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How to test the usefulness of computation  
for understanding and predicting  
continuous phenomena.

By Mark Braverman 

R e al numbers are  at the center of our mathematical 
reasoning about the world around us. Computational 
problems, from computing the number π to 
predicting an asteroid’s trajectory, all deal with 
real numbers. Despite the abundance of inherently 
continuous problems, computers are discrete, 
finite-precision devices. The need to reason about 
computing with real numbers gives rise to the kind of 
fascinating challenges explored here. 

We are so immersed in numbers in 
our daily lives it is difficult to imagine 
humans once got by without them. 
When numbers were finally intro-
duced in ancient times, they were 
used to represent specific quanti-
ties (such as commodities, land, and 
time); for example “four apples” is 
just a convenient way to rephrase “an 
apple and an apple and an apple and 
an apple”; that is, numbers had al-
gorithmic meaning millennia before 
computers and algorithmic thinking 
became as pervasive as it is today. The 
natural numbers 1, 2, 3, . . . are the 
easiest to define and “algorithmize.” 
Given enough time (and apples), one 
can easily produce a pile with any nat-
ural number of apples. 

Fractions are not as easy to produce 
as whole natural numbers, yet the algo-
rithm for them is fairly straightforward. 
To produce 2/3 of an apple, one can 
slice an apple into three equal parts, 
then take two of them. If one consid-
ers positive rational numbers, there is 
little divergence between the symbolic 
representation of the number and the 
algorithm one needs to “construct” 
this number out of apples; the number 
practically shouts a way to construct it. 
These numbers were the ones that pop-
ulated the world of the ancient Greeks 
(in Archimedes's time) who often 
viewed numbers and fractions through 
the lens of geometry, identifying them 
with geometric quantities. In the geo-
metric language, natural numbers are 
just integer multiples of the unit inter-

 key insights
 � �The study of algorithms dealing with real 

numbers and functions over the reals 
requires extending the reach of traditional 
computability theory but is a notable 
challenge for mathematicians and 
computer scientists. 

 � �The theory of computation over the 
reals can be applied to the study of 
computational hardness of dynamical 
systems involving a range of natural  
and artificial phenomena. 

 � �Predicting a system’s long-term 
properties is easy in some cases; in 
others it can be as hard as trying to  
solve the undecidable Halting Problem. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2500890&domain=pdf&date_stamp=2013-09-01


september 2013  |   vol.  56  |   no.  9  |   communications of the acm     75



76    communications of the acm    |   september 2013  |   vol.  56  |   no.  9

contributed articles

val, and positive rational numbers are 
integer fractions of these intervals. 

It was tempting at the time to be-
lieve that all numbers, or all possible 
interval lengths, are rational and can 
be constructed in this manner. How-
ever, it turns out not to be the case. 
The simplest example of an irrational 
number is √2. The number √2 is easily 
constructed geometrically (such as by 
using a ruler and compass) and is the 
length of the diagonal of a 1×1 square. 
On the other hand, a simple elegant 
proof, first given by the Pythagorean 
philosopher Hippasus, shows one 
cannot write √2 as m/n for integers m 
and n. Hippasus’s result was contro-
versial at the time since it violated the 
belief that all mathematical quanti-
ties are rational. Legend has it Hippa-
sus was drowned for his theorem. His-
tory offers many examples of scientists 
and philosophers suffering for their 
discoveries, but we are not aware of 
another example of a mathematician 
being punished for proving a theorem. 
In modern terms, the conflict can be 
framed through a question: What 
family of algorithms suffices if one 
wants to compute all real numbers 
representing plottable lengths?; Hip-
pasus’s opponents supposed integer 
division would suffice. 

Even more intriguing is the num-
ber π, which represents the circum-
ference of a circle of diameter 1. Per-
haps the most prominent 
mathematical constant, π can also be 
shown to be irrational, although the 
proof is not as simple as for √2 and 
was not known in ancient times. We 
cannot represent either √2 or π as ra-
tional fractions. We can “construct” 
them from mesh wire using their geo-
metrical interpretations, but can we 
also figure out their numerical val-
ues? Unlike the names “4” and “2/3” 
the names “√2” and “π” are not help-
ful for actually evaluating the num-
bers. We can calculate approxima-
tions of these numbers; for example, 
for π, we can write 

3.1415926 < π < 3.1415927 

or perhaps we can follow Archimedes, 
who carried out the earliest theoretical 
calculations of π, and write 

223
71

 < π < 22
7 .

Both representations are correct, 
giving us a good handle on the value 
of π, but both have limited precision, 
thus losing some information about 
the true value of π. All real numbers 
can be written using their infinite bi-
nary (or decimal) expansion, which can 
be used to name the number, specify-
ing it unambiguously. 

The infinite representation π = 
3.1415926 . . . unambiguously speci-
fies the number π. Alas, however, 
we cannot use it to write π in a finite 
amount of space. An ultimate repre-
sentation would take a finite amount 
of space but also allow us to compute 
π with any desired precision. In mod-
ern language, such a representation 
should be algorithmic. As there are 
many formulas for π, there are like-
wise many ways to represent π this 
way; for example in approximately the 
year 1400, Madhava of Sangamagrama 
gave this formula 

	 π = 4 ∑∞
k=0 

 (–1)k

2k + 1
 = 4

1  – 4
3  + 4

5  – 4
7  + …	(1)

It allows us to compute π with any pre-
cision, although the convergence is 
painfully slow; to compute the first n 
digits of π one needs to take approxi-
mately 10n terms of this sum. Many el-
egant formulas for computing π have 
been devised since, some allowing us 
to compute π in time polynomial in the 
number of digits. One such formula, 
known as the Bailey-Borwein-Plouffe 
formula, is given by 

π = 4 ∑∞
k=0 

 

[ 1
16k

 ( 4
8k + 1

 – 2
8k + 4

 – 1
8k + 5

 – 1
8k + 6

)]…	 (2)

The fact that the terms in formula (2) 
decrease exponentially fast in k causes 
the sum to converge rapidly. Math-
ematically speaking, formulas (1) and 
(2) are both valid “names” for π, al-
though the latter is better because it 
corresponds to a much more efficient 
algorithm. 

Can all numbers be given names 
in a way that allows us to compute 
them? No, as it turns out. Surprising-
ly, it took until Alan Turing's seminal 
paper4 in 1936 to properly pose and 
answer the question. Turing had to 
overcome a profound philosophical 
difficulty. When showing a real num-

One reason 
numbers and 
mathematics  
was developed  
in the first place 
was to understand 
and control  
natural systems. 
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ber is computable, we would need 
only to describe an algorithm able to 
compute it with any prescribed preci-
sion, as we did with the number π. In 
showing that a number x ∈ R is not 
computable, we need to rule out all 
potential ways of computing x. The 
first major step in any such proof 
is formalizing what “computing” 
means by devising a model of com-
putation. This is exactly what Turing 
did, defining his famous Turing Ma-
chine as an abstract device capable 
of performing all mechanical com-
putations. Turing’s paper started the 
modern field of computability theo-
ry. Remarkably, it happened about a 
dozen years before the first comput-
ers (in the modern sense of the word) 
were built. Turing used his new theo-
ry to define the notion of computable 
numbers. Not surprisingly, a modern 
reinterpretation of Turing’s defini-
tion says a number x is computable 
if we can write a C++ or Java program 
that (given sufficient time and mem-
ory) can produce arbitrarily precise 
approximations of x. One of Turing’s 
key insights was the Halting Problem 
H (which takes an integer n and out-
puts H(n) = 1 if and only if n = [P] is an 
encoding of a valid program P and P 
terminates) is “undecidable”; no al-
gorithm exists that, given a program 
P, is capable of deciding whether or 
not P terminates. 

The Halting Problem allows us to 
give a specific example of a noncom-
putable number. Write down the val-
ues of the function H(•); the number

XH = 0.H(1)H(2)H(3)… = ∑
n=1

∞
  10–nH(n).

is not computable, since computing 
it is equivalent to solving the Halting 
Problem. Fortunately, “interesting” 
mathematical constants (such as π and 
e) are usually computable. 

One reason numbers and mathe-
matics was developed in the first place 
was to understand and control natural 
systems. Using the computational lens, 
we can rephrase this goal as reverse-en-
gineering nature’s algorithms. Which 
natural processes can be computation-
ally predicted? Much of this article is 
motivated by this question. Note, un-
like digital computers, many natural 
systems are best modeled using con-
tinuous quantities; that is, to discuss 

the computability of natural systems 
we have to extend the discrete model of 
computation to functions and sets over 
the real numbers. 

Real Functions and Computation 
We have established that a number 
x ∈ R is computable if there is an al-
gorithm that can compute x with any 
prescribed precision. To be more con-
crete, we say an algorithm Ax com-
putes x if on an integer input n ∈ N, Ax 
(n) outputs a rational number xn such 
that |xn – x|< 2–n. The algorithm Ax can 
be viewed as a “name” for x, in that 
it specifies the number x unambigu-
ously. The infinite-digit representa-
tion of x is also its “name,” albeit not 
compactly presented. 

What does it mean for a function 
f:R→R to be computable? This ques-
tion was first posed by Banach, Mazur, 
and colleagues in the Polish school 
of mathematics shortly after Turing 
published his original paper, starting 
the branch of computability theory 
known today as “computable analy-
sis.” Now step back to consider discrete 
Boolean functions. A Boolean function 
F:{0,1}*→{0,1}* is computable if there 
is a program AF that given a binary 
string s∈{0,1}* outputs AF (s)=F(s). By 
analogy, an algorithm computing a real-
valued function f  would take a real 
number x as an input and produce f (x) 
as an output. Unlike the Boolean case, 
“input” and “output” must be quali-
fied in this context. What we would 
like to say is given a name for the value 
x ∈ R we should be able to produce a 
name for the output f(x); that is, we 
want Af to be a program that, given 
access to arbitrarily good approxima-
tions of x, produces arbitrarily good 
approximations of f (x). 

A function f:(a,b) → R is computable 
if there is a discrete algorithm Af that, 
given a precision parameter n and ac-
cess to arbitrarily good rational approx-
imations of an arbitrary input x ∈ (a,b), 
outputs a rational yn such that 

|yn – f (x)|<2–n. 

This definition easily extends to func-
tions that take more than one input 
(such as the arithmetic operations +: 
R × R → R and ×: R × R → R). As with 
numbers, all “nice” functions, includ-

ing those usually found on a scientific 
calculator, are generally computable. 
Consider the simple example of the 
function f (x) = x2 on the interval (0,1). 
Our algorithm for squaring numbers 
should be able to produce a 2–n approxi-
mation of x2 from approximations of x. 
And consider this simple algorithm 

SimpleSquare(x,n)
1.	 �Request q = xn+1 , a rational 2– (n+1)-

approximation of the input x. 
2.	 Output q2. 

Note the algorithm SimpleSquare op-
erates only with rational numbers. 
To see that the algorithm works, we 
need to show for all x ∈ (0,1) the out-
put q2 satisfies |x2 – q2 | < 2–n. Since 
x is in the interval (0,1), without loss 
of generality we may assume q is also 
in (0,1). Therefore, |x + q|<|x|+|q|< 2, 
and we have 

|x2 – q2 |=|x+q|⋅|x – q|≤ 2 |x – q|< 2⋅2– (n+1) = 2–n.

This shows the SimpleSquare algo-
rithm indeed produces a 2–n approxi-
mation of x2. Although the function 
f (x) = x2 is computable on the entire 
real line R = (–∞,∞), in this case, the 
algorithm would have to be modified 
slightly to work. 

A more interesting example is the 
function g(x) = ex, which is defined on 
the entire real line. Indeed, for any x, 
we can compute ex with any precision 
by requesting a sufficiently good ratio-
nal approximation q of x and then us-
ing finitely many terms from the series 

eq = ∑
n=0

∞
  qn

n!  = 1 + 
q
1 + 

q2

2  + 
q3

6  +
q4

24 + …

Throughout the discussion of the 
computability of these functions, we 
did not have to assume the input x to a 
computable function is itself comput-
able. As long as the Request command 
gives us good approximations of x we 
do not care whether these approxima-
tions were obtained algorithmically. 
Now, if the number x is itself comput-
able, then the Request commands may 
be replaced with a subroutine that 
computes x with the desired precision. 
Thus if f  is computable on (a,b) and x 
∈ (a,b) is a computable number, then 
f (x) is also a computable number. In 
particular, since ex is a computable 
function and π is a computable num-
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1, as it is possible the first disagree-
ment between x and 42.0 occurs af-
ter the 1,000th decimal place (such as 
if x  = 42 + 2–2000 ≠ 42.0). The Request 
function can be viewed as a physical 
experiment measuring x. By measur-
ing x we can narrow down its value 
to a very small interval but can never 
be sure of its exact value. We refer to 
this difficulty as the “impossibility of 
exact computation.” More generally, 
similar reasoning shows only contin-
uous functions may be computable in 
this model. 

On the other hand, and not too 
surprisingly, all functions that can 
be computed on a calculator are 
computable under this definition of 
function computability. But, as with 
Turing's original work, the main goal 

ber, eπ and eeπ are computable num-
bers as well. 

One technical limitation of the Re-
quest-based definition is we can never 
be sure about the exact value of the 
input x; for example, we are unable to 
decide whether the real-valued input 
x is equal to, say, 42 or not. Thus the 
function 

f(x) = {1 	 if x = 42.0
0 	 otherwise  

is not computable. The reason for 
this inability is while we can Request x 
with any desired precision, no finite-
precision approximation of x will ever 
allow us to be sure x is exactly 42.0. 
If we take the requested precision 
high enough, we may learn x = 42.0 ± 
10–1,000. This still does not mean f (x) = 

of having a model of computation 
dealing with real functions is to tell 
us what cannot be done, or proving 
fundamental bounds on our ability 
to computationally tackle continuous 
systems. First we need to explore the 
theory of computation over the reals 
a little further. 

Computability of subsets in Rd. In 
addition to numbers and functions we 
are also interested in computing sets 
of real numbers; see Figure 1 for ex-
ample subsets of R2. Sets we might be 
interested in include simple geomet-
ric shapes (such as a circle), graphs of 
functions, and the more complicated 
ones, like the Koch snowflake and the 
Mandelbrot set. When is a set S in, 
say, the plane R2, computable? It is 
tempting to mimic the discrete case 

Figure 2. The process of deciding the color c(P) for an individual pixel P. 

Figure 1. Examples of subsets of R2: the graph of y = cx, the Koch snowflake, and the Mandelbrot set. 

(a) (b) (c)
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and say S is computable whenever the 
membership function 

xS(x) = {1 	 if x ∈ S
0 	 otherwise  

is decidable. However, this definition 
involves a serious technical problem, 
the same impossibility-of-exact-com-
putation problem present in the x =? 

42.0 example. If x happens to lie on 
the boundary of S, we will never be 
able to decide whether x ∈ S through 
a finite number of Request queries. 
To address this problem we proceed 
by analogy with the computability of 
numbers. Rather than try to compute 
S, we should try to approximate it with 
any prescribed precision 2–n. 

What does it mean to “approxi-
mate” a set? There are many ways to ad-
dress this question, and many “reason-
able” definitions are equivalent. First 
take a “graphical” approach. Consider 
the process of producing a picture of 
the set S. The process would consist of 
many individual decisions concerning 
whether to color a pixel black or white; 
for example, we need to make 600 × 
600 such decisions per square inch if 
S is being printed on a 600dpi printer. 
Thus a discussion about drawing S 
with precision 2−n can be reduced to a 
discussion about deciding on the color 
of individual pixels, bringing us back 
to the more familiar realm of 0/1-out-
put algorithms. 

To be concrete, let S be a subset of 
the plane R2 and let 

P = [x – 2–n–1, x + 2–n–1] × [y –2–n–1, y + 2–n–1]

be a square pixel of dimensions 2−n × 
2−n. The coloring of pixels should sat-
isfy the following conditions: 

1.	 If P intersects with S, we must 
color it black; 

2.	 If P is 2−n-far from S we must col-
or it white. It is natural to ask why not 
simply require P to be colored white if it 
does not intersect S. The reason is, if we 
did, we would again run into the impos-
sibility of exact computation. Thus we 
allow for a gray area in the image; and 

3.	 If P does not intersect S but is 2−n 
close to it, we do not care whether it is 
colored black or white. 

This gray area allows us to avoid the 
impossibility of exact computation 
problem while still producing a faith-
ful image of S (see Figure 2). 

The definition of set computabil-
ity presented here may seem ad hoc, 
appearing to be tied in to the way we 
choose to render the set S. Somewhat 
surprisingly, the definition is robust—
equivalent to the “mathematical” def-
inition of S being “approximable” in 
the Hausdorff metric, a natural met-
ric one can define on subsets of Rd. 
The definition is also equivalent to 
the distance function dS(x) that mea-
sures how far the point x is from the 
set S being a computable function. 

Just as “nice” calculator functions 
are computable, “nice” sets are like-
wise computable; for example, a circle 
C(o,r) with center o = (x, y) and radius r 
is computable if and only if the num-
bers x, y, and r are computable. Graphs 
of computable functions are comput-
able sets. Thus the graph of the func-
tion x  ex is computable. For a more 
interesting example, consider the 
Koch snowflake K (see Figure 1b). This 
fractal set has dimension log3 4 and 
lacks a nice analytic description. How-
ever, it is computable and is, in fact, the 
limit set of a sequence of finite snow-
flakes. Each finite snowflake Kn is just 
a polygon and thus easily computable. 
To approximate K we need to draw only 
the appropriate finite snowflake Kn, ex-
actly how the Koch snowflake is drawn 
in practice, as in Figure 1b. 

Now that we have the notion of 
computable real functions and real 
sets we can turn to formulating the 
computational hardness of natural 
and artificial systems, as studied in 
the area of dynamical systems. 

Computing Nature: 
Dynamical Systems 
At a high level, the area of dynamical 
systems studies all systems that evolve 
over time. Systems ranging from an 
electron in a hydrogen atom to the 
movement of galaxies to brain activity 
can thus be framed in the context of dy-
namical systems. A dynamical system 
consists of a set of states X and a set 
of evolution rules R. Evolution of the 
system occurs over time. The state of 
the system at time t is denoted by Xt ∈ 
X. The time may move either discretely 
or continuously. If time is discrete, the 
evolution of the system is given by the 
sequence X1, X2, X3,…, and the rule R 
specifies the dependence of Xt+1 on Xt. 
If time is continuous, the evolution R 
of the system Xt = X(t) is usually given by 
a set of differential equations specify-
ing the rates of change in X(t) depend-
ing on its current state. 

As an example, consider a simple 
harmonic oscillator. A mass in Figure 
3 is attached to a spring and is moving 
in a periodical fashion. Assuming no 
friction, the system Xt

osc evolves in con-
tinuous time, and its state at any time 
is described fully by two numbers: the 
location of the mass on the line and its 
velocity. Thus the state Xt

osc can be rep-
resented by the vector Xt

osc = ((t), υ(t)), 
where (t) represents the location of the 
mass, and υ(t) represents its velocity. 
The evolution rule of the system is giv-
en in this case by high-school physics 

	 ′ (t) = υ(t)
	 v′ (t) = –α⋅(t)	 (3) { 

Figure 3. One of the “easiest” (left) and one of the “hardest” (right) dynamical systems. 
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where α is a parameter that depends on 
the spring and the mass of the weight. 
Xosc is a very simple system, and we 
can answer pretty much any question 
about it; for example, we can solve this 
system of equations to obtain the full 
description of the system’s behavior 

	 Xt
osc = 	�(A sin(√α  ⋅ t + ),  

A√α  cos(√α  ⋅ t + φ)	 (4)

where the parameters A and φ depend 
on the initial condition X0

osc = ((0),υ(0)) 
of the system at time 0; that is, if we 
know the exact state of the system at 
time 0, we can compute the state of 
the system at any time in the future. It 
is not just the prediction problem that 
is easy for this system. Using the ana-
lytic solution (4) we can answer almost 
any question imaginable about it; for 
example, we can describe the set of 
all possible states the system being re-
leased from state X0

osc  will reach. 
At the other extreme, predicting 

some dynamical systems in the long 
run is incredibly difficult. One impor-
tant set of examples of “hard” dynam-
ical systems comes from computer 
science itself. Consider the Turing 
Machine or its modern counterpart, a 
RAM computer with unlimited RAM, 
as a dynamical system. The state-
space Xcomp is the (infinite) state space 

of the computer. The system Xcomp 
evolves in discrete time, with Xt

comp rep-
resenting the state of the computer at 
step t of the execution. The evolution 
rule R is the rule according to which 
the computation proceeds; that is, 
R(X) is the state of the computer in 
the next time step if its current state 
is X. Call this system the “computer 
dynamical system.” 

The computer dynamical system 
is easy to simulate computationally; 
all we must do is simulate the execu-
tion of the computation. On the other 
hand, unlike the oscillator example, 
answering long-term questions about 
the system is difficult; for example, 
given an initial condition X0

comp, there 
is no computational procedure that 
can tell us whether the system will 
ever reach a given state Y; determin-
ing whether the system will reach a 
terminating state is equivalent to solv-
ing the Halting Problem for programs, 
that, as discussed, is computationally 
undecidable. It can likewise be shown 
that almost any nontrivial question 
about the long-term behavior of Xcomp 
is noncomputable in the worst case. 

These examples exist at the two ex-
tremes of computational hardness: 
Xosc is a linear dynamical system and 
fully computable. Xcomp is (trivially) 
computationally universal, capable of 

simulating a Turing Machine, and rea-
soning about its long-term properties 
is as computationally hard as solving 
the Halting Problem. What kinds of 
systems are prevalent in nature? For 
example, can an N-body system evolv-
ing according to the laws of Newtonian 
gravity simulate a computer, in which 
case predicting it would be as difficult 
as solving he Halting Problem? Is pre-
dicting it computationally easy? Or 
something in-between? 

We do not know the answers for 
most natural systems. Here, we consid-
er an interesting in-between example 
that is one of the best-studied dynami-
cal systems. We consider dynamics 
on the set of complex numbers C, or a 
number of the form a + bi, evolving by 
a quadratic polynomial. For the rest 
of this discussion, the set of complex 
numbers is identified with the 2D com-
plex plane, with the number a + bi cor-
responding to the point (a,b), allowing 
us to visualize subsets of C nicely. Let 
c ∈ C be any complex number. Denote 

pc (z) := z2 + c.

Define the discrete-time dynamical 
system Xt

c by 

Xc
t+1 = pc (Xt

c).

The polynomial pc(z) is arguably the 
simplest nonlinear transformation 
one can apply to complex numbers, 
yet this system is already complicated 
enough to exhibit a variety of interest-
ing and complicated behaviors. In par-
ticular, it is impossible to give a closed-
form expression for Xt

c in terms of X0
c 

as we did with the oscillator example. 
Dynamical systems of the form Xt

c are 
studied by a branch of the theory of 
dynamical systems known as complex, 
or holomorphic, dynamics. Within 
mathematics, one of the main reasons 
for studying these systems is the rich 
variety of behaviors they exhibit allows 
us to learn about the behavior of more 
general (and much more difficult to 
study) dynamical systems. 

Outside mathematics, complex dy-
namics is best known for the fascinat-
ing fractal images it generates. These 
images, known as Julia sets (see Figure 
4), depict a global picture relevant to 
the long-term behavior of the system 
Xc. More specifically, Jc is the subset 

Figure 4. Example Julia sets. 
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of initial conditions in the complex 
plane on which the long-term behavior 
of Xc is unstable. To understand what 
this means, we need to take a slightly 
closer look at the system Xc. Consider 
an initial point X0

c = x0, as mapped by 
pc (z) = z2 + c 

x0  x0
2 + c  (x0

2 + c)2 + c  …

If we start with an x0 with a very high ab-
solute value, say, |x0|>|c| + 2, then the 
absolute value of pc (x0) = x0

2 + c will be 
larger than |x0|, and |pc (pc (x0))| will be 
larger still and the state of the system 
will diverge to ∞. The set of starting 
points for which the system does not 
diverge to ∞ is called the filled Julia set 
of the system Xc and is denoted by Kc. 
The Julia seta Jc is the boundary ∂Kc of 
the filled Julia set. 

The Julia set Jc is the set of points 
around which the system's long-term 
behavior is highly unstable. Around 
each point z in Jc are points (just out-
side Kc) with trajectories that ulti-
mately escape to ∞. There are also 
points (just inside Kc) with trajectories 
that always stay within the bounded 
region Kc. The Julia set itself is invari-
ant under the mapping z  z2 + c. This 
means trajectories of points that start 
in Jc stay in Jc. 

The Julia set Jc provides a descrip-
tion of the long-term properties of the 
system Xc. Julia sets are therefore valu-
able for studying and understanding 
these systems. In addition, as in Figure 
4, Julia sets give rise to an amazing vari-
ety of beautiful fractal images. Popular-
ized by Benoit Mandelbrot and others, 
Julia sets are today some of the most 
drawn objects in mathematics, and 
hundreds of programs for generating 
them can be found online. 

Formally speaking, the problem 
of computing the Julia set Jc is one of 
evaluating the function J:c  Jc. J is 
a set-valued function whose comput-
ability combines features of func-
tion and set computability discussed 
earlier. The complex input c ∈ C is 
provided to the program through the 
request command, and the program 
computing J (c) = Jc is required to out-
put an image of the Julia set Jc within 

a	 “Julia” is not a first name in this context but 
rather the last name of the French mathemati-
cian Gaston Julia (1893–1978).

As with numbers, 
all “nice” functions, 
including those 
usually found  
on a scientific 
calculator, 
are generally 
computable. 

a prescribed precision 2–n. J is a fasci-
nating function worth considering in 
its own right; for example, the famous 
Mandelbrot M (see Figure 1c) can be 
defined as the set of parameters c for 
which J (c) is a connected set. It turns 
out the function J (c) is discontinu-
ous, at least for some values of c (such 
as for c = ¼+ 0 · i). This means for ev-
ery ε there is a parameter c′ ∈ C that 
is ε-close to ¼ but for which the Julia 
set Jc′ is very far from J¼. Due to the im-
possibility of exact computation, this 
discontinuity implies there is no hope 
of producing a single program PJ that 
computes J (c) for all parameters c; on 
inputs close to c = 1/4, such a program 
would need to use request com-
mands to determine whether c is in 
fact equal to 1/4 or merely very close to 
it, which is impossible to do. 

If there is no hope of computing J 
by one program, we can at least hope 
that for each c we can construct a spe-
cial program PJc that evaluates Jc. Such a 
program would still need access to the 
parameter c through the request com-
mand, since only a finite amount of in-
formation about the continuous param-
eter c ∈ C can be “hardwired” into the 
program PJc. Nonetheless, by requiring 
PJc to work correctly on only one input c 
we manage to sidestep the impossibility 
of exact computation problem. 

Most of the hundreds of online 
programs that draw Julia sets usually 
draw the complement (Kc ) = C \ Kc of 
the filled Julia set, or the set of points 
whose trajectories escape to ∞. It 
turns out that from the computability 
viewpoint, the computability of Kc  is 
equivalent to the computability of Jc, 
allowing us to discuss these problems 
interchangeably.b The vast majority of 
the programs follows the same basic 
logic; to check whether a point z0 be-
longs to Kc , we need to verify whether 
its trajectory z0,pc(z0),pc(pc(z0)),… es-
capes to ∞. We pick a (large) number 
M of iterations. If z0 does not escape 
within M steps, we assume it does not 
escape. To put this approach in a form 
consistent with the definition of com-
putability of sets in R2, let P be a pixel 
of size 2–n. The naïve decision proce-
dure for determining whether the pix-

b	 As mentioned here, the computability of (Kc )  
and Jc is not equivalent to the computability of 
the filled Julia set Kc.
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assert z0 lies within the filled Julia set 
Kc. Computing such an M is equivalent 
to establishing termination of the loop 

	 Loop(z0): i ← 0 
		  while |zi|≤|c|+2 
			   zi+1 ← zi

2 + c
			   i ← i + 1

In general, the termination of loops, as 
with the Halting Problem H is a com-
putationally undecidable problem. If 
the loop terminates, we are sure z0 has 
escaped. But if the loop keeps running 
there is no general way of knowing it 
will not terminate later. There is thus 
no simple solution to figuring out the 
appropriate M; the only way to know 
the loop does not terminate is to under-
stand the system Xc and the set Kc  well 
enough. Turning the naïve heuristic 
into an algorithm necessarily involves 
a deep understanding of the underly-
ing dynamical system. As with the sys-
tems Xosc and Xcomp discussed earlier, 
it all boils down to understanding the 
underlying system. Fortunately, com-
plex dynamicists have developed a rich 
theory around this system since its in-
troduction around 1917 by the French 
mathematicians Gaston Julia and 
Pierre Fatou. This knowledge is enough 
to give precise answers to most ques-
tions concerning the computability of 
Kc, Kc , and Jc. One can formalize the na-
ïve heuristic discussed here and show 
that (with slight modifications) it works 
for the vast majority of values of c. 

However, it also turns out there are 
also noncomputable Julia sets: 

THEOREM 1.2 There exist param-
eters c such that the Julia set Jc is not 
computable. Moreover, there are such 
parameters c ∈ C that can be produced 
algorithmically. 

That is, one can produce a parameter 
c such that drawing the picture of Jc is 
as computationally hard as solving the 
Halting Problem. What does such a Ju-
lia set look like? All sets in Figure 4 are 
computable, as they were produced 
algorithmically for inclusion here. 
Unfortunately, Theorem 1 means we 
will most likely never know what these 
noncomputable Julia sets look like. 

The negative result is delicate; in a 
surprising twist, it does not extend to 
the filled Julia set Kc: 

el P overlaps with Kc  or is 2–n-far from 
it thus looks roughly like this: 

A naïve heuristic for drawing Kc : 
1.	 Let z0 be the center of the pixel P; 
2.	 Let M = M(n) be the number of 

iterations; 
3.	 �for i = 0 to M 

3.1.  Set zi+1 ← zi
2 + c; 

3.2.  if |zi+1| > |c|+2, return “P 
intersects Kc ”; 

4.	 �if |zM+1| ≤ |c|+2 return “P is 2−n  
far from Kc ” 

If the pixel P is evaluated to intersect 
with Kc , it is colored black; otherwise it 
is left white. However, there are multi-
ple problems with these heuristics that 
make the rendered pictures imprecise 
and sometimes just wrong. The first is 
we take one point z0 to be “representa-
tive” of the entire pixel P. This approach 
means even if P intersects Kc  or some 
point w ∈ P has its trajectory escape to 
∞, we might miss it if the trajectory of 
z0 does not escape to ∞. This problem 
highlights one of the difficulties en-
countered when developing algorithms 
for continuous objects. We need to find 
the answer not just for one point z0 but 
for the uncountable set of points locat-
ed within the pixel P. However, there 
are computational ways to remedy this 
problem. Instead of tracing just one 
point z0 we can trace the entire geomet-
ric shape P,pc (P),pc (pc (P)),… and see 
whether any part of the Mth iteration 
of P escapes to ∞. This may increase 
the running time of the algorithm con-
siderably. Nonetheless, we can exploit 
the peculiarities of complex analytic 
functions to make the approach work. 
John Milnor’s “Distance Estimator” al-
gorithm does exactly that, at least for a 
large set of “good” parameters c. 

The heuristic also involves a much 
deeper problem—choosing the pa-
rameter M(n). In the thousands of Java 
applets available online, selection of 
the number of iterations M is usually 
left to the user. Suppose we wanted 
to automate this task or make the 
program evaluate a “large enough” M 
such that M iterations are sufficient 
(see Figure 5 for the effect of selecting 
an M that is too small); that is, we want 
to find a parameter M such that if the 
Mth iteration zM of z0 did not escape to 
∞, then we can be sure no further itera-
tions will escape to ∞, and it is safe to 

Systems ranging 
from an electron in 
a hydrogen atom 
to the movement 
of galaxies to 
brain activity 
can be framed 
in the context of 
dynamical systems. 
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THEOREM 2.2 For all parameters c, 
the filled Julia set Kc: 

THEOREM 2.2 For all parameters c, 
the filled Julia set Kc is computable. 

Is the Universe a Computer? 
We have explored three examples of 
dynamical systems: The first, harmon-
ic oscillator Xosc, is simple; its behavior 
can be calculated in closed form, and 
we can answer pretty much any ques-
tion about the long-term behavior 
of the harmonic oscillator computa-
tionally. The second, computer sys-
tem Xcomp, is at the opposite extreme; 
predicting it is computationally hard, 
and it is (relatively) easy to show it is 
computationally hard through a re-
duction to the Halting Problem. The 
third, complex dynamics, requires an 
involved approach. For some (in fact, 
most) parameters c, the long-term 
behavior of the system Xc is easy in 
almost any sense imaginable. Show-
ing there are parameters c for which 
no amount of computational power 
suffices to compute the Julia set Jc re-
quired a full understanding of the un-
derlying dynamical system developed 
over nearly a century. 

Our experience with the comput-
ability of Julia sets, as well as the rela-
tive success of the field of automated 
verification at solving undecidable 
problems in practice,5 indicates there 
is likely to be a gap between comput-
ability in dynamics in the worst case 
and in the typical case. This gap means 
it is possible that while questions sur-
rounding many natural systems (such 

as  the N-body problem and protein as-
sembly) are provably noncomputable 
in the worst case, a typical case in prac-
tice is tractable. 

A related interesting possibility 
is that noncomputable structures in 
many systems are too delicate to sur-
vive the random noise present in all 
natural systems. Noise is generally 
viewed as a “prediction destroying” 
force, in that making predictions in 
the presence of noise is computation-
ally more difficult. On the other hand, 
if we are interested in predicting the 
statistical distribution of possible fu-
ture states, then noise may actually 
make the task easier. It is likely there 
are natural systems that (if imple-
mented with no noise) would be com-
putationally impossible to predict but 
where the presence of noise makes 
statistical predictions about the sys-
tem computationally tractable. 

Another lesson from the study of the 
computational properties of Julia sets is 
that mapping out which of the Julia sets 
Jc are and which are not computable 
requires a nuanced understanding of 
the underlying dynamical system. It is 
likely this is the case with other natural 
dynamical systems; the prerequisite to 
understanding its computational prop-
erties would be understanding its other 
properties. Indeed, understanding the 
role (non)computability and compu-
tational universality play in natural 
dynamical systems probably requires 
significant advances in both real com-
putation and dynamical systems. The 
role of computational universality—the 
ability of natural systems to simulate ge-

neric computation—in nature is there-
fore likely to remain one of the most 
tantalizing open problems in natural 
philosophy for some time to come. 

Bibliographic Notes 
The following references include ex-
tensive bibliographies for readers in-
terested in computation over the reals; 
computability of real numbers was first 
discussed in Turing’s seminal paper,4 
which also started the field of comput-
ability. There are two main modern 
visions on computability over the real 
numbers: computable analysis and the 
Blum-Shub-Smale (BSS) framework. 
My presentation here is fully based on 
the framework of computable analy-
sis, as presented in-depth by Weihr-
auch.6 The BSS framework is more 
closely related to algebraic geometry 
and presented by Blum et al.1 I focused 
on computable analysis, as it appears 
more appropriate for the study of the 
computational hardness of natural 
problems over the reals. The results 
on the computability and complexity 
of Julia sets was presented by Braver-
man and Yampolsky.2 Computational 
universality of dynamical systems is 
discussed in several sources, including 
Moore3 and Wolfram,7 but many basic 
questions remain open. 
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Figure 5. Example outcomes of the heuristic algorithm with c ≈ –0.126 + 0.67i and M = 25, 
M = 100, and M = 3,000 iteration. Note with the lower values of M the fjords do not reach all 
the way to the center since the points close to the center do not have time to “escape” in M 
iterations. The difficulty selecting a “large enough” M is a crucial obstacle in computing the 
exterior of the filled Julia set Kc. 

M = 25 M = 100 M = 3,000


