i)

As mentioned in §8.3, a memory m is a partial map between block identifiers and labeled lists of
values. One can also see the memory as a three-dimensional array indexed first by stamps, then by
indices, and finally by offsets. Stamps record the level of the allocation, i.e., the label of the context
in which the allocation occurred, and ensure that allocation at one level cannot influence allocation
at other levels. The side-condition

fresh m (`pc ∨ `n ∨ `′) = b

in the ALLOC rule from §8.3 implements this per-level allocation idea. The function fresh takes a
memory m and a stamp `σ = `pc ∨ `n ∨ `′, then uses `σ to index into the memory m, then uses
a deterministic strategy to find the first unallocated index i in m[`σ], and finally returns the block
identifier b = (`σ, i). Formally, we have:

fresh m `σ = (`σ, find undefined index m[`σ]).

It turns out that stamps are not only a convenient mechanism for implementing per-level alloca-
tion (thus simplifying the definition of indistinguishability for pointers to just syntactic equality), but
are also a crucial ingredient in another complex invariant of our noninterference proof. The ALLOC
rule from §8.3 allows choosing an arbitrary block label, even in a high context. This is only sound
because at the end of the high context access to the newly allocated blocks is only possible through
high pointers. The stamp in each block identifier captures precisely the label of the context in which
the allocation of that block occurred. A key invariant used in our noninterference proof is that intu-
itively an allocated block with identifier (`σ, i) can be reached from registers only via pointer paths
that are protected by labels that are, when taken together, at least as secure as `σ . In the following
we will formalize this reachability invariant and use it to define indistinguishability.

We start by defining the “root set” of our reachability invariant, the memory blocks that are
directly accessible at a certain label `. Given a machine state n@`pc rf cs m , the root set includes
the blocks that can be directly accessed by pointers (b, o)@`p in the register file rf for which (`p ∨
`pc) v `. Because pointers are protected both by their explicit label `p and the pc label `pc , if the
machine is in a high state (one for which `pc 6v `), then the current register file does not contribute
at all to the root set. The saved register files on the call stack cs are added to the root set or not
depending on whether the label of the return address in the same call frame is below ` or not. The
label of the return address becomes the new pc on the corresponding Return, so even if the current
pc is high the root set has to include all the low pointers in all register files saved in low-saved-pc
call frames.

More formally, we define root-set, a function from a label and a machine state to a set of blocks,
as follows:

root-set ` n@`pc rf cs m = (root-set′ ` cs) ∪

{
blocks ` rf if `pc v `
∅ otherwise

root-set′ ` ((n@`pc , rf , r, `res) : cs) = (root-set′ ` cs) ∪

{
blocks ` rf if `pc v `
∅ otherwise

root-set′ ` [ ] = ∅

blocks ` vs = {b | (b, i)@`v ∈ vs ∧ `v v `}
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Reachability with respect to a label and a state is a relation on block identifiers defined as the
reflexive transitive closure of a direct link ` m relation on block identifiers:

reachable ` pc rf cs m = (link ` m)∗

link ` m = {(b, b′) | m[b] = vs@`b ∧ `b v ` ∧ b′ ∈ blocks ` vs}

We formally state the reachability invariant as a well-formedness property of stamps:

8.1 Definition: We call a machine state S well-stamped if for all labels ` and for all block identifiers
b and b′, if b ∈ root-set ` S and (b, b′) ∈ reachable ` S then b′ = (σ, i) for some σ v `.

We have discovered and refined the form of the well-stamped property by testing. Subsequently
we have also proved in Coq that it is indeed an invariant of the execution of our register machine.3

8.2 Lemma: If S is well-stamped and S ⇒ S′ then S′ is well-stamped.

The effort of proving this lemma was reduced by considering the correct definitions and statement
from the start.

The indistinguishability relation for register machine states requires that both the considered
states are well-stamped. Like reachability, indistinguishability is defined with respect to an observa-
tion level `.

8.3 Definition: Machine states S1 and S2 are indistinguishable given observer level `, written
S1 ≈`full-ws S2, if S1 and S2 are both well-stamped and S1 ≈`full S2.

The S1 ≈`full S2 relation is defined similarly to the relation of the same name in §6.4 (Definition 6.4):

8.4 Definition: Machine states S1 = pc1 rf1 cs1 m1 i1 and S2 = pc2 rf2 cs2 m2 i2 are
indistinguishable at level ` with respect to whole machine states, written S1 ≈`full S2, if m1 ≈` m2,
i1 ≈` i2, and additionally

• if `pc1
v ` or `pc2

v ` then pc1 = pc2 and rf1 ≈` rf2 and cs1 ≈` cs2.

• otherwise dropWhile (stack-frame-high `) cs1 ≈` dropWhile (stack-frame-high `) cs2, where
stack-frame-high ` (n@`pc , rf, r, `res) = `pc 6v `

The differences with respect to Definition 6.4 are caused by moving from a 2-label lattice to a more
general one. In case one of the pcs is high we still compare the stacks after cropping all high
elements, just that “being high” is now defined as being protected by a label that does not flow to
the observation label `. Moreover, if both pcs are high then the two pc labels are not required to be
equal, while for the 2-label lattice from §6.4 any two high labels have to be equal.

The definition above relies on several auxiliary relations, most interestingly on an indistinguisha-
bility relation for memories defined as follows:

m1 ≈` m2 = ∀(`σ, i). `σ v `⇒ (m1[(`σ, i)] ⇑∧ m2[(`σ, i)] ⇑) ∨ m1[(`σ, i)] ≈` m2[(`σ, i)]

We require each observable block identifier (`σ, i) either to be undefined in both memories or to
point to respectively indistinguishable blocks. Indistinguishability for labeled things (used both for
labeled blocks and the labeled values inside) is defined as follows:

y1@`1 ≈` y2@`2 = (`1 = `2 ∧ (`1 v ` =⇒ y1 ≈` y2))
3 Lemma well stamped preservation at

https://github.com/QuickChick/IFC/blob/master/NIProof.v

https://github.com/QuickChick/IFC/blob/master/NIProof.v
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Indistinguishability for lists (of values or stack frames) is defined pointwise:

(y1 : ys1) ≈` (y2 : ys2) = y1 ≈` y2 ∧ ys1 ≈` ys2 and [ ] ≈` [ ]

Because of per-level allocation, indistinguishability for values (including for pointers) is defined
simply as syntactic equality:

v1 ≈` v2 = (v1 = v2)

Indistinguishability for (potentially cropped, see Definition 8.4) stacks is defined using list indistin-
guishability and the following indistinguishability relation on stack frames:

(pc1, rf1, r1, `res1) ≈` (pc2, rf2, r2, `res2) =
(`pc1

v ` ∨ `pc2
v `) =⇒ (pc1 = pc2 ∧ rf1 ≈` rf2 ∧ r1 = r2 ∧ `res1 = `res2)

If one of the stored pcs is low, then the other has to be low as well, and all elements of the stack frame
have to be pointwise related. If both stored pcs are high we do not impose any additional constraints
on the stack frame, in particular, the two high pcs can have different labels. This mirrors the handing
of pcs and register files in Definition 8.4. While this definition seems natural in retrospect, it took us
a while to reach it; §A.5 presents the wrong alternatives with which we started.

While we discovered the rules and the well-stamped invariant by testing, we finally proved in
Coq that this IFC mechanism has noninterference with respect to ≈full-ws .4

8.5 Theorem: The register information-flow machine satisfies SSNI≈full-ws
.

While the proof of this theorem discovered no errors in the rules or the well-stamped invariant, it did
discover a serious flaw in the indistinguishability relation for stacks, which was previously hidden by
an error in our stack generator (the wrong definition is described in §A.5). This illustrates that keep-
ing generators and checkers in sync is challenging and brings further motivation to recent work on
domain-specific languages for generators (Claessen et al. 2014; Fetscher et al. 2015; Lampropoulos
et al. 2015).

8.5 Testing Results
In order to evaluate how well our testing techniques scale, we apply the best strategies from §4 and
§6 to the register machine and devise an even stronger property that is even better at finding bugs. In
this subsection we explain and discuss in detail the experimental results summarized in Figure 19.

For these experiments we introduced bugs by dropping taints and checks and by moving taints
from the pc to the result. A missing taint bug is formed by dropping some label in the result of the
correct IFC rule. For example, we can insert a bug in the MULT rule by only tainting the result with
the label of one of its arguments (we taint n1 × n2 with `1 instead or `1 ∨ `2):

i(pc) = Mult r1 r2 rd rf [r1] = n1@`1 rf [r2] = n2@`2
rf ′ = rf [rd := (n1 × n2)@`1]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf ′ cs m
(MULT*)

A missing check bug is formed by dropping some part of the requirements of the IFC rule. For
example, to insert a bug in the STORE rule we turn the `pc ∨ `p v `b check into just `p v `b:

i(pc) = Store rp rs rf [rp] = (b, o)@`p rf [rs] = v@`v
m[b] = vs@`b `p v `b vs′ = vs[o := v@`v] m′ = m[b := vs′]

pc@`pc rf cs m ⇒ (pc+1)@`pc rf cs m′
(STORE*)

A final and more subtle class of bugs is moving the taint from the pc to the result. For some
rules, like the one for Load, it is imperative that the pc is tainted instead of the result so that the

4 https://github.com/QuickChick/IFC/blob/master/NIProof.v

https://github.com/QuickChick/IFC/blob/master/NIProof.v
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Tested property EENI EENI LLNI LLNI SSNI SSNI MSNI MSNI
Starting states Init Any Any Any T iny T iny Any Any
Indistinguishability ≈ints-in-regs ≈full-ws ≈full-ws ≈full-ws ≈full-ws ≈full-ws ≈full-ws ≈full-ws

Generation strategy ByExec ByExec ByExec ByExec T iny T iny ByExec ByExec
Variant basic optimized basic optimized basic optimized

Mov 17.29 224.26 13.34 13.11 16.39 22.25 12.66 16.10
Load 5349.00 1423.70 70.57 57.30 116.54 121.63 67.73 71.49
Load — — 144.64 119.82 77.62 83.60 34.02 36.49
Load — 80.00 111.28 95.12 127.10 131.50 104.07 110.92
Store — 1896.42 206.73 15.94 102.48 50.05 43.71 19.23
Store — — 983.00 1077.07 47.56 22.04 22.47 12.17
Store 5365.00 1027.42 123.57 41.57 187.58 87.10 121.79 50.74
+, ∗,v,= 55.15 2395.66 103.83 101.91 151.27 209.19 98.97 127.95
+, ∗,v,= 55.79 2683.88 101.93 102.05 154.52 210.68 98.08 123.61
Noop 286.07 123.00 1.57 9.91 8.02 11.07 8.51 11.85
Jump 1003.05 118.99 32.86 44.18 73.02 99.31 31.13 50.61
Jump 161.16 2731.78 11.90 11.82 20.93 29.19 11.31 14.29
BranchNZ 2079.02 — 79.02 78.56 27.97 37.74 72.87 95.59
BranchNZ 755.22 118.71 29.51 40.31 72.66 101.32 27.78 46.84
Call 858.23 911.36 36.08 35.21 14.26 19.53 15.79 19.30
Call 2128.50 117.68 93.99 148.48 10.83 14.71 4.18 6.67
Call 249.53 4497.32 12.45 12.22 21.38 29.10 11.65 14.73
Return — 452.99 1311.57 19.52 47.38 32.55 36.95 23.66
Return — 1322.03 1346.00 119.56 178.14 123.99 215.00 152.14
Return 695.30 239.04 19.48 10.43 21.01 14.40 18.78 12.59
Return 3015.38 712.16 21.56 11.06 13.83 9.50 19.83 13.21
Alloc 344.85 20.32 36.93 28.42 45.87 47.95 35.23 34.25
Alloc 324.16 22.60 39.60 30.77 46.84 47.23 37.20 36.85
Write — — 1340.00 773.40 183.35 85.13 76.82 40.87
Write — 4110.29 404.04 58.61 348.65 202.48 153.03 73.19
Write — — 1104.73 69.98 288.42 152.07 197.57 83.56
Write — 757.69 69.92 25.22 28.96 13.24 14.31 7.55
Upgrade — — 790.67 144.17 399.17 338.26 352.94 184.00
Upgrade — — 1138.00 922.00 238.66 112.21 97.13 58.80
Upgrade — — 1843.50 84.70 267.86 132.53 223.79 101.73
Upgrade — — 860.49 90.22 407.16 295.01 242.51 109.57
Upgrade — 2706.80 460.02 174.89 422.01 357.12 481.55 222.27
GetOffset 1236.10 513.52 17.49 17.89 27.55 38.86 16.46 21.25
SetOffset 3180.00 371.24 38.71 42.00 50.58 68.97 38.34 51.00
SetOffset 2188.00 744.37 30.16 29.25 49.54 69.20 28.91 35.26
GetBlockSize — 975.58 50.82 50.84 47.62 67.06 49.03 57.85
GetBlockSize — 1960.54 64.69 70.67 78.47 108.20 59.54 82.94
GetBlockLabel — 812.58 24.47 25.97 28.09 38.55 23.33 31.16

Arithmetic mean — — 346.55 126.42 117.09 95.65 84.34 59.53
Geometric mean — — 100.46 53.44 67.33 62.29 46.53 40.65

Figure 19: Experiments for the register machine. MTTF given in milliseconds.
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labels involved are protected. The following incorrect rule, in which we taint the value with the
block label `b instead of the pc, yields a counterexample:

i(pc) = Load rp rd rf [rp] = (b, o)@`p
m[b] = vs@`b vs[o] = v@`v rf ′ = rf [rd := v@(`v ∨ `b)]

pc@`pc rf cs m ⇒ (pc+1)@(`pc ∨ `p) rf ′ cs m
(LOAD*)

The baseline for our comparison is generation by execution and EENIInit,Halted∩Low,≈ints-in-regs , a
basic instantiation of EENI (as defined in §2.3 and Appendix B), stating that starting from empty
initial states and executing the same program, if both machines reach a low halting state then their
register files need to contain low integers at the same positions and these integers need to be pairwise
equal. Formally, we define indistinguishability as follows:

8.6 Definition: S1 = pc1 rf1 cs1 m1 and S2 = pc2 rf2 cs2 m2 are indistinguishable with
respect to integers stored in registers, written S1 ≈ints-in-regs S2, if rf1 ≈ints rf2, which is the pointwise
extension of the following indistinguishability relation on values:

v1@`1 ≈`ints v2@`2 = (`1 = `2 ∧ (`1 v ` =⇒ (v1 = n⇔ v2 = n)))

We choose this property as the baseline because it is simple; in particular it does not compare pointers
or memories or stacks, which as we saw in the previous subsection is very involved. The results for
this property appear in the first column of Figure 19 and as expected are not satisfactory: most of
the bugs are not found at all even after 5 minutes of testing. For the rest of the experiments, we use
the indistinguishability relation ≈full-ws described in the previous subsection. Moreover, we start
execution from arbitrary states, which also significantly improves testing.

The next two columns show the result of using the EENIAny,Halted∩Low,≈full-ws
and LLNIAny,≈full-ws

properties (LLNI is defined generically in §6.3 and Appendix B). These properties do not actually
use the full invariants shown in §8.4, just the parts of it that pertain to low states, since both EENI
and LLNI will only compare such states. The generation strategy is again generation by execution—
simpler strategies result in very poor performance. The results show that the extended machine is
too complex for EENI to discover all injected bugs, while LLNI does find all of them.

Two simple observations allow us to improve LLNI even further. The first one is that our im-
plementation of generation by execution is “naive” about generating each next instruction. To be
precise, we continuously update the uninitialized instruction memory with new random instructions
by repeatedly indexing into the list. This is clearly the source of some overhead, which can be allevi-
ated by using a random-access data structure like a map or—as we chose to use—a zipper; a zipper
provides even faster average-case performance since most of the time the program counter is only
incremented by one. This improvement yields a small performance boost.

The second and more important observation is that some instructions have very restrictive IFC
checks (Store, Return, Write and Upgrade), which often lead to the machine failing as soon as they
are encountered. This causes these instructions to be underrepresented in the machine states pro-
duced by generation by execution, which only chooses an instruction if this instruction can execute
for at least a step. Adjusting the frequency of instruction generation experimentally, so that each
instruction ends up being equally frequent among the ones that can successfully take a step, leads
to the optimized LLNI column of Figure 19. This strategy successfully discovers all bugs relatively
quickly. There is, however, a trade-off: the bugs that were easier to find before become slightly
harder to find.

We also consider an instance of the SSNI property (§6.4), SSNI≈full-ws
, which we expect to take

advantage of all our invariants. Similarly to LLNI, IFC-check-heavy instructions cause a lot of
failures; in this case, the failures lead to many discarded tests, since only one instruction is run. In
Figure 19 we show the performance of SSNI≈full-ws

with uniform and weighted instruction generation
so that instructions empirically appear uniform in the non-discarded tests. The required weights turn



38

out to be very similar to the ones required for LLNI. Moreover, the same trade-off appears here: we
can find the hard-to-find bugs faster by sacrificing a bit of speed for the easy-to-find ones.

As was the case for the basic machine, when optimizing the generation for SSNI, we must be
extremely cautious to avoid ruling out useful parts of the state space. Since SSNI operates by exe-
cuting a machine state for a single step to check the invariant, being able to generate the entire state
space of pairs of indistinguishable machines becomes very important. For example, a reasonable
assumption might seem to be that the stacks are “monotonic”, as described in the end of the previous
section. However, if we use the incorrect indistinguishability relation in Equation A.1 and generate
only “monotonic” stacks for the starting states, SSNI does not uncover the bug in Figure 26, whereas
LLNI does.

Comparing LLNI and SSNI with respect to their efficiency in testing, we can spot an interesting
tradeoff. On the one hand, a significant limitation of LLNI is that bugs that appear when the pc is
high are not detected immediately, but only after the pc goes back low, if ever. One example is the
STORE* buggy rule above, where we do not check whether the pc label flows to the label of the
memory cell. On such bugs LLNI has orders of magnitude worse results. On the other hand, SSNI
is significantly less robust with respect to starting state generation. If we do not generate every valid
starting state, then SSNI will not test executions starting in the missing states, since it only executes
one instruction. LLNI avoids this problem as long as all valid states are eventually reachable from
the generated starting states.

These observations lead us to formulate a new property: multi-step noninterference (MSNI),
that combines the advantages of both LLNI and SSNI. The formal definition of MSNI is given in
Appendix B. Informally, we start from an arbitrary pair of indistinguishable machine states and we
check the SSNI unwinding conditions along a whole execution trace. Using generation by execution
with uniform and adjusted instruction frequencies for this property yields the last two columns of
Figure 19. MSNI performs on most bugs on par with the better of SSNI or LLNI by uncovering
IFC violations as soon as they appear; at the same time, unlike SSNI, MSNI is robust against faulty
generation.

9 Related Work
Generating random inputs for testing is a large research area, but the particular sub-area of testing
language implementations by generating random programs is less well studied. Redex (Fetscher
et al. 2015; Klein 2009; Klein and Findler 2009; Klein et al. 2012) (né PLT Redex) is a domain-
specific language for defining operational semantics within Racket (né PLT Scheme), which includes
a property-based random testing framework inspired by QuickCheck. This framework uses a formal-
ized language definition to automatically generate simple test-cases. To generate better test cases,
however, Klein et al. find that the generation strategy needs to be tuned for the particular language;
this agrees with our observation that fine-tuned strategies are required to obtain the best results. They
argue that the effort required to find bugs using Redex is less than the effort required for a formal
proof of correctness, and that random testing is sometimes viable in cases where full proof seems
infeasible.

Klein et al. (2010) use PLT Redex’s QuickCheck-inspired random testing framework to asses
the safety of the bytecode verification algorithm for the Racket virtual machine. They observe that
naively generated programs only rarely pass bytecode verification (88% discard rate), and that many
programs fail verification because of a few common violations that can be easily remedied in a post-
generation pass that for instance replaces out-of-bounds indices with random in-bounds ones. These
simple changes to the generator are enough for reducing the discard rate (to 42%) and for finding
more than two dozen bugs in the virtual machine model, as well as a few in the Racket machine
implementation, but three known bugs were missed by this naive generator. The authors conjecture
that a more sophisticated test generation technique could probably find these bugs.
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CSmith (Yang et al. 2011) is a C compiler testing tool that generates random C programs, avoid-
ing ones whose behavior is undefined by the C99 standard. When generating programs, CSmith
does not attempt to model the current state of the machine; instead, it chooses program fragments
that are correct with respect to some static safety analysis (including type-, pointer-, array-, and
initializer-safety, etc.). We found that modeling the actual state of our (much simpler) machine to
check that generated programs were hopefully well-formed, as in our generation by execution strat-
egy, made our test-case generation far more effective at finding noninterference bugs. In order to get
smaller counterexamples, Regehr et al. present C-Reduce (Regehr et al. 2012), a tool for reducing
test-case C programs such as those produced by CSmith. They note that conventional shrinking
methods usually introduce test cases with undefined behavior; thus, they put a great deal of effort
and domain specific knowledge into shrinking well-defined programs only to programs that remain
well-defined. To do this, they use a variety of search techniques to find better reduction steps and to
couple smaller ones together. Our use of QuickCheck’s double shrinking is similar to their simul-
taneous reductions, although we observed no need in our setting for more sophisticated searching
methods than the greedy one that is guaranteed to produce a local minimum. Regehr et al.’s work on
reduction is partly based on Zeller and Hildebrandt’s formalization of the delta debugging algorithm
ddmin (Zeller and Hildebrandt 2002), a non-domain-specific algorithm for simplifying and isolating
failure-inducing program inputs with an extension of binary search. In our work, as in Regehr et
al.’s, domain-specific knowledge is crucial for successful shrinking. In recent work, Koopman et al.
(2013) propose a technique for model-based shrinking.

Another relevant example of testing programs by generating random input is Randoop (Pacheco
and Ernst 2007), which generates random sequences of calls to Java APIs. Noting that many gen-
erated sequences crash after only a few calls, before any interesting bugs are discovered, Randoop
performs feedback directed random testing, in which previously found sequences that did not crash
are randomly extended. This enables Randoop to generate tests that run much longer before crash-
ing, which are much more effective at revealing bugs. Our generation by execution strategy is similar
in spirit, and likewise results in a substantial improvement in bug detection rates.

A state-machine modeling library for (an Erlang version of) QuickCheck has been developed
by Quviq (Hughes 2007). It generates sequences of API calls to a stateful system satisfying pre-
conditions formulated in terms of a model of the system state, associating a (model) state transition
function with each API call. API call generators also use the model state to avoid generating calls
whose preconditions cannot be satisfied. Our generation-by-execution strategy works in a similar
way for straightline code.

A powerful and widely used approach to testing is symbolic execution—in particular, concolic
testing and related dynamic symbolic execution techniques (Cadar et al. 2011; Majumdar and Sen
2007). The idea is to mix symbolic and concrete execution in order to achieve higher code cov-
erage. The choice of which concrete executions to generate is guided by a constraint solver and
path conditions obtained from the symbolic executions. Originating with DART (Godefroid et al.
2005) and PathCrawler (Williams et al. 2004), a variety of tools and methods have appeared; some
of the state-of-the-art tools include CUTE (Sen et al. 2005), CREST (Burnim and Sen 2008), and
KLEE (Cadar et al. 2008) (which evolved from EXE (Cadar et al. 2006)) . We wondered whether
dynamic symbolic execution could be used instead of random testing for finding noninterference
bugs. As a first step, we implemented a simulator for a version of our abstract machine in C and
tested it with KLEE. Using KLEE out of the box and without any expert knowledge in the area, we
attempted to invalidate various assertions of noninterference. Unfortunately, we were only able to
find a counterexample for PUSH*, the simplest possible bug, in addition to a few implementation
errors (e.g., out-of-bound pointers for invalid machine configurations). The main problem seems
to be that the state space we need to explore is too large (Cadar and Sen 2013), so we don’t cover
enough of it to reach the particular IFC-violating configurations. More recently, Torlak and Bodı́k
(2014) have used our information-flow stack machine and its bugs with respect to EENI as a case
study for their symbolic virtual machine, and report better results.
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Balliu et al. (2012) created ENCOVER, an extension of Java PathFinder, to verify information-
flow properties of Java programs by means of concolic testing. In their work, concolic testing is
used to extract an abstract model of a program so that security properties can be verified by an SMT
solver. While ENCOVER tests the security of individual programs, we use testing to check the
soundness of an entire enforcement mechanism. Similarly, Milushev et al. (2012) have used KLEE
for testing the noninterference of individual programs, as opposed to our focus on testing dynamic
IFC mechanisms that are meant to provide noninterference for all programs.

In recent work, Lampropoulos et al. (2015) introduce a domain-specific language for random
generators that puts together random instantiation (Antoy 2000; Claessen et al. 2014; Fetscher et al.
2015) and constraint solving (Mohr and Henderson 1986). As a case study, they tests noninterference
for the register machine from §8 using our generators for indistinguishable machine states (including
generation by execution) and the SSNI and LLNI properties.

In interactive theorem provers, automatically generating counterexamples for false conjectures
can prevent wasting time and effort on proof attempts doomed to fail (Groce et al. 2007). Dybjer et al.
(2003) propose a QuickCheck-like tool for the Agda/Alfa proof assistant. Berghofer and Nipkow
(2004) proposed a QuickCheck-like tool for Isabelle/HOL. This was recently extended by Bulwahn
(2012a) to also support exhaustive and narrowing-based symbolic testing (Christiansen and Fischer
2008; Lindblad 2007; Runciman et al. 2008). Moreover, Bulwahn’s tool uses Horn clause data flow
analysis to automatically devise generators that only produce data that satisfies the precondition of
the tested conjecture (Bulwahn 2012b). Eastlund (2009) implemented DoubleCheck, an adaption
of QuickCheck for ACL2. Chamarthi et al. (2011) later proposed a more advanced counterexample
finding tool for ACL2s, which uses the full power of the theorem prover and libraries to simplify
conjectures so that they are easier to falsify. While all these tools are general and only require the
statement of the conjecture to be in a special form (e.g., executable specification), so they could in
principle be applied to test noninterference, our experience with QuickCheck suggests that for the
best results one has to incorporate domain knowledge about the machine and the property being
tested. We hope to compare our work against these tools in the future and provide experimental
evidence for this intuition. Recently, Paraskevopoulou et al. (2015) introduced a port of Haskell
QuickCheck to Coq together with a foundational verification framework for testing code and use
our testing noninterference techniques as their main case study, proving our generator for “Tiny”
indistinguishable states used to test SSNI for the register machine (§8.5) sound and complete with
respect to indistinguishability.

On the dynamic IFC side Birgisson et al. (2012) have a good overview of related work. Our
correct rule for Store for the stack machine is called the no-sensitive-upgrades policy in the litera-
ture and was first proposed by Zdancewic (2002) and later adapted to the dynamic IFC setting by
Austin and Flanagan (2009). To improve precision, Austin and Flanagan (2010) later introduced a
different permissive-upgrade policy, where public locations can be written in a high context as long
as branching on these locations is later prohibited, and they discuss adding privatization operations
that would even permit this kind of branching safely. Hedin and Sabelfeld (2012) improve the pre-
cision of the no-sensitive-upgrades policy by explicit upgrade annotations, which raise the level of
a location before branching on secrets. They apply their technique to a core calculus of JavaScript
that includes objects, higher-order functions, exceptions, and dynamic code evaluation. Birgisson
et al. (2012) show that random testing with QuickCheck can be used to infer upgrade instructions in
this setting. The main idea is that whenever a random test causes the program to be stopped by the
IFC monitor because it attempts a sensitive upgrade, the program can be rewritten by introducing
an upgrade annotation that prevents the upgrade from being deemed sensitive on the next run of the
program. In recent work, Bichhawat et al. (2014b) generalize the permissive-upgrade check to ar-
bitrary IFC lattices. They present involved counterexamples, apparently discovered manually while
doing proofs. We believe that our testing techniques are well-suited at automatically discovering
such counterexamples.

Terauchi and Aiken (2005) and later Barthe et al. (2011b) propose a technique for statically ver-
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ifying the noninterference of individual programs using the idea of self-composition. This reduces
the problem of verifying secure information flow for a program P to a safety property for a pro-
gram P̂ derived from P , by composing P with a renaming of itself. Self-composition enables the
use of standard (i.e., not relational (Barthe et al. 2011a; Benton 2004)) program logics and model
checking for showing noninterference. The problem we address in this paper is different: we test
the soundness of dynamic IFC mechanisms by randomly generating (a large number of) pairs of
related programs. One could imagine extending our technique in the future to testing the sound-
ness of static IFC mechanisms such as type systems (Sabelfeld and Myers 2003), relational program
logics (Barthe et al. 2011a; Benton 2004), and self-composition based tools (Barthe et al. 2011b).

In recent work Ochoa et al. (2015) discuss a preliminary model-checking based technique for dis-
covering unwanted information flows in specifications expressed as extended finite state machines.
They also discuss about testing systems for unwanted flows using unwinding-based coverage criteria
and mutation testing. In a recent position paper, Kinder (2015) discusses testing of hyperproper-
ties (Clarkson and Schneider 2010).

10 Conclusions and Outlook
We have shown how random testing can be used to discover counterexamples to noninterference in
a simple information-flow machine and how to shrink counterexamples discovered in this way to
simpler, more comprehensible ones. The techniques we present bring many orders of magnitude
improvement in the rate at which bugs are found, and for the hardest-to-find bugs (to EENI) the
minimal counterexamples are 10-15 instructions long – well beyond the scope of naive exhaustive
testing. Even if we ultimately care about full security proofs (Azevedo de Amorim et al. 2014), using
random testing should greatly speed the initial design process and allow us to concentrate more of
our energy on proving things that are correct or nearly correct.

We are hopeful that we can scale the methodology introduced in this paper to test noninterference
and other properties (Azevedo de Amorim et al. 2015) for abstract machines built on top of real-life
instruction set architectures. The results in §8 are particularly encouraging in this respect. For a
real-life architecture, even if were to find bugs 100× slower than for the machine in §8, that would
still only be a matter of seconds.

We expect that our techniques are flexible enough to be applied to checking other relational
properties of programs (i.e., properties of pairs of related runs (Barthe et al. 2011a; Benton 2004;
Clarkson and Schneider 2010))—in particular, the many variants and generalizations of noninter-
ference, for instance taking into account declassification (Sabelfeld and Sands 2005). Beyond non-
interference properties, preliminary experiments with checking correspondence between concrete
and abstract versions of our current stack machine suggest that many of our techniques can also be
adapted for this purpose. For example, the generate-by-execution strategy and many of the shrinking
tricks apply just as well to single programs as to pairs of related programs. This gives us hope that
they may be useful for checking yet further properties of abstract machines.
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i =

[
Push 1@L,Push 0@H,Push 1@L, Store,Push 1@H

0@L
,

Store,Halt

]
pc m s i(pc)

0@L [0@L, 0@L] [ ] Push 1@L
1@L [0@L, 0@L] [1@L] Push 0@H
2@L [0@L, 0@L] [0@H, 1@L] Push 1@L
3@L [0@L, 0@L] [1@L, 0@H, 1@L] Store
4@L [0@L, 0@H] [1@L] Push 1@H

0@L

5@L [0@L, 0@H]
[
1@H
0@L

, 1@L
]

Store

6@L
[
0
1

@L, 1
0

@H
]

[ ] Halt

Figure 20: A counterexample showing that it is wrong to make high values be equivalent to all other values.

Random Testing for Language Design. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the U.S. Government. The
work is also partially funded under the Swedish Foundation for Strategic Research grant RAWFP.

A Varying the Indistinguishability Relation

A.1 Labels being high or low needs to be observable
As seen in §2.4, our definition of indistinguishability of values (Definition 2.1) allows the observer to
distinguish between final memory states that differ only in their labels. One might imagine changing
the definition of indistinguishability so that labels are not observable. There are at least two ways one
can imagine doing this; however, both are wrong. First, one could try defining indistinguishability
of values so that x@L ≈ y@H for any x and y. QuickCheck easily finds a counterexample to
this (Figure 20). Second, one could try refining this so that only x@L ≈ x@H , i.e., a high value
is equivalent with a low one only when the payloads are equal. QuickCheck also disproves this
alternative (Figure 21), and the counterexample produced by QuickCheck illustrates how, even with
the correct rules, a difference in the labels of two values can be turned into a difference in the
values of two values. This counterexample is reminiscent of a well-known “flow-sensitivity attack”
(Figure 1 in Russo and Sabelfeld (2010); attributed to Fenton (1974)). This counterexample relies
on Call and Return as introduced in §5.

A.2 Weakening EENI when adding calls and returns
The counterexample in Figure 22 shows that once we have a way to restore the pc label, we can
no longer expect all pairs of halting states to be indistinguishable in EENI. In particular, as the
counterexample shows, one machine can halt in a high state, while the other can return to low,
and only then halt. Since our indistinguishability relation only equates states with the same pc
label, these two halting states are distinguishable. The solution we use in §5.2 is to weaken the
EENI instance, by considering only ending states that are both halting and low (i.e., we change to
EENIInit,Halted∩Low,≈mem

).

A.3 Indistinguishability for stack elements when adding calls and returns
In §5.2 we defined the indistinguishability relation on stack elements so that return addresses are only
equivalent to other return addresses and (as for values) R(x1@`1) ≈ R(x2@`2) if either `1 = `2 =
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i =

[
Push 1@L,Push 0@H

L
,Push 0@L, Store,Push 7

9
@H,

Call 1 0,Halt,Push 0@L, Store,Return

]
pc m s i(pc)

0@L [0@L] [ ] Push 1@L

1@L [0@L] [1@L] Push 0@H
L

2@L [0@L]
[
0@H

L
, 1@L

]
Push 0@L

3@L [0@L]
[
0@L, 0@H

L
, 1@L

]
Store

4@L
[
0@H

L

]
[1@L] Push 7

9
@H

5@L
[
0@H

L

] [
7
9

@H, 1@L
]

Call 1 0

Machine 1 continues. . .
7@H [0@H] [1@L,R(6, 0)@L] Push 0@L
8@H [0@H] [0@L, 1@L,R(6, 0)@L] Store
9@H [1@H] [R(6, 0)@L] Return
6@L [1@H] [ ] Halt

Machine 2 continues. . .
9@H [0@L] [1@L,R(6, 0)@L] Return
6@L [0@L] [ ] Halt

Figure 21: A counterexample showing that it is also wrong to make high values equivalent to low values with
the same payload.

H or x1 = x2 and `1 = `2 = L. If instead we considered high return addresses and high values
to be indistinguishable, QuickCheck would find a counterexample. This counterexample requires
quasi-initial states (and≈low ) and is listed in Figure 23. The first machine performs only one Return
that throws away two elements from the stack and then halts. The second machine returns twice:
the first time to the same Return, unwinding the stack and raising the pc; and the second time to the
Halt instruction, labeling the return value high in the process. The final states are distinguishable
because the elements on the stack have different labels. As we saw earlier, such a counterexample
can be extended to one in which values also differ.

A.4 Counterexamples justifying indistinguishability for SSNI
The indistinguishability relation high states used for SSNI needs to be strong enough to ensure that
when both machines return to low states, those low states are also indistinguishable. Since ≈low is
too weak, QuickCheck can find counterexamples to condition 3 in Definition 6.3 (see Figure 24).

On the other hand, treating high states exactly like low states in the indistinguishability relation is
too strong, since that would prevent the stacks to change between successive high states. In this case
QuickCheck finds counterexamples to condition 2 in Definition 6.3 (see Figure 25). This motivates
comparing stacks for high state only below the first low return, while allowing the tops of the stacks
to vary arbitrarily, as done in the definition of ≈full (Definition 6.4). These two counterexamples
guide our search for the correct indistinguishability relation—i.e., one that correctly captures the
invariant that the machine can only alter stack frames below the current one by using the Return
instruction.
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i =
[

Push 2
3

@H,Call 0 0,Halt,Return
]

pc m s i(pc)

0@L [ ] [ ] Push 2
3

@H

1@L [ ]
[
2
3

@H
]

Call 0 0

Machine 1 continues. . .
2@H [ ] [R(2, 0)@L] Halt

Machine 2 continues. . .
3@H [ ] [R(2, 0)@L] Return
2@L [ ] [ ] Halt

Figure 22: A counterexample justifying the change to EENIInit,Halted∩Low,≈mem in §5.2.

i =
[

Return,Halt
]

pc m s i(pc)

0@L [ ]
[
0@L, 0@H

R(0,0)@H
, 0@L,R(1, 1)@L

]
Return

Machine 1 continues. . .
1@L [ ] [0@L] Halt

Machine 2 continues. . .
0@H [ ] [0@L,R(1, 1)@L] Return
1@L [ ] [0@H] Halt

Figure 23: A counterexample that motivates the indistinguishability of stack elements for the machine with
calls and returns.

A.5 Wrong alternatives for indistinguishability of register machine states
The definition of indistinguishability for the register machine (Definition 8.4) might seem natural in
retrospect, but it took us a while to reach it. Here we presents two wrong alternatives with which we
started. The handing of call stacks differs from Definition 8.4.

In the first wrong alternative we required a very strong matching between stack frames:

(n1@`pc1
, rf1, r1, `res1) ≈` (n2@`pc2

, rf2, r2, `res2) =

n1 = n2 ∧ `pc1
= `pc2

∧ rf1 ≈` rf2 ∧ r1 = r2 ∧ `res1 = `res2 (A.1)

However, the above indistinguishability relation assumes that the stacks are “monotonic”, in the
sense that the program counters stored in the stack are only decreasing with respect to the label
flows-to relation. While this was true for the stack machines with the two-label lattice, this is the
case for the register machine with the more complex diamond lattice, as can be seen in Figure 26.
In this counterexample even after cropping the top high part of the stack, a high stack element frame
remains on the stack, which varies in the return label, causing our indistinguishability relation to
fail when it shouldn’t. Since the return pcs are high, this difference in labels is not observable, and
therefore does not break noninterference.

In the second wrong alternative we tried to deal with this observation by filtering out all high
elements of the stack, leaving only low stack elements to compare pairwise. This required us to
change Definition 8.4 as follows:
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i =
[

Return
]

pc m s i(pc)

0@H [ ]
[
R(0

1
, 0)@L

]
Return

Machine 1 continues. . .
0@L [ ] [ ] Return

Machine 2 continues. . .
1@L [ ] [ ] −

Figure 24: A counterexample showing that ≈low is too weak for SSNI. Since the pc is initially high, ≈low does
not require the initial stacks to be related in any way, which means the two machines can jump to two different
addresses while still both lowering the pc. The two resulting states are, however, distinguishable, since they

have different pcs.

i =
[

Pop
]

pc m s i(pc)

0@H [ ] [0@L] Pop
1@H [ ] [ ] −

Figure 25: A counterexample that shows that treating high states exactly like low states in the indistinguisha-
bility relation over machine states is too strong and breaks condition 2 in Definition 6.3. When a machine steps

from a high state to another high state the contents of the stack can change.

A.2 Definition: Machine states S1 = pc1 rf1 cs1 m1 i1 and S2 = pc2 rf2 cs2 m2 i2 are
indistinguishable at level ` with respect to whole machine states, written S1 ≈`full S2, if m1 ≈` m2,
i1 ≈` i2, cs1 ≈` cs2, and additionally

• if `pc1
v ` or `pc2

v ` then pc1 = pc2 and rf1 ≈` rf2.

We then defined indistinguishability of stacks as follows.

cs1 ≈` cs2 = filter (stack-frame-below `) cs1 ≈` filter (stack-frame-below `) cs2
stack-frame-below ` (n@`pc , rf, r, `res) = `pc v `

Unfortunately, this is now too weak and leads to an execution trace that breaks noninterference
(Figure 27). After taking a step in the first machine, we get an distinguishable pair of machines
where one has an observable pc while the other one does not.

i = [Call 0 1 0,Call 0 2 0]

pc m r s i(pc)

0@M1 [ ]
(
1@L, M1

M2
@M2, L@L

)
[ ] Call 0 1 0

1@M1 [ ]
(
1@L, M1

M2
@M2, L@L

) [
{R 1@H, M1

M2
, . . .}

]
Call 0 2 0

1@M1 [ ]
(
1@L, M1

M2
@M2, L@L

) [
{R 2@M1, L, . . .}, {R 1@H, M1

M2
, . . .}

]
Call 0 2 0

Figure 26: An example of an execution trace that produces a non-monotonic stack
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i = [Return]

pc m r s i(pc)

Machine 1’s trace. . .
0@L [ ] ( ) [{R 0@H, . . .}, {R 0@L, . . .}] Return
0@H [ ] ( ) [{R 0@L, . . .}] Return

Machine 2’s trace. . .
0@L [ ] ( ) [{R 0@L, . . .}] Return
0@L [ ] ( ) [ ] Return

Figure 27: Counterexample for the filtering stack-indistinguishability relation

B Theorems for Strengthening IFC Properties
We have proved in Coq5 that, under some reasonable assumptions, MSNI implies SSNI, SSNI im-
plies LLNI, and LLNI implies EENI. All these are generic properties of information-flow abstract
machines; a machine M is composed of:

• an arbitrary type of machine states,

• a partial step function on states written⇒ (reduction is deterministic), and

• a set of observation levels o (e.g., labels).

As in §2, we write⇒∗ for the reflexive, transitive closure of⇒. When S ⇒∗ S′ and S′ is stuck
(6 ∃S′′. S′ ⇒ S′′), we write S ⇓ S′. We write S ⇒∗t when an execution (⇒∗) from S produces trace
t (a list of states).

B.1 Definition: A machine M has end-to-end noninterference (EENI) with respect to

• a predicate on states Start (initial states), and

• a predicate on states End (successful ending states),

• an observation-level-indexed indistinguishability relation on states ≈,

written EENIStart,End,≈M , when

• for all states S1, S2 ∈ Init, if S1 ≈o S2, S1 ⇓ S′1, S2 ⇓ S′2, and S′1, S
′
2 ∈ End then S′1 ≈o S′2.

B.2 Definition: A machine M has low-lockstep noninterference (LLNI) with respect to

• a predicate on states Start,

• an indistinguishability relation ≈, and

• an observation-level-indexed predicate on states Low (e.g., in which only data labeled below
a certain label has influenced control flow),

written LLNIStart,Low,≈M , when for all S1, S2 ∈ Start with S1 ≈o S2, S1 ⇒∗t1 , and S2 ⇒∗t2 ,
we have t1 ≈∗o t2, where indistinguishability on traces ≈∗o is defined inductively by the following
rules:

S1, S2 ∈ Lowo S1 ≈o S2 t1 ≈∗o t2
(S1 : t1) ≈∗o (S2 : t2)

(LOW LOCKSTEP)

5https://github.com/QuickChick/IFC/blob/master/NotionsOfNI.v

https://github.com/QuickChick/IFC/blob/master/NotionsOfNI.v
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S1 6∈ Lowo t1 ≈∗o t2
(S1 : t1) ≈∗o t2

(HIGH FILTER)

t ≈∗o [ ]
(END)

t1 ≈∗o t2
t2 ≈∗o t1

(SYMMETRY)

B.3 Theorem: LLNIStart,Low,≈M implies EENIStart,End,≈M provided that

• ≈ is symmetric,

• End ⊂ Low,

• S ∈ End implies that S is stuck (6 ∃S′. S ⇒ S′),

• S1 ≈ S2 implies S1 ∈ End⇔ S2 ∈ End,

B.4 Definition: A machine M has single-step noninterference (SSNI) with respect to

• an indistinguishability relation ≈, and

• an observation-level-indexed predicate on states Low,

written SSNILow,≈M , when the following conditions are satisfied:

1. For all o and S1, S2 ∈ Lowo, if S1 ≈o S2, S1 ⇒ S′1, and S2 ⇒ S′2, then S′1 ≈o S′2;

2. For all o and S 6∈ Lowo if S ⇒ S′ and S′ 6∈ Lowo, then S ≈o S′;

3. For all o and S1, S2 6∈ Lowo, if S1 ≈o S2, S1 ⇒ S′1, S2 ⇒ S′2, and S′1, S
′
2 ∈ Lowo, then

S′1 ≈o S′2.

B.5 Theorem: SSNILow,≈M implies LLNIStart,Low,≈M under the following assumptions:

• ≈ is a partial equivalence relation (symmetric and transitive),

• S1 ≈ S2 implies S1 ∈ Low⇔ S2 ∈ Low.

B.6 Definition: A machine M has multi-step noninterference (MSNI) with respect to

• an indistinguishability relation ≈, and

• an observation-level-indexed predicate on states Low,

written MSNILow,≈M , when S1 and S2 with S1 ≈o S2, S1 ⇒∗t1 , S2 ⇒∗t2 we have t1 ≈∗o t2, where
indistinguishability on traces ≈∗o is defined inductively by the following rules:

S1, S2 ∈ Lowo S′1 ≈o S′2 (S′1 : t1) ≈∗o (S′2 : t2)

(S1 : S′1 : t1) ≈∗o (S2 : S′2 : t2)
(LOW STEPS)

S1, S2 6∈ Lowo S′1, S
′
2 ∈ Lowo S′1 ≈o S′2 (S′1 : t1) ≈∗o (S′2 : t2)

(S1 : S′1 : t1) ≈∗o (S2 : S′2 : t2)
(HIGH TO LOW STEPS)

S1, S
′
1 6∈ Lowo S1 ≈o S′1 (S′1 : t1) ≈∗o (S2 : t2)

(S1 : S′1 : t1) ≈∗o (S2 : t2)
(HIGH TO HIGH STEP)

(S1 ∈ Lowo ∨ S′1 ∈ Lowo) (S′1 : t1) ≈∗o (S2 : [ ])

(S1 : S′1 : t1) ≈∗o (S2 : [ ])
(LOW STEP END)
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(S1 : [ ]) ≈∗o (S2 : [ ])
(BOTH END)

t1 ≈∗o t2
t2 ≈∗o t1

(SYMMETRY)

B.7 Theorem: MSNILow,≈M implies SSNILow,≈M under the following assumptions:

• ≈ is reflexive and symmetric,

• S1 ≈ S2 implies S1 ∈ Low⇔ S2 ∈ Low.
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K. Claessen, J. Duregård, and M. H. Pałka. Generating constrained random data with uniform
distribution. In Functional and Logic Programming, volume 8475 of Lecture Notes in Computer
Science, pages 18–34. Springer, 2014.

M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer Security, 18(6):1157–
1210, 2010.

http://dx.doi.org/10.1145/2637113.2637116
http://dx.doi.org/10.1145/2637113.2637116
http://www.cse.chalmers.se/~andrei/esorics12.pdf
http://www.cse.chalmers.se/~andrei/esorics12.pdf
http://www.scs.stanford.edu/~deian/pubs/buiras:2014:on-dynamic.pdf
https://www.irisa.fr/celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf
https://www.irisa.fr/celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.1307&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1145/1180405.1180445
http://dx.doi.org/10.1145/1180405.1180445
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/10.1145/1985793.1985995
http://dx.doi.org/10.1145/1985793.1985995
http://arxiv.org/abs/1105.4394
http://arxiv.org/abs/1105.4394
http://www-ps.informatik.uni-kiel.de/~sebf/data/pub/flops08.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://dx.doi.org/10.1007/978-3-319-07151-0_2
http://dx.doi.org/10.1007/978-3-319-07151-0_2
http://dx.doi.org/10.3233/JCS-2009-0393


50

P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in dependent type theory.
In 16th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), volume
2758 of Lecture Notes in Computer Science, pages 188–203. Springer, 2003.

C. Eastlund. DoubleCheck your theorems. In ACL2, 2009.

J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147, 1974.

B. Fetscher, K. Claessen, M. H. Palka, J. Hughes, and R. B. Findler. Making random judgments:
Automatically generating well-typed terms from the definition of a type-system. In 24th European
Symposium on Programming, volume 9032 of Lecture Notes in Computer Science, pages 383–
405. Springer, 2015.

D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. Mitchell, and A. Russo. Hails: Protecting
data privacy in untrusted web applications. In 10th Symposium on Operating Systems Design and
Implementation (OSDI), pages 47–60. USENIX, 2012.

P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI, pages 213–223.
ACM, 2005.

J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE Symposium on Security
and Privacy, pages 75–87. IEEE Computer Society, 1984.

A. Groce, G. J. Holzmann, and R. Joshi. Randomized differential testing as a prelude to formal
verification. In ICSE, pages 621–631. IEEE Computer Society, 2007.

G. L. Guernic. Automaton-based confidentiality monitoring of concurrent programs. In 20th Com-
puter Security Foundations Symposium, CSF, pages 218–232. IEEE Computer Society, 2007.

G. L. Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt. Automata-based confidentiality moni-
toring. In 11th Asian Computing Science Conference, pages 75–89. Springer, 2006.

D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In 25th IEEE Com-
puter Security Foundations Symposium (CSF), CSF, pages 3–18. IEEE, 2012.
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