
74 communications of the acm | september 2013 | vol. 56 | no. 9

contributed articles

I
m

a
g

e
 b

y
 P

a
t

r
ic

k

 C
a

t
u

d
a

l

Computing
with Real
Numbers,
from
Archimedes
to Turing
and Beyond

doi:10.1145/2500890

How to test the usefulness of computation
for understanding and predicting
continuous phenomena.

By Mark Braverman

R e al numbers are at the center of our mathematical
reasoning about the world around us. Computational
problems, from computing the number π to
predicting an asteroid’s trajectory, all deal with
real numbers. Despite the abundance of inherently
continuous problems, computers are discrete,
finite-precision devices. The need to reason about
computing with real numbers gives rise to the kind of
fascinating challenges explored here.

We are so immersed in numbers in
our daily lives it is difficult to imagine
humans once got by without them.
When numbers were finally intro-
duced in ancient times, they were
used to represent specific quanti-
ties (such as commodities, land, and
time); for example “four apples” is
just a convenient way to rephrase “an
apple and an apple and an apple and
an apple”; that is, numbers had al-
gorithmic meaning millennia before
computers and algorithmic thinking
became as pervasive as it is today. The
natural numbers 1, 2, 3, . . . are the
easiest to define and “algorithmize.”
Given enough time (and apples), one
can easily produce a pile with any nat-
ural number of apples.

Fractions are not as easy to produce
as whole natural numbers, yet the algo-
rithm for them is fairly straightforward.
To produce 2/3 of an apple, one can
slice an apple into three equal parts,
then take two of them. If one consid-
ers positive rational numbers, there is
little divergence between the symbolic
representation of the number and the
algorithm one needs to “construct”
this number out of apples; the number
practically shouts a way to construct it.
These numbers were the ones that pop-
ulated the world of the ancient Greeks
(in Archimedes's time) who often
viewed numbers and fractions through
the lens of geometry, identifying them
with geometric quantities. In the geo-
metric language, natural numbers are
just integer multiples of the unit inter-

 key insights
 � �The study of algorithms dealing with real

numbers and functions over the reals
requires extending the reach of traditional
computability theory but is a notable
challenge for mathematicians and
computer scientists.

 � �The theory of computation over the
reals can be applied to the study of
computational hardness of dynamical
systems involving a range of natural
and artificial phenomena.

 � �Predicting a system’s long-term
properties is easy in some cases; in
others it can be as hard as trying to
solve the undecidable Halting Problem.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2500890&domain=pdf&date_stamp=2013-09-01

september 2013 | vol. 56 | no. 9 | communications of the acm 75

76 communications of the acm | september 2013 | vol. 56 | no. 9

contributed articles

val, and positive rational numbers are
integer fractions of these intervals.

It was tempting at the time to be-
lieve that all numbers, or all possible
interval lengths, are rational and can
be constructed in this manner. How-
ever, it turns out not to be the case.
The simplest example of an irrational
number is √2. The number √2 is easily
constructed geometrically (such as by
using a ruler and compass) and is the
length of the diagonal of a 1×1 square.
On the other hand, a simple elegant
proof, first given by the Pythagorean
philosopher Hippasus, shows one
cannot write √2 as m/n for integers m
and n. Hippasus’s result was contro-
versial at the time since it violated the
belief that all mathematical quanti-
ties are rational. Legend has it Hippa-
sus was drowned for his theorem. His-
tory offers many examples of scientists
and philosophers suffering for their
discoveries, but we are not aware of
another example of a mathematician
being punished for proving a theorem.
In modern terms, the conflict can be
framed through a question: What
family of algorithms suffices if one
wants to compute all real numbers
representing plottable lengths?; Hip-
pasus’s opponents supposed integer
division would suffice.

Even more intriguing is the num-
ber π, which represents the circum-
ference of a circle of diameter 1. Per-
haps the most prominent
mathematical constant, π can also be
shown to be irrational, although the
proof is not as simple as for √2 and
was not known in ancient times. We
cannot represent either √2 or π as ra-
tional fractions. We can “construct”
them from mesh wire using their geo-
metrical interpretations, but can we
also figure out their numerical val-
ues? Unlike the names “4” and “2/3”
the names “√2” and “π” are not help-
ful for actually evaluating the num-
bers. We can calculate approxima-
tions of these numbers; for example,
for π, we can write

3.1415926 < π < 3.1415927

or perhaps we can follow Archimedes,
who carried out the earliest theoretical
calculations of π, and write

223
71

 < π < 22
7 .

Both representations are correct,
giving us a good handle on the value
of π, but both have limited precision,
thus losing some information about
the true value of π. All real numbers
can be written using their infinite bi-
nary (or decimal) expansion, which can
be used to name the number, specify-
ing it unambiguously.

The infinite representation π =
3.1415926 . . . unambiguously speci-
fies the number π. Alas, however,
we cannot use it to write π in a finite
amount of space. An ultimate repre-
sentation would take a finite amount
of space but also allow us to compute
π with any desired precision. In mod-
ern language, such a representation
should be algorithmic. As there are
many formulas for π, there are like-
wise many ways to represent π this
way; for example in approximately the
year 1400, Madhava of Sangamagrama
gave this formula

	 π = 4 ∑∞
k=0

 (–1)k

2k + 1
 = 4

1 – 4
3 + 4

5 – 4
7 + …	(1)

It allows us to compute π with any pre-
cision, although the convergence is
painfully slow; to compute the first n
digits of π one needs to take approxi-
mately 10n terms of this sum. Many el-
egant formulas for computing π have
been devised since, some allowing us
to compute π in time polynomial in the
number of digits. One such formula,
known as the Bailey-Borwein-Plouffe
formula, is given by

π = 4 ∑∞
k=0

[1
16k

 (4
8k + 1

 – 2
8k + 4

 – 1
8k + 5

 – 1
8k + 6

)]…	 (2)

The fact that the terms in formula (2)
decrease exponentially fast in k causes
the sum to converge rapidly. Math-
ematically speaking, formulas (1) and
(2) are both valid “names” for π, al-
though the latter is better because it
corresponds to a much more efficient
algorithm.

Can all numbers be given names
in a way that allows us to compute
them? No, as it turns out. Surprising-
ly, it took until Alan Turing's seminal
paper4 in 1936 to properly pose and
answer the question. Turing had to
overcome a profound philosophical
difficulty. When showing a real num-

One reason
numbers and
mathematics
was developed
in the first place
was to understand
and control
natural systems.

contributed articles

september 2013 | vol. 56 | no. 9 | communications of the acm 77

ber is computable, we would need
only to describe an algorithm able to
compute it with any prescribed preci-
sion, as we did with the number π. In
showing that a number x ∈ R is not
computable, we need to rule out all
potential ways of computing x. The
first major step in any such proof
is formalizing what “computing”
means by devising a model of com-
putation. This is exactly what Turing
did, defining his famous Turing Ma-
chine as an abstract device capable
of performing all mechanical com-
putations. Turing’s paper started the
modern field of computability theo-
ry. Remarkably, it happened about a
dozen years before the first comput-
ers (in the modern sense of the word)
were built. Turing used his new theo-
ry to define the notion of computable
numbers. Not surprisingly, a modern
reinterpretation of Turing’s defini-
tion says a number x is computable
if we can write a C++ or Java program
that (given sufficient time and mem-
ory) can produce arbitrarily precise
approximations of x. One of Turing’s
key insights was the Halting Problem
H (which takes an integer n and out-
puts H(n) = 1 if and only if n = [P] is an
encoding of a valid program P and P
terminates) is “undecidable”; no al-
gorithm exists that, given a program
P, is capable of deciding whether or
not P terminates.

The Halting Problem allows us to
give a specific example of a noncom-
putable number. Write down the val-
ues of the function H(•); the number

XH = 0.H(1)H(2)H(3)… = ∑
n=1

∞
 10–nH(n).

is not computable, since computing
it is equivalent to solving the Halting
Problem. Fortunately, “interesting”
mathematical constants (such as π and
e) are usually computable.

One reason numbers and mathe-
matics was developed in the first place
was to understand and control natural
systems. Using the computational lens,
we can rephrase this goal as reverse-en-
gineering nature’s algorithms. Which
natural processes can be computation-
ally predicted? Much of this article is
motivated by this question. Note, un-
like digital computers, many natural
systems are best modeled using con-
tinuous quantities; that is, to discuss

the computability of natural systems
we have to extend the discrete model of
computation to functions and sets over
the real numbers.

Real Functions and Computation
We have established that a number
x ∈ R is computable if there is an al-
gorithm that can compute x with any
prescribed precision. To be more con-
crete, we say an algorithm Ax com-
putes x if on an integer input n ∈ N, Ax
(n) outputs a rational number xn such
that |xn – x|< 2–n. The algorithm Ax can
be viewed as a “name” for x, in that
it specifies the number x unambigu-
ously. The infinite-digit representa-
tion of x is also its “name,” albeit not
compactly presented.

What does it mean for a function
f:R→R to be computable? This ques-
tion was first posed by Banach, Mazur,
and colleagues in the Polish school
of mathematics shortly after Turing
published his original paper, starting
the branch of computability theory
known today as “computable analy-
sis.” Now step back to consider discrete
Boolean functions. A Boolean function
F:{0,1}*→{0,1}* is computable if there
is a program AF that given a binary
string s∈{0,1}* outputs AF (s)=F(s). By
analogy, an algorithm computing a real-
valued function f would take a real
number x as an input and produce f (x)
as an output. Unlike the Boolean case,
“input” and “output” must be quali-
fied in this context. What we would
like to say is given a name for the value
x ∈ R we should be able to produce a
name for the output f(x); that is, we
want Af to be a program that, given
access to arbitrarily good approxima-
tions of x, produces arbitrarily good
approximations of f (x).

A function f:(a,b) → R is computable
if there is a discrete algorithm Af that,
given a precision parameter n and ac-
cess to arbitrarily good rational approx-
imations of an arbitrary input x ∈ (a,b),
outputs a rational yn such that

|yn – f (x)|<2–n.

This definition easily extends to func-
tions that take more than one input
(such as the arithmetic operations +:
R × R → R and ×: R × R → R). As with
numbers, all “nice” functions, includ-

ing those usually found on a scientific
calculator, are generally computable.
Consider the simple example of the
function f (x) = x2 on the interval (0,1).
Our algorithm for squaring numbers
should be able to produce a 2–n approxi-
mation of x2 from approximations of x.
And consider this simple algorithm

SimpleSquare(x,n)
1.	 �Request q = xn+1 , a rational 2– (n+1)-

approximation of the input x.
2.	 Output q2.

Note the algorithm SimpleSquare op-
erates only with rational numbers.
To see that the algorithm works, we
need to show for all x ∈ (0,1) the out-
put q2 satisfies |x2 – q2 | < 2–n. Since
x is in the interval (0,1), without loss
of generality we may assume q is also
in (0,1). Therefore, |x + q|<|x|+|q|< 2,
and we have

|x2 – q2 |=|x+q|⋅|x – q|≤ 2 |x – q|< 2⋅2– (n+1) = 2–n.

This shows the SimpleSquare algo-
rithm indeed produces a 2–n approxi-
mation of x2. Although the function
f (x) = x2 is computable on the entire
real line R = (–∞,∞), in this case, the
algorithm would have to be modified
slightly to work.

A more interesting example is the
function g(x) = ex, which is defined on
the entire real line. Indeed, for any x,
we can compute ex with any precision
by requesting a sufficiently good ratio-
nal approximation q of x and then us-
ing finitely many terms from the series

eq = ∑
n=0

∞
 qn

n! = 1 +
q
1 +

q2

2 +
q3

6 +
q4

24 + …

Throughout the discussion of the
computability of these functions, we
did not have to assume the input x to a
computable function is itself comput-
able. As long as the Request command
gives us good approximations of x we
do not care whether these approxima-
tions were obtained algorithmically.
Now, if the number x is itself comput-
able, then the Request commands may
be replaced with a subroutine that
computes x with the desired precision.
Thus if f is computable on (a,b) and x
∈ (a,b) is a computable number, then
f (x) is also a computable number. In
particular, since ex is a computable
function and π is a computable num-

78 communications of the acm | september 2013 | vol. 56 | no. 9

contributed articles

1, as it is possible the first disagree-
ment between x and 42.0 occurs af-
ter the 1,000th decimal place (such as
if x = 42 + 2–2000 ≠ 42.0). The Request
function can be viewed as a physical
experiment measuring x. By measur-
ing x we can narrow down its value
to a very small interval but can never
be sure of its exact value. We refer to
this difficulty as the “impossibility of
exact computation.” More generally,
similar reasoning shows only contin-
uous functions may be computable in
this model.

On the other hand, and not too
surprisingly, all functions that can
be computed on a calculator are
computable under this definition of
function computability. But, as with
Turing's original work, the main goal

ber, eπ and eeπ are computable num-
bers as well.

One technical limitation of the Re-
quest-based definition is we can never
be sure about the exact value of the
input x; for example, we are unable to
decide whether the real-valued input
x is equal to, say, 42 or not. Thus the
function

f(x) = {1 	 if x = 42.0
0 	 otherwise

is not computable. The reason for
this inability is while we can Request x
with any desired precision, no finite-
precision approximation of x will ever
allow us to be sure x is exactly 42.0.
If we take the requested precision
high enough, we may learn x = 42.0 ±
10–1,000. This still does not mean f (x) =

of having a model of computation
dealing with real functions is to tell
us what cannot be done, or proving
fundamental bounds on our ability
to computationally tackle continuous
systems. First we need to explore the
theory of computation over the reals
a little further.

Computability of subsets in Rd. In
addition to numbers and functions we
are also interested in computing sets
of real numbers; see Figure 1 for ex-
ample subsets of R2. Sets we might be
interested in include simple geomet-
ric shapes (such as a circle), graphs of
functions, and the more complicated
ones, like the Koch snowflake and the
Mandelbrot set. When is a set S in,
say, the plane R2, computable? It is
tempting to mimic the discrete case

Figure 2. The process of deciding the color c(P) for an individual pixel P.

Figure 1. Examples of subsets of R2: the graph of y = cx, the Koch snowflake, and the Mandelbrot set.

(a) (b) (c)

contributed articles

september 2013 | vol. 56 | no. 9 | communications of the acm 79

and say S is computable whenever the
membership function

xS(x) = {1 	 if x ∈ S
0 	 otherwise

is decidable. However, this definition
involves a serious technical problem,
the same impossibility-of-exact-com-
putation problem present in the x =?

42.0 example. If x happens to lie on
the boundary of S, we will never be
able to decide whether x ∈ S through
a finite number of Request queries.
To address this problem we proceed
by analogy with the computability of
numbers. Rather than try to compute
S, we should try to approximate it with
any prescribed precision 2–n.

What does it mean to “approxi-
mate” a set? There are many ways to ad-
dress this question, and many “reason-
able” definitions are equivalent. First
take a “graphical” approach. Consider
the process of producing a picture of
the set S. The process would consist of
many individual decisions concerning
whether to color a pixel black or white;
for example, we need to make 600 ×
600 such decisions per square inch if
S is being printed on a 600dpi printer.
Thus a discussion about drawing S
with precision 2−n can be reduced to a
discussion about deciding on the color
of individual pixels, bringing us back
to the more familiar realm of 0/1-out-
put algorithms.

To be concrete, let S be a subset of
the plane R2 and let

P = [x – 2–n–1, x + 2–n–1] × [y –2–n–1, y + 2–n–1]

be a square pixel of dimensions 2−n ×
2−n. The coloring of pixels should sat-
isfy the following conditions:

1.	 If P intersects with S, we must
color it black;

2.	 If P is 2−n-far from S we must col-
or it white. It is natural to ask why not
simply require P to be colored white if it
does not intersect S. The reason is, if we
did, we would again run into the impos-
sibility of exact computation. Thus we
allow for a gray area in the image; and

3.	 If P does not intersect S but is 2−n
close to it, we do not care whether it is
colored black or white.

This gray area allows us to avoid the
impossibility of exact computation
problem while still producing a faith-
ful image of S (see Figure 2).

The definition of set computabil-
ity presented here may seem ad hoc,
appearing to be tied in to the way we
choose to render the set S. Somewhat
surprisingly, the definition is robust—
equivalent to the “mathematical” def-
inition of S being “approximable” in
the Hausdorff metric, a natural met-
ric one can define on subsets of Rd.
The definition is also equivalent to
the distance function dS(x) that mea-
sures how far the point x is from the
set S being a computable function.

Just as “nice” calculator functions
are computable, “nice” sets are like-
wise computable; for example, a circle
C(o,r) with center o = (x, y) and radius r
is computable if and only if the num-
bers x, y, and r are computable. Graphs
of computable functions are comput-
able sets. Thus the graph of the func-
tion x  ex is computable. For a more
interesting example, consider the
Koch snowflake K (see Figure 1b). This
fractal set has dimension log3 4 and
lacks a nice analytic description. How-
ever, it is computable and is, in fact, the
limit set of a sequence of finite snow-
flakes. Each finite snowflake Kn is just
a polygon and thus easily computable.
To approximate K we need to draw only
the appropriate finite snowflake Kn, ex-
actly how the Koch snowflake is drawn
in practice, as in Figure 1b.

Now that we have the notion of
computable real functions and real
sets we can turn to formulating the
computational hardness of natural
and artificial systems, as studied in
the area of dynamical systems.

Computing Nature:
Dynamical Systems
At a high level, the area of dynamical
systems studies all systems that evolve
over time. Systems ranging from an
electron in a hydrogen atom to the
movement of galaxies to brain activity
can thus be framed in the context of dy-
namical systems. A dynamical system
consists of a set of states X and a set
of evolution rules R. Evolution of the
system occurs over time. The state of
the system at time t is denoted by Xt ∈
X. The time may move either discretely
or continuously. If time is discrete, the
evolution of the system is given by the
sequence X1, X2, X3,…, and the rule R
specifies the dependence of Xt+1 on Xt.
If time is continuous, the evolution R
of the system Xt = X(t) is usually given by
a set of differential equations specify-
ing the rates of change in X(t) depend-
ing on its current state.

As an example, consider a simple
harmonic oscillator. A mass in Figure
3 is attached to a spring and is moving
in a periodical fashion. Assuming no
friction, the system Xt

osc evolves in con-
tinuous time, and its state at any time
is described fully by two numbers: the
location of the mass on the line and its
velocity. Thus the state Xt

osc can be rep-
resented by the vector Xt

osc = ((t), υ(t)),
where (t) represents the location of the
mass, and υ(t) represents its velocity.
The evolution rule of the system is giv-
en in this case by high-school physics

	 ′ (t) = υ(t)
	 v′ (t) = –α⋅(t)	 (3) {

Figure 3. One of the “easiest” (left) and one of the “hardest” (right) dynamical systems.

80 communications of the acm | september 2013 | vol. 56 | no. 9

contributed articles

where α is a parameter that depends on
the spring and the mass of the weight.
Xosc is a very simple system, and we
can answer pretty much any question
about it; for example, we can solve this
system of equations to obtain the full
description of the system’s behavior

	 Xt
osc = 	�(A sin(√α ⋅ t + ),

A√α cos(√α ⋅ t + φ)	 (4)

where the parameters A and φ depend
on the initial condition X0

osc = ((0),υ(0))
of the system at time 0; that is, if we
know the exact state of the system at
time 0, we can compute the state of
the system at any time in the future. It
is not just the prediction problem that
is easy for this system. Using the ana-
lytic solution (4) we can answer almost
any question imaginable about it; for
example, we can describe the set of
all possible states the system being re-
leased from state X0

osc will reach.
At the other extreme, predicting

some dynamical systems in the long
run is incredibly difficult. One impor-
tant set of examples of “hard” dynam-
ical systems comes from computer
science itself. Consider the Turing
Machine or its modern counterpart, a
RAM computer with unlimited RAM,
as a dynamical system. The state-
space Xcomp is the (infinite) state space

of the computer. The system Xcomp
evolves in discrete time, with Xt

comp rep-
resenting the state of the computer at
step t of the execution. The evolution
rule R is the rule according to which
the computation proceeds; that is,
R(X) is the state of the computer in
the next time step if its current state
is X. Call this system the “computer
dynamical system.”

The computer dynamical system
is easy to simulate computationally;
all we must do is simulate the execu-
tion of the computation. On the other
hand, unlike the oscillator example,
answering long-term questions about
the system is difficult; for example,
given an initial condition X0

comp, there
is no computational procedure that
can tell us whether the system will
ever reach a given state Y; determin-
ing whether the system will reach a
terminating state is equivalent to solv-
ing the Halting Problem for programs,
that, as discussed, is computationally
undecidable. It can likewise be shown
that almost any nontrivial question
about the long-term behavior of Xcomp
is noncomputable in the worst case.

These examples exist at the two ex-
tremes of computational hardness:
Xosc is a linear dynamical system and
fully computable. Xcomp is (trivially)
computationally universal, capable of

simulating a Turing Machine, and rea-
soning about its long-term properties
is as computationally hard as solving
the Halting Problem. What kinds of
systems are prevalent in nature? For
example, can an N-body system evolv-
ing according to the laws of Newtonian
gravity simulate a computer, in which
case predicting it would be as difficult
as solving he Halting Problem? Is pre-
dicting it computationally easy? Or
something in-between?

We do not know the answers for
most natural systems. Here, we consid-
er an interesting in-between example
that is one of the best-studied dynami-
cal systems. We consider dynamics
on the set of complex numbers C, or a
number of the form a + bi, evolving by
a quadratic polynomial. For the rest
of this discussion, the set of complex
numbers is identified with the 2D com-
plex plane, with the number a + bi cor-
responding to the point (a,b), allowing
us to visualize subsets of C nicely. Let
c ∈ C be any complex number. Denote

pc (z) := z2 + c.

Define the discrete-time dynamical
system Xt

c by

Xc
t+1 = pc (Xt

c).

The polynomial pc(z) is arguably the
simplest nonlinear transformation
one can apply to complex numbers,
yet this system is already complicated
enough to exhibit a variety of interest-
ing and complicated behaviors. In par-
ticular, it is impossible to give a closed-
form expression for Xt

c in terms of X0
c

as we did with the oscillator example.
Dynamical systems of the form Xt

c are
studied by a branch of the theory of
dynamical systems known as complex,
or holomorphic, dynamics. Within
mathematics, one of the main reasons
for studying these systems is the rich
variety of behaviors they exhibit allows
us to learn about the behavior of more
general (and much more difficult to
study) dynamical systems.

Outside mathematics, complex dy-
namics is best known for the fascinat-
ing fractal images it generates. These
images, known as Julia sets (see Figure
4), depict a global picture relevant to
the long-term behavior of the system
Xc. More specifically, Jc is the subset

Figure 4. Example Julia sets.

contributed articles

september 2013 | vol. 56 | no. 9 | communications of the acm 81

of initial conditions in the complex
plane on which the long-term behavior
of Xc is unstable. To understand what
this means, we need to take a slightly
closer look at the system Xc. Consider
an initial point X0

c = x0, as mapped by
pc (z) = z2 + c

x0  x0
2 + c  (x0

2 + c)2 + c  …

If we start with an x0 with a very high ab-
solute value, say, |x0|>|c| + 2, then the
absolute value of pc (x0) = x0

2 + c will be
larger than |x0|, and |pc (pc (x0))| will be
larger still and the state of the system
will diverge to ∞. The set of starting
points for which the system does not
diverge to ∞ is called the filled Julia set
of the system Xc and is denoted by Kc.
The Julia seta Jc is the boundary ∂Kc of
the filled Julia set.

The Julia set Jc is the set of points
around which the system's long-term
behavior is highly unstable. Around
each point z in Jc are points (just out-
side Kc) with trajectories that ulti-
mately escape to ∞. There are also
points (just inside Kc) with trajectories
that always stay within the bounded
region Kc. The Julia set itself is invari-
ant under the mapping z  z2 + c. This
means trajectories of points that start
in Jc stay in Jc.

The Julia set Jc provides a descrip-
tion of the long-term properties of the
system Xc. Julia sets are therefore valu-
able for studying and understanding
these systems. In addition, as in Figure
4, Julia sets give rise to an amazing vari-
ety of beautiful fractal images. Popular-
ized by Benoit Mandelbrot and others,
Julia sets are today some of the most
drawn objects in mathematics, and
hundreds of programs for generating
them can be found online.

Formally speaking, the problem
of computing the Julia set Jc is one of
evaluating the function J:c  Jc. J is
a set-valued function whose comput-
ability combines features of func-
tion and set computability discussed
earlier. The complex input c ∈ C is
provided to the program through the
request command, and the program
computing J (c) = Jc is required to out-
put an image of the Julia set Jc within

a	 “Julia” is not a first name in this context but
rather the last name of the French mathemati-
cian Gaston Julia (1893–1978).

As with numbers,
all “nice” functions,
including those
usually found
on a scientific
calculator,
are generally
computable.

a prescribed precision 2–n. J is a fasci-
nating function worth considering in
its own right; for example, the famous
Mandelbrot M (see Figure 1c) can be
defined as the set of parameters c for
which J (c) is a connected set. It turns
out the function J (c) is discontinu-
ous, at least for some values of c (such
as for c = ¼+ 0 · i). This means for ev-
ery ε there is a parameter c′ ∈ C that
is ε-close to ¼ but for which the Julia
set Jc′ is very far from J¼. Due to the im-
possibility of exact computation, this
discontinuity implies there is no hope
of producing a single program PJ that
computes J (c) for all parameters c; on
inputs close to c = 1/4, such a program
would need to use request com-
mands to determine whether c is in
fact equal to 1/4 or merely very close to
it, which is impossible to do.

If there is no hope of computing J
by one program, we can at least hope
that for each c we can construct a spe-
cial program PJc that evaluates Jc. Such a
program would still need access to the
parameter c through the request com-
mand, since only a finite amount of in-
formation about the continuous param-
eter c ∈ C can be “hardwired” into the
program PJc. Nonetheless, by requiring
PJc to work correctly on only one input c
we manage to sidestep the impossibility
of exact computation problem.

Most of the hundreds of online
programs that draw Julia sets usually
draw the complement (Kc) = C \ Kc of
the filled Julia set, or the set of points
whose trajectories escape to ∞. It
turns out that from the computability
viewpoint, the computability of Kc is
equivalent to the computability of Jc,
allowing us to discuss these problems
interchangeably.b The vast majority of
the programs follows the same basic
logic; to check whether a point z0 be-
longs to Kc , we need to verify whether
its trajectory z0,pc(z0),pc(pc(z0)),… es-
capes to ∞. We pick a (large) number
M of iterations. If z0 does not escape
within M steps, we assume it does not
escape. To put this approach in a form
consistent with the definition of com-
putability of sets in R2, let P be a pixel
of size 2–n. The naïve decision proce-
dure for determining whether the pix-

b	 As mentioned here, the computability of (Kc)
and Jc is not equivalent to the computability of
the filled Julia set Kc.

82 communications of the acm | september 2013 | vol. 56 | no. 9

contributed articles

assert z0 lies within the filled Julia set
Kc. Computing such an M is equivalent
to establishing termination of the loop

	 Loop(z0): i ← 0
		 while |zi|≤|c|+2
			 zi+1 ← zi

2 + c
			 i ← i + 1

In general, the termination of loops, as
with the Halting Problem H is a com-
putationally undecidable problem. If
the loop terminates, we are sure z0 has
escaped. But if the loop keeps running
there is no general way of knowing it
will not terminate later. There is thus
no simple solution to figuring out the
appropriate M; the only way to know
the loop does not terminate is to under-
stand the system Xc and the set Kc well
enough. Turning the naïve heuristic
into an algorithm necessarily involves
a deep understanding of the underly-
ing dynamical system. As with the sys-
tems Xosc and Xcomp discussed earlier,
it all boils down to understanding the
underlying system. Fortunately, com-
plex dynamicists have developed a rich
theory around this system since its in-
troduction around 1917 by the French
mathematicians Gaston Julia and
Pierre Fatou. This knowledge is enough
to give precise answers to most ques-
tions concerning the computability of
Kc, Kc , and Jc. One can formalize the na-
ïve heuristic discussed here and show
that (with slight modifications) it works
for the vast majority of values of c.

However, it also turns out there are
also noncomputable Julia sets:

THEOREM 1.2 There exist param-
eters c such that the Julia set Jc is not
computable. Moreover, there are such
parameters c ∈ C that can be produced
algorithmically.

That is, one can produce a parameter
c such that drawing the picture of Jc is
as computationally hard as solving the
Halting Problem. What does such a Ju-
lia set look like? All sets in Figure 4 are
computable, as they were produced
algorithmically for inclusion here.
Unfortunately, Theorem 1 means we
will most likely never know what these
noncomputable Julia sets look like.

The negative result is delicate; in a
surprising twist, it does not extend to
the filled Julia set Kc:

el P overlaps with Kc or is 2–n-far from
it thus looks roughly like this:

A naïve heuristic for drawing Kc :
1.	 Let z0 be the center of the pixel P;
2.	 Let M = M(n) be the number of

iterations;
3.	 �for i = 0 to M

3.1.  Set zi+1 ← zi
2 + c;

3.2.  if |zi+1| > |c|+2, return “P
intersects Kc ”;

4.	 �if |zM+1| ≤ |c|+2 return “P is 2−n
far from Kc ”

If the pixel P is evaluated to intersect
with Kc , it is colored black; otherwise it
is left white. However, there are multi-
ple problems with these heuristics that
make the rendered pictures imprecise
and sometimes just wrong. The first is
we take one point z0 to be “representa-
tive” of the entire pixel P. This approach
means even if P intersects Kc or some
point w ∈ P has its trajectory escape to
∞, we might miss it if the trajectory of
z0 does not escape to ∞. This problem
highlights one of the difficulties en-
countered when developing algorithms
for continuous objects. We need to find
the answer not just for one point z0 but
for the uncountable set of points locat-
ed within the pixel P. However, there
are computational ways to remedy this
problem. Instead of tracing just one
point z0 we can trace the entire geomet-
ric shape P,pc (P),pc (pc (P)),… and see
whether any part of the Mth iteration
of P escapes to ∞. This may increase
the running time of the algorithm con-
siderably. Nonetheless, we can exploit
the peculiarities of complex analytic
functions to make the approach work.
John Milnor’s “Distance Estimator” al-
gorithm does exactly that, at least for a
large set of “good” parameters c.

The heuristic also involves a much
deeper problem—choosing the pa-
rameter M(n). In the thousands of Java
applets available online, selection of
the number of iterations M is usually
left to the user. Suppose we wanted
to automate this task or make the
program evaluate a “large enough” M
such that M iterations are sufficient
(see Figure 5 for the effect of selecting
an M that is too small); that is, we want
to find a parameter M such that if the
Mth iteration zM of z0 did not escape to
∞, then we can be sure no further itera-
tions will escape to ∞, and it is safe to

Systems ranging
from an electron in
a hydrogen atom
to the movement
of galaxies to
brain activity
can be framed
in the context of
dynamical systems.

contributed articles

september 2013 | vol. 56 | no. 9 | communications of the acm 83

THEOREM 2.2 For all parameters c,
the filled Julia set Kc:

THEOREM 2.2 For all parameters c,
the filled Julia set Kc is computable.

Is the Universe a Computer?
We have explored three examples of
dynamical systems: The first, harmon-
ic oscillator Xosc, is simple; its behavior
can be calculated in closed form, and
we can answer pretty much any ques-
tion about the long-term behavior
of the harmonic oscillator computa-
tionally. The second, computer sys-
tem Xcomp, is at the opposite extreme;
predicting it is computationally hard,
and it is (relatively) easy to show it is
computationally hard through a re-
duction to the Halting Problem. The
third, complex dynamics, requires an
involved approach. For some (in fact,
most) parameters c, the long-term
behavior of the system Xc is easy in
almost any sense imaginable. Show-
ing there are parameters c for which
no amount of computational power
suffices to compute the Julia set Jc re-
quired a full understanding of the un-
derlying dynamical system developed
over nearly a century.

Our experience with the comput-
ability of Julia sets, as well as the rela-
tive success of the field of automated
verification at solving undecidable
problems in practice,5 indicates there
is likely to be a gap between comput-
ability in dynamics in the worst case
and in the typical case. This gap means
it is possible that while questions sur-
rounding many natural systems (such

as the N-body problem and protein as-
sembly) are provably noncomputable
in the worst case, a typical case in prac-
tice is tractable.

A related interesting possibility
is that noncomputable structures in
many systems are too delicate to sur-
vive the random noise present in all
natural systems. Noise is generally
viewed as a “prediction destroying”
force, in that making predictions in
the presence of noise is computation-
ally more difficult. On the other hand,
if we are interested in predicting the
statistical distribution of possible fu-
ture states, then noise may actually
make the task easier. It is likely there
are natural systems that (if imple-
mented with no noise) would be com-
putationally impossible to predict but
where the presence of noise makes
statistical predictions about the sys-
tem computationally tractable.

Another lesson from the study of the
computational properties of Julia sets is
that mapping out which of the Julia sets
Jc are and which are not computable
requires a nuanced understanding of
the underlying dynamical system. It is
likely this is the case with other natural
dynamical systems; the prerequisite to
understanding its computational prop-
erties would be understanding its other
properties. Indeed, understanding the
role (non)computability and compu-
tational universality play in natural
dynamical systems probably requires
significant advances in both real com-
putation and dynamical systems. The
role of computational universality—the
ability of natural systems to simulate ge-

neric computation—in nature is there-
fore likely to remain one of the most
tantalizing open problems in natural
philosophy for some time to come.

Bibliographic Notes
The following references include ex-
tensive bibliographies for readers in-
terested in computation over the reals;
computability of real numbers was first
discussed in Turing’s seminal paper,4
which also started the field of comput-
ability. There are two main modern
visions on computability over the real
numbers: computable analysis and the
Blum-Shub-Smale (BSS) framework.
My presentation here is fully based on
the framework of computable analy-
sis, as presented in-depth by Weihr-
auch.6 The BSS framework is more
closely related to algebraic geometry
and presented by Blum et al.1 I focused
on computable analysis, as it appears
more appropriate for the study of the
computational hardness of natural
problems over the reals. The results
on the computability and complexity
of Julia sets was presented by Braver-
man and Yampolsky.2 Computational
universality of dynamical systems is
discussed in several sources, including
Moore3 and Wolfram,7 but many basic
questions remain open.

Acknowledgments
Work on this article has been sup-
ported in part by an Alfred P. Sloan
Fellowship, National Science Founda-
tion awards CCF-0832797 and CCF-
1149888, and a Turing Centenary
Fellowship from the John Templeton
Foundation. 	

References
1.	B lum, L., Cucker, F., Shub, M., and Smale, S.

Complexity and Real Computation. Springer-Verlag,
New York, 1998.

2.	B raverman, M. and Yampolsky, M. Computability of
Julia Sets. Springer Verlag, Berlin Heidelberg, 2009.

3.	M oore, C. Unpredictability and undecidability in
dynamical systems. Physical Review Letters 64, 20
(May 1990), 2354–2357.

4.	T uring, A.M. On computable numbers, with an
application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society 42, 2 (Nov. 12,
1936), 230–265.

5.	 Vardi, M. Solving the unsolvable. Commun. ACM 54, 7
(July 2011), 5.

6.	W eihrauch, K. Computable Analysis. Springer-Verlag,
Berlin, 2000.

7.	W olfram, S. A New Kind of Science. Wolfram Media,
Champaign, IL, 2002.

Mark Braverman (mbraverm@cs.princeton.edu) is an
assistant professor in the Department of Computer
Science at Princeton University, Princeton, NJ.

© ACM 0001-0782/13/09 $15.00

Figure 5. Example outcomes of the heuristic algorithm with c ≈ –0.126 + 0.67i and M = 25,
M = 100, and M = 3,000 iteration. Note with the lower values of M the fjords do not reach all
the way to the center since the points close to the center do not have time to “escape” in M
iterations. The difficulty selecting a “large enough” M is a crucial obstacle in computing the
exterior of the filled Julia set Kc.

M = 25 M = 100 M = 3,000

