


Proceedings of the  
ACM SIGKDD Workshop on  
Interactive Data Exploration and Analytics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is 
granted without fee or loss of karma. 

These proceedings are not included in the ACM Digital Library. 

IDEA’16, August 14, 2016, San Francisco, California, USA. 

Copyright © The Authors, 2016. 

2



ACM SIGKDD Workshop on 
Interactive Data Exploration and Analytics 
 
 

General Chairs 

Duen Horng (Polo) Chau (Georgia Tech) 
Jilles Vreeken (Max Planck Institute for Informatics and Saarland University) 
Matthijs van Leeuwen (Universiteit Leiden) 
Dafna Shahaf (Hebrew University of Jerusalem) 
Christos Faloutsos (Carnegie Mellon University) 
 
 
 
 
  

3



Program Committee 

Acar Tamersoy (Symantec & Georgia Tech, USA) 
Alex Endert (Georgia Tech, USA) 
Antti Oulasvirta (Aalto U., Finland) 
Antti Ukkonen (Finnish Institute of Occupational Health, Finland) 
Bahador Saket (Georgia Tech, USA) 
Danai Koutra (U. Michigan, USA) 
Edith Law (U. Waterloo, Canada) 
Esther Galbrun (Loria, France) 
Geoff Webb (Monash U., Australia) 
Hanghang Tong (Arizona State University, USA) 
Hannah Kim (Georgia Tech, USA) 
Jaakko Hollmen (Aalto U., Finland) 
Jaegul Choo (Georgia Tech) 
James Abello (Rutgers, USA) 
Jefrey Lijffijt (U. Ghent, Belgium) 
Kai Puolamäki (Finnish Institute of Occupational Health, Finland) 
Kevin Roundy (Symantec, USA) 
Mario Boley (MPI-INF, MMCI, UdS, FHI Berlin & Frauenhofer IAIS, Germany) 
Marti Hearst (UC Berkeley, USA) 
Michael Berthold (U.  Konstanz, Germany) 
Minsuk (Brian) Kahng (Georgia Tech, USA) 
Nan Cao (NYU Tandon School of Engineering, USA) 
Nikolaj Tatti (Aalto University, Finland) 
Pauli Mietinnen (Max Planck Institute for Informatics, Germany) 
Saleema Amershi (Microsoft Research, USA) 
Siegfried Nijssen (Leiden U., the Netherlands) 
Stefan Kramer (U. Mainz, Germany) 
Steffen Koch (U. Stuttgart, Germany) 
Sucheta Soundarajam (Syracuse U., USA) 
Thomas Gärtner (U. Nottingham, UK) 
Thomas Seidl (LMU Munich, Germany) 
Tijl De Bie (University of Bristol, UK) 
Tim (Jia-Yu) Pan (Google, USA) 
U Kang (Seoul National U., South Korea) 
Wouter Duivesteijn (U. Ghent, Belgium) 
Zhicheng 'Leo' Liu (Adobe Research, USA) 
 
 

  

4



Preface 
 

Data, data everywhere; massive datasets of previously unthinkable sizes, surpassing terabytes and 
petabytes, have quickly become commonplace. They arise in numerous settings in science, 
government, and enterprises. While technology exists by which we can collect and store such 
massive amounts of information, making sense of these data remains a fundamental challenge. In 
particular, we lack the means to explanatorily analyze databases of this scale. Currently, 
surprisingly few technologies allow us to freely “wander” around the data, and make discoveries by 
following our intuition, or serendipity. While standard data mining aims at finding highly 
interesting results, it is typically computationally demanding and time consuming, thus may not be 
well-suited for interactive exploration of large datasets.  

Interactive data mining techniques that aptly integrate human intuition, by means of visualization 
and intuitive human-computer interaction techniques, and machine computation support have 
been shown to help people gain significant insights into a wide range of problems. However, as 
datasets are being generated in larger volumes, higher velocity, and greater variety, creating 
effective interactive data mining techniques becomes an increasingly harder task.  

It is exactly this research, experiences and practices that we aim to discuss at IDEA, the workshop 
on Interactive Data Exploration and Analytics. In a nutshell, IDEA addresses the development of 
data mining techniques that allow users to interactively explore their data. We focus and emphasize 
on interactivity and effective integration of techniques from data mining, visualization and 
human-computer interaction. In other words, we explore how the best of these different but 
related domains can be combined such that the sum is greater than the parts.  

Following the great success of IDEA at KDD 2013, 2014, and 2015, the main program of IDEA’16 
consists of seventeen papers that cover various aspects of interactive data exploration and 
analytics. In addition there was one invited demonstration, and four keynotes. Seven papers were 
presented orally, and ten were presented during the interactive poster and demo session. These 
papers were selected from a total of 29 submissions after a thorough reviewing process. We 
sincerely thank the authors of the submissions and the attendees of the workshop. We wish to 
thank the members of our program committee for their help in selecting a set of high-quality 
papers. Furthermore, we are very grateful to Jerome H. Friedman, Jeffrey Heer, Eamonn Keogh, and 
Saleema Amershi for engaging keynote presentations on the fundamental aspects of interactive 
data exploration, analysis, and visualization. 

Polo Chau & Jilles Vreeken & Matthijs van Leeuwen & Dafna Shahaf & Christos Faloutsos 
Saarbrücken, July 2016  
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Invited Talk 

 

Regression Location and Scale Estimation with 
Application to Censoring 

 
 

Jerome H. Friedman 
Department of Statistics 

Stanford University  
jhf@stanford.edu 

 
 

Abstract 
The aim of regression analysis in machine learning is to estimate the location of the distribution of an 
outcome variable y, given the joint values of a set of predictor variables x. This location estimate is then 
used as a prediction for the value of y at x. The accuracy of this prediction depends on the scale of the 
distribution of y at x, which in turn, usually depends on x (heteroscedasticity). A robust procedure is 
presented for jointly estimating both the location and scale of the distribution of y given x, as functions 
of x, under no assumptions concerning the relationship between the two functions. The scale function 
can then be used to access the accuracy of individual predictions, as well as to improve accuracy 
especially in the presence of censoring. 

Bio 
Jerome H. Friedman is Professor Emeritus of Statistics, Stanford University. He received both bachelor's 
and Ph. D degrees in physics from the University of California, Berkeley. He was leader of the 
Computation Research Group at the Stanford Linear Accelerator Center from 1972 through 2006. He 
was Professor of Statistics, Stanford University, from 1982 through 2006, and served as Department 
Chair from 1988 through 1991. His primary interests center on machine learning and data mining. He 
has authored or coauthored over 100 papers in major statistical journals as well as three books on Data 
Mining, and has invented or co-invented several widely used machine learning and data mining 
procedures. 
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Invited Talk  

 

Predictive Interaction 
 
 

Jeffrey Heer 
Department of Computer Science and Engineering 

University of Washington 
jheer@uw.edu 

 
 

Abstract  
How might we architect interactive systems that have better models of the tasks we're trying to 
perform, learn over time, help refine ambiguous user intents, and scale to large or repetitive 
workloads? In this talk I will present Predictive Interaction, a framework for interactive systems that 
shifts some of the burden of specification from users to algorithms, while preserving human guidance 
and expressive power. The central idea is to imbue software with domain-specific models of user tasks, 
which in turn power predictive methods to suggest a variety of possible actions. I will illustrate these 
concepts with examples drawn from widely-deployed systems for data transformation and 
visualization (with reported order-of-magnitude productivity gains) and then discuss associated design 
considerations and future research directions.  

Bio 
Jeffrey Heer is an Associate Professor of Computer Science & Engineering at the University of 
Washington, where he directs the Interactive Data Lab and conducts research on data visualization, 
human-computer interaction and social computing. The visualization tools developed by his lab (D3.js, 
Vega, Protovis, Prefuse) are used by researchers, companies and thousands of data enthusiasts around 
the world. His group's research papers have received awards at the premier venues in Human-
Computer Interaction and Information Visualization (ACM CHI, ACM UIST, IEEE InfoVis, IEEE VAST, 
EuroVis). Other awards include MIT Technology Review's TR35 (2009), a Sloan Foundation Research 
Fellowship (2012), and a Moore Foundation Data-Driven Discovery Investigator award (2014). Jeff 
holds BS, MS and PhD degrees in Computer Science from UC Berkeley, whom he then betrayed to go 
teach at Stanford from 2009 to 2013. Jeff is also a co-founder of Trifacta, a provider of interactive tools 
for scalable data transformation. 
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Invited Talk  

 

At Last! Time Series Joins, Motifs, Discords and 
Shapelets at Interactive Speeds 

 
 

Eamonn Keogh 
Computer Science and Engineering Department 

University of California - Riverside 
eamonn@cs.ucr.edu 

 
 

Abstract  
Given the ubiquity of time series, the last decade has seen a flurry of activity in time series data mining. 
Some of the most useful and frequently used primitives “reason” about the shapes of subsequences 
found in longer time series. Examples include Time Series Joins, Motifs, Discords and Shapelets. These 
primitives have found significant adoption, however they are all run in batch mode. For most non-
trivial datasets, you start the process; you go to lunch (or on a short vacation!) and examine the results 
when you get back. What if you could solve such problems in interactive time? Well, now you can! With 
a new data structure call the Matrix Profile, interactive data mining of large datasets has become 
possible for the first time, and as we shall demonstrate, it is a game changer.  

Bio 
Eamonn Keogh is a Full Professor at the Computer Science & Engineering Department of University of 
California - Riverside. His research areas include data mining, machine learning and information 
retrieval, specializing in techniques for solving similarity and indexing problems in time-series datasets. 
He has authored more than 120 papers. He received the IEEE ICDM 2007 best paper award, SIGMOD 
2001 best paper award, and runner up best paper award in KDD 1997. He has given over two dozen 
well received tutorials in the premier conferences in data mining and databases. 
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Invited Talk  

 

Towards Usable Machine Learning 
 

Saleema Amershi 
Machine Teaching Group 

Microsoft Research 
samershi@microsoft.com 

 
 

Abstract  
It is widely believed that machine learning based applications will broadly impact human productivity 
and decision making. However, experts caution that the complexity of machine learning can also lead to 
unintended consequences ranging from irrelevant content recommendations to damaging financial and 
political decisions made on the bases of inaccurate predictions. While advances continue in improving 
the accuracy and efficiency of machine learning algorithms, a complementary strategy is needed in 
improving the capabilities of the people who are fundamentally involved in using and building these 
machine learning based systems. In this talk, I will present tools and techniques we have been 
developing in the Machine Teaching Group at Microsoft Research to support the people involved in the 
machine learning process. I will then discuss some of the open challenges and opportunities in working 
towards more usable machine learning. 

Bio 
Saleema Amershi is a Researcher in the Machine Teaching Group at Microsoft Research. Her research 
lies at the intersection of human-computer interaction and machine learning. In particular, her work 
involves designing and developing tools to support both end-user and practitioner interaction with 
interactive machine learning systems. Saleema received her Ph.D. in computer science from the 
University of Washington's Computer Science & Engineering department in 2012. 
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Expressive Query Construction through Direct
Manipulation of Nested Relational Results

Eirik Bakke
MIT CSAIL

ebakke@csail.mit.edu

David R. Karger
MIT CSAIL

karger@csail.mit.edu

ABSTRACT
Despite extensive research on visual query systems, the standard
way to interact with relational databases remains to be through SQL
queries and tailored form interfaces. We consider three require-
ments to be essential to a successful alternative: (1) query spec-
ification through direct manipulation of results, (2) the ability to
view and modify any part of the current query without departing
from the direct manipulation interface, and (3) SQL-like expres-
siveness. This paper presents the first visual query system to meet
all three requirements in a single design. By directly manipulating
nested relational results, and using spreadsheet idioms such as for-
mulas and filters, the user can express a relationally complete set of
query operators plus calculation, aggregation, outer joins, sorting,
and nesting, while always remaining able to track and modify the
state of the complete query. Our prototype gives the user an expe-
rience of responsive, incremental query building while pushing all
actual query processing to the database layer. We evaluate our sys-
tem with formative and controlled user studies on 28 spreadsheet
users; the controlled study shows our system significantly outper-
forming Microsoft Access on the System Usability Scale.

This work was previously published at SIGMOD 2016.

1. INTRODUCTION
Four decades after Query by Example [51], the broad problem

of Making Database Systems Usable [25] remains open. Tech-
nical users still interact with relational data through hand-coded
SQL, while non-technical users rely on restrictive form- and report-
based interfaces tailored, at great cost, for their specific database
schema [32, 27, 4]. Queries that involve “complex aggregates, nest-
ing, correlation, and several other features remain on a tall pedestal
approachable only by the initiated” [23]. Simple report queries
traversing one-to-many relationships in the database schema, such
as retrieving “a list of parts, and for each part a list of suppliers and
a list of open orders”, are painful to define for programmers and
largely inaccessible to end users.

Meanwhile, users from a wide range of backgrounds seem
happy, indeed eager, to interact with their data if it is served to
them in spreadsheet form. “Export to Excel”, the joke goes, “is

Short version prepared for the 2016 KDD IDEA Workshop.
To cite, please refer to our full SIGMOD paper [5].

KDD 2016 Workshop on Interactive Data Exploration and Analytics
(IDEA’16). August 14th, 2016, San Francisco, CA, USA.

the third most common button in data and business intelligence
apps... after OK and Cancel”1. Spreadsheets lack basic database
functionality such as joins and views, but demonstrate the great
value of usable, general-purpose data manipulation tools [4].

Shneiderman [43] attributes the usability of the spreadsheet to
its nature as a direct manipulation interface. The properties of such
an interface include “visibility of the object of interest”, “rapid, re-
versible, incremental actions”, and “replacement of complex com-
mand language syntax by direct manipulation of the object of in-
terest”. Shneiderman paraphrases Harold Thimbleby: “The display
should indicate a complete image of what the current status is, what
errors have occurred, and what actions are appropriate.”

We agree with Liu and Jagadish [35] that a successful solution
to the visual query language problem must come in the form of
a spreadsheet-like direct manipulation interface. In particular, we
consider three requirements that have yet to be met in a single user
interface design:

R1. Query specification through direct manipulation of results.
The user should build queries incrementally through a
sequence of operations performed directly on the data in the
database, as seen through the result of each intermediate
query [35]. In Shneiderman’s terms, the object of interest
is not the query, but the data, as when working with a
spreadsheet.

R2. The ability to view and modify any part of the current query,
including operations performed many steps earlier, without
redoing subsequent steps or departing from the direct manip-
ulation interface. This is tricky in light of R1, because the
user will be looking at and manipulating the result of a query
rather than an actual query expression. The mapping between
the two is not obvious. [35]

R3. SQL-like expressiveness from within the direct manipulation
interface. R1 and R2 can be trivially met if only simple
queries are allowed. For example, Excel’s filter feature
works by direct manipulation of results, and allows its
complete state to be viewed and modified from within the
same interface, but supports only basic selection queries.
To compete with SQL, a visual query system should allow
the user to express any query commonly supported by
SQL implementations, including arbitrary (multi-block)
combinations of operations such as joins, calculations, and
aggregations.

In this paper, we present SIEUFERD (pronounced soy-fird), the
first visual query system to meet all of the requirements above in
1http://www.powerpivotpro.com/2012/03/
the-3rd-most-common-button-in-data-apps-is
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Direct
Manip.

Query
Representation Year System R1 R2 R3

Unrestricted
Nested Results

Yes Overlaid
on Result

2014 GBXT [2] X X X
2012 DataPlay [1] X X X
2006 Tabulator [8] X X X
2002 Polaris/Tableau [46] X X

Spreadsheet
Formulas

2016 Object Spreads. [37] X X X
2010 Spreads. as DB [48] X X
2005 A1 [30] X X X
1997 OOF Spreads. [15] X X X
1994 Forms/3 [10] X X

Exposed
Algebraic

2013 Mashroom [20] X X X
2011 Wrangler [29] X X
1991 TableTalk [18] X X X

Hidden
Algebraic

2016 Gneiss [13] X X
2013 GestureDB [38] X X
2010 CRIUS [41] X X
2009 SheetMusiq [35] X
2008 AppForge [50] X X
1989 R2 [22] X X X

No Diagram-
based

2014 VisualTPL [14] X
2009 App2You [31] X
2005 QBB [40]
2002 QURSED [39] X
1990 QBD [3]

Form-
based

2008 Form Cust. [28]
1998 QBEN [36] X
1997 ESCHER [49] X
1989 PERPLEX [44]
1977 QBE [51]

Table 1: Summary of related systems, evaluated as visual query
interfaces. R1 is indicated where some class of queries can be
initially specified by direct manipulation of results. R2 is indi-
cated where all parts of such queries can subsequently be mod-
ified through similar means. R3 is indicated where the same
class of queries is relationally complete and supports aggrega-
tion in arbitrary multi-block queries.

a single user interface design. The key insight is that given a suit-
able data model for results, the complete structure of a query can
be encoded in the schema of the query’s own result. This in turn
allows the user interface to display the query and its result in a sin-
gle visual representation, which can then be manipulated directly
to modify any part of the query. Specifically, we allow queries
to produce results from the nested relational data model [24, 33],
and display results using a nested table layout [6]. In our visual
representation, the header area of the result’s nested table layout
encodes the structure of the query, which can then be manipulated
using spreadsheet idioms such as formulas and filters. The use of
nested results affords a natural visualization of operations such as
joins and aggregation, and allows the user to see, in context, inter-
mediate tuples produced in any part of the query.

Using our system, the user can express a relationally
complete [16] set of query operators plus calculation, aggregation,
outer joins, sorting, and nesting [5, Appendix A]. This covers the
full set of query operators generally considered as the minimum
to model SQL [7, 21], and expresses, for example, all SELECT
statements valid in SQL-92.

In an initial formative user study, 14 participants were able to
solve complex query tasks with a minimal amount of training,
with many expressing strong levels of satisfaction with the tool.
In a second, controlled study, another 14 participants rated both
SIEUFERD and the query designer found in Microsoft Access on
the System Usability Scale (SUS) [9] after doing a series of tasks
on each. Users rated SIEUFERD 18 points higher on average than
Access. This corresponds to a 46 percentage point difference on a
percentile scale of other studies in the Business Software category.

This work was previously published at SIGMOD 2016 [5].

2. RELATED WORK
Visual query systems have been surveyed by Catarci et al. [11]

and, recently, El-Mahgary and Soisalon-Soininen [17]. Systems
discussed in this section include, in particular, those that employ
direct manipulation, nested results, or optimizations for traversing
relationships in the database. Table 1 categorizes systems by query
representation style, and provides an assessment of each system
against the requirements set forth in the introduction.

Besides our core requirements, Table 1 also indicates which sys-
tems support nested results, i.e. a graphical equivalent of a hierar-
chical data model such as XML, JSON, or nested relations. This
handles report-style queries that encode multiple parallel one-to-
many relationships in a single result, as when retrieving “a list of
parts, and for each part a list of suppliers and a list of open or-
ders” [6]. Systems that base their result representation on a single
flat table of primitive values, such as Tableau [46], are unable to
express such queries. The same tends to hold for any system that
takes its input from a single joined SQL query, since multivalued
dependencies [19] in the flattened result (PARTS�SUPPLIERS and
PARTS�ORDERS in the preceding example) would interact to pro-
duce a pathological number of tuples for even small inputs. Some
systems, like Tableau and Gneiss [13], support a restricted form of
nesting, where an otherwise flat result table can be grouped into
a single-branch hierarchy, or a finite set of such (a dashboard in
Tableau, or a set of hierarchical tables in Gneiss). This still does
not handle PARTS�SUPPLIERS/ORDERS-type queries from the ex-
ample above. Tableau, as well as other systems based on the pivot
table concept, produce cross-tabulated rather than nested results;
these concepts are orthogonal.

We first discuss visual query systems that do not fall in the direct
manipulation category. Form-based systems originated with Query
by Example (QBE) [51], where the user populates a set of empty
skeleton tables with conditions, variables (examples), and output
indications. ESCHER [49] and QBEN [36] extend QBE to support
nested results, while PERPLEX [44] supports general-purpose
logic programming. The ubiquitous search forms of commercial
database applications can be seen as restricted versions of
QBE tailored for a specific schema; Form Customization [28]
generalizes such forms by considering the form designer as part of
the query system. In diagram-based systems, the user manipulates
queries for example through a schema tree or schema diagram, as
in Query by Diagram (QBD) [3], Query by Browsing (QBB) [40],
QURSED [39], and App2You [31], or through a diagrammatic
query plan, as in VisualTPL [14]. The diagram-based query
building style is common in commercial tools–Microsoft Access,
Navicat, pgAdmin, dbForge, Alteryx etc. The general problem
with both form-based and diagram-based interfaces is that users
must manipulate queries through an abstract query representation
that is divorced from the actual data that is being retrieved. To
construct and understand queries, the user must look back and
forth between the query representation on one side of the screen
and a separate result representation on the other. Thus we do
not consider these systems to be direct manipulation interfaces
(requirement R1).

In the direct manipulation category, we now consider algebraic
user interfaces. In such systems, the user builds queries by select-
ing, one step at a time, a series of operations to be applied to the
currently displayed result. Each operation is applied to the result of
all previous operations. Formal expressiveness is easy to achieve in
algebraic interfaces, since the relevant relational operators can sim-
ply be exposed to the user directly. The main problem with alge-
braic interfaces is that the user has no direct way to, in the words of
Liu and Jagadish, “modify an operation specified many steps ear-
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Field selector: Pop-
up displaying a tree 
representation of 
the query structure, 
including exact join 
conditions, centered 
around the selected 
fi eld. The selector 
includes previously 
hidden fi elds as well 
as fi elds that can be 
reached through joins 
over known foreign 
key relationships.

Formula bar: Shows the label, value, or  formula under the selected cell.
Result header: Visu-
ally encodes both the 
structure of the query 
and the schema of its 
result. Icons indicate 
query-related state 
associated with each 
fi eld in the schema.

Context menu: Ex-
poses a complete set 
of query manipulation 
actions, and serves 
as a legend for all 
icons that can appear 
in the result header.

Result area: Displays 
the currently open que-
ry and its nested re-
lational result. Labels 
and formulas can be 
edited using a spread-
sheet-like cursor.

Filter popup: Allows 
the user to associ-
ate a fi lter with the 
currently selected 
fi eld. The list of val-
ues available to fi lter 
on is generated au-
tomatically using a 
separate database 
query. Filters may be 
associated with either 
primitive fi elds or re-
lation fi elds.

Figure 1: The SIEUFERD query interface. To create queries, users start from a simple tabular view of a table in the database and
add filters, formulas, and nested relations. The integrated result and query representation is displayed continuously as the user
interacts with the data. The particular query above instantiates six database tables (one per nested relation), contains five joins (each
child relation against its parent), and is evaluated using five generated SQL queries (one for each one-to-many relationship ). This
query was constructed purely by checking off the appropriate fields and foreign key relationships in the field selector.

lier without redoing the steps afterwards” [35] (requirement R2).
For example, in GestureDB [38], the user has no way to modify
a filter on a column that was subsequently used in an aggregation
or removed with a projection. Similar problems exist in R2 [22],
AppForge [50], CRIUS [41], and Gneiss [13]. SheetMusiq [35]
provides a partial solution by using an algebra where certain op-
erators can commute out of a complex expression for subsequent
modification; however, the technique breaks down for expressions
enclosed in binary operators such as joins, set union, or set dif-
ference. In other systems, the underlying algebraic expression is
exposed directly, as in the procedural data manipulation scripts of
Wrangler [29], the XQuery-like mashup scripts of Mashroom [20],
or the diagram-based representation in TableTalk [18]. Thus, only
the initial query specification can be done through direct manipu-
lation; tweaking and examination of existing queries must be done
with a separate, indirect interface.

With clever use of formulas, Tyszkiewicz [48] shows that
existing spreadsheet products can be considered expressive enough
to formulate arbitrary SQL queries. If we consider Excel as a
query system, however, only a subset of such queries could be
said to be constructible by direct manipulation. Heavy reliance
on set-based formula functions such as INDEX, MATCH, and
SUMPRODUCT means that spreadsheet formulas soon take the role
of a text-based query language, with a vocabulary far removed
from that of typical query tasks. This would also be the case for
spreadsheet programming systems such as Forms/3 [10], Object
Oriented Functional Spreadsheets [15], A1 [30], and Object
Spreadsheets [37].

Last, we consider direct manipulation systems that overlay their
query representation on the result of the same query, with the struc-
ture of the query reflecting the visual structure of the result. This

solves the mapping problem of requirement R2. The problem is
that current such representations are not expressive enough to sup-
port arbitrary queries (requirement R3). For example, the direct
manipulation interfaces of Tabulator [8] and GBXT [2] support fil-
ters and joins over schema relationships, but are unable to express
calculation, aggregation, general-purpose joins, or other binary op-
erators. In DataPlay [1], direct manipulation is used only to choose
between universal and existential qualifiers. Tableau [46] allows
a large class of two-dimensional visualizations to be created and
manipulated through direct manipulation of table headers and cor-
responding axis shelves; however, queries involving calculations
or binary operators must be configured using a separate interface
rather than through direct manipulation. Our own system is the first
to achieve SQL-like expressiveness from within a direct manipula-
tion interface based on an overlaid query/result representation.

3. SYSTEM DESCRIPTION

3.1 Overview
Our core query building interface is shown in Figure 1. All user

interactions are initiated from the result area, which shows the cur-
rent query’s nested relational result, formatted using a nested table
layout. In a nested table layout, the table’s header area visually
encodes the schema of the nested result, including which fields are
nested under others in the hierarchical schema. Because our system
maps all query-related state to specific fields in the result schema,
the result’s table header simultaneously becomes a visual represen-
tation of the query that generated it. A set of icons, carefully de-
signed to allow every aspect of the query state to be represented in
the header, is used to augment the information that can be derived
from the names and positions of fields.
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Figure 2: Terminology of the nested relational data model, il-
lustrated on a nested table layout.

Starting from any selection of fields (columns) in the result area,
the user may open a context menu of query-related actions, which
also serves as a legend for icons that may appear in the result
header. Query actions modify the query state, not the data in the
database. Whenever a visual query is modified, the system gener-
ates and executes one or more corresponding SQL queries to eval-
uate it, merges the returned flat results into a single nested result,
and displays the latter to the user. At the same time, the fields and
iconography in the new result’s header reflect the updated state of
the modified query.

To keep the result layout compact, several aspects of the query
state are indicated with icons in the header but are not displayed
in full until the user requests it. In these cases we leverage well-
established spreadsheet idioms to expose the underlying state. A
filter icon ( ) next to a field label indicates the presence of a filter
on that field, which can be manipulated by opening the filter popup
from the context menu. A formula icon ( ) indicates that the
primitive field in question is a calculated field with an associated
spreadsheet-style formula. The actual formula can be edited using
the formula bar above the result area, or directly in any non-header
cell belonging to the field’s column. Finally, as in a spreadsheet,
our system allows fields (columns) to be hidden from view and later
recalled for inspection. If the hidden field was used for filtering or
sorting, or is referenced from a formula, a dashed cell icon ( ) is
shown for the relevant dependent field to indicate that the visible re-
sult depends on a hidden portion of the query. Hidden fields can be
recalled using the field selector popup, which shows an expandable
list of available fields, centered around the field it was opened for.
The field selector also serves to suggest new joins over known for-
eign key relationships, modeled as pre-existing hidden fields, and
to display exact join conditions.

For the remainder of this paper, we will use the following ter-
minology when referring to concepts in the nested relational data
model: A value is either a primitive or a relation, where a relation
is defined as a set of tuples, each containing a set of fields iden-
tified by labels, each containing a value, recursively. The schema
of a value either defines the value to be a primitive, or defines the
value to be a relation, with schemas further specified for each of
the latter’s fields, recursively. See Figure 2.

3.2 Query Model
We now discuss the specific structure of queries in our system.

A visual query is modeled as a nested relational schema that has
been annotated with query- and presentation-related properties on
each field. We refer to the annotated schema as the SIEUFERD
query model. When SQL queries are generated from a visual query
and flat result sets have been assembled into a nested relational re-

sult, the schema of the nested result is identical to the schema in
the query model. This correspondence makes it straightforward to
translate high-level user interactions on the visualized query result
to concrete modifications on the underlying query model, and con-
versely, to indicate the state of the query model in the table header
of the visualized result.

Table instantiation. As a basic rule, each relation in the query
model gets to retrieve data from one concrete table in the underly-
ing database; that relation is said to instantiate the database table.
The following is a simple query that instantiates the table called
COURSES and displays a selection of its fields:

Nesting and joins. Queries need to be able to incorporate data
from multiple tables. Commonly, tables need to be equijoined to-
gether, for example when the user wishes to examine data spread
across foreign key relationships in a normalized database schema.
In the SIEUFERD query model, the introduction of a new table
instance can be done by defining a nested relation, optionally con-
strained by an equijoin condition against its parent relation:

In the query above, the nested relation READINGS instantiates
the database table with the same name, and equijoins itself against
its parent relation COURSES on the COURSE_ID field, as indicated
by the join icon (Lorgm ) on the latter. The other side of the equijoin
condition is the ID field in the COURSES relation. The latter infor-
mation is omitted from the result layout to save space, but is dis-
played in the field selector (Figure 1). The one-to-many icon ( )
on the READINGS relation indicates that our system decided the lat-
ter may contain more than one tuple for each corresponding tuple
in COURSES, the parent relation.

The joins described here have different semantics than the tra-
ditional flat joins encountered in SQL and most other visual query
tools. Rather than duplicating tuples on one side of the operator for
each occurrence of a matching tuple on the other, each tuple from
the parent side of the join has a nested relation added to it holding
zero or more matching tuples from the child side. This operator
is known formally as a nest equijoin [45], though we will simply
use the term join when unambiguous. One convenient property of
nest equijoins is that tuples on the left-hand side of the operator
do not disappear when the join fails to find matching tuples on the
right; this can be seen in the query above for the course AMERICAN
POLITICS, which has no books in its reading list.

It is often desirable to hide technical primary key fields, fields
made redundant by equijoin conditions (e.g. COURSE_ID), or oth-
erwise uninteresting fields, for presentation purposes. Continuing
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the example above, our query model allows us to hide several fields
without altering the query semantics:

The hidden fields could be recalled at any time using the field
selector. As before, the field selector can also be used to see the
exact join conditions between READINGS and COURSES.

Nested relations can be used very effectively to display data
spread over many tables in a database schema. In the following
example, we pull data from five database tables to see more
information about each university course:

Notice that tuples in the READINGS relation occur independently
of tuples in the SECTIONS relation; this kind of visualization can
not be constructed in tools based on flat tabular results (see Related
Work). Also notice the absence of the one-to-many icon ( ) on
the AREA relation: because the latter relation was joined on its in-
stantiated table’s primary key, our system deduced that at most one
tuple can exist in AREA for each parent tuple in COURSES.

Sorting. Each nested relation can be sorted on a sequence of its
direct child fields, indicated by subscripted sort icons ( 123) on the
latter. In the following example, the root-level COURSES relation is
sorted ascending on the MAX_ENROLL field, while individual sets
of READINGS are sorted by AUTHOR_NAME, then by TITLE:

It is possible to sort on both primitive and relation fields, though
we omit the exact semantics of the latter case here. Following any
explicit sort terms, our system automatically sorts every relation on
a tuple-identifying subset of its retrieved fields. This ensures that all
query results are retrieved in a deterministic order. The automatic
sort is usually on an indexed primary key; see set projection below.

Filter. Using the filter popup (Figure 1), a filter can be defined

on any field, indicated by the filter icon ( ). Filters on relation
fields restrict the set of tuples retrieved in that relation, while filters
on primitive fields restrict the tuples of the parent relation. In the
following example, the MEETINGS relation is filtered to show only
tuples for which the DAY is W:

By default, the effect of a filter in a nested relation is propa-
gated all the way to the root of the query by means of a HIDE PAR-
ENT IF EMPTY setting on each intermediate relation, indicated by
the arrow-towards-root icon ( ) on the SECTIONS and MEETINGS
relations above. In the example, the courses ROMAN ART and
RUSSIAN DRAMA have disappeared because they do not have any
Wednesday sections. If, rather than retrieving “a list of courses
with at least one Wednesday section”, we wanted to retrieve “a list
of all courses, showing sections on Wednesday only”, we could
deactivate HIDE PARENT IF EMPTY on the SECTIONS relation:

Formulas. An important part of the expressiveness offered by
SQL is the ability to include scalar and aggregate computations
over primitive values in any part of the query. In the SIEUFERD
query model, both kinds of calculations are supported by means of
calculated fields. A calculated field is a primitive field, added to
any relation by the user, that takes its value from a formula rather
than from a particular column in an instantiated database table.
Like other fields, calculated fields can be sorted or filtered on.

SIEUFERD formulas are syntactically similar to spreadsheet for-
mulas, but belong to and reference entire columns of field values
rather than hard-coded ranges of cells. This allows SIEUFERD
queries, like SQL queries, to be defined independently of the exact
data that might reside in a database at any given time. Without this
design, the user might have to rewrite formulas if the data in the
underlying data source changes, or if other parts of the query are
changed in such a way as to add or remove tuples in the result. For-
getting to update formulas when input data is changed is a common
kind of error in spreadsheets [26, 12], which we avoid.

The restriction that calculated fields always be primitive fields
is an important one; we do not wish formulas to take the role of a
textual query language embedded within the visual one. Formulas
do not provide a relational algebra, but rather allow simple compu-
tations over primitive values.

Continuing the course catalog example, we can calculate the du-
ration of each meeting of a course section:
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The calculated field DURATION, marked with the formula
icon ( ), is evaluated once for each tuple in MEETINGS, its
containing relation. Using another calculated field, we can add up
the durations as well, at the level of each course:

When using aggregate functions such as SUM or COUNT, the re-
lation in which the calculated field is defined determines the level at
which aggregate values are grouped. In the example above, because
the TOTAL DURATION field is a child of the COURSES relation, a
total is calculated for each course rather than, say, for each section.
Each course includes in its total only tuples from the MEETINGS
relation that are descendants of that course’s tuple in the COURSES
relation.

Filters and aggregate functions. When an aggregate function
references a relation with a filter applied to it, the filter is evaluated
before the aggregate. In the following example, the SECTIONS re-
lation is filtered to only include lecture-type sections. The TOTAL
DURATION for each course changes accordingly:

It is equally valid to define a filter on the output side of an aggre-
gate, e.g. on TITLE or TOTAL DURATION in the example above.

Flat joins. Traditional flat joins can be expressed by referencing
a descendant relation from a formula without enclosing the
reference in an aggregate function. In the following example,
each course title is repeated once for each distinct author name
in the reading list, because the AUTHOR REFERENCE field in the

COURSES relation references the READINGS relation without the
use of an aggregate function:

The actual behavior is that of a left join, with a null value being
returned for the course AMERICAN POLITICS, which has no read-
ings in its reading list. To express an inner join instead, the HIDE
PARENT IF EMPTY setting could be enabled on the READINGS re-
lation. The left join semantics of these inward formula references
help our visual query language maintain some desirable properties.
In particular, the mere introduction of a new calculated field (e.g.
AUTHOR REFERENCE) will never cause tuples to disappear from
said field’s containing relation (COURSES).

Set projection. By default, tuples retrieved for a relation always
include the primary key fields of the relation’s instantiated table,
even if the user has hidden those fields from view. This allows our
system to keep result tuples in a stable order as the user hides or
shows fields, and to keep a one-to-one relationship between tuples
on the screen and tuples in instantiated database tables. It also al-
lows us to generate more efficient SQL queries, for example by
avoiding expensive SELECT DISTINCT statements. The automatic
inclusion of primary key fields in the projection of a particular re-
lation can be avoided by means of the HIDE DUPLICATE ROWS
option, indicated by the bracket icon ( ):

3.3 Query Building
Having explained the query model, we now show how the user

would actually build queries using our direct manipulation inter-
face. We do this by means of an example query building ses-
sion. The user is an investigative journalist who is writing a story
about ethanol biofuel lobbying2. She has compiled, in the table
PLANTS_OS, a list of major ethanol producers3, and would like
to find the total lobbying expenditures of each. Another table,
LOBBYING, contains quarterly lobbying reports from US corpo-
rations in the years 1998 through 2012 (727,927 tuples)4.

2E. Díaz-Struck (2013). Ethanol Industry Battles to Keep
Incentives. http://eye.necir.org/2013/05/26/
ethanol-industry-battles-to-keep-incentives
3Renewable Fuels Association/Maple Etanol SRL (2012)
4The Center for Responsive Politics (2012)
https://www.opensecrets.org
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Base table. The user starts by opening the table of ethanol pro-
ducers as a template for the new query:

Join. To add another table to the query, the user selects the col-
umn or columns to join on and invokes the JOIN action from the
context menu. This opens a dialog box for selecting the table to join
with, in this case LOBBYING, and for selecting the corresponding
columns from the latter to be matched in an equijoin constraint. The
user joins the PLANTS_OS and LOBBYING tables on the COMPANY
and ULTORG fields, respectively:

In cases where the database defines explicit foreign key relation-
ships between tables, use of the above JOIN dialog is unnecessary;
instead, all available joins will be available as hidden relations in
the field selector. The effect is a schema navigation capability anal-
ogous to that of QBB [40], AppForge [50], and App2You [31].

Hide fields. After the join, a lot of columns are shown, so the
user selects a few of them and invokes the HIDE action:

It is now easier to get a sense of the data. We have a new child
relation field, called LOBBYING, containing the lobbying reports
for each company:

Sort. The user decides to sort the lobbying reports for each com-
pany most-recent-first, invoking the SORT DESCENDING action on
the LYEAR field and then invoking the SORT DESCENDING AF-
TER PREVIOUS action on the LTYPE field. This sorts individual
LOBBYING relations by year ( ) and then by quarter ( 2):

Aggregate formula. The user would now like to calculate a total
lobbying amount for each company. She invokes the INSERT CAL-
CULATED FIELD AFTER action to insert a calculated field ( ) next
to the COMPANY field, and enters the name SUM OF AMOUNTS in
the new column’s label cell. She then moves the cursor to one of
the column’s value cells, and enters a sum formula, clicking the
AMOUNT column to insert the column reference:

Scalar formula. Reported lobbying amounts come from differ-
ent years, some going back to 1998. The user would like to calcu-
late inflation-corrected totals. A separate table CPI contains yearly
Consumer Price Index values normalized for 2012. The user per-
forms another JOIN, this time between LOBBYING and CPI, on the
LYEAR and CYEAR fields, respectively. This brings the CPIV value
for each lobbying report’s year into the nested result. The user then
adds another calculated field, this time under the same relation as
the existing AMOUNT field, and enters a formula that calculates the
inflation-adjusted amount for each report. We here have a useful
example of an inward formula reference (to CPIV) that is not en-
closed in an aggregate function:

A new inflation-adjusted total can now be added as a calculated
field at the PLANTS_OS level, shown adjacent to the existing non-
adjusted sum:

Filter. Lobbying reports may sometimes be amended, in which
case the superseded reports should be excluded from totals to
avoid double counting. The user can look for superseded reports
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by invoking the FILTER action on the LUSE field and selecting the
value N:

The user sees that there are superseded reports in the database
with non-zero dollar amounts, and inverts the filter to exclude them.

Select fields. The user now decides to hide the individual reports
altogether and instead reintroduce some of the fields that were hid-
den from the PLANTS_OS relation before, using the field selector:

Final touches. The user edits the field labels to make them a
bit more readable, and sorts the companies by their lobbying to-
tals. The underlying SQL column names can still be seen in the
field selector. The user also enables a formatting option on the last
column to produce a bar chart visualization. The result now looks
presentable:

While the LOBBYING relation that feeds into the aggregate for-
mula is now hidden, the user could easily make it visible again from
the field selector, like she did for the previously hidden PLANTS
and FEEDSTOCK fields. There are also shortcuts for unhiding hid-
den fields referenced from the formula, or the hidden filter, indi-
cated by the dashed cell icons ( ).

4. FORMATIVE USER STUDY
We conducted a formative user study with 14 participants (de-

noted A through N, 5 male, median age 42). 7 had experience with
SQL, 11 used Excel daily. In the first part of the study, done by
users A-I, users were given standardized tasks aimed at assessing
the initial learnability of our tool. No prior training was given;
instead, initial tasks were designed to act as training tasks for sub-
sequent ones. In the second part of the study, and as time permitted
during earlier sessions, users were given a chance to do more open-
ended tasks on datasets we provided. Here, we gave participants
demos and instructions for operating our tool, in order to gather

higher-level observations than would be possible during pure learn-
ing tasks. In this section we discuss a selection of observations
from our study; see our full paper [5] for more details.

Manual joins. Performing the lobbying query from Section 3.3,
most users moved through the manual join dialog quickly and cor-
rectly on their first attempt. Still, users preferred automatic joins
once introduced to them, see below. Users attempting the infla-
tion correction portion of the query had no problems with the join
against the CPI table; only users DG required a hint that they would
need to use the JOIN feature again.

Formulas. When first attempting to perform a sum aggregation,
users BCDE started by looking for an explicit sum action, as would
be found in Excel’s toolbar. Users CGK looked for an Excel-style
formula builder. Having eventually realized that they needed to in-
sert a calculated field and enter a formula themselves, users DEFK
had initial trouble learning how to physically enter the formula, try-
ing for example to enter the formula in an already-existing column,
or in the column header.

In Excel, sums can be produced either using formulas or pivot
tables. The two interfaces are largely separate, with users often pre-
ferring one or the other. Our system follows the formula approach.
Users CH commented that they thought of pivot tables when first
trying to compute a sum, while users BEI thought of pivot tables
during other tasks.

A significant difference between spreadsheet formulas and
SIEUFERD formulas is that the latter, like SQL queries, reference
entire columns of values rather than an explicit range of cells.
Users ABCFH expected this on their first attempts to insert a
reference in a sum formula. Users DEGN expected the spreadsheet
model, initially attempting to select a range of cells. A related
challenge was to understand the level at which a calculated field
should be inserted in order for sums to be grouped in the right way.
The fact that the position of a formula in the relation hierarchy
determines the grouping of aggregate functions is a further
deviation from the spreadsheet model, while the lack of an explicit
GROUP BY clause may be confusing to SQL users. User H tried to
specify the set of columns to group by in the aggregate function
itself, as in the formula =SUM([NAME],[AMOUNT]), while user F
tried to hide every field other than the one to be summed. User G
attempted to invoke the HIDE DUPLICATE ROWS action. Users
CFGH also tried placing the calculated field next to the value to be
summed rather than at the parent level. User G thought aloud:

“Wouldn’t it be fantastic if there was a way simply to operate at
that group level rather than these individual entries? [After creat-
ing a new formula at the correct level:] Is it doing it that way? Oh,
that’s perfect. ... That is meeting my heart’s desire. But I wouldn’t
have the cue for that.”

Despite initial difficulty with formulas in a training task, users
applied them quickly and accurately in a follow-up task, despite
the follow-up task requiring more steps. This suggests users are
able to apply formulas effectively after first learning them, but that
there is significant potential for improved learnability. We agree
with users AM, who suggested adding an explicit sum action like
that of Excel. This feature would automatically generate a sum
formula above the nearest one-to-many relationship, which would
then serve as an example to the user to learn from.

After initial learning, users appreciated the behavior of formulas.
Users CEGK noted explicitly that the behavior of aggregate func-
tions, including grouping and subtotaling behavior, made sense.
Users ILK also commented that the all-column nature of formula
references made sense and was an advantage over Excel’s range-
style references. User K noted:

“I just feel like I have a truer sense of what I’m adding up, or
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what’s being considered in this format vs. the traditional Excel.
Because [in Excel] you could be pulling from the wrong places,
you can be getting weird numbers, you could accidentally hit a
field that now ends up in your calculation.”

Field selection; automatic joins. Working on the course catalog
dataset that was seen in Section 3.2, users were generally able to
use the automatic foreign key join feature without trouble. The
exception was user N, who had a hard time because of the lack
of visible indications in the result area that more fields could be
shown. User G also noted this issue. Users IKN specifically looked
for an action named “Unhide”, like in Excel. This suggests that
our user interface needs a more visible affordance for accessing
hidden fields. We expect hidden fields to be far more common in
SIEUFERD than in Excel, since a typical database query projects
only a small subset of columns available from instantiated database
tables. The design of an improved unhide affordance should take
this into account.

Users EGHJKL reacted particularly enthusiastically to the
automatic join feature, using words such as “fantastic”, “wow”,
“damn”, and “amazing”. User E noted:

“Yes, the manual join made sense, but that was a very simple
situation. I wouldn’t want to have done the joins on this [more
complicated database]. The fact that I was just able to double-
click and expand it out, that meant, it dumbed the task down to the
level that I was happy performing it.”

5. CONTROLLED USER STUDY
In a second user study, we aimed to get a more precise idea

of how users might rate our system compared to an existing in-
dustry tool. We chose the “Query Design” facility of Microsoft
Access 2016 as a control. Being part of the Office Professional
suite, it is one of the most common visual query tools available.
It is also a good example of a query builder that uses a diagram-
based approach rather than direct manipulation of results (see Re-
lated Work).

The controlled study was a within-subjects counterbalanced
design, measuring usability using the System Usability Scale
(SUS) [9]. Tullis and Stetson [47] recommend sample sizes
of 12-14 users to get reasonably representative results from
within-subjects studies based on the SUS survey; we collected data
from 14 users (5 male, median age 36). 2 had prior experience
with the Access query designer, 6 had significant exposure to SQL.
2 used Excel daily, the rest weekly or monthly. We met with each
user for a single study session, structured as follows:

1. Complete demographic/background survey.
2. Briefly discuss the sample database that will be used for tasks,

consulting a schema diagram on paper. The paper diagram re-
mains available to the user during the tasks that follow.

3. Work through some standardized tasks to evaluate Tool 1. Stop
after about 20 minutes. The first tool is SIEUFERD for half of
the users and Microsoft Access for the other half, randomized.

4. Complete SUS survey for Tool 1.
5. Work through the same tasks in Tool 2, under otherwise identi-

cal conditions. Stop after about 20 minutes.
6. Complete SUS survey for Tool 2.
7. Discussion and feedback.

The standardized tasks [5], all done on the 7-table “Northwind”
example database that shipped with older versions of Microsoft Ac-
cess, are intended to be realistic examples of queries that a user
might want to run on such a database. They incorporate joins, fil-
ters, sorting, scalar calculations and aggregates, but are limited to
queries that can be expressed in Microsoft Access’ visual query

Table 2: Mean SUS survey results for the controlled study, us-
ing various standard scales. Higher scores are better. Error
bars show the standard error of the mean.

Scale Tool Score (0-100)
Raw SUS Access 50

10 20 30 40 50 60 70 80 90 100

Sieuferd 68
Learnability Access 49

Sieuferd 64
Usability Access 50

Sieuferd 69
Percentile Access 6

Sieuferd 52

designer; this excludes queries requiring nested results as well as
multi-block queries (e.g. aggregates used as inputs to other ag-
gregates). In both tools, we configured foreign key relationships
upfront so that the user would not have to manually specify exact
join constraints between tables. The first five tasks are guided train-
ing tasks, intended to expose the user to all features, in both tools,
that are needed to complete the subsequent unguided tasks. The
guided tasks tended to take about half of the 20 minutes that users
had available to try each tool. After the guided tasks, users were
asked to try solving four unguided tasks without help. Since the
main purpose of tasks was to give the user enough of an impression
of each system to complete the subsequent SUS survey, we gave
hints during unguided tasks whenever users reported being stuck.

The results of the study are shown in Table 2. The raw SUS score
is reported along with separate Learnability and Usability scores
as defined by Lewis and Sauro [34], as well as a percentile rating
among 30 other studies in the B2B (Business Software) category as
detailed by Sauro [42]. The difference in raw SUS scores between
Access and SIEUFERD is statistically significant (p = 0.0019 with
two-tailed paired t-test).

Interpreting the results, with the caveat that these observations
are based on only 20-minute interactions with each tool, we see that
SIEUFERD significantly outperformed Microsoft Access in terms
of usability. Most of the difference can be attributed to the poor
performance of Microsoft Access, considering its low ranking on
the percentile scale; SIEUFERD simply achieved an average rat-
ing compared to other business software. This supports the orig-
inal hypothesis of our paper: database querying is hard, but can
be made significantly easier using a direct manipulation interface.
SIEUFERD still has significant potential for improved usability. In
conversations with users, the main requests for future design im-
provements were (1) the ability to get an overview of the complete
database schema from within the query interface and (2) reduced
dependency on formulas during query building. This is consistent
with observations from the formative study.

6. CONCLUSION
SIEUFERD is a visual query system that achieves SQL-like

expressiveness from a pure direct manipulation interface.
Whereas previous direct manipulation systems either sacrifice
expressiveness or hide the actual query from the user, SIEUFERD
integrates the query and its result into a single interactive
visualization, using spreadsheet concepts like filters and formulas
to expose the complete state of the current query. Compared with
the diagram-based query designer of Microsoft Access 2016,
users greatly preferred our direct manipulation interface, with the
latter scoring 46 percentiles higher on a SUS-based percentile
scale. In future work, we hope to incorporate editing of data
in our system; this will allow SIEUFERD to act as a complete
schema-independent end user front-end for relational databases.
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ABSTRACT
Data discretization methods are usually evaluated in terms
of technical criteria that are related to some specific data
analysis goal like the preservation of variable interactions. In
this paper, we provide a different evaluation principle that
assesses the quality of a chosen discretization as the degree
to which it coincides with human intuition. This is moti-
vated from the setting of interactive exploratory data anal-
ysis where discretizations should be simple, self-explanatory,
and fix across results in order to reduce the cognitive load
on the user. We present a study design for measuring the in-
tuitive discretization choices of a general human population
for a set of discretization problems and present the results
of a study trial that we performed with 153 respondents
and four problem classes—each using the categories “low”,
“normal”, and “high”. Through this trial, we evaluated eight
discretization methods from three families: range-based dis-
cretization, count-based discretization, and clustering-based
discretization. Our results partially confirm results from
Cognitive Linguistics that assume prototype-based catego-
rization, which is most closely resembled by clustering-based
methods, as a predominant human discretization mecha-
nism. They also show, however, an affinity of participants
to sometimes compromise cluster quality in favor of approx-
imating certain category proportions.

1. INTRODUCTION
Metric measurements, i.e., numerical data adhering to

an interval or a ratio scale, are ubiquitous in real-world
data analysis. Yet, many analysis algorithms require at
least part of their input data in the form of simple binary
features (e.g., Subgroup Discovery [Atzmueller, 2015], Re-
description Mining [Parida and Ramakrishnan, 2005], and
various data summarization techniques [Wille, 2005, Vreeken
et al., 2011, Geerts et al., 2004]). This is why the data min-
ing and statistics literature provides a wide range of data
discretization techniques that can be used for producing
such features from metric input (see, e.g., Kontkanen and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD 2016 Workshop on Interactive Data Exploration and Analytics
(IDEA’16) August 14th, 2016, San Francisco, CA, USA.
c© 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

Myllymäki [2007], Chapeau-Blondeau and Rousseau [2009],
Nguyen et al. [2014]). Usually these techniques are evaluated
solely from the technical perspective of how well they retain
properties of the original data distribution and/or how they
affect the performance of specific data analysis algorithms.
In this paper we provide the complementing evaluation per-

Figure 1: Two data analysis results produced by
different algorithms in Creedo [Boley et al., 2015],
both of which use the self-explanatory symbol “un-
employed=high”; it is desirable that symbol has fix
definition across results and that this definition is
intuitive, i.e., approximately coinciding with user’s
category “high” (were she to know the distribution
of “unemployment”).

spective of intuitive linguistic discretization in which
one asks how well is a discretization enabling an effective
interaction between computer algorithms and human users
as well as facilitating a discussion of algorithmic findings
among humans.

This perspective is relevant whenever algorithmic results
are supposed to be interpreted by humans; especially when
there are many such results as it is characteristic for ex-
ploratory data analysis and pattern discovery tasks. For ex-
ample, consider a data scientist operating an interactive pat-
tern discovery suite (e.g., MIME [Goethals et al., 2011], Cor-
tana [Meeng and Knobbe, 2011], or VIKAMINE [Atzmueller
and Lemmerich, 2012]). Typically, the scientist would run a
number of data analysis algorithms with different parameter
settings, the results of each of which she would investigate
and compare with one another. Finally, she would distill
out the most important findings for further discussion with
her peers. From this scenario we can derive several desirable
properties for discretization:

1. Since the results of different methods and different pa-
rameters should be comparable to one another, we
want a stable and generic discretization that works
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reasonable well for various tasks and typical analysis
methods. This is in contrast to discretizations that are
optimized for one specific setting as it is the case for
supervised discretization techniques.

2. Moreover, the discretization should be self-explanatory
in order to reduce the cognitive load of the data scien-
tist. That is, we are looking for a discretization that
summarizes metric variables in a comprehensible way
through a small number of linguistic terms like “low”,
“normal”, and “high”.

3. Finally, the discrete symbols should be intuitive. That
is, ideally the symbols’ definitions approximately cor-
respond to those that humans would instinctively pick
themselves to talk about the data domain among each
other.

Fig. 1 summarizes these criteria for an exemplary result set
produced by different pattern discovery algorithms. Based
on requirements 1 and 2, we think of an abstract (exact) lin-
guistic discretization problem as: given a sample S of
values of a metric variable defined on a real interval X and
a set of k ordered linguistic quantification categories, find
k − 1 cut-off values in X that separate the given categories
for that variable. Based on requirement 3, we say that a
discretization given by a set of cut-off values is intuitive if
it tends to be close to the set of cut-off values that users of
a desired target audience would pick themselves had they
to make their choice purely based on the sample S (as op-
posed to concrete linguistic discretization tasks where prior
information about the variable is available). In this arti-
cle we investigate empirically the degree to which common
discretization approaches exhibit this form of intuitiveness.

Studying the precise mechanism of human discretization
is a profound topic with connections to Linguistics (where it
is referred to as categorization, see Taylor [2003] and refer-
ences therein) as well as Cognition and Neuroscience (e.g.,
Dehaene et al. [1998, 2008]). Here, we generally take on a
rather naive point of view and simply propose to test how
well algorithmic discretization of quantities aligns with hu-
man categorization while staying agnostic about the precise
mechanism that governs it. A particular interesting propo-
sition from Cognitive Linguistics [Evans, 2007], that we take
up here, is that the predominant mechanism for human lin-
guistic discretization is based on prototypes (going back to a
seminal work of Rosch [1973] in Cognitive Psychology). This
proposition says that categories are associated with typical
representative members (and that there can be values that
are not a real representative of any category). In Computer
Science this intuition was formalized as fuzzy linguistic dis-
cretization through fuzzy logic (see Ishibuchi et al. [2006]
and references therein). This approach, however, requires
specific analysis and model induction algorithms. Here we
are interested in a general purpose preprocessing method,
and, hence, we focus on traditional interval-based (or ex-
act) discretization methods. Among those, clustering-based
methods come closest to the idea of prototype-based cat-
egorization. Therefore we put a special emphasis on the
evaluation of those methods.

To summarize the contributions of this paper: firstly,
we develop a study design for measuring the intuitive dis-
cretization choices of a general target audience and that
therefore operationalizes all of the theoretical concepts men-
tioned above. Secondly, we report results that have been

generated with this design through an open study trial in-
volving 153 participants that was particularly targeting the
general categories “low”, “normal”, and “high”. Our findings
partially confirm the prototype-based proposition, but also
show that it is violated when the distribution of the input
sample is spread out too uniformly. In particular, we ob-
served an affinity of participants to sometimes compromise
cluster quality in favor of approximating certain category
proportions.

Figure 2: Cut-off values of geometric-width dis-
cretization for k = 7 and X = [0, 1] or the quantiles of
geometric-frequency labeling for k = 7.

2. FORMAL DISCRETIZATION
METHODS

In this section we define the formal discretization methods
that we want to evaluate. First, however, we need to fix some
basic notation. Let X = [a, b] ⊆ R be the real interval given
by the upper and lower bounds a, b ∈ R, respectively. We are
interested in categorizing elements of X into a fixed number
k of ordered discrete categories K = {1, . . . , k}. To a human
user these categories would be presented as interpretable
words like {extremely low, very low, . . . , extremely high}. A
discretization of X is a function c : X → {1, . . . , k} given
by k − 1 cut-off values c1 < c2 < . . . , ck−1 through c(x) =
min{i : ci ≥ x}. An (empirical) discretization method
maps finite samples S ⊆ X to a uniquely defined discretiza-
tion. As a convention we define as S = {s1, . . . , sn} with
si ≤ sj for i < j. Many discretization methods actually
only yield a labeling1 l : S → K of the given sample rather
than cut-off values on the real interval. For those cases, we
consider the canonical discretization of a labeling l as the
one given by the cut-off values

ci = (max{s ∈ S : l(s) = i}+ min{s ∈ S : l(s) = i+ 1})/2 ,

for i ∈ {1, . . . , k − 1}. That is, cut-off values are defined as
the arithmetic mean between the extreme values of adjacent
category labels.

The first and most simple family of discretization methods
that we consider are ranged-based methods that define
cut-off values as a simple function of the underlying interval
(sample-independent variant) or the range of the given data
sample (sample-dependent variant). The simplest member
of this family is sample-independent equal-width dis-
cretization, which is given by the cut-off values

ci = a+ i(b− a)/k

for i ∈ {1, . . . , k − 1}. For sample-dependent equal-
width discretization the smallest and the largest sam-
ple element are used in place of the interval boundaries a
and b, i.e., cut-off value i is defined as s1 + i(sn − s1)/k.
While these methods are very simple to define, depend-
ing on the given category names, both of these approaches

1Labelings resulting from discretization methods of course
must be monotone, i.e., l(s) ≤ l(s′) if s ≤ s′.
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(a)

(b)

Figure 3: Example populations of cups (a) and sun-
glasses (b) for the prize narrative in the study trial.

can be counter-intuitive: for example for “high”, “normal”,
and “low” they set the normal range to be of equal size as
the two extreme ranges. Therefore, for an odd number of
categories k > 2, we define sample-dependent and sample-
independent geometric-width discretization as alterna-
tive range-based approaches that cut the range into increas-
ingly fine pieces when approaching the interval (or sample)
borders. That is, for the sample-independent variant, the
cut-off values are defined as

ci =


b− (b− a)g(k−1)/2−i+2, for i ≤ k/2
a+ gi−(k−1)/2+1, for k/2 < i < k

1, for i = k

with the geometric sums gm =
∑m

j=1 2−j , and for the sample-
independent variant, a and b are again replaced by s1 and
sn, respectively. See Fig. 2 for an illustration.

As a second family of discretization methods we consider
frequency-based discretizations. Those methods deter-
mine labelings based on desired counts of data values per
category and are indifferent to the metric proximity between
values. Technically, these labelings are most conveniently
defined through the sample quantiles q(α) = min{si ∈
S : i/n ≥ α} for α ∈ [0, 1]. A sequence of fractions α1 <
α2 < · · · < αk = 1 gives rise to a labeling l(s) = min{i ∈
K : p(αi) ≥ s}. The most well-known instantiation of this
scheme is equal-frequency labeling, which uses the set of
equidistant quantiles given by αi = i/k for i ∈ K. Again
it can be linguistically somewhat counter-intuitive when all
categories contain an equal number of sample values. For
“low”, “normal”, and“high”, this would imply that only a mi-
nority of data-values is considered “normal” and two third
are either “high” or “low”. To address this issues, for odd
k > 2 we again define a variant based on increasingly re-
fined categories (this time in terms of the quantiles), that
we refer to here as geometric-frequency labeling. It is
given by the fractions

αi =


1− g(k−1)/2−i+2, for i ≤ k/2
gi−(k−1)/2+1, for k/2 < i < k

1, for i = k

where gm denotes the geometric sum as above.
As a final family of discretization methods we consider

clustering-based methods. These methods determine a
labeling based on a set of k reference values R ⊂ X, each
of which is the representative for one of the categories. As-
suming that R consists of the elements r1 < r2 < · · · < rk,
the resulting labeling is then defined by l(s) = i where ri is

a reference value that minimizes |s − r| with r ∈ R (break-
ing ties, e.g., by using the minimal such value). Naturally,
one wants to use the set of reference values that are closest
to their associated sample values. If one uses the sum of
squared differences,

∑
s∈S(rl(s) − s)2, to measure this close-

ness, this approach yields k-means-based labeling (the
mean of a set of values minimizes the sum of the squared
distances). Since the reference values in this approach can
be arbitrary elements of the underlying interval X they are
susceptible to outlying sample values, which can lead to
counter-intuitive discretizations. This can be addressed by
using the reference values that minimize the sum of absolute
errors,

∑
s∈S |rl(s) − s|. Since, the sum of absolute errors of

a set of values is minimized by any median value of that set,
this variant is called k-medians-based labeling.

3. EMPIRICAL DESIGN
In this section we develop the study design (empirical

method) for comparing formal discretization methods to dis-
cretization performed by humans. This includes a question-
naire for posing abstract discretization tasks to a general
audience, a set of discretization tasks as re-usable test cases
for the given as well as for follow-up studies, and measures
for the quantification of the similarity of human and formal
discretization results.

3.1 Questionnaire
The purpose of the questionnaire is to gather data from

members of a general target audience on how they intuitively
perform abstract linguistic discretization tasks. This mea-
surement problem entails a central difficulty. While poten-
tial participants are used to perform intuitive discretization
for concrete variables, it is likely to not work as intended to
directly pose to them an abstract task about an unknown
variable: it would trigger a formal approach to the problem
and/or possibly yield a low engagement with the task and
consequently relatively arbitrary answers.

Therefore, the key idea of our questionnaire design is to
decorate the abstract tasks with concrete narratives of tan-
gible variables from everyday life. The trick is that we use
variables that have a value distribution which greatly de-
pends on the specific sub-population they are defined on,
and then to leave the sub-population ambiguous—with the
given sample as the only means to infer it. This way the
task has to be solved factually with the same information as
the underlying abstract task. Of course, the given narrative
might still influence the responses. It is therefore advisable
to use multiple narratives so that their effects cancel out
when averages over the whole result set are taken.

In our study trial, we opted for two narratives: prices of
products and ages of humans. For both variables, one is used
to heavily alter the usage of quantification terms across dif-
ferent classes of products and groups of people, respectively.
For instance, even a “very low” price for a TV set is likely
to be considered “high” if it were the price of a light bulb.
Similarly, the age of a “young” high-school teacher would be
considered “older” for a college student. The questionnaire
design emphasizes this sub-population dependency by intro-
ducing the narrative with two named and labeled example
populations that show a contrasting variable distribution.
In our study trial, we used for the prize narrative the ex-
amples of cups and sunglasses (see Fig. 3) and for the age
narrative the examples of members of a fencing team and
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In different contexts numbers can have different interpretations.
What you consider [example category 1] in one case, you might
consider [example category 2], or [example category 3] in
another. Consider the image below of a set of [example popu-
lation 1]. The number underneath each [population member]
shows [variable] in [unit]. The labels below the picture show
an exemplary categorization of the numbers into [category list]
that you perhaps would roughly agree to in the context of this
set.

[image of population 1 with variable labels]
[example cut-off points 1]

Now compare this categorization into [category list] to the next
categorization for [variable] of [example population 2]. De-
spite being different, each of the categorizations make sense in
their respective set.

[image of population 2 with variable labels]
[example cut-off points 2]

Text 1: Leading text of questionnaire, which introduces
narrative along with example populations.

the inhabitants of an elderly housing facility. In the ques-
tionnaire, images of the example populations are embedded
into an introductory text that explains the sub-population
dependence of the linguistic terms. The verbatim text-frame
is given in Text 1.

Following this introductory passage, a number of actual
discretization tasks is presented to the participant. In order
to support the narrative, the sample values are embedded
into images that depict anonymous populations for the vari-
able. For the two narratives in our trial those images are
given in Figs. 4 and 5, respectively. The tasks are intro-
duced with the instruction text given in Text 2. Note that
we do explicitly mention the possibility of choosing cut-off
values that are not part of the given sample itself. This pos-
sibility can be further emphasized by using this option in
the example discretizations.

In summary the proposed questionnaire design allows to
pose a number of abstract linguistic discretization tasks to
participants from a general population by decorating them
with a concrete narrative. It is required that all tasks on one
instance of the questionnaire use the same linguistic cate-
gories and that their sample ranges match the chosen nar-
rative. This might require to rescale some of them. In the
next subsection, we discuss these and other issues abounding
when creating a full study design around this questionnaire.

Figure 4: Task image for age narrative.

In this short survey, we ask for your opinion on what means [cat-
egory list] in the context of three anonymous groups of [pop-
ulation type]. Underneath each of the images below, please
fill into the designated boxes what you consider [category list].
Note that you can fill in numbers that do not occur in the sample
itself. When you are done, please do not forget to click the submit
button. Thanks a lot for your participation.

[image of task 1]
[input fields for cut-off values]

. . .
[image of task z]

[input fields for cut-off values]

Text 2: Instructions and task part of questionnaire.

3.2 Discretization tasks
When setting the discretization tasks for the study, there

are two components that have to be defined more or less
independently: the linguistic categories to be used as well
as the actual numerical samples. Regarding the first com-
ponent it is important to note that the validity of any re-
sults of the study, when interpreted strictly, is tied to the
specific quantifiers used. Although certain insights can ar-
guably be transferred between different category sets, it is
generally unclear whether the human expectation for appro-
priate interval sizes varies depending on if they are called
“low”, “normal”, and “high” or, e.g., “reduced”, “moderate”,
and “increased”. Similarly, quantifiers for specific kinds of
variables, e.g., “long” for length, might carry their own ex-
pectational bias and may be not fully compatible to their
generic counter-parts.

In the given instantiation of the study design we choose
to focus only on categorization into

K = {“low”,“normal”,“high”} .

The rational for this choice was that these are the per-
haps most widely applicable quantifiers for numerical val-
ues. Moreover, using three categories arguably constitutes a
pareto-optimal choice when trading off the interpretability
of the categories (individually and jointly) and their accu-
racy in representing the underlying numerical range.

Turning to the samples, the goal is to have a diverse set
of tasks which is likely to allow to differentiate between the
different discretization methods even with a relatively small
number of values. On the one hand, for the aim to have
a consistently high response quality it is desirable to work
with small samples. The larger the sample size the more
variation is likely to occur among participants in the degree
to which they fully process individual sample values. On the
other hand, the smaller the sample the lesser the results are
likely to generalize to realistic sample sizes in Data Analysis.
In particular, seven plus/minus two apparently constitutes a
phase transition between the usage of different mental pro-
cessing mechanisms according to the classic result of Miller
[1956]. Therefore, in the given study we use the sample
size |S| = 12 throughout all discretization tasks. Moreover,

Figure 5: Task image for prize narrative.
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Task Class Sample c1 c2

a) Uniform {5, 18, 24}, {30, 32, 32, 50}, {70, 75, 87, 91, 95} 25 70
b) Normal {1, 7, 21}, {39, 42, 50, 53, 54, 60}, {76, 85, 97} 25 65
c) Exponential {40, 42, 42, 43}, {47, 47, 48, 48, 53}, {62, 70, 74} 45 60
d) Mix {4, 6, 8, 10}, {22, 23, 24, 25, 28}, {37, 49, 56} 11 35

e) Uniform {15, 27, 27}, {31, 35, 37, 51, 53, 54}, {80, 81, 90} 30 70
f) Normal {31, 31, 35, 39}, {77, 79, 82, 82, 82}, {93, 93, 98} 40 90
g) Exponential {24, 24, 34}, {41, 43, 46, 49, 56}, {63, 64, 65, 81} 35 63
h) Mix {1, 3, 7}, {20, 30, 37, 37, 38, 39, 44}, {55, 68} 18 46

Table 1: First two group of samples generated for task classes in study trial with median cut-off values of
respondents. Underlined sample elements show discrepancy of resulting labeling with k-medoids.

in order to fit our narratives, we scale the variable range to
X = [0, 100] but, again in order to reduce the cognitive bur-
den of the participants (and thus reduce variation in result
quality) we work with rounded samples S ∈ {1, . . . , 100}∗.
In particular, we remove 0 from the sampling range in order
to maintain the intuition of the price narrative.

For generating the samples, we define four classes of
discretization tasks—uniform, normal, exponential, and
mixture—based on four continuous random variables with
probability density functions puni, pnrm, pexp, and pmxt, re-
spectively. A discretization task for a class with pdf p is
then generated by drawing a sample of 12 independent re-
alizations of the rounded and truncated version of the cor-
responding random variable, i.e., using the probability mass
function

f(n) =

∫ n

n−1

p(x)/Z dx

for n ∈ {1, . . . , 100} with Z =
∫ 100

0
p(x) dx. The formal

definitions of the continuous pdfs are as follows.
Uniform is simply defined by the uniform pdf puni(x) = 1

for x ∈ [0, 100]. For a task from this class we do not expect
significant value clusters to appear. Hence, there might be a
tendency among participants to resort to simpler principles
than clustering-based discretization.

Normal is defined through pnrm(x) = φM,S(x), i.e., the
Gaussian pdf with uniform random mean M and standard
deviation S drawn from [0, 100]. Tasks from this class are
likely to show a central tendency towards a random mean.
Hence, it can be expected that human assignment of “nor-
mal” will reflect that tendency in contrast to the sample
independent range-based discretization methods.

Exponential is defined by p(x) = O +R exp(−Rx) with
a uniform random offset term O from [0, 50] and a uni-
form random rate parameter R from [0.2, 0.8]. Tasks from
this class are expected to have a highly skewed distribution,
which should render symmetric range-based discretizations
counter-intuitive.

Mixture is defined by p(x) = φM1,S1(x) + φM2,S2(x) as
the mixture of two Gaussians with uniform random means
and standard deviations as defined for the class normal.
Samples from this class are expected to be bi-modal with
a high, a low, and normal range around each mode. This
is generally hard to reflect adequately with three categories
only, but it is to be expected that count-based and clustering-
based approaches can find reasonably intuitive compromises.

3.3 Evaluation measures
After designing the test discretization tasks as well as a

questionnaire for querying human solutions to these tasks,
it remains to define how we want to compare the discretiza-
tions produced by formal methods with those of the study
participants. We will do this on two levels of resolution: on
the first, we just compare the discretizations in terms of how
they label the given sample; on the second, we measure the
difference of the actual cut-off points.

Figure 6: Sample displacement risk per method over
all tasks in study with 95%-confidence intervals.

Let c and d be two discretizations of the range X = [a, b]
using the categories K = {1, . . . , k} and S ∈ X∗ be a finite
sample of X. Independent of whether we want to quantify
the difference between c and d through their cut-off values
on the whole range X or just in terms of how they label
the elements of S, we first have to fix the displacement
loss between two categories, i.e., how much we consider it
harmful to use a category j in place of the true category
i. For that we propose to use the relative difference of the
category numbers l(i, j) = |i− j|/(k−1) (we normalize here
with k − 1 rather than k so that l reduces to the 0/1-loss
when k = 2).

When evaluated on all category pairs abounding from ap-
plying c and d to the sample S, this loss function leads to
the sample displacement loss for discretizations defined
by

lS(c, d) =
1

|S|
∑
x∈S

l(c(x), d(x)) .

As described above, this measure considers the categoriza-

26



Figure 7: Interval displacement risk per method
over all tasks in study with 95%-confidence inter-
vals.

tions as mere labelings of the data sample and, beyond that,
does not reflect how the discretizations differ when viewed
as linguistic categorizations of the underlying domain. For
that purpose we define the interval displacement loss

lX(c, d) =
1

b− a

∫
x∈X

l(c(x), d(x)) dx

which quantifies disagreement between the discretizations
in terms of the size of the underlying domain-pieces with a
certain displacement. This integral can be simply computed
as the sum of the piece-wise constant losses on the intervals
resulting from cutting X with all cut-off values in c and d.

Now assume we have a bag of study results R consisting of
pairs of samples and discretizations {(S1, d1), . . . , (Sm, dm)}
where discretization di is the result of a respondent for the
task involving sample Si. For a discretization method m :
X∗ → (X → K) we can then determine its empirical sam-
ple displacement risk as

rR =
1

R

∑
(S,d)∈R

lS(m(S), d) .

Given that the set of respondents and the set of tasks is rep-
resentative for some larger population of tasks and users of
interest, this empirical risk will approximate the real popu-
lation displacement risk (defined through the expected loss-
value over this population) for the method m. Switching to
the interval displacement loss, we can define similarly the
empirical interval displacement risk based on a set of study
results as well as the underlying population displacement
risk.

4. RESULTS
In this section we report the results of an open online

study trial2 using the design developed in Sec. 3. The trial
was conducted over the course of 10 days with a total of
153 respondents. We advertised the study through a call for

2All results can be downloaded from http:
//www.realkd.org/wp-content/uploads/2016/05/
discretization-study-results.csv

participation that was published via internal mailing lists of
6 academic institutions from 4 different countries (UK, Ger-
many, Finland, and Israel) as well as through social media
in 3 different networks (Facebook, LinkedIn, and Google+).
The call encouraged participants to re-share the invitation
for participation with potentially interested colleagues and
friends. Hence it was a convenience- and snow-ball sam-
pling scheme of participants with the goal to maximize the
number of responses—sacrificing control over the participant
demographics.

For the same purpose and also to ensure an as high as pos-
sible quality of responses, we intended to keep the expected
time and attention for participation low. Hence, we settled
to issue only 3 discretization tasks per participant. More-
over, since this was the first study of this kind, we wanted
to be able to meaningfully inspect the results, in particular,
the chosen cut-off values for each of the generated tasks. For
that reason we opted for a task sampling scheme that gen-
erates a certain number of repetitions per sample (for each
narrative). In more detail, we iteratively fixed groups of 4
random tasks (one per task class). Three tasks of a group
were then issued to each requested questionnaire uniformly
at random (decorated by a random narrative) until each
task in the group (for each narrative) received at least 25
responses. Only then a new group was generated. Thus, we
traded off representativeness for the individual task classes
for an attempt to acquire confident estimates of preferred
cut-off values per sample. See Tab. 1 for a list of all samples
for which the full number of responses was reached along
with the median respondents’ cut-off values.

4.1 Overall Outcome
Aggregating over all trial results, i.e, all responses for all

discretization problems, the following picture emerges for
the empirical sample displacement risk (see Fig. 6 and also
Tab. 2, upper portion, row “all”). There are three meth-
ods leading the field: k-medoids-based labeling (risk3 of
apprixmately 0.0839 ± 0.0083), geometric-frequency label-
ing (0.0876±0.0073), and k-means-based labeling (0.0904±
0.0089). While the results do suffice to confidently separate
this group from the rest of the methods, they are insufficient
to confidently separate them from one another. The next
group consists of equal-frequency labeling (0.1067± 0.0069)
and sample-dependent geometric-width labeling (0.1193 ±
0.0095). The remaining range-based methods are at the end
of the spectrum with a small but significant advantage for
sample-dependent equal-width (0.1494± 0.0109).

Turning to the interval displacement risk (see Fig. 7 and
Tab. 2, lower portion, row “all”), the first observation is
that the magnitude of empirical loss values is somewhat and
their variation is notable smaller as for the sample displace-
ment risk. Consequently we have smaller confidence inter-
vals. The ranking of the methods are slightly shifted with
geometric-frequency labeling (0.0729± 0.0058) now leading
confidently in front of the following group consisting of k-
medoids-based labeling (0.0898±0.0063), k-means-based la-
beling (0.0931±0.007), and labeling based on equal-frequency
(0.0974± 0.0067). At the end of the field we have again the
range-based methods. Out of those methods, just as with
the sample displacement risk, sample-dependent geometric-
width performs best. However, for the interval displacement

3We give all risks here rounded to 4 digits with α = 0.95
two-sided confidence intervals.
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si equal-width sd equal-width si geom.-width sd geom.-width equal-freq. geom.-freq. k-means k-medoids

sample displacement risk
normal 0.1439 ± .0225 0.1150 ± .0188 0.1791 ± .0282 0.1150 ± .0188 0.1129 ± .0137 0.0916 ± .0177 0.0789 ± .0185 0.0789 ± .0185
exponential 0.1684 ± .0214 0.2419 ± .0168 0.2097 ± .0252 0.2216 ± .0152 0.1201 ± .0177 0.1019 ± .0156 0.0875 ± .0169 0.1078 ± .0154
uniform 0.1342 ± .0151 0.1988 ± .0170 0.0841 ± .0129 0.0844 ± .0121 0.1131 ± .0108 0.0910 ± .0126 0.1571 ± .0160 0.1074 ± .0161
mixture 0.2515 ± .0213 0.0413 ± .0124 0.2279 ± .0181 0.0498 ± .0111 0.0796 ± .0093 0.0649 ± .0091 0.0413 ± .0124 0.0410 ± .0124
all 0.1742 ± .0110 0.1494 ± .0109 0.1765 ± .0123 0.1193 ± .0095 0.1066 ± .0069 0.0876 ± .0073 0.0904 ± .0089 0.0839 ± .0083

interval displacement risk
normal 0.1254 ± .0125 0.1788 ± .0184 0.1240 ± .0132 0.1509 ± .0161 0.1410 ± .0162 0.0898 ± .0147 0.1160 ± .0168 0.1160 ± .0168
exponential 0.0792 ± .0102 0.1927 ± .0145 0.1427 ± .0126 0.1719 ± .0099 0.0730 ± .0114 0.0559 ± .0103 0.0557 ± .0105 0.0718 ± .0093
uniform 0.0941 ± .0110 0.1340 ± .0113 0.0800 ± .0113 0.0892 ± .0108 0.0954 ± .0121 0.0876 ± .0119 0.1420 ± .0114 0.1104 ± .0106
mixture 0.2272 ± .0110 0.0680 ± .0073 0.2280 ± .0108 0.0576 ± .0066 0.0782 ± .0080 0.0585 ± .0061 0.0607 ± .0081 0.0607 ± .0081
all 0.1310 ± .0077 0.1448 ± .0082 0.1439 ± .0078 0.1189 ± .0072 0.0974 ± .0067 0.0729 ± .0058 0.0930 ± .0070 0.0898 ± .0063

Table 2: Empirical sample displacement and interval displacement risks with 95% confidence intervals—taken
over all tasks and per task class. All numbers are rounded to 4th digit after decimal point.

risk, its confidence interval has a slight overlap with the
sample-independent equal-width method.

4.2 Outcome per task class
When looking at the results per task class (see Tab. 2),

one can make some notable observations specifically when
looking at the performance of the clustering-based methods.
Both, k-means and k-medoids, are the best or among the
best methods in all task classes but uniform. Here, k-means
is the second worst with respect to sample displacement risk
and the worst with respect to interval displacement risk. No-
tably, k-medoids performs more robust for this task class,
while its ranks (4 and 6, respectively) also deviate sub-
stantially from the ranks it achieves for the other classes.
In contrast to clustering-based methods, range-based dis-
cretization in the form of sample-independent and depen-
dent geometric-width, are specifically strong for the uniform
tasks. They are also competitive for mixture but perform
both weakly for normal as well exponential.

Finally, we can observe that geometric-frequency performs
consistently well across all problem types independent of the
risk functional. In fact, for the interval displacement risk it
performs best or at least not significantly worse than the best
for all classes. Interestingly, when looking at the median
cut-off values for all individual samples for which a large
number of responses was generated (Tab. 1), we can see that
there is only one sample (uniform sample ‘k’) for which the
labeling of the median respondents’ cut-off points disagrees
substantially with k-medoids and two more (samples ‘g’ and
‘h’) where there is a minor disagreement. In all these cases,
the respondents’ median labeling has category frequencies
closer to the geometric frequencies (0.25, 0.5, 0.25) than the
solution of k-medoids (there is a similar trend for ‘a’ and ‘g’,
where the median exactly respects the k-medoids objective,
but there is still a substantial number of respondents who did
not adhere to it and produced category proportions closer
to the geometric frequencies).

5. CONCLUSIONS AND OUTLOOK
With the presented study design we were able to gather

for the first time insights on the human expectation for dis-
cretizing numerical data into the discrete categories: “low”,
“normal”, and “high”, which are important categories, e.g.,
for providing a simple intuitive discretization in data anal-
ysis suites. Particular findings are:

1. Clustering-based methods appear to yield good results
essentially confirming the proposition from Cognitive
Psychology and Cognitive Linguistics, which says that

humans tend to perform categorization based on simi-
larity to category prototypes. It seems, however, that
this mechanism alone is not enough to fully replicate
human discretization choices for quantitative linguis-
tic categories (such as “low”, “normal”, and “high’). In
our trial we could observe a tendency to sometimes
deviate from optimal clustering-based solutions, pre-
sumably, in order to create more satisfying category
frequencies.

2. Particularly, for the chosen linguistic categories, a fre-
quency of 0.5 for the “normal” category, and a fre-
quency of 0.25 for the categories “low” and “high” each
appear to be attractive. This is testified by the fact
that the frequency-based method with these parame-
ters performed robustly well across different tasks.

3. Ranged-based methods that disregard the sample (or
almost disregard it except for the extreme values) ap-
pear to be too simplistic for robustly creating an in-
tuitive labeling and can not compete with the other
method classes. Hence, while the relative differences
of metric attributes seem to have a notable effect on
labeling decisions, the absolute scale of metric infor-
mation seems to be at most of minor importance.

Generally, we hope that the given work will open the door
for systematically deriving novel approaches for intuitive dis-
cretization and evaluating them with the proposed or a mod-
ified study design. Some open questions we consider to be
of particular importance are the following.

1. To what degree are the trends we discovered repre-
sentative for the underlying problem classes and for
specific target audiences. In the performed trial, rep-
resentativeness for task classes has been sacrificed for
more representativeness of the individual tasks, and
the population was mostly uncontrolled.

2. What is an intuitive mechanism for deriving precise
cut-off points from a given labelling? The given trial
data showed no clear trend of how human cut-off values
relate to their labelings.

3. Finally, the perhaps most interesting direction for fu-
ture research is to investigate to what degree the iden-
tified trends hold up for finer categorizations, e.g., into
“very low”, “low”, etc. and larger samples per task. A
particular question for the frequency-based methods is
whether the geometric proportions are really the ex-
pected continuation of the 0.25/0.5/0.25 scheme.
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ABSTRACT

Recently, deep learning has gained exceptional popularity due to its

outstanding performances in many machine learning and artificial

intelligence applications. Among various deep learning models,

convolutional neural network (CNN) is one of the representative

models that solved various complex tasks in computer vision since

AlexNet, a widely-used CNN model, has won the ImageNet chal-

lenge1 in 2012. Even with such a remarkable success, the issue of

how it handles the underlying complexity of data so well has not

been thoroughly investigated, while much effort was concentrated

on pushing its performance to a new limit. Therefore, the current

status of its increasing popularity and attention for various appli-

cations from both academia and industries is demanding a clearer

and more detailed exposition of their inner workings. To this end,

we introduce ReVACNN, an interactive visualization system that

makes two major contributions: 1) a network visualization mod-

ule for monitoring the underlying process of a convolutional neural

network using a filter-level 2D embedding view and 2) an interac-

tive module that enables real-time steering of a model. We present

several use cases demonstrating benefits users can gain from our

approach.

Categories and Subject Descriptors

H.2.8 [Data Visualization]: Convolutional Neural Network; I.2.6

[Artificial Intelligence]: Learning

General Terms

Algorithms, Design, Performance

Keywords

Deep Learning; Visualization; Convolutional Neural Network

1http://www.image-net.org/challenges/LSVRC/
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1. INTRODUCTION

Recently, deep learning has made major breakthroughs in many

machine learning problems such as computer vision [6] and speech

recognition [4]. A traditional neural network model is basically

composed of multiple layers, each of which contains multiple nodes

where each node is computed as a linear combination of nodes in

the previous layer, followed by a nonlinear transformation such as

a sigmoid, a tanh, a softmax function. However, neural network has

not been widely used until recently since it was difficult to train due

to the significant computing time, its sensitivity to initialization and

hyper-parameters, and other issues. Various treatments have been

proposed including dropout [9], batch normalization [5], and alter-

native nonlinear functions such as a rectified linear unit [8], which

successfully handled most of the existing issues.

Beyond the traditional model, the neural network structure has

evolved in various forms, leading to tremendous success in impor-

tant applications. Largely responsible for this recent success is con-

volutional neural network (CNN), a type of neural network suited

for real-world image classification tasks. Although convolutional

neural networks have been originally proposed by LeCun et al. [7]

back in the early 1990s, demonstrating an outstanding performance

in hand-written digit recognition, it was not widely used until 2012

when Krizhevsky et al. [6] achieved a superior performance on im-

age classification tasks in ImageNet challenge, using a deep archi-

tecture model of convolutional neural network. This propelled ma-

jor research movement towards creating variants in architectures

and improving algorithms for even higher performance. In just few

years, much progress has been made to the point of approaching or

even surpassing human abilities in various challenging tasks.

While making significant achievements, the understanding of un-

derlying processes in these models received less examination, and

the need for tools and techniques for exploring and understand-

ing the inner workings of these various models ensued. However,

complicated deep learning structures are difficult to understand.

Different types of layers such as convolution, pooling, and fully-

connected layers interact with each other, handling different parts

of data characteristics. Furthermore, each layer has different sets

of hyper-parameters to determine before training the model. Thus,

such a model selection process including setting the number of lay-

ers and nodes, and hyper-parameter values has not been intuitive

nor straightforward, leaving users with no idea about how to prop-

erly perform this process.

In addition, the significant amount of time required to train a

deep learning model has made the training process largely detached

30



from dynamic user intervention. For example, a recently proposed

model called ResNet [3], which is considered one of the state-

of-the-art models, takes days to weeks to train using ImageNet

datasets with the fastest graphics processing unit available.

In response, we propose a proof-of-concept visual analytic sys-

tem for allowing users to understand and steer a deep learning

model in real time during the training process. To the best of our

knowledge, our system is one of the first systems that visualize de-

tailed information about the model during the training process and

support dynamic user interactions with the model in real time.

In particular, the main contributions of this paper are summa-

rized as follows:

• Real-time visualization of how each node/filter in a deep learn-

ing model is trained, e.g., the stability of nodes/filters and the

relationships between them

• Real-time model steering by dynamically adding/removing

nodes and layers during the training process

The rest of this paper is organized as follows. Section 2 discusses

related work. Section 3 presents detailed description of our sys-

tem and its visual components. Section 4 presents usage scenarios.

Finally, Section 5 concludes our discussion with plans for future

work.

2. RELATED WORK

In this section, we discuss recent efforts towards interactive vi-

sualization of deep learning for its in-depth understanding and user

control.

Bruckner et al. [1] developed the system called deepViz, an in-

teractive visualization based on the timeline framework that shows

the heatmap representations of filters in each layer, the confusion

matrix, and the clustered images at different checkpoints for un-

derstanding and diagnosing the network. Zeiler and Fergus [12]

showed the practical application of a visualization system for the

diagnostic purpose by utilizing a feature inversion technique called

deconvolution to refine the model and further improve performances.

With the system that visualizes live activations in real time and fea-

tures at each layer, Yosinski et al. [11] made contributions to the

visualization of convolutional neural network by providing several

new regularization methods that produce qualitatively clearer visu-

alization of images.

More on the interactive visualization side, a web-based imple-

mentation, such as ConvNetJS 2, made training convolutional neu-

ral network possible in a browser using the Javascript library. In

addition, Bolei et al. [13] developed another web-based interface

where a user can select an activation of a particular data item at

a particular layer and check the highly activated nodes together in

the other layers.3 Harley et al. [2] visualized a convolutional neu-

ral network in a three-dimensional space where the network struc-

ture and the used images are shown simultaneously. Additionally,

Google’s TensorFlow library provides a graphical user interface

called TensorBoard4, which visualizes neural network as a compu-

tational graph where users can check the status of the trained model

and change the detailed configurations. More recently, Google

also made a web interface called TensorFlow Playground5 pub-

2http://cs.stanford.edu/people/karpathy/convnetjs/
3http://people.csail.mit.edu/torralba/research/
drawCNN/drawNet.html
4https://www.tensorflow.org/versions/r0.8/how_tos/
graph_viz/index.html
5http://playground.tensorflow.org/

licly available so that users can play with neural network models

using several toy data sets. On the other hand, NVIDIA developed

its own deep learning library and a web-based monitoring system

called DIGITS.6

Even with these various efforts, there exist significant room to

improve the interactive visualization aspects of deep learning mod-

els along with the recent advancement in this area. Among them,

real-time monitoring and steering of deep learning has not been

properly addressed, which is the focus of our system proposed in

this paper.

3. REVACNN: REAL-TIME VISUAL ANA-

LYTICS FOR CONVOLUTIONAL NEU-

RAL NETWORK

To empower users to dynamically monitor and interact with a

convolutional neural network in real time during its training stage,

we propose ReVACNN. In this section, we present (1) the system

overview, (2) the visualization modules for real-time monitoring

and steering of the model, and (3) the implementation details of

the proposed system. The front-end of our web-based system is

implemented using HTML, CSS, and Bootstrap. D3.js7 is used for

animating filters (‘jittering’) in the diagram. All the computations

are currently performed with Javascript in the browser on the client

side.

3.1 System Overview
The main goal of our system is to provide real-time steering ca-

pabilities in an easy-to-use manner. To this end, we decided to

build our proof-of-concept system based on Javascript-based deep

learning library called ConvNetJS.8 In contrast to other major deep

learning libraries such as Theano, Tensorflow, Torch, and Caffe,

ConvNetJS runs completely in an easily accessible web browser on

the client side, which is appropriate in visualizing dynamic changes

of deep learning models and responding immediately to user inter-

actions in real time. Note, however, that in exchange of such ease

of use and real-time interactivity, ConvNetJS that our system uses

lacks the GPU-based acceleration of computations that most of the

other major libraries offer. In the scope of the current paper, we

mainly investigate the real-time visualization capabilities for view-

ing and steering the deep learning process, using ConvNetJS as an

example. We leave the topic of integrating other libraries with our

real-time visual analytics system as future work.

In fact, our visual interface is built upon the implementation of

CIFAR-10 demo using ConvNetJS,9 as shown in Fig. 4, which uses

the CIFAR-10 dataset10 for object recognition. In addition, we de-

veloped additional capabilities of monitoring and steering the CNN

model in real time. In summary, the main functionalities of Re-

VACNN we added are as follows:

• Network visualization and configuration view. This mod-

ule provides users with a visual overview of the network and

more importantly, the ability to monitor the dynamic train-

ing process in real time. Moreover, users can modify the

network dynamically and incrementally, adding or removing

nodes and layers with simple “point-and-click” interactions.

6https://developer.nvidia.com/digits
7https://d3js.org/.
8https://github.com/karpathy/convnetjs
9http://cs.stanford.edu/people/karpathy/convnetjs/
demo/cifar10.html

10https://www.cs.toronto.edu/~kriz/cifar.html
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(a) Filters in conv1 layer (b) Filters in conv2 layer

Figure 1: Filter coefficients in AlexNet

(a) 1st convolution layer (b) 5th convolution layer

Figure 2: Activation maps in AlexNet [6]

• Filter-level 2D embedding view. This view shows the re-

lationships of individual filters/nodes at a particular layer as

a 2D embedding view. To generate such a view, we utilize

a t-distributed stochastic neighbor embedding (t-SNE) [10].

Using the vector representation of each filter, we allow users

to flexibly choose one among its filter coefficients, filter gra-

dients, its activation map of a particular image, and its activa-

tion gradient maps so that users can explore various aspects

of filters that are being trained.

The details of the above functionalities our system provides will be

further discussed in Section 3.2.

3.2 Network Visualization and Configuration
To facilitate the understanding of how each node/layer has been

trained, it is important that we directly interpret the filter coeffi-

cients, which correspond to the linear combination of coefficients

or weights assigned to different positions of pixels in an image.

In addition, given an image, an activation map corresponding to a

particular filter gives another insight from the perspective of how

much the filter gets activated depending on the image. For exam-

ple, Fig. 1 shows filter coefficients found in AlexNet. Since the

first-layer weights, as shown in Fig. 1a(a), are the filters directly

looking at the raw pixel data of an input image, their images are

often the most interpretable among the filters from all the other

layers. However, as layers deepen, their meaningful interpretation

becomes increasingly challenging. Fig. 1b(b) shows that the filters

found in the second convolution layer are too complex and vague

to be informative. Normally, an analysis of the first-layer weights

can help users recognize whether the network has been successfully

trained. Users can assess the success of training based on whether

trained filters have smooth transitions among them so that they can

capture as diverse patterns as possible. However, since such anal-

ysis relies on subjective judgment, it is clear that users need addi-

tional evidences to decide whether such argument is reasonable.

Additionally, Fig. 2 shows the activation maps found in the first

and fifth convolution layers. Clearly, it is difficult to make sense of

the activation maps in deeper layers because they are representing a

composite mixture of already complex patterns. Also, these activa-

tion maps are shown to be relatively sparse, which means that the

majority of pixels in these activation maps are mostly zero given

an input image. This indicates that they hardly get activated, which

may not be helpful in generating useful information. Nevertheless,

identifying those filters bearing these characteristics by just look-

ing at these activation maps is a difficult task. Our visualizations

approach helps users handle the task more easily.

3.2.1 Network visualization

As shown in Fig. 3, our network visualization module provides

users with a quick overview of the model. In addition, users can

gain insight from the dynamic evolution of the network during the

training process. In particular, among its various parameters rep-

resenting dynamic evolution of the network, our system highlights

how stable or converged each node is during the algorithm itera-

tions in the form of jittering animation of nodes. That is, those

nodes with a large amount of movements in their jittering anima-

tions indicate that they are being actively trained at a given moment.

The quantitative value to determine this amount is computed as the

magnitude of an average gradient back-propagated per each filter

coefficient in the corresponding node.

In addition, the path connecting two layers shows how input

images are being forward-propagated through the network layers.

That is, the thickness of a path corresponds to the sum of pixel val-

ues on a particular filter in the corresponding layer. Note that only

those whose values belong to the top 50% are configured to be vis-

ible in order to avoid a visual clutter in the visualization module.

This path visualization has additional benefit of helping users iden-

tify how convolution layers are outputting filtered images and most

importantly, which path influences the softmax layer responsible

for classifying an input image. From this visualization module,

users can also easily add or delete filters in the hidden layer with

simple “point-and-click” interactions, and the change in the model

is reflected in real time. The interactive feature helps to steer the

training process of the model.

3.2.2 Training statistics visualization

During training, the loss function serves as a clue for identifying

whether the network is properly trained. Thus, our module, shown

in Fig. 4, displays the training loss as a line chart. Users can keep

track of the temporal progress of the loss function. Since the batch

size is set as four by default, the loss is plotted each time as the av-

erage training loss of a batch of four input images. If the batch size

is modified by users, the loss chart also changes accordingly. In

addition, other statistics, such as training accuracy and validation

accuracy, are updated for each input image and shown to users for

an in-depth analysis. Other hyper-parameters such as the learning

rate, the momentum, the batch size, and the weight decay, can be

modified. To facilitate the understanding of how each node/layer

has been trained, it is important that we directly enables users to

observe changes in the training accuracy immediately. Using the

capability, users can properly adjust learning rates, batch sizes, and

momentum values when the network is stuck in an undesirable lo-

cal minimum.

3.2.3 Filter-level 2D embedding visualization
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Figure 3: Network visualization of ReVACNN

Figure 4: Training statistics view of ReVACNN

As described above, the filter coefficients and the activation maps

have frequently been the main subject of visualization when an-

alyzing a convolutional neural network. In our system, we ex-

plore them using their 2D embedding view computed by t-SNE. As

shown in the left side of Fig. 5, users can open up each layer panel

and observe the 2D embedding view of filter coefficients, filter gra-

dients, its activation maps, and the activation gradients at the corre-

sponding layer by clicking the radio button in the left pane. When

users change the network architecture and initiate training, the left

pane changes accordingly to reflect the model’s layer configuration.

This t-SNE view of the system provides users with the capabilities

of node-level as well as layer-level exploration. In the case of node-

level exploration, users can view the similarity between filter coef-

ficients and activation maps or even activation gradient maps in the

selected layer. In the case of layer-level exploration, the compari-

son of clusters of filter coefficients, the activation maps, the activa-

tion gradient maps between different layers can reveal insights for

understanding of the model and further diagnosis. The usage sce-

narios demonstrating the usefulness of this view will be discussed

in detail in Section 4.

4. RESULTS

In this section, we present two use cases demonstrating the ad-

vantage of our system to monitor and steer the deep learning model

in real time.

4.1 Real-Time Dynamic Model Configuration
In this section, we present four use cases where we can reveal

various insights from our filter-level 2D embedding view in which

a user can extract valuable insights about the model. In these use

cases, we used a CNN model, which has an input layer that takes

in 32× 32× 3 input images and three convolutional layers with a

filter size of 5×5 with the stride size of 1 and padding of 2 where

the three convolutional layers–each of which has 16, 20, and 20 fil-

ters, respectively–have both ReLU and pooling layers behind each

convolutional layer, finally followed by a softmax layer with ten

classes as the last layer of our network.

Cluster patterns. In general, neural network and deep learning

models are sensitive to initialization, hyper-parameters, and other

settings. Thus it is difficult to properly train the model so that it per-

forms reasonably well even for the training data. Our filter-level 2D

embedding view provides important insights about the characteris-

tics of a properly trained model. While training the above-specified

model, we checked the 2D embedding of filter coefficients at 30
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Figure 5: 2D embedding view of ReVACNN

(a) Clear cluster pattern (b) No cluster patterns

Figure 6: Comparison of cluster patterns of filter coefficients

(a) Improperly trained filters (b) Properly trained filters

Figure 7: RGB patterns of the first-layer filters

epochs where the accuracy was quite low, e.g., 0.32. In this case,

the 2D embedding view of filter coefficients shows a clustered pat-

tern among these filters, as shown in Fig. 6a(a). This indicates

that those filters belonging to a particular cluster capture some-

what redundant patterns from input data. In other words, they are

not trained well enough to extract diverse patterns from the train-

ing data. On the other hand, at 120 epochs where the accuracy

reaches 0.78, the 2D embedding view of filter coefficients exhibits

somewhat evenly distributed filters with no clear cluster patterns, as

shown in Fig. 6b(b). This example indicates an important charac-

teristics of a well-trained model that the diversity of trained filters

is generally desirable in achieving a greater classification accuracy.

RGB patterns. The first convolutional layer takes an input im-

age that has the depth of three RGB channels and generates each

filter that linearly combines all the three channels. Similar to the

previous case, when the model is not properly trained, i.e., show-

ing a low accuracy value, we found that a trained filter often re-

flects only a single color channel as opposed to a combination of

all the three color channels, as seen from all-blue colored filters in

Fig. 7a(a). However, as seen in Fig. 7b(b), when the model shows a

relatively good performance, each filter usually combines the infor-

mation from all the color channels. Based on such different RGB

patterns, one can infer that those filters that combine all the chan-

nels of the previous activation maps contribute to improving the

generalization ability of the trained model.

4.2 Steering
In this use case, we set up our model as follows: three convolu-

tional layers followed by ReLU and pooling layers after each con-

volution layer; 20 filters in each convolution layer (based on this

property, we call this model a ‘20-20-20’ model), with the filter

size of 5× 5; a fully-connected layer as the last layer. We trained

a ‘20-20-21’ model and found that this model does not train well,

and its loss function value does not go below 1.48, as illustrated

in Fig. 8a(a). On the other hand, we initially trained a ‘20-20-20’

model, which converged relatively fast and showed a much bet-

ter loss function value well below 1.19. Utilizing our interaction
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(a) 20-20-21 model trained from scratch

(b) 20-20-21 model generated after filter addition

Figure 8: Effects of dynamic filter addition

capability of dynamically adding a node during training in the net-

work visualization module, we added a filter after 15 epochs as the

loss function graph reached a plateau. Accordingly, the model was

dynamically changed from a ‘20-20-20’ model into a ‘20-20-21’

model while maintaining the currently trained model except for the

added filter. Finally, the resulting model still maintained a rela-

tively good loss function value, even experiencing a slight increase

in accuracy at times. Without this dynamic network configuration

process, the ‘20-20-21’ model, which is our target model, would be

more difficult to train from scratch. This shows the importance and

the value of dynamic network configuration in real time during the

training process.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed ReVACNN, a real-time visual analyt-

ics system for a convolutional neural network. It supports exploring

and steering the network by visualizing its layers and nodes. Ad-

ditionally, we provided a filter-level 2D embedding view by apply-

ing t-SNE to various filter information, such as filter coefficients,

filter gradients, the activation maps, and the activation gradients.

Through these capabilities offered by our system, one can obtain

in-depth information such as whether the network is trained prop-

erly or not as well as other insights about the trained filters. By us-

ing such information, one can flexibly steer the model and achieve

better performances.

As our future work, we plan to improve our work as follows:

Real-time monitoring between GPU and CPU. Currently, in

our proof-of-concept system, we relied on ConvNetJS, a Javascript-

based library for deep learning. However, other more scalable li-

braries run most of the intensive computations in GPU, which has

its own memory space separate from that of CPU. However, the

front-end monitoring system usually works on the CPU side, so

in order to truly achieve the real-time monitoring of the training

process, memory copy operations from GPU to CPU should be

frequently performed, which can degrade the computational effi-

ciency of the training process. To handle this issue, some partial

information could be selectively transferred based on a particular

criterion, e.g., only when the nontrivial amount of changes of a

parameter occur. Otherwise, multi-threaded syncing between the

memory spaces of GPU and CPU, which performs memory copy

operations only when the computing resource of GPU is available,

could also be another option.

Advanced dynamic steering capabilities. So far, we provided

the capabilities of dynamic node/layer addition/removal in our sys-

tem. However, many other advanced dynamic steering capabilities

could be developed. For instance, skipping some nodes/layers that

are already trained sufficiently can accelerate the subsequent opti-

mization steps. When nodes/layers are added/removed, their ini-

tialization could be carefully performed so that the newly added

nodes/layers can capture complementary information of data to the

existing nodes/layers. When removing nodes/layers, we could rec-

ommend those that have minimal impact to the overall performance,

e.g., a redundant node from clustered nodes. We may be able to de-

fine the criteria to determine such minimal effects in various ways,

e.g., the variable importance score of each node/layer.
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ABSTRACT
While clustering is one of the most popular methods for data min-
ing, analysts lack adequate tools for quick, iterative clustering anal-
ysis, which is essential for hypothesis generation and data reason-
ing. We introduce Clustrophile, an interactive tool for iteratively
computing discrete and continuous data clusters, rapidly explor-
ing different choices of clustering parameters, and reasoning about
clustering instances in relation to data dimensions. Clustrophile
combines three basic visualizations – a table of raw datasets, a
scatter plot of planar projections, and a matrix diagram (heatmap)
of discrete clusterings – through interaction and intermediate vi-
sual encoding. Clustrophile also contributes two spatial interaction
techniques, forward projection and backward projection, and a vi-
sualization method, prolines, for reasoning about two-dimensional
projections obtained through dimensionality reductions.

Keywords
Clustering, projection, dimensionality reduction, visual analysis,
experiment, Tukey, out-of-sample extension, forward projection,
backward projection, prolines, sampling, scalable visualization, in-
teractive analytics.

1. INTRODUCTION
Clustering is a basic method in data mining. By automatically di-

viding data into subsets based on similarity, clustering algorithms
provide a simple yet powerful means to explore structures and vari-
ations in data. What makes clustering attractive is its unsupervised
(automated) nature, which reduces the analysis time. Nonetheless,
analysts need to make several decisions on a clustering analysis that
determine what constitutes a cluster, including which clustering al-
gorithm and similarity measure to use, which samples and features
(dimensions) to include, and what granularity (e.g., number of clus-
ters) to seek. Therefore, quickly exploring the effects of alternative
decisions is important in both reasoning about the data and making
these choices.

Although standard tools such as R or Matlab are extensive and
computationally powerful, they are not designed to support such
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interactive iterative analysis. It is often cumbersome, if not impos-
sible, to run what-if scenarios with these tools. In response, we in-
troduce Clustrophile, an interactive visual analysis tool, to help an-
alysts to perform iterative clustering analysis. Clustrophile couples
three basic visualizations, a dynamic table listing of raw datasets, a
scatter plot of planar projections, and a matrix diagram (heatmap)
of discrete clusterings, using interaction and intermediate visual en-
coding. We consider dimensionality reduction as a form of contin-
uous clustering that complements the discrete nature of standard
clustering techniques. We also contribute two spatial interaction
techniques, forward projection and backward projection, and a vi-
sualization method, prolines, for reasoning about two-dimensional
projections obtained through dimensionality reduction.

2. RELATED WORK
Clustrophile builds on earlier work on interactive systems sup-

porting visual clustering analysis. The projection interaction and
visualization techniques in Clustrophile are related to prior efforts
in user experience with scatter-plot visualizations of dimensionality
reductions.

2.1 Visualizing Clusterings
Prior research applies visualization for improving user under-

standing of clustering results across domains. Using coordinated
visualizations with drill-down/up capabilities is a typical approach
in earlier interactive tools. The Hierarchical Clustering Explorer
[37] is an early and comprehensive example of interactive visual-
ization tools for exploring clusterings. It supports the exploration
of hierarchical clusterings of gene expression datasets through den-
drograms (hierarchical clustering trees) stacked up with heatmap
visualizations of data.

Earlier work also proposes tools that make it possible to incor-
porate user feedback into clustering formation. Matchmaker [28]
builds on techniques from [37] with the ability to modify cluster-
ings by grouping data dimensions. ClusterSculptor [30] and Cluster
Sculptor [8], two different tools, enable users to supervise cluster-
ing processes in various clustering methods. Schreck et al. [35]
propose using user feedback to bootstrap the similarity evaluation
in data space (trajectories, in this case) and then apply the cluster-
ing algorithm.

Prior work has also introduced various techniques for comparing
clustering results of different datasets or different algorithms [10,
29, 34, 37]. DICON [10] encodes statistical properties of clustering
instances as icons and embeds them in the plane based on similar-
ity using multidimensional scaling. Pilhofer et al. [34] propose a
method for reordering categorical variables to align with each other
and thus augment the visual comparison of clusterings. The recent
tool XCluSim [29] supports comparison of several clustering re-
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sults of gene expression datasets using an approach similar to that
of the Hierarchical Clustering Explorer.

Clustrophile is similar to earlier work in coordinating basic and
auxiliary visualizations to explore clusterings. Clustrophile focuses
on supporting iterative, interactive exploration of data with the abil-
ity to explore multiple choices of algorithmic parameters along
with hypothesis testing through visualizations and interactions as
well as formal statistical methods. Finally, Clustrophile is domain-
agnostic and is intended to be a general tool for data scientists.

2.2 Making Sense with and of Dimensionality
Reductions

Dimensionality reduction is a common method for analyzing and
visualizing high-dimensional datasets across domains. Researchers
in statistics and psychology pioneered the use of techniques that
project multivariate data onto low-dimensional manifolds for vi-
sual analysis (e.g., [2, 16, 15, 25, 38, 40]). PRIM-9 (Picturing,
Rotation, Isolation, and Masking — in up to 9 dimensions) [15]
is an early visualization system supporting exploratory data ana-
lyis through projections. PRIM-9 enables the user to interactively
rotate the multivariate data while continuously viewing a two di-
mensional projection of the data. Motivated by the user behavior
in the PRIM-9 system, Friedman and Tukey [16] first propose a
measure, the projection index, for quantifying the “usefulness” of a
given projection plane (or line) and, then, an optimization method,
the projection pursuit, to find the most useful projection direction
(i.e., one that has the highest projection index value). The proposed
index considers the projections that result in large spread with high
local density to be useful. In an axiomatic approach that comple-
ments the projection pursuit, Asimov introduces the grand tour, a
method for viewing multidimensional data via orthogonal projec-
tions onto a sequence of two-dimensional planes [2]. Asimov con-
siders a set of criteria such as density, continuity, and uniformity
to select a sequence of projection planes from all possible projec-
tion planes and provides specific methods to devise such sequences.
Note that the space of all possible two-dimensional planes through
the origin is a Grassmannian manifold. Asimov’s grand tours can
be seen as geodesic curves with desired properties in this manifold.

Despite their wide use (and overuse), interpreting and reasoning
about dimensionality reductions can often be difficult. Earlier work
focuses on better conveying projection (reduction) errors, integrat-
ing user feedback into the projection process and evaluating the ef-
fectiveness of various dimensionality reductions. Low-dimensional
projections are generally lossy representations of the data relations.
Therefore, it is useful to convey both overall and per-point dimen-
sionality reduction errors to users when desired. Earlier research
proposes techniques for visualizing projection errors using Voronoi
diagrams [3, 26] and “correcting” them within a neighborhood of
the probed point [11, 39]. Stahnke et al. [39] suggest a set of in-
teractive methods for interpreting the meaning and quality of pro-
jections visualized as scatter plots. The methods make it possible
to see approximation errors, reason about positioning of elements,
compare them to each other, and visualize the extrapolated density
of individual dimensions in the projection space.

In certain cases, expert users have prior knowledge of how the
projections should look. To enable user input to guide projections,
earlier research has proposed various projection and interaction
techniques [9, 13, 17, 20, 21, 44]. Enabling users to adjust the pro-
jection positions or the weights of data dimensions and distances
is a common approach in earlier research for incorporating user
feedback to projection computations. For example, iPCA [20] en-
ables users to interactively modify the weights of data dimensions
in computing projections. Similarly, X/GGvis [9] allows users to

change the weights of dissimilarities input to the MDS stress func-
tion along the with the coordinates (configuration) of the embedded
points to guide the projection process. Endert et al. [14] apply sim-
ilar ideas to an additional set of dimensionality-reduction methods
while incorporating user feedback through spatial interactions. The
spatial interactions, Forward projection and backward projection,
that we introduce here are developed for dynamically reasoning
about dimensionality-reduction methods and the underlying data,
not for incorporating user feedback.

Prior research also evaluates dimensionality-reduction tech-
niques [7, 27] as well as visualization methods for represent-
ing dimensionally-reduced data [36]. Sedlmair et al. find that
two-dimensional scatter plots outperform scatter-plot matrices and
three-dimensional scatter plots in the task of separating clus-
ters [36]. Lewis et al. [27] report that experts are consistent in
evaluating the quality of dimensionality reductions obtained by dif-
ferent methods, but novices are highly inconsistent in such evalua-
tions. A later study finds, however, that experts with limited expe-
rience in dimensionality reduction also lack clear understanding of
dimensionality-reduction results [7].

Forward projection, backward projection and prolines are new
techniques and complement earlier work in improving interactive
reasoning with dimensionality reductions, particularly in order to
facilitate dynamically asking and answering hypothetical questions
about both the underlying data and the dimensionality reduction.

3. THE DESIGN OF CLUSTROPHILE
We developed Clustrophile for data scientists, using their regular

feedback at each stage of the development process. We discuss
below the design of Clustrophile, stressing the rationale behind our
choices, basic visualizations and interactions.

3.1 Design Criteria
In our collaboration with data scientists, we identified four high-

level criteria to consider in designing Clustrophile.
Show Variation Within Clusters Clustering is useful for

grouping data points based on similarity, enabling users to dis-
cover salient structures in data while reducing the cognitive
load. However, differences among data points within clusters are
lost. Clustrophile has coordinated views—Table, Projection, and
Clustering—that facilitate exploration of differences among data
points at different levels of granularity. The projection view holds
a scatter-plot visualization of the data reduced to two dimensions
through dimensional reduction, thus providing a continuous spatial
view of similarities among high-dimensional data points.

Allow Quick Iteration over Parameters In clustering analy-
sis, users typically need to make several decisions, including which
clustering method and distance (dissimilarity) measure to use, how
many clusters to create, which features and data subsets to con-
sider, and the like. After an initial clustering, users would like to be
able to iterate on and refine these decisions. Clustrophile enables
users to interactively update and apply clustering and projection
algorithms and parameters at any point in their analysis.

Facilitate Reasoning about Clustering Instances Users often
would like to know what features (dimensions) of the data points
are important in determining a given clustering instance or how
different choices of features or distance measures might affect the
clustering. Clustrophile allows users to add/remove features inter-
actively and to change distance measures used in clustering and
projections.

Promote Multiscale Exploration The ability to interactively
drill down into data is crucial for exploration and effective use of
visual encoding variables, particularly in two-dimensional space.
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Figure 1: Clustrophile is an interactive visual analysis tool for computing data clusters and iteratively exploring and reasoning about clustering
instances in relation to data subsets and dimensions through what-if scenarios. To this end, Clustrophile combines three basic visualizations,
a) a table of raw datasets, b) a scatter plot of planar projections, and c) a matrix diagram (heatmap) of discrete clusterings, using interaction
and intermediate visual encoding. Clustrophile enables users to interactively d) change the number of clusters, quickly explore several e)
projection and f) clustering algorithms and parameters, run g) statistical analysis, including hypothesis testing, and dynamically filter h) the
observations and i) features to which visual analysis is applied.

Clustrophile supports dynamic filtering of data across the views.
In addition, Clustrophile makes possible the application of cluster-
ing and projection methods to filtered subsets of data, providing a
semantic zoom-in and zoom-out capability.

3.2 Views
Clustrophile has five coordinated views: Table, Projection, Clus-

tering, Statistics and Playground.
Table The Table view (Figure 1a) contains a dynamic table visu-

alization of data. Tables in Clustrophile can be searched, filtered,
sorted, and exported as needed (Figure 1h,i). Upon loading, data
first appears as a table listing in this view, giving users a direct and
familiar way to access the records. Clustrophile supports input files
in the Comma Separated Values (CSV) format. Clustrophile also
enables exporting the current table in CSV, Portable Document For-
mat (PDF), or Excel file formats. Alternatively, users can simply
the current table to the clipboard to paste in other applications.

Clustering The Clustering view (Figure 1c) contains a heatmap
(matrix diagram) visualization of the current clustering. The
columns of the heatmap corresponds to the number of clusters
and are ordered from left to right based on size (i.e., the first
column represents the largest cluster in the current clustering).

The rows of the heatmap represent the features, and the color of
each cell encodes the normalized average feature value for clus-
ters. Clustrophile supports dynamic computation of clusterings us-
ing the kmeans and agglomerative clustering algorithms with sev-
eral choices of similarity measures and, in the case of agglomer-
ative clustering, linkage options (Figure 1f). The choices can be
changed easily and clustering can be recomputed using the model
panel above the clustering view. Similarly, users can dynamically
change the number of clusters by using a sliding bar (Figure 1d).

Projection Clustering algorithms divide data into discrete
groups based on similarity, but different degrees of variation within
and between groups are suppressed. Clustrophile provides two-
dimensional projections obtained using dimensionality reduction
that complement the discrete clusterings. The Projection view (Fig-
ure 1b) contains a scatter-plot visualization of the current data
reduced to two dimensions by using one of six dimensionality-
reduction methods: Principal Component Analysis (PCA), Clas-
sical Multidimensional Scaling (CMDS), non-metric Multidimen-
sional Scaling (MDS), Isomap, Locally Linear Embedding (LLE),
and t-distributed Stochastic Neighbor Embedding (t-SNE) [42]. As
with clustering, users can select among several similarity measures
with which to run the projection algorithms (Figure 1e). Each cir-
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Figure 2: (Left) ANOVA test on calories between two selected clusters in a life style dataset. (Right) Correlation coefficients for all pairs
of features (development indices) in a development indicators dataset [31] for OECD member states. Correlation values are sorted based on
their absolute value. The sign of correlation is encoded by color.

cular node in the scatter plot represents a data point and their color
encodes their cluster membership in the currently active clustering
method.

Statistics This view displays the results of the most recent sta-
tistical computation. Currently, Clustrophile provides standard
point statistics along with a hypothesis-testing functionality using
ANOVA and pairwise correlation computations between features
(Figure 2).

Playground Clustrophile enables the exploration of two- di-
mensional projections of the data through forward and backward
projections. In the Playground view, users can create a copy of
an existing data point and interactively modify its feature values
to see how its projected position changes. Conversely, users can
change the projected position and see what feature values satisfy
this change.

3.3 Interactions
Brushing and Linking. We use brushing & linking to select

data across and coordinate the views of Clustrophile. This is the
main mechanism that lets users observe the effects of one operation
across the views.

Dynamic filtering In addition to brushing, Clustrophile provides
two basic mechanisms for dynamically filtering data (Figure 1h).
First, its search functionality lets users filter the data using arbi-
trary keyword search on feature names and values. Second, users
can also filter the table using expressions in a mini-language. For
example, typing age > 40 & weight<180 dynamical selects data
points across views where the fields age and weight satisfy the en-
tered constraint.

Adding and Removing Features Understanding the relevance
of data dimensions or features to the analysis is an important yet
challenging goal in data analysis. Clustrophile enables users to
add and remove features (dimensions) and explore the resulting
changes in clustering and projection results (Figure 1i).

3.4 Interacting with Dimensionality Reduc-
tions

Dimensionality reduction is the process of reducing the number
of dimensions in a high-dimensional dataset in a way that maxi-
mally preserves inter-datapoint relations of some form as measured
in the original high-dimensional space. As with clustering, most
dimensionality-reduction techniques are unsupervised and learn
salient structures explaining the data. Unlike clustering, however,
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Figure 3: Forward projection enables users to a) select any data
point x in the projection, b) interactively change the feature or di-
mension values of the point and c) observe how that changes the
current projected location, y, of the point. For PCA, the positional
change vector ∆y can be derived directly by projecting the data
change vector ∆x onto the first two principal components, e0 and
e1.

dimensionality-reduction methods discover continuous representa-
tions of these structures.

Despite its ubiquitous use, dimensionality reduction can be diffi-
cult to interpret, particularly in relation to original data dimensions.
What do the axes mean? is probably users’ most frequent question
when looking at scatter plots in which points (nodes) correspond
to dimensionally-reduced data. Clustrophile integrates forward
projection, backward projection, and prolines to facilitate direct,
dynamic examination of dimensionality reductions represented as
scatter plots.

There are many dimensionality-reduction methods [42] and
developing effective and scalable dimensionality-reduction algo-
rithms is an active research area. Here we focus on princi-
pal component analysis (PCA), one of the most frequently used
dimensionality-reduction techniques; note that the discussion here
applies as well to other linear dimensionality-reduction methods.
PCA computes (learns) a linear orthogonal transformation (high-
dimensional rotation) of the empirically centered data into a new
coordinate frame in which the axes represent maximal variability.
The orthogonal axes of the new coordinate frame are called prin-
cipal components. To reduce the number of dimensions to two,
for example, we project the centered data matrix, rows of which
correspond to data samples and columns to features (dimensions),
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Figure 4: Forward projection in action. Forward projection en-
ables user to explore if and how much StudentSkills explains the
difference between Portugal and Korea in a projection of OECD
member countries based on a set of development indices. The user
a) dynamically changes the value of the StudenSkills dimension
for Portugal and b) observes the dynamically updated projection.
In this case, user discovers that StudentSkills is the most important
feature explaining the difference between Portugal and Korea.

onto the first two principal components, e0 and e1. Details of PCA
along with its many formulations and interpretations can be found
in standard textbooks on machine learning or data mining (e.g., [5,
18]).

3.5 Forward Projection
Forward projection enables users to interactively change the fea-

ture or dimension values of a data point, x, and observe how these
hypothesized changes in data modify the current projected loca-
tion, y (Figures 3,4). This is useful because understanding the im-
portance and sensitivity of features (dimensions) is a key goal in
exploratory data analysis.

We compute forward projections using out-of-sample extension
(or extrapolation) [42]. Out-of-sample extension is the process of
projecting a new data point into an existing projection (e.g., learned
manifold model) using only the properties of the projection. It is
conceptually equivalent to testing a trained machine learning model
with data that was not part of training.

In the case of PCA, we obtain the two-dimensional position
change vector ∆y by projecting the data change vector x′ onto the
principal components: ∆y = ∆x E, where E =

[
e0 e1

]
.

3.6 Visualizing Forward Projections: Pro-
lines

It is desirable to see in advance what forward projection paths
look like for each feature. Users can then start inspecting the di-
mensions that look interesting or important.

Prolines visualize forward projection paths based on a range of
possible values for each feature and data point (Figures 6, 7). Let xi
be the value of the ith feature for the data point x. We first compute
the standard deviation σi for the feature in the dataset and devise a
range I =

[
xi− kσi, xi + kσi

]
. We then iterate over the range with

a step size of cσi, compute the forward projections as discussed
above, and then connect them as a path. The constants k, c control
respectively the extent of the range and the step size with which we
iterate over the range.

Prolines will be straight lines for linear dimensionality-reduction
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Figure 5: Through backward projection, users can a) select a node
in the projection that corresponds to a data point x, b) directly move
the node in any direction and c) dynamically observe what data
changes ∆x would satisfy the hypothesized change ∆y in the pro-
jected position. In PCA projections, ∆x can be obtained by solving
for it in the linear equation ∆x [e0 e1] = ∆y.
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Figure 6: Prolines visualize paths of forward projections. For a
given feature xi of a data point x, we construct a proline by connect-
ing the forward projections of the points regularly sampled from a
range of x values, where all features are fixed but xi changes from
xi−kσi to xi +kσi. σi is the standard deviation of the ith feature in
the dataset and k, c are constants controlling respectively the extent
of the range and the step size with which we iterate over the range.

methods (Figure 7), and therefore computing forward projections
only for the extremum values of the range I is sufficient. Also note
that in the case of PCA projections prolines reduces to plotting the
contributions of the feature to the principal components (loadings)
as a line vector.

3.7 Backward Projection
Backward projection as an interaction technique is a natural com-

plement of forward projection. Consider the following scenario: a
user looks at a projection and, seeing a cluster of points and a sin-
gle point projected far from this group, asks what changes in the
feature values of the outlier point would bring the apparent outlier
near the cluster. Now, the user can play with different dimensions
using forward projection to move the current projection of the out-
lier point near the cluster. It would be more natural, however, to
move the point directly and observe the change (Figures 5, 8, 9).

The formulation of backward projection is the same as that of
forward projection: ∆y = ∆x E. In this case, however, ∆x is un-
known and we need to solve the equation.

As formulated, the problem is underdetermined and, in gen-
eral, there can be infinitely many data points (feature values) that
project to the same planar position. Therefore, our implementation
in Clustrophile supports both unconstrained and constrained back-
ward projections. Users can introduce equality as well as inequality
constraints (Figure 10).
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SelfReportedHealth

WorkingLongHours

Figure 7: Prolines for Portugal in a PCA projection of OECD mem-
ber countries based on their values for a set of development indices.
Prolines will be straight lines for linear dimensionality-reduction
methods. In addition, the length of each path corresponds to the
speed (sensitivity, variability) along the corresponding dimension.
For example, StudentSkills is the most sensitive feature determin-
ing the projection in this case. Note that forward projection ani-
mates the speed of the change along prolines, giving the user an
additional cue about the importance of the dimension in the projec-
tion.

In the case of unconstrained backward projection, we find ∆x by
solving a regularized least-squares optimization problem.

minimize
∆x

‖∆x‖2

subject to ∆x E = ∆y

Note that this is equivalent to setting ∆x = ∆y ET . In general, for
linear projections we have the unconstrained back projection di-
rectly.

As for constrained backward projection, we find ∆x by solving
the following quadratic optimization problem:

minimize
∆x

‖∆x E−∆y‖2

subject to C∆x = d
lb≤ ∆x≤ ub

C is the design matrix of equality constraints, d is the constant
vector of equalities, and lb and ub are the vectors of lower and
upper boundary constraints.

3.8 System Details
Clustrophile is a web application based on a client-server model

(Figure 11). We implemented Clustrophile’s web interface in
Javascript with help of D3 [6] and AngularJS [1] libraries. We
generated the parser for the mini-language used to filter data with
PEG.js [33]. Most of the analytical computations are performed on
Clustrophile’s Python-based analytics server, which has four mod-
ules: clustering, projection, statistics, and solver. These modules
are mainly wrappers, making heavy use of SciPy [22], NumPy [43],
and scikit-learn [32] Python libraries. The solver module uses
CVXOPT [12] for quadratic programming.

4. USER FEEDBACK
Clustrophile is a research prototype under development and has

been used over several months by data scientists and researchers

Portugal
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ChileItaly
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b

Figure 8: Unconstrained backward projection. A user, curious
about the projection difference between Turkey and Greece, a)
moves the proxy node for Turkey (gray square with dashed bor-
der) towards Greece. The feature values for Turkey are automat-
ically updated to satisfy the new projected position as the node
is moved. The user b) observes that, as Turkey gets closer to
Greece, WorkingLongHours decreases (encoded with red) while
EducationAttainment, StudentSkills, YearsInEducation, Life-
Expectancy, SelfReportedHealth, and LifeSatisfaction increase
(green). TimeDevotedToLeisure (not seen) stays constant (gray).

in the healthcare domain. While we have not conducted a formal
study, we briefly discuss the informal feedback we have gathered.

Users cared most about the time-saving aspects of Clustrophile.
They were pleased with the ability to explore different clustering
and projection algorithms and parameters without going back to
their scripts. Similarly, among Clustrophile’s favorite functionali-
ties were the ability to add and remove features and iteratively re-
compute clusterings and projections on filtered data while staying
in the context of data analysis session. We found that our users were
more familiar with clustering than projection; indeed, for some the
relation between clustering and projection view was not always
clear.

The most important request from our users was scalability. As
soon as they started using Clustrophile in commercial projects, they
realized that they wanted to be able to analyze large datasets with-
out losing Clustrophile’s current interactive and iterative user expe-
rience (more on this in the following section).

5. SAMPLING FOR SCALE
The power of visual analysis tools such as Clustrophile comes

from both facilitating iterative, interactive analysis and leverag-
ing visual perception. Exploring large datasets at interactive rates,
which typically involves coordination of multiple visualizations
through brushing and linking and dynamic filtering, is, however,
a challenging problem. One source of the challenge is the cost
of interactive computation and rendering. Another is the percep-
tual and cognitive cost (e.g., clutter) users incur when dealing with
large numbers of visual elements.

There are two basic approaches to this problem: precomputation
and sampling [19]. Precomputation involves processing data into a
form (typically tiles or cubes) to interactively answer queries (e.g.,
zooming, panning, brushing, etc.) that are known in advance. This
approach has been the prevalent method both in the visualization
community and the database community, from which most of the
current techniques originate from. However, precomputation is not
always feasible or, indeed, desirable. Scalable visualization tools
based on precomputation are typically applied to the visualization
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Figure 9: Constrained backward projection. A user explores
the projection difference between Portugal and Korea, first fixing
(i.e., setting equality constraints) all dimensions but EducationAt-
tainment, StudentSkills, YearsInEducation, LifeSatisfaction and
then a) moving the proxy node for Portugal nearer to Korea. The
user b) observes that LifeSatisfaction decreases while Education-
Attainment, StudentSkills, and YearsInEducation increase.

Figure 10: Clustrophile interface for entering inequality constraints
for backward projection. Users can enter bounded, left and right
bounded interval constraints. The histogram shows the distribution
of the future (bmi, body mass index, in this case) for which the
constraints are entered. The user can adjust the constraints interac-
tively using the histogram brush or the slider.

of low-dimensional, spatial (e.g., map) datasets as precomputation
is infeasible when the data is high dimensional, quickly expanding
the combinatorial space of possible cubes or tiles. And, in general,
precomputation is inflexible as it restricts the ability to run arbitrary
queries.

Sampling, considering only a selected subset of the data at a time
for analysis, is an attractive alternative to precomputation for scal-
ing interactive visual analytics tools. Sampling has generality and
the advantage of easing computational and perceptual/cognitive
problems at once. In principle, there is no reason that sampling-
based visual analysis should not be a viable and practical option.
In the end, the field of statistics builds on the premise that one can
infer properties of a population (read complete data) from its sam-
ples. There are, however, two major challenges that, we believe,
also limit wider adoption of sampling in general [19].

First is a concern about potential biases introduced by sampling.
This concern seems, however, to be at least partly unfounded, since
neither aggregation bias of precomputation nor sampling bias of
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Figure 11: Clustrophile architecture.

complete data appear to cause as much concern. In recent work,
Kim et al. improve the effectiveness (and trustworthiness) of
sampling-based visualizations by guaranteeing the preservation of
relations (e.g., ranking) within the complete data [24]. The sec-
ond challenge is the lack of understanding how users interact with
sampling in visual analytics tools or how sampling affects the user
experience and comprehension. Can we develop models of user
behavior regarding sampling? How can we improve the user expe-
rience with sampling through visualization and interaction? How
can users control the sampling process without being experts in
statistics?

Addressing these challenges would accelerate the adoption of
sampling and improve the utilization of the unique opportunity
that sampling provides in enabling visual analysis on large datasets
without losing the power of iterative, interactive visual-analysis
workflow that tools like Clustrophile facilitate.

6. REFLECTIONS ON PROJECTIONS
Using out-of-sample extrapolation, forward projection avoids re-

running dimensionality-reduction algorithms. From the visualiza-
tion point of view, this is not just a computational convenience but
also has perceptual and cognitive advantages such as preserving the
constancy of scatter-plot representations. For example, re-running
(training) a dimensionality-reduction algorithm with addition of a
new sample can significantly alter a two-dimensional scatter plot
of the dimensionally-reduced data, despite all the original inter-
datapoint similarities stay unchanged. Many of the dimensionality-
reduction algorithms are based on eigenvector computations (if v
is an eigenvector of a matrix so is −v). Even different runs on
the same dataset can result in different—typically, flipped—planar
coordinates.

What about interacting with nonlinear dimensionality reduc-
tions? There are out-of-sample extrapolation methods for many
nonlinear dimensionality-reduction methods that make the exten-
sion of forward projection with prolines possible [4]. As for back-
ward projection, its computation will be direct in certain cases (e.g.,
when an autoencoder is used). In general, however, some form of
constrained optimization specific to the dimensionality-reduction
algorithm will be needed. Nonetheless, it is highly desirable to de-
velop general methods that apply across dimensionality-reduction
methods.

7. VISUAL ANALYSIS IS LIKE DOING EX-
PERIMENTS

Data analysis is an iterative process in which analysts essentially
run mental experiments on data, asking questions and (re)forming
and testing hypotheses. Tukey and Wilk [41] were among the first
to observe the similarities between data analysis and doing exper-
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iments. They list eleven similarities, for example, “Interaction,
feedback, trial and error are all essential; convenience dramatically
helpful.” Albeit often implicitly, the visualization literature makes
a strong case for designing visual analysis tools to support quick,
iterative analysis flow that is conducive to hypothesis generation
and testing (e.g., [23]).

We integrate our spatial interaction techniques for exploring and
reasoning with dimensionality reductions into Clustrophile, which
uses familiar data-mining and visualization methods to facilitate it-
erative, interactive clustering analysis. Injecting new techniques
into familiar workflows is an effective way for assessing their use-
fulness and adoption. Tukey and Wilk make an important obser-
vation on the adoption of new techniques as part of their analogy:
“There can be great gains from adding sophistication and ingenu-
ity . . . to our kit of tools, just as long as simpler and more obvious
approaches are not neglected.”

It is a standard practice to design visualization tools by consider-
ing criteria determined to support user tasks. While this approach
is necessary for creating useful tools, our experience in develop-
ing Clustrophile suggests that the design process can benefit from
the regulating clarity of general, higher-level conceptual models.
To explore and reason about data, analyts generally have the ba-
sic data-mining and visualization techniques. They often, how-
ever, lack interactive tools integrating these techniques to facilitate
quick, iterative what-if analysis, which is essential for hypothesis
generation and data reasoning. Extending Tukey and Wilk’s anal-
ogy between data analysis and running experiments to visual anal-
ysis, visual analysis like doing experiments, provides a useful con-
ceptual model for a large segment of visual analysis applications.
Clustrophile, along with forward projection, backward projection,
and prolines, contributes to the kit of tools needed to facilitate per-
forming visual analysis in a similar way to running experiments.
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ABSTRACT
Co-training is a popular semi-supervised method to build
classifiers by combining labeled and unlabeled data. It trains
two classifiers with a small amount of initially labeled data
and iteratively retrains them after exchanging their high
confidence instances. As the initial amount of labels is very
small, however, the performance can suffer from the la-
bel pollution problem. We therefore propose an interactive
visual approach that improves the stability of co-training
through user inspection of transferred instances. It includes
a visualization of classifier uncertainties and disagreement.
It further helps users to quickly identify possible mistakes of
the automatic approach by guiding user’s attention to the
instances which are labeled differently than the majority of
their nearest neighbors and instances which are labeled dif-
ferently by the two base classifiers. To help users examine
such instances, we also include a visual explanation which
shows important features of an instance along with its raw
data. We show the effectiveness of our approach with a
usage scenario and by comparing it with the classical co-
training approach through experiments. Finally, we discuss
limitations and propose several possibilities for future im-
provement.

Keywords
interactive machine learning, visualization, machine learn-
ing, semi-supervised learning, co-training, multi-view learn-
ing, bootstrapping
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Nowadays, a huge amount of text data are produced ev-
ery day. The number of emails received by individuals is
growing every minute. Documents produced by online com-
munities or other organizations are also increasing quickly.
This poses great challenges to human individuals as well as
organizations to manage and analyze this data to obtain in-
sights. To classify data into different categories is one of the
common methods to organize it. Automatic classification
can free humans from repeatedly doing the same classifica-
tion tasks, as they can learn classification rules from them.
However, to obtain a classifier with good performance, peo-
ple need to label many data points to feed into the clas-
sification algorithm, which is very time consuming. Semi-
supervised learning methods [7, 22] can reduce human effort
in labeling a lot of data. They combine information from
a small amount of labeled and a large amount of unlabeled
data to learn classification criteria. Clustering [12] can also
automatically assign documents into categories. However,
the natural clustering of the data does not necessarily in-
consistent with the intention of users. Recently, researchers
also suggest approaches to actively integrate human inten-
tion into the clustering results [4] . In this work, we focus
on improving semi-supervised learning methods through hu-
man interaction.

Co-training [5] is one of the most popular semi-supervised
learning methods. It starts by training two classifiers on two
different feature sets with an initial set of labeled data. It
proceeds by iteratively growing the set of labeled data and
retrain the classifiers on this new dataset. In each iteration,
it allows each of the two classifiers to label a few unlabeled
data instances, which they can classify with a high confi-
dence. These instances are added to the set of training data
for subsequent iterations. The two classifiers are retrained
on this new set and co-training can start a new iteration.
Zho and Li [21] use a flow-graph to explain the co-training
method. We add a visual element representing users into the
graph to clarify the role of users as can be seen in Figure 1.

However, as the initial amount of labeled instances is very
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Figure 1: A graphical summarization of the classical
co-training method.

Figure 2: A graphical summarization of the interac-
tive co-training approach proposed in this work.

small, the two base classifiers do typically not have a high
classification performance at the beginning. They can thus
potentially introduce labeling mistakes into the training set
used to train new classifiers in the following iterations. This
makes the performance of the co-training method unstable,
especially when used on noisy data [9, 18]. In this paper,
we propose an interactive visual approach for co-training.
Our approach improves the stability of co-training through
user inspection of the transferred instances. It includes a
visualization based on Parallel Coordinates [11] to depict
the uncertainties of the two base classifiers and the dis-
agreement between them. Furthermore, it encodes the la-
bel distribution of the nearest neighbors of the instances.
The visualization guides users’ attention to the instances
which are labeled differently than the majority of their near-
est neighbors or the instances which are labeled differently
by the two base classifiers. In doing so, it helps users to
quickly identify possible mistakes of the automatic approach.
Correcting those mistakes will likely boost the performance
of the co-training algorithm. To help users examine these
mistakes more closely, we also include a visual explanation
which shows important features of an instance along with
its raw data. Figure 2 depicts the main components of our
approach.

2. RELATED WORK

In this section we discuss approaches that are related to
ours. They can be broadly divided into two groups. The
first one address machine learning in semi-supervised set-
tings. The second group of approaches focuses on integrating
interactive visualizations and machine learning to improve
performance of automatic algorithms, or provide explana-
tion for their decisions.

Blum et al. [5] suggest co-training to combine informa-
tion form labeled and unlabeled data to train classifiers.
They also show the effectiveness of co-training under the
assumption that the two views on the data are conditionally
independent. Since then, co-training has been applied in
many domains, for example, to classify emails [14], or to la-
bel roles of named entities [9]. Additional research provides
more insight about why and in which settings the co-training
method works well [3]. In addition, limitations of the classi-
cal co-training method have been identified, such as its dif-
ficulties with noisy or unbalanced data [16, 18]. Muslea et
al. [17] suggest to combine active learning and co-training to
obtain a more stable and effective semi-supervised method.
Our approach also tries to improve on the classical co-training
method. However, we achieve this by letting users actively
inspect or correct the automatic method through interactive
visualizations.

Recently, there has also been many research efforts that
aim to bring visual interaction and machine learning to-
gether to allow users to guide and steer machine learning
methods [1, 13]. ModelTracker [2] is a visual approach for
analyzing performance of machine learning models. Fea-
tureInsight [6] and FeatureForge [10] propose visual approaches
for feature engineering. Ribeiro et al. [15] propose a method
for explaining the reasons behind predictions made by ma-
chine learning methods. They suggest a method to derive
important features by each prediction. We propose a visual
approach for classifier building in a semi-supervised way to
reduce human effort and increase the trust of users in the
resulting classification model.

3. APPROACH
In this section, we first describe the data processing work

flow of our approach. Along with that, we also describe the
reasons why we have chosen some algorithms over the others.
We then highlight the tasks that we intend to support and
introduce visualizations to address these challenges.

3.1 Data Processing
Our approach is based on the idea that we first build two

classifiers based on two views of the data with just a few
labels. These two classifiers are then utilized to label addi-
tional instances so that a high performance classifier can be
obtained.

The first step in our workflow is to construct two different
feature sets or so-called views from the datasets. In many
cases, the dataset has a natural split of views. For example,
for images with additional text descriptions we can construct
one view from the image data and the other one from the
textual data. For email data, we can construct one view from
email meta data, like the header or sender of the emails and
obtain the other view from the textual data. For datasets
without a natural split, a simple procedure to acquire two
views is to randomly assign features to one of the two views.
Several other methods have been suggested to split a single
set of features into two views, which are more suitable for

47



Figure 3: A screenshot of our system. It includes: a) the Control Panel comprising several control buttons
b) the Instance Table view showing the instances of the dataset and classification states; c) the Overview
view depicting the classification confidence of the two classifiers about the instances and d) the Explainer
view showing the evidence of the classification decisions made by a classifier.

co-training algorithms than random split. Our approach can
work with both types of datasets.

In the second step, we choose a classification algorithm for
the base classifiers. As opposed to the original co-training
paper, that proposes Naive Bayes [20], we have decided to
use linear SVMs from the Liblinear package [8] in this work.
SVM is a fast and robust classification algorithm that has
been shown [14] to be more suitable than Naive Bayes for
text classification tasks in co-training settings. In addition,
we use Platt-scaling [19] to obtain a calibrated confident
score of the classifications made by the SVM classifiers. This
way, we can compare classification confidences of different
SVM classifiers.

As mentioned in the introduction, our approach offers a
view to visually explain the classification decisions. For this
purpose, we need to identify the relevant features and their
importance for the instances under inspection. Depending
on the type of classifier, different measures of feature impor-
tance can be used for this. In this work, we use the feature
weights of the linear SVM classifier.

3.2 Visual Approach
In this section we describe different views of our approach

and introduce the interactions supported by them. We build
interactive visualizations to help users quickly identify pos-
sibly mislabeled instances, obtain insights about the clas-
sification uncertainty of the classifiers, understand reasons
behind decisions made by the classifiers, and maintain a sta-
ble mental map of all the instances.

3.2.1 Overview visualization
The overview visualization is updated after each round

of co-training. All instances labeled in the last round of co-
training are visualized in this view. Small squared glyphs are
used to represent the instances. As each instance is given
two different confidence scores by the two base classifiers,
we depict each one of the instances as two glyphs. They are
placed along two axes according to their confidence scores
by the two classifiers. As the amount of instances labeled in
one round of co-training can be large, we divide the whole
range of the axes into bins. We then assign the instances to
these bins. When more than one instance is placed into one
bin, we stack them on top of each other. This way, users can
identify individual instances easily and gain an impression
of the distribution of classifier confidence scores (see Fig. 4).
ModelTracker [2] uses a similar design to depict the test
instances of one classifier. We aim to display disagreement
between two classifiers and the mislabel possibility of the
instances.

We assign colors to the instances to encode the label dis-
tributions of their neighboring instances. The similarity is
measured according to the Euclidean distance in the fea-
ture space of the classifiers. For each instance in the visu-
alization, we count how many of its neighbors are labeled
as positive and how many of them are labeled as negative.
The ratio of these two counts is mapped to color between
positive color and negative color with linear interpolation.
Thus, the more neighbors of an instance are labeled as pos-
itive, the more similar its color is to the positive color. As
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Figure 4: In the overview visualization, the in-
stances are placed according to the confidence score
of the classifiers. The colors of the instances encode
the label distributions of their neighboring instances
in the feature space of the classifiers.

distinct colors can be perceived in a pre-attentive way, users
can quickly see instances that are classified as positive but
have more negative neighbors or vice versa.

When users hover over one of the squares, it is highlighted
by a halo around it (see Fig. 5). The color of the halo
is identical to that of the square representing the same in-
stances in the second classifier. We also show a spline con-
necting those two squares representing the same instance.
By comparing the information from two views of the same
instance, users can more easily decide whether it is worth to
inspect the instance more closely.

3.2.2 Interactive explainer view
The explainer view is located directly below the overview

visualization. It consists of one view depicting the impor-
tant features along with their importance rating, and an-
other view showing the raw data of an instance (see Fig. 6).
When users hover over an instance, the explainer shows more
detailed information about the instance and the classifica-
tion.

On top of the explainer view, we use a bar chart starting at
the center line of the view to depict classification confidence.
When an instance is classified as positive, the bar grows to
the right, when it is classified as negative, the bar grows to
the left. Colors of the bars are consistent with the overview
visualization. Features are sorted according to their impor-
tance and the bar charts are placed accordingly from top
to bottom. This visualization allows users to see the most
important features for the classification of an instance. This
gives users cues about how the classification decision about
that instance is made. To get additional information about
the features influencing the classification decision, users can
turn to the raw data view. The raw data view highlights
highly weighted features by coloring the background of the
features in the raw data. The highlights guide the attention
of users during inspection of the raw data.

Additional interactions are implemented in the view to
further improve the usefulness of the explainer view. Users
can click on the bars depicting the features, which causes
the raw data view to scroll to the position where the feature
appears for the first time. If they click the bar once more,

Figure 5: This figure shows the highlighting effect.
The instance was positioned at the lower part of the
overview view which means the instance was labeled
as irrelevant. However, on the left side, the color of
this instance is blue. It shows that the neighbors of
the instance were labeled mostly as relevant. This
inconsistence suggests that the instance might be
labeled incorrectly.

the raw data view scrolls to the next appearance of that fea-
ture. This interaction further helps users to efficiently pick
important information from the raw data. If they press the
shift-key while clicking on the feature bar, all the instances
containing this feature will be highlighted in the overview
visualization and the instance table view. When users find
a feature which is responsible for a erroneous label, they can
use this interaction to find out how the feature is distributed
over the labels. This gives users hints on explanations of fea-
ture importance.

3.2.3 Control panel and instances table
The instance table (Fig. 7) works as a notebook for the

users. It maintains a table of all the instances in the dataset
and uses the third column of the table to depict if that in-
stance is labeled as positive, negative, or not labeled at all.
Users can sort the instances according to their ids or the
status of their labels. The control panel consists a group of
controls for users to interact with the co-training process.
For example, they can change the labels of the instances
manually using the controls in this panel. We highlight the
instances which have been manually labeled by the users
during the current round in the instance table.

4. EVALUATION
In this section, we first demonstrate how users can interact

with the system through a detailed description of a usage
scenario. We then go on to show the effectiveness of our
system by comparing our approach with the classical co-
training algorithms.

4.1 Usage Scenario
At the beginning, all instances are displayed within the

instance list view 7. Users can label a few instances by
clicking on them and reading through the raw data within
the explanation panel. Once they have decided on the label
of the instance, they can use the buttons in the control panel
to label the instance as positive or negative.
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Figure 6: The explainer view shows most important features for the classification of an instance and the raw
data of it.

Figure 7: The list view shows the instances of the
dataset and their current labeling status. Dark red
indicates that the instance is labeled as irrelevant.
Light red means that the instance has not been la-
beled yet but it is predicted by the classifiers as ir-
relevant. Similarly, dark blue and light blue means
the instance is labeled or classified as relevant. User
labeled instances are highlighted.

Then they can set the number of instances they wish the
co-training algorithm to label in the next round and press
the start button. The system iteratively labels more in-
stances by choosing those instances rated most confidently
by the classifiers.

Those newly labeled instances are depicted in the overview
visualization. Users can identify the label given by the clas-
sifiers at the transfer time by observing the position of the
instance squares. If the instance is positioned in the top
half of the visualization, it is labeled as positive. The other
way around, it is labeled as negative. They can also get
an impression of how the labels of the nearest neighbors
are distributed for each instance, by observing the color of
squares representing the instances. Instances with more pos-
itive nearest neighbors are colored blue. Instances with more
negative nearest neighbors are colored red. Seeing this can
help them to quickly pick those instances, which have been
labeled as positive but have a neighborhood which is labeled
mostly as negative, or vice versa. Because disagreement to
the majority of the labels of the nearest neighbors indicates
a possible labeling error. If at least one of the classifiers has
given high confidence to this label, users should be more mo-

tivated to check it, because it could have been mislabeled
with a high probability. Correcting this will likely give a
boost to the performance of the learned classifier.

Once they have identified one possible mistake of the clas-
sifier, they probably want to check if it is really mislabeled
or not. By clicking on the instance, the explainer view shows
the decisions of the classifiers and the important features on
which the decision is based. Clicking on one of the shown
features, the text panel will scroll to the position where that
feature shows up in the text for the first time. This way users
can quickly skim through long documents and concentrate
only on information which is important for the classifica-
tion. By clicking on one of the features, the instances which
contain this feature will be also highlighted in the overview
view.

Once users find a mislabeled instance, they can relabel
it, and continue to examine other instances until they are
satisfied with these set of newly labeled instances. They can
then continue the co-training by clicking on the next button
in the control panel. The system will use all the instances
that were newly labeled in the subsequent co-training step,
by letting the two classifiers retrain themselves based on
the updated labeled set and further iteratively label more
instances.

4.2 Comparison to Classical Co-Training
In this subsection, we describe the experiments to compare

our approach and the classical co-training approach.

4.2.1 Experimental setup
The WebKB-Course dataset is composed by Blum et al. [5]

to demonstrate the effectiveness of the co-training approach
and has been subsequently used in several other works. We
conduct our experiments on this dataset to compare our
approach with the classical co-training algorithm.

This dataset contains data of 1051 web pages. For each
web page we can construct two views/feature sets. One of
them is based on the text on the web page. The other one is
based on the anchor text of the links pointing to the page.
The whole dataset can be divided into two parts: web pages
of courses from a university or web pages of researchers in
the university.

In the first step, we do experiments to obtain a estimation
of error rate that we can obtain from the specific combina-
tion of the two views and the base classifier we use, which
is a Support Vector Machine (SVM). For each experiment,
we randomly choose 263 (25%) pages as test documents.
From the rest of the 788 pages, we further randomly choose
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Figure 8: This figure shows the error curve of SVM
compared to Naive Bayes.

3 positive and 9 negative documents as seeds, as suggested
by Blum et.al in their work. The rest of the 776 pages are
treated as unlabeled data. We then train the SVM classifier
with default parameter setting with the classical co-training
algorithm and calculate the error rate of the obtained model
on test data. We repeat the experiments 10 times and report
the average of the results.

Fig. 8 shows that SVM achieves lower or comparable error
rates as Naive Bayes Classifier in this setting. The results is
in consistent with the suggestion of [14] and confirms that
our choice of base classifier is reasonable.

In the second step, we conduct experiments to compare
our approach with the classical co-training approach. In
these experiments, we follow the same process to divide the
dataset into test data, seeds and unlabeled data.

We repeat the experiment 10 times with two master stu-
dents of computer science and set a time limitation of 10
minutes in total to finish each experiment. We set the num-
ber of newly labeled instances in each round to be 70, which
means users have to manually inspect the instances labeled
by the classifiers for about 6 times during each experiment.
In average, users only read the raw data for examining pos-
sible errors about 20 times in one experiment session, most
of which are mislabeled.

To enable a fair comparison with our approach, we ran-
domly choose 20 more documents as extra seeds, to feed
into the classical co-training algorithm, which does not re-
ceive further interaction during co-training. We also run
ten times of the experiment on the classical co-training al-
gorithm, and report the average performance.

4.2.2 Experiment results
The average error rate of the iterations during the exper-

iment session is shown in Fig. 9.
It is obvious that error rate of both approaches decreases

along with the iterations, showing that co-training is effec-
tive for such classification task. It is also reasonable that our
approach makes more errors comparing to the classical co-
training at the beginning, because our approach only uses
12 seeds, and the classical co-training uses 32 seeds. But
the error rate decreases faster than the classical co-training,
with the help of user’s reviewing labels and is more stable
in the later part of the co-training process. But in fact, our
approach beats the classical co-training quite fast, far before
the end, and keeps the advantage all the time.

During the experiments, we also notice that with the help

Figure 9: This figure shows the error curve of our
approach compared with classical co-training ap-
proach with additional initial labels.

of our visualization users tend to put less effort in manu-
ally reviewing the labels by reading the raw document text.
Usually, users only checked suspicious instances obvious to
them within the overview visualization, then they quickly
view some information provided by the explainer view. If
they keep the doubt regarding the label, they can go on to
read the raw text and manually label them as a fall-back
strategy. Even when they have to read the raw text, they
say, the highlights made it easier for them to grasp impor-
tant information from the text.

5. DISCUSSIONS AND FUTURE WORK
The result of our experiment indicates that users’ inter-

action is effective in improving the co-training, as well as
that we require less user effort in labeling the documents
to achieve better performance. The latter may be due to
the benefits of our visualization that helps users to identify
mislabeled documents, with much less effort. Even through,
our approach achieves a relatively lower error rate (5%) on
WebKB-Course dataset, the improvement over the classi-
cal co-training algorithm is not very significant. The reason
might be that the dataset with which we conduct our exper-
iments is highly suitable for the co-training algorithm, so
that both our approach and the classical co-training algo-
rithm can obtain a low error rate with relatively few initial
labeled data. More experiments on other datasets with dif-
ferent levels of difficulty for co-training algorithm will bring
more insight about this aspect.

One limitation of our experiments is that we repeat the
experiment with our approach 5 times for each of the two
users. Although we did not observe significant learning effect
between different runs of the experiments, due to the random
assignment of the initial set of labeled data, an experiment
with more users would be necessary to increase the validity
of the results.

As we have mentioned in the data processing section, our
approach needs to identify the relevant features and their im-
portance for the instances under inspection. For some type
of classifiers, it is straight forward to rate the importance of
their features. With linear classifiers, such as linear SVMs,
we can use the feature weights of the trained model as fea-
ture importance. For Naive Bayes classifier, we could use the
probabilities of the features conditioned on the classes as a
measure of their importance. For other types of classifiers,
like kernel SVMs, there is research that proposes ways to
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derive feature importance for individual test instances [15]
for general type of classifiers. In this regard, our approach
is quite general.

In this work we focus on using interactive visualizations to
improve the performance of the co-training method. In the
future we also want to investigate how to depict the changes
of the classifiers during the co-training process. This could
further increase users’ trust in the resulting classifiers. In
addition, we only handle binary classification problems, so
far. In the future, we aim to extend the approach to multi-
class classification problems. One way to achieve that is to
divide multi-class classification problems into several binary
problems using a 1 vs n strategy or n vs n strategies. Fur-
ther, in this work, we only deal with one specific multi-view
learning algorithm: the co-training algorithm. We could also
extend our approach to work with general type of multi-view
algorithms.

6. CONCLUSION
In this work we proposed a visual approach for co-training.

It includes several visualizations to help users interact with
the co-training process. The overview visualization depicts
classification uncertainty and disagreement between two clas-
sifiers, and enables users to spot possible mislabels. The ex-
plainer view shows important features for an instance along
with its raw data, and allows users to examine the classifica-
tion of an instance more closely. The instance list view shows
all the instances and their labeling status. The control panel
lets user correct the mislabeled instance manually and start
a next round of co-training iteration. Together they present
an effective way for building classifiers in a human steered
semi-supervised way. We showed the effectiveness of our ap-
proach through detailed description of a usage scenario and
by comparing it to the classical co-training approach.
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Figure 1: A comparative overview of 132 detected subspace clusters generated by the CLIQUE [2] algorithm:
The two inter-linked MDS projections in the SubEval analysis framework show simultaneously the cluster
member- (1) and dimension similarity (2) of subspace clusters. While the cluster member similarity view
focuses on the object-wise similarity of clusters, the dimension similarity view highlights similarity aspects
w.r.t. their common dimensions. The coloring encodes the similarity of clusters in the opposite projection.
Both views together allow to derive insights about the redundancy of subspace clusters and the relationships
between subspaces and cluster members. The DimensionDNA view (3) shows the member distribution of a
selected subspace cluster in comparison to the data distribution of the whole dataset.

ABSTRACT
The quality assessment of results of clustering algorithms is
challenging as different cluster methodologies lead to different
cluster characteristics and topologies. A further complication
is that in high-dimensional data, subspace clustering adds
to the complexity by detecting clusters in multiple different
lower-dimensional projections. The quality assessment for
(subspace) clustering is especially difficult if no benchmark
data is available to compare the clustering results.

In this research paper, we present SubEval, a novel sub-
space evaluation framework, which provides visual support
for comparing quality criteria of subspace clusterings. We
identify important aspects for evaluation of subspace cluster-
ing results and show how our system helps to derive quality
assessments. SubEval allows assessing subspace cluster
quality at three different granularity levels: (1) A global
overview of similarity of clusters and estimated redundancy
in cluster members and subspace dimensions. (2) A view of
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a selection of multiple clusters supports in-depth analysis of
object distributions and potential cluster overlap. (3) The
detail analysis of characteristics of individual clusters helps
to understand the (non-)validity of a cluster. We demon-
strate the usefulness of SubEval in two case studies focusing
on the targeted algorithm- and domain scientists and show
how the generated insights lead to a justified selection of
an appropriate clustering algorithm and an improved pa-
rameter setting. Likewise, SubEval can be used for the
understanding and improvement of newly developed subspace
clustering algorithms. SubEval is part of SubVA, a novel
open-source web-based framework for the visual analysis of
different subspace analysis techniques.

CCS Concepts
•Human-centered computing→Visualization design
and evaluation methods;

Keywords
Subspace Clustering; Evaluation; Comparative Analysis; Vi-
sualization; Information Visualization; Visual Analysis
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Figure 2: Subspace clustering in high-dimensional
data: the same objects are grouped differently in
different combinations of dimensions (=subspaces).

1. INTRODUCTION
In data analysis the selection and parametrization of clus-

tering algorithms is usually a trial-and-error task requiring
appropriate methods and analyst experience to assess the
quality of the results. Furthermore, the selection of an appro-
priate algorithm design has a direct impact on the expected
results. For example, k-Means-type clustering will likely
favor voronoi-shape spaced partitions, while a density-based
clustering (e.g., DBSCAN [12]) usually results in arbitrarily
shaped clusters. The parameter setting, the underlying data
topology and -distribution usually influence the clustering
results, too. For varying applications, different cluster char-
acteristics can be of interest for a user. Therefore, there is a
need for efficient and effective evaluation methods to reliably
assess the usefulness of a clustering result.

In high-dimensional data, clustering computation is in-
fluenced by the so-called curse of dimensionality. Noise,
correlated, irrelevant, and conflicting dimension may detri-
ment meaningful similarity computation for the input data
[7]. Experiments show that the application of full-space clus-
tering, i.e., a clustering that considers all dimensions, is often
not effective in datasets with a large number of dimensions
(≥ 10 − 15 dimensions) [20]. To overcome these problems,
the notion of subspaces must be taken into consideration.
Subspace clustering [21] aims to detect clusters in different,
lower-dimensional projections of the original data space, as
illustrated in Figure 2. The challenge is to simultaneously se-
lect meaningful subsets of objects and subsets of dimensions
(=subspaces). In existing subspace cluster algorithms, the
number of reported clusters is typically large and may contain
substantial redundancy w.r.t. clusters and/or subspaces.

Quality assessment of subspace clustering shows to be
particularly challenging as, besides the more complex result
interpretation, evaluation methods for full-space clustering
are not directly applicable. Generally, (subspace) clustering
strives to group a given set of objects into clusters, such
that objects within clusters are similar (cluster compactness),
while objects of different clusters are dissimilar (cluster sep-
arability). This abstract goal leads to various different, yet
valid and useful, cluster definitions [17]. Due to these di-
verging definitions it is challenging, if not impossible, to
design or commonly agree on a single evaluation measure for
(subspace) clustering results.

It is therefore desirable to have a unified approach for an
objective quality assessment of (subspace) clustering based on
different clustering methodologies, the data distribution and
-topology and variety of application- and domain-dependent
quality criteria. We tackle this multi-faceted analysis prob-
lem with a visual analysis process by which the computer’s
processing power and the human’s skills in interpretation
and association can be effectively combined. Numeric per-
formance measures alone are not effective enough to give
an all-embracing picture, as they are typically abstract and

heuristic in nature, and defined in an application-independent
way. Several application fields can benefit from such a user-
supported evaluation approach: (1) selection of an appro-
priate clustering algorithm, (2) selection of appropriate pa-
rameter settings and (3) the design of new data mining
algorithms, where algorithm scientists continuously evaluate
the algorithm’s results against original assumptions.

In this paper, we tackle the problem of visually evaluating
the quality of one subspace clustering result. We present a
novel open-source evaluation framework, called SubEval. It
enhances standard evaluation approaches with effective visu-
alizations to support the assessment of (subspace) clustering
algorithms. Our contributions are as follows: (1) We present
a summary of subspace cluster evaluation approaches, point
to their specific foci and contrast their benefits and disadvan-
tages. (2) We systematically structure the major evaluation
criteria for subspace clustering results. (3) We discuss design-
and user interaction requirements for visualizations to pro-
vide deep insights into the different quality criteria and (4)
make the open-source tool SubEval available.

Compared to existing subspace visualization techniques like
CoDa [15] or ClustNails [29], focusing on the knowledge
extraction of subspace clusters, SubEval targets primarily
the quality aspect of a clustering result. Our novel framework
uses two interlinked MDS plots to simultaneously represent
cluster member and subspace similarity and provides different
tools for in-depth analysis of different quality criteria.

2. BACKGROUND
This section introduces definitions, terminology, concepts

and related work that we rely upon to describe our approach.

2.1 Definitions and Terminology
Data record/object are used synonymously for a data

instance of the dataset, i.e., ri ∈ R. A subspace sl is defined
as a subset of dimensions of the dataset: sl = {di, ..., dj} ∈ D.

A cluster cj ⊆ R contains a set of objects which are
similar to each other based on a similarity function. A
clustering result C = {c1, ..., cn} comprises the set of all
clusters detected by an algorithm.

Crucial for the understanding of this paper is to differen-
tiate between full-space and subspace clustering. Full-
space clustering considers all dimensions (D) for the similarity
computation of its cluster members (e.g., k-Means).

A subspace cluster sci = (si, ci) considers only the
subspace si for the similarity computation of the cluster
members of ci. As shown in Figure 2, a subspace clustering
SC = {sc1, ..., scn} consists of multiple clusters which are
defined in specific subspaces. Based on the algorithm, cluster
members and/or dimensions of any two clusters sci and scj
may overlap, i.e., |ci ∩ cj | ≥ 0 and |si ∩ sj | ≥ 0. The number
of detected subspace clusters is typically large. For a dataset
with d dimensions, there are 2d − 1 possible subspaces of
which many may contain useful, but highly similar/redundant
clusters. Same as for full-space clustering, there is a variety of
different methodologies to compute useful subspace clusters
[21]. However, there is no formal definition of a valid and
useful (subspace) clustering result which has been accepted
thoroughly by the community.

2.2 Visualization of (Subspace) Clusterings
Several techniques exist to visualize (subspace) clusters

and allow users to extract semantics of the cluster structures.
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The visual analysis and comparison of full-space clustering
is a problem in high-dimensional data. Standard techniques
like Parallel Coordinates, Dimension Stacking or Projection
Techniques are applicable as a baseline [32]. Multidimen-
sional glyphs can help to represent clusters in a 2D layout
to support cluster comparison [31]. In [10], a Treemap-based
glyph was designed to represent clusters and associated qual-
ity measures for visual exploration. In previous work, we
considered a comparisons of hierarchical clusterings in a
Dendrogram representation [9], and a comparison of Self-
Organizing Map clusterings using a color-coding [8].

Visual comparison of subspace clusters is an even more
difficult problem. In addition to full-space cluster visualiza-
tion, also set-oriented information pertaining to subspace
dimensions and possibly, multi-set membership of elements
in clusters needs to be reflected. The first approaches in
subspace cluster comparison is VISA [3] which visualizes
subspace clusters in a MDS projection based on their cluster
member similarity. Further approaches to visually extract
knowledge of detected subspace clusters are ClustNails
[29], SubVis [20], and an approach by Tatu et al. [28].

Visual redundancy analysis of subspace clusters is pre-
sented for example by CoDa [15] and MCExplorer [16].
Both, however, comprise only a single aspect, either dimen-
sion or cluster member redundancy. As discussed by Tatu et
al. [28] clusters are only true redundant if the cluster member
and the subspace topology are similar.

While the existing visualizations focus mainly on the ex-
traction of knowledge for domain experts, SubEval changes
the point of view and targets the depiction of quality criteria
of subspace clusterings, such as non-redundancy, compact-
ness, and the dimensionality of clusters.

2.3 Evaluation of Full-Space Clustering
In the following we summarize classical approaches for the

evaluation of full-space clustering. We carefully investigate
the advantages and drawbacks of the presented methods and
highlight why visual interactive approaches are beneficial in
many scenarios. As subspace clustering is a special instance
of full-space clustering, the same challenges apply.

Evaluation Based on Internal Criteria.
Internal quality measures evaluate clusters or clustering

results purely by their characteristics, e.g., cluster density.
The literature provides a large variety of commonly used
measures [22], each treating the cluster characteristics differ-
ently but usually focusing on compactness and separability.
Internal measures, designed for evaluating full-space cluster-
ing, assume a single instance-to-cluster assignment and have
not yet been adapted for (partially) overlapping clusters,
as in subspace clustering. The criticism of this evaluation
method, which does not qualify it for general performance
quantification, is its subjectivity. Each measure usually fa-
vors a more particular cluster notion (e.g., RMSSTD [22]
favors voronoi-shaped clusters). For each quality measure
one could design an algorithm to optimize the clustering
w.r.t. this particular quality measure, making comparisons
to other approaches inappropriate.

External Evaluation Based on Ground Truth.
External quality measures compare the topology of a clus-

tering result with a given ground truth clustering. Although
benchmark evaluation is well accepted in the community

and allows an easy comparison of different algorithms and
parameter settings, the criticism to this evaluation method
is manifold: The main problem of external quality measures
lies in the use of a ground truth clustering itself. In most
(real-world) applications and datasets with unknown data a
ground truth is not available. Even if a ground truth labeling
exists, it is either synthetically generated with specific clus-
tering characteristics (c.f. criticism in Section 2.3), or it is
providing a classification labeling instead of a clustering label
[13]. Consequently, an algorithm, which does not correctly
retrieve an already known categorization, cannot generally be
regarded as bad result, as the fundamental task of clustering
is to find previously unknown patterns.

Evaluation by Domain Experts.
The actual usefulness of a clustering for a certain appli-

cation domain can only be assessed with a careful analysis
by a domain expert. However, in many (higher-dimensional)
real-world applications, the cluster result complexity is over-
whelming even for domain experts. Accordingly, domain
expert-based evaluation is not suited for a comparison of dif-
ferent clusterings, since (1) a domain expert cannot evaluate
a large number of algorithms and/or parameter setting com-
binations, and (2) the evaluation depends on the expert and
the application and does therefore not result in quantitative
performance scores.

2.4 Evaluation of Subspace Clustering
In the following, we discuss current approaches for the

evaluation of subspace clusterings and highlight why novel
human-supported evaluation methods, such as provided by
SubEval, are required for a valid quality analysis.

External Evaluation Measures.
The most commonly used method to assess the quality of a

subspace clustering algorithm are external quality measures.
As discussed above, the synthetically created ground-truth
clusters are typically generated with particular clustering
characteristics, and, for subspace clustering also with sub-
space characteristics. For real-world data the ground truth
is not very expressive [13] and potentially varies depending
on the used measure or data set [14, 24].

Internal Evaluation Measures.
The internal measures used for traditional (full-space) clus-

tering are not applicable to subspace clustering results as
(1) the existing methods do not allow for overlapping cluster
members, (2) clusters need to be evaluated in their respective
subspace only, i.e., it is not valid to assess the separability
of two clusters which exist in different subspaces.

Domain Experts.
Often authors justify a new subspace clustering approach

by exemplarily discussing the semantic interpretation of se-
lected clusters, i.e., evaluation by domain scientists, which
seems to be the only choice for some real-world data, e.g.,
[20]. Quite a few visualization techniques exist to support
domain experts in the knowledge extraction of subspace
clusters (c.f. Section 2.2). However, in subspace clustering
we have to tackle three major challenges: (1) the subspace
concept is complex for most domain experts, especially for
non-computer-scientists, (2) the large result space and the
redundancy makes it often practically unfeasible to investi-
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gate all detected clusters and retrieve the most relevant ones,
and (3) it is almost impossible to manually decide whether
all relevant clusters have been detected or not.

Summarizing, existing quality measures for subspace clus-
tering comprise the evaluation by external measures and/or
a careful investigation by domain experts. Although both
approaches have their advantages and disadvantages, they
are valid and accepted in the community. Besides these
techniques, we need novel methods which do not rely on
ground-truth data and/or domain experts, but rather com-
plement existing evaluation approaches. Therefore, our aim
is to visualize the quality of a clustering for different cluster-
ing definitions. Furthermore, our approach supports the user
in interpreting given subspace clustering result in terms of
object groups and dimension sets, hence supports interactive
algorithm parameter setting.

3. VISUAL QUALITY ASSESSMENT
In the following we summarize the most important quality

criteria indicating a useful and appropriate subspace cluster-
ing result. Our quality criteria (C1-C3 ) are compiled from a
literature review on objective functions for subspace cluster-
ing algorithms. Our coverage is not exhaustive, but targeted
towards the major quality “understandings” in this field. For
many applications, not all aspects need to be full-filled.

3.1 Quality Criteria for Subspace Clusterings

Non-Redundancy Criteria (C1).
One –if not the major– challenge in subspace clustering, is

redundancy. It negatively influences a knowledge extraction
due to highly similar, but not identical cluster results.

C1.1 Dimension Non-Redundancy. A useful sub-
space clustering algorithm emphasizes distincitive dimen-
sion/membership characteristics and avoids subspace clusters
with highly similar subsets of dimensions.

C1.2 Cluster Member Non-Redundancy. A useful
subspace clustering result focuses on important global group-
ings, avoiding clusters with many similar cluster members.

As elaborated in [28], subspace clusters are only true re-
dundant, if they share most of their dimensions and most
of their cluster members. Therefore, dimension- and cluster
member redundancy have to be analyzed in conjunction.

C1.3 No Cluster-Splitup in Subspaces. Similar clus-
ters occurring in different, non-redundant subspaces should
be avoided. Generally, cluster-splitups cannot be considered
redundant, as each cluster may contain new information. Yet,
it provides reasons to suspect that the cluster members form
a common cluster in a single, higher-dimensional subspace.

Object and Dimension Coverage Criteria (C2).
We define object coverage as the proportion of objects

and dimension coverage as the proportion of dimensions of
the datasets which are part of at least one subspace cluster.
A high coverage of both objects and dimensions helps to
understand the global patterns in the data.

C2.1 Object Coverage. To reason about all data ob-
jects, a useful subspace clustering algorithm extracts –not
mandatorily a full– but obligatory high object coverage.

C2.2 Dimension Coverage. To reason about all dimen-
sion characteristics, a useful subspace clustering algorithm
covers each dimensions in at least one subspace cluster.

Clustering Characteristics Criteria (C3).
Cluster characteristics are related to internal cluster eval-

uation measures. Although the following aspects are not
summarized into a common measure for subspace clustering,
most algorithms try to optimize the following properties:

C3.1 Cluster Compactness. Objects belonging to a
cluster need to be similar in all dimensions of their respec-
tive subspace. Non-compact clusters represent dependencies
between the cluster members which are not very strong.

C3.2 Cluster Separability. A useful algorithm assigns
similar objects to the same cluster. Objects belonging to
different clusters in the same subspace need to be dissimi-
lar. A separability definition of clusters existing in different
subspaces does not exist yet.

C3.3 High/Low Dimensionality. A high and a low
dimensionality of a cluster can both be considered useful
in different applications. While a high dimensionality is
often interpreted as more descriptiveness, we argue that a
low dimensional cluster can also be of interest, especially
if a higher dimensional subspace contains the same cluster
structures. That means, fewer dimensions correspond to
lower cluster complexity. However, clusters with a very low
dimensionality (∼ 1-3 dimensions) are typically of no interest
since no deeper knowledge can be extracted.

C3.4 High/Low Cluster Size. While most subspace
clustering algorithms favor clusters with many members, we
believe that in some applications clusters with a small cluster
size are important, esp. when combined with C3.1 and C3.2.
Possible use case: a dataset contains many obvious structures,
while smaller clusters may contain unexpected patterns.

3.2 Visual Design- and Interaction Require-
ments for Subspace Cluster Evaluation

In the following we summarize design requirements to as-
sess the quality criteria as categorized above. In Section 4
we showcase one possible instantiation of the design require-
ments in our SubEval framework.

Cluster vs. Clustering. Crucial for the design of an
evaluation system is to distinguish between the evaluation of
a single cluster and the evaluation of a clustering result. For
a single cluster, the different cluster characteristics (C3 ) are
of interest, independent of a potential redundancy (C1 ) or
coverage (C2 ) aspect. Likewise, for a clustering result the
overall quality information, such as redundancy (C1 ) and
coverage (C2 ) is important, i.e., a high-quality result can
still contain a few clusters with e.g., low compactness (C3.1 ).

Reasoning for a Good/Bad Quality. Another im-
portant aspect is to distinguish between a cluster/clustering
quality and explanations/reasons for a good/bad quality. The
first aspect primarily states whether a clustering is useful or
not, while the second one requires a more fine-grained level
for an in-depth understanding.

Interactive Visualizations. For many of the presented
quality criteria it is not mandatory to develop complex vi-
sualizations. Simple visual encodings and well-established
visualizations, such as bar- or line charts, allow to extract
quickly useful meta-information (e.g., the redundancy of di-
mensions in subspaces or the number of not clustered data
records). We show examples in Figures 5 and 6. Even simple
visualizations become powerful analysis tools if interactivity
and faceted-browsing is applied, i.e., an analyst interactively
selects all subspace clusters containing a frequently occur-
ring dimension and gets details on-demand, such as data
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Figure 3: Schema for the two interlinked MDS projections: An MDS projection is computed for both, the
subspace- and object similarity of the subspace clusters using an appropriate distance function. Afterwards,
the projection is mapped on top of a perceptual linear 2D colormap where similar color correspond to a
nearby location in MDS projection (similar objects). Finally, the colors of the subspace clusters of the
object similarity projection are assigned to the clusters in the subspace similarity projection and vice versa.
Interpretation: Nearby subspace clusters in a MDS projection with the same color are similar in both, the
object and subspace space; nearby clusters with different colors in the object similarity projection are only
in their cluster members, but not in the subspace.

distribution and commonalities of the selected clusters. This
technique is known as linking-and-brushing [5].

Multi-Granularity Analysis. To get detailed informa-
tion of the quality of subspace clustering result at different
granularity levels, a multi-level analysis from overview to
detail is required (see also the visual information seeking
mantra by Shneiderman [26]: Overview first, zoom and
filter, then details-on-demand). In the following, we describe
a potential workflow with three granularity levels (L1-L3):

L1 Overview. The user needs to quickly develop an
overview of the redundancy aspect (C1 ) for all detected
clusters to decide whether a result is generally useful or
not. Quality must be assessed separately, but also related
in two spaces: cluster member- and dimension space. Re-
dundancy is highly correlated with similarity as many highly
similar cluster imply a notion of redundancy. Therefore, an
appropriate visualization must be able to depict (relative)
similarity between data objects, as well as between dimension
combinations. One possible visualization technique to fulfill
these visual properties is Multi-dimensional Scaling (MDS)
[11], as depicted in Figure 1. MDS approximates the high-
dimensional distances in a low (2D) dimensional space, thus
making it suitable for depicting redundancy aspects (C1 ).
Set-oriented distance functions such as the Jaccard Index
or the Overlap Coefficient are a possible mean to intuitively
compute the similarity between two clusters or subspaces:

Jaccard Similarity(ci, cj) = 1− |ci ∩ cj |
|ci ∪ cj |

A similarity value of 0 refers to two completely identical
clusters. Likewise, the similarity can be computed between
two subspaces. Based on the similarity notion of a specific
application, a different distance function can be applied.
Other subspace cluster properties, such as the cluster size or
compactness, can be encoded with additional visual variables
(e.g., color or size) into the points of the projection or by bar
charts as presented, e.g., in Figures 5 and 6.

L2 Cluster Comparison. At the cluster comparison
level, the user needs to validate a potential object- and/or di-
mension redundancy identified in (L1 ). The analyst will also
have to examine the coverage of the cluster members and di-

mensions, and particularly compare the coverage of multiple
clusters. As one potential solution we propose one MDS pro-
jection per subspace cluster, illustrating the object similarity
by location in the MDS projection and highlight the cluster
members accordingly as further described in Section 4.2. An-
other approach to analyze common members/dimensions in
different clusters are Parallel Set visualization [6].

L3 Data Instance. At the last analysis level, the user
needs to investigate the properties of a single selected cluster.
Only at this fine-grained detail level the analyst will under-
stand why specific objects are clustered within a subspace,
and, more importantly, to find potential reasons why a clus-
tering fails to identify a valid object to cluster relationship.
One possible approach to analyze the data distribution of
high-dimensional data are Parallel Coordinates [18], which
show the distribution of multiple data objects among a large
set of dimensions. It might be useful to combine the Parallel
Coordinates with a box plot or another density measure in
order to compare the data objects with the underlying data
distribution of the dataset. An example for such an enhanced
parallel coordinates plot can be found in Figure 1.

4. SUBEVAL: INTERACTIVE EVALUATION
OF SUBSPACE CLUSTERINGS

In the following section, we introduce SubEval which is
one instantiation of the previously described multi-granularity
analysis. The overview level (L1 ) uses two inter-linked MDS
projections to simultaneously analyze cluster member- and
dimension redundancy (Section 4.1). Section 4.2 (L2 ) in-
troduces ClustDNA for detailed redundancy analysis and
Section 4.3 (L3 ) describes DimensionDNA to explore the
distribution on a data instance level of one selected cluster.

4.1 Interlinked MDS for Cluster Member and
Dimension Space Exploration

At the overview level, redundancy aspects (C1) are focused
by visualizing the relative pair-wise similarity relationships
of all clusters with the help of a MDS projection. In SubE-
val simultaneously two interlinked MDS projections are
used: the left MDS plot illustrates the similarity of sub-
space clusters w.r.t. the cluster members, and the right MDS
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Figure 4: ClustDNA to compare the topology of 4 selected subspace clusters: each combined scatter plot
represents an MDS projection of all data objects of the dataset in the subspace projection (right) and the
SuperSpace (left; union of dimensions of all selected clusters). Cluster members are marked in color. The
dimensions of the subspace are indicated by the top glyph (red = subspace -, grey = SuperSpace dimension).

plot depicts the similarity w.r.t. the dimension similarity.
The user can change the similarity definitions in order to
account for the different understanding of redundancy in the
subspace analysis process. SubEval supports multiple set-
oriented similarity measures (e.g., Jaccard Index). Advanced
measures as proposed in [28], are planned for future work.

Visual Mapping for Redundancy Analysis.
In the MDS projection, each subspace cluster is repre-

sented by a single point/glyph. In order to compare the
clusters with in the corresponding counter-MDS plot we use
a 2-dimensional color schema [8, 27] that links position with
color (similar position = similar color; see Figure 1 (1) and
(2)). The basic intuition is that in the left MDS projection
(object similarity) the cluster member similarity is encoded
by the 2D coordinates (position), while the dimension sim-
ilarity is encoded in color in the same projection. In other
words, proximity corresponds to similar/redundant clusters
w.r.t. objects and a similar color indicates similar/redundant
clusters in dimension similarity. The same is true for the sub-
space similarity in the right projection: similarity is encoded
by the position, while color is used to encode the similarity in
cluster member aspect. The interpretation of our interlinked
MDS representation is as follows: clusters being close to each
other and share a similar color in one MDS projection are
similar, hence redundant in both, the cluster member and
subspace aspect (C1.1)+(C1.2). Subspace clusters, which are
close in the cluster member projection, but different in their
coloring are similar in their cluster members, but different
in their subspace topology (C1.3 ).

Computation of Coloring in MDS Projections.
The computation of our linked MDS projections is illus-

trated in Figure 3. First, the two MDS projections for the
cluster member and subspace similarity are computed inde-
pendently using a user-defined distance function. Afterwards,
both projections are mapped independently on top of a per-
ceptual linear 2D colormap [23]. A nearby location in the
MDS projection (high similarity) is mapped to a similar color.
Up to this point, the visual variables position and color are
calculated independently and are not comparable between
the two MDS plots. We can now apply the color information
of the clusters in one MDS projection on top of the clusters
in the opposite projection. By exchanging the semantic color
mapping schemes between the two plots, the cluster mem-
ber MDS can still indicate a (dis-)similarity in their cluster
members (visually encoded by the point’s location), but the
coloring reflects the subspace similarity. Alike, the subspace
similarity view reflects the dimension similarity by means
of the points’ locations, but allows perceiving the cluster
membership similarities via the color encoding.

Interpretation of MDS Structures.
In the following, we give guidelines on how to interpret the

visual appearance of the different MDS plots with respect to
the presented quality criteria in Section 3.1.

High- and Low Redundancy (C1).
Similar objects have been clustered in
similar subspaces: we can see groups
of clusters in which colors are similar
(top). Opposed to low redundancy
(bottom), we can see groups of clusters,
too, but either in different subspaces
or with different objects. Thus, close
clusters have dissimilar colors.

Big (Non-compact) Clusters (C3.1 + C3.4).
Clusters with many members or di-
mensions are illustrated by large glyphs
in the MDS plots. Compactness can
be additionally visualized by a more
detailed glyph representation.

Too low-dimensional clusters (C3.3)
If the relevant subspace is too low di-
mensional the inferable insights are
too trivial and no deeper conclusion
about dependencies between the di-
mensions are possible. Too low- di-

mensional clusters can be seen by rather small glyphs in the
subspace MDS projection. The is especially true for clusters
with many cluster members (C3.4).

Small Splinter Clusters (C1.3 + C3.2)
The result contains many small clus-
ters indicated by small glyphs. These
clusters do not provide a good gener-
alizations of the data; general conclu-
sions cannot be extracted.

Cluster Splitup in Subspaces (C1.3)
Split of clusters in subspaces: nearly
identical object sets are clustered in
different subspaces, indicated by largely
overlapping cluster circles. Although
this does not imply redundancy (col-

ors are different, thus each cluster contains new information),
it provides reason to suspect that these objects actually form
a cluster in a single high-dimensional subspace.

Cluster Splitup in Objects (C3.2)
Split of clusters w.r.t. objects: a clus-
ter might be divided into multiple clus-
ters. We can discriminate between two
cases: (1) a single cluster is partitioned
in a single subspace (rare case) (c.f.,

blue circles), or (2) a cluster is partitioned and lives in differ-
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ent subspaces, which is a typical case for projected clustering
algorithms like Proclus [1].

Visual Enhancement and User Interaction.
Further visual encodings can be mapped on top of the

enhanced MDS representation to iteratively add more details
to the clusters. The additional information adds another
level of complexity to the visualization. Therefore, the user
can optionally add them, if needed for an analysis purpose.

Glyph Representation: The size of the points in the
MDS projection can be mapped to e.g., the cluster- or sub-
space size. This representation allows assessing the charac-
teristics C3.3 and C3.4 of all clusters.

Furthermore, additional cluster characteris-
tics can be added to the glyph representation.
For example, the compactness can be illustrated
by the size of an inner circle in the glyph. A
combination of multiple criteria in a pie-chart
like fashion is also imaginable. A mouse over provides addi-
tional information for a cluster (e.g., size or members).

Linking and Brushing. We implemented a linking and
brushing functionality between the two MDS projections.
Moving the mouse over one cluster in the left projection
highlights the same cluster in the right projection and vice
versa. The user is able to apply a lasso selection and highlight
all selected clusters in the opposite plot (c.f. Figure 1).

Selection and Filtering. Selected subspace clusters
can be further analyzed by (L2 ) ClustDNA (Section 4.2
and (L3 ) DimensionDNA (Section 4.3). Additionally, the
selected clusters can be reprojected into the MDS space to
remove outlier-clusters which may distort the projection.

Ground Truth Comparison. Finally, SubEval allows
to add potential ground-truth clusters to the projections.
Using this feature, external evaluation methods can be en-
hanced by (1) comparing the similarity of all detected clusters
with the ground truth and see for example, that multiple
clusters are similar to the benchmark, and (2) the multi-level
analysis of SubEval enables the user to visually analyze the
structure of a ground truth cluster (c.f. DimensionDNA) to
decide whether a ground truth cluster is actually appropriate.

4.2 ClustDNA: Comparison of Cluster
Topologies in Subspace Projections

At the second analysis level of SubEval, a user is able to
analyze and/or justify the redundancy of a small selection
of subspace clusters (e.g., the four selected blue clusters in
Figure 1 (1)). Our idea is to show for every selected cluster,
both, all data objects and the cluster topology with a visu-
alization, called ClustDNA. To understand the similarity
between the different objects and the accordingly generated
clustering structures, we rely again on a MDS projection.
For every cluster we compute a projection in the respective
subspace and assume that redundant subspace clusters result
in similar MDS projections. Furthermore, we compare each
subspace projection with a MDS projection containing the
union of dimensions of all selected subspace clusters. We call
the unified combination of dimensions SuperSpace. A com-
parison with these SuperSpace helps to decide whether a
subspace of all dimensions results in a more profound cluster.

An example of ClustDNA can be found in Figure 4. Each
selected subspace cluster is represented by a combination of
two MDS projections: SuperSpace (left) and subspace of
cluster (right). The cluster members are colored whereas

Figure 5: Distribution of the #of cluster members
(left) and the #subspaces (right).

Figure 6: Bar charts to analyze the object coverage:
a few objects are not clustered (blue), about 60 ob-
jects are a member in 1 − 10% of the clusters and
more than 70 objects are a member in more than
40% the clusters.

non-cluster members are represented in grey. The small
glyph at the top indicates the dimensions of each subspace
(red = subspace -, grey = SuperSpace dimensions).

4.3 DimensionDNA: In-Depth Analysis
At the third analysis level, a user needs to be able to

analyze one particular selected cluster to identify good/bad
clustering decisions of an algorithm. SubEval implements an
enhanced Parallel Coordinates (PC) [18] visualization called
DimensionDNA. Classical PC are combined with a heat-
map to illustrate the data density of the entire dataset in each
dimension (Figure 1 (right)). Each vertical bar represents
one dimension. The minimum value of the dimension is
mapped to the bottom of the bar, linearly scaled to the top
(maximum value). The white-to-black colormap encodes the
number of objects falling into a specific range (dark = many
objects; bright = few objects). Records of a selected cluster
are visualized as a connected line (red) among all dimensions
of the dataset. The subspace dimensions are highlighted.

Using DimensionDNA, a user can analyze the compact-
ness (C3.1) of the cluster members in the (subspace) di-
mensions in order to see whether a subspace cluster is valid.
When selecting multiple clusters, the user is able to analyze
the cluster’s redundancy (C1) and separability (C3.2). The
underlying distribution of every dimension helps the analyst
to inspect outliers or distortions that prevent an algorithm
to identify clusters in particular dimensions.

4.4 Cluster Meta-Data Analysis
To provide additional information of detected subspace

clusters (or a selection thereof), SubEval comprises several
visualizations to analyze the clusters’ meta-data:

Cluster- and Subspace Size Distributions: Figure 5
shows a line plot to assess the distributions of the cluster
size (left) (c.f., C3.3 ) and subspace size (right) (c.f., C3.4 ).
A user is able to see whether an algorithm produced rather
small, large, or different sized subspace clusters.
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Object Coverage Analysis: The bar-chart in Figure 6
is targeting C2.1 -Object Coverage, where we visualize the
relationship between the number of (non-)clustered data ob-
jects. The non-clustered objects can be further investigated
with the DimensionDNA plot, while the redundancy aspects
of the object-to-cluster assignment (C1 ) can be analyzed by
interactions on the bar chart. It shows the number of objects
(x-axis) which do not belong to any cluster (blue bar), and
the number of members being part in p%, of the clusters.
The more this bar-chart is shifted to the bottom, the more
often specific cluster members occur in multiple clusters.

Dimension Coverage Analysis C2.2 is targeted with
an interactive bar-chart showing how many subspaces a di-
mension is allocated. The user can subsequently investigate
dimensions, which occur frequently or never in any subspace,
with the DimensionDNA plot.

Dimension Co-occurrence: Besides the coverage as-
pect, the user is able to analyze, which dimensions co-occur
in the subspaces by choosing one or multiple dimensions.
The chart is updated by filtering for subspaces containing
the selected dimensions.

All charts can be interactively filtered. A selection of
one e.g., dimension in the coverage analysis, or clusters of a
specific size will update all other visualizations accordingly,
thus allowing an analyst to concentrate on clusters of interest.

5. EXPERIMENTS
We describe two use cases to show the usefulness of SubE-

val to visually evaluate the quality of subspace clusterings.
SubEval is implemented in Java/JavaScript in a server-client
fashion using d3.js1 for the visualizations. In the supplemen-
tary material2 we provide a video and give the user the
opportunity to explore the use cases with SubEval.

Use Case 1: Redundancy Analysis.
In the first use case, we want to show the usage of SubE-

val for the detection and analysis of redundancy. We apply
the well-known Clique [2] algorithm to the real-world Glass
dataset with 214 objects and 9 dimensions. Clique is a grid-
based algorithm which is known to detect many redundant
clusters. For the Glass dataset, 132 subspaces3 are detected.

In the first step, we analyze the cluster member coverage
of our result (Figure 6). Except for one outlier (blue bar) we
can quickly see that all data objects belong to at least one
cluster. However, more than 70 data objects (30% of the
dataset) are part of more than 40% of the clusters resulting
in a noticeable degree of member overlap in the clusters.

The results of the inter-linked MDS projection can be found
in Figure 1. We can see a large group of bigger clusters in the
top left corner of the cluster member similarity projection.
The clusters of the group share a common clustering topology,
but have a different color encoding. This corresponds to
similar clusters occurring in subspaces of different dimensions.
Besides the smaller splinter clusters that occur in different
(larger-dimensional) subspaces, the user is faced with four
larger clusters (blue shaded on the left side). These clusters
seem to have similar cluster members in similar subspaces
and thus can be suspected redundant. We analyze this
potential redundancy further with ClustDNA as shown

1https://d3js.org/
2http://www.subspace.dbvis.de/idea2016
3Parameter of Clique for use case 1: -XI 10 -TAU 0.2

in Figure 4. In the dimension glyph on the top, we can
see, that all four clusters share most of their dimensions.
Another interesting observation it that the first and second
clustering have an almost identical cluster topology which
is visible through a similar MDS projection. The cluster
on the right comprise only a single dimension in which all
cluster members are almost identical. A user can conclude
that the selected clusters are truly redundant. It would be
sufficient to only report the first cluster without loosing much
knowledge about the data.

Finally, we select one of the redundant clusters and inves-
tigate the dataset distribution with the DimensionDNA, as
shown in Figure 1 (3). We can see that the cluster members
are compact in the subspace dimensions dim1,4,5, but also
in non-subspace dimensions dim0,2,3,5, and dim7. Hence, an
analyst may question, why the aforementioned dimensions
are not part of a subspace. In summary, a user can quickly
see that the clustering result contains a few larger subspace
clusters, but also many smaller splinter clusters and a few re-
dundant clusters as described above. The shown results can
be attributed to the bottom-up strategy of Clique, which is
known to produce a large number of redundant clusters. An
analyst may either change the parameter settings or apply a
different subspace clustering algorithm.

Use Case 2: Splinter Cluster Analysis.
In the second use case, we analyze a good performing

subspace clustering algorithm (Inscy [4]) on the Vowel
dataset as experimentally identified in [24]. The dataset
contains 990 object, described by 10 dimensions4. Inscy is
an algorithm with a redundancy elimination strategy.

According to the experiments in [24], the algorithm per-
forms well on the dataset with good external performance
measures (compared to a ground truth). When analyzing
the clustering result with SubEval, we made the following
observations: The size of the subspaces is homogeneous with
a dimensionality between three and six dimensions. However,
the number of cluster members varies significantly. Many
clusters contain less than 30 members and only a few clusters
have more than 300 members as shown in Figure 5. When en-
coding this information into the inter-linked MDS projection
(c.f. Figure 7), we can see that the clustering contains a large
number of small splinter clusters with a variety of different
colors. This means that in a large number of subspaces, the
algorithm detected small, less expressive clusters. The group
of bigger clusters on the bottom left is apart from the splin-
ter clusters and contains significantly more cluster members,
hence a more general representation of the data. As visible
from the similar coloring, there are many redundant clusters,
which can be verified in the detail analysis. We select one of
the clusters, as shown in Figure 7 (1), and analyze the data
distribution with the DimensionDNA (shown in Figure 7
(3)). The subspace contains three dimensions. dim3, however,
does not seem to be compact and an analyst may question
why this dimension is part of the subspace. It is therefore
interesting that the algorithm performed well on the dataset
according to the experiments in [24]. Based on our findings,
an algorithm expert could improve the clustering results by
a careful adjustments of the parameters.

4Parameter of Inscy for use case 2: -gS 10 -mS 16 -de 10.0
-m 2.0 -e 8.0 -R 0.0 -K 1
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Figure 7: Use Case 2: (1) + (2) Group of large clusters with similar subspaces (blue group left) and many
small splinter clusters with different colors (=different subspaces) (left). One cluster is selected for detailed
analysis. (3) DimensionDNS: Visualizing the distribution of cluster members of the selected cluster. An
analyst may wonder why the outliers in dim3 and dim5 are part of the cluster.

6. DISCUSSION AND FUTURE WORK
While our technique has proven useful for an efficient and

effective visual comparison of subspace clusters regarding
certain quality aspects, we identify areas for further research.

Alternative Visual Design. The inter-linked MDS pro-
jection between the cluster member and dimension similarity
of subspace clusters may be difficult to read and requires
some training for unfamiliar users. The same is true for the
ClustDNA visualization. Furthermore, MDS projections
face generally the problem of overlapping points and might
not show the actual similarity between all combinations of
points as discussed below. Therefore, we are planning to
improve the MDS projection and also work on different vi-
sual representations for the overview of subspace clusterings.
Node-link diagrams as introduced in [30] may be an interest-
ing starting point to this end.

MDS projects data points into a 2D space by preserving
the pair-wise distances between all data points as well as
possible. Depending on the distance distributions, the 2D
projection may not reflect the actual relationships correctly.
Then, objects appearing close in the projection might be
dissimilar in their original space, and far apart objects may
be similar. Independent of the quality, a MDS projection
is typically interpreted by a user as it is, without consid-
ering a possible error which lead to wrong analysis results.
SubEval already provides methods for drill-down to justify
presumptions in a different view. Later, we also want to
address the quality of the MDS projection by visualizing the
difference between the similarity in the MDS projection and
the real data characteristics, or rely on further techniques
for visualization of projection quality [25].
SubEval is designed to analyze one subspace clustering

result at a time. A comparative evaluation of several cluster-
ing results would be beneficial to compare the influence of
minor changes in the parameter settings. We plan to extend
SubEval for a comparative analysis of multiple clusterings.

Application to Related Approaches. The analysis
goal of subspace clustering differs significantly from other
analysis techniques like subspace outlier detection (SOD) [33]
and subspace nearest neighbor search (SNNS) [19]. While
SOD tries to identify subspaces in which outliers exist, SNNS
identifies nearest neighbor sets to a given query in different
subspaces. Although the analysis goal differs, both techniques
share the same evaluation challenges like subspace clustering,
i.e., redundant subspaces and results (outliers or nearest

neighbors). In the future, we want to extend SubEval for
the quality assessment of SOD and SNNS. For the inter-linked
MDS projection we need to develop quality measures for the
redundancy definition. DimensionDNA can be applied to
both techniques. Also, we need to develop visualizations to
access the meta-data of the respective analysis.

SubEval is designed for the quality assessment of subspace
clusterings, however, it can also be used for the evaluation of
full-space clusterings, particularly with partially overlapping
clusters. For the MDS projection, an appropriate measure is
needed to compute the similarity between clusters. One op-
tion is to compute the distance between cluster centroids or
the pair-wise distances between all cluster members. Dimen-
sionDNA and ClustDNA can also be applied to investigate
cluster topologies and member distributions.

Open Source Framework. SubEval is part of SubVA
(Subspace Visual Analytics), a novel open-source framework
for visual analysis of different subspace analysis techniques.
Besides providing implementations of recently developed
visualizations, such as SubVis [20], SubVA integrates the
well-known OpenSubspace framework [24] as a module, al-
lowing analysts to apply the most commonly used subspace
clustering algorithm to a given dataset. We will distribute
the framework on our website5 and provide the source code
in the supplementary material.

7. CONCLUSION
This paper presented SubEval, a subspace evaluation

framework for the simultaneous assessment of several qual-
ity characteristics of one subspace clustering result. SubE-
val combines expressive visualizations with interactive anal-
ysis and domain knowledge, and complements, potentially
advancing standard evaluation procedures with a more com-
prehensive, multi-faceted approach. We summarized state-of-
the-art evaluation methods for subspace clustering algorithms
and showed that, besides classical measures, visualizations
can be an insightful approach to the evaluation and under-
standing of subspace clustering results. We also outlined
ideas for extensions of our approach.
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[24] E. Müller, S. Günnemann, I. Assent, and T. Seidl.
Evaluating Clustering in Subspace Projections of High
Dimensional Data. Proc. of VLDB Endowment,
2(1):1270–1281, 2009.

[25] T. Schreck, T. von Landesberger, and S. Bremm.
Techniques for precision-based visual analysis of
projected data. Information Visualization,
9(3):181–193, 2010.

[26] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Proc. of
Visual Languages, pages 336–343. IEEE, 1996.

[27] M. Steiger, J. Bernard, S. Mittelstädt, S. Thum,
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ABSTRACT
Understanding predictive models, in terms of interpreting and iden-
tifying actionable insights, is a challenging task. Often the impor-
tance of a feature in a model is only a rough estimate condensed
into one number. However, our research goes beyond these naïve
estimates through the design and implementation of an interactive
visual analytics system, Prospector. By providing interactive par-
tial dependence diagnostics, data scientists can understand how fea-
tures affect the prediction overall. In addition, our support for lo-
calized inspection allows data scientists to understand how and why
specific datapoints are predicted as they are, as well as support for
tweaking feature values and seeing how the prediction responds.
Our system is then evaluated using a case study involving a team of
data scientists improving predictive models for detecting the onset
of diabetes from electronic medical records.

Keywords
interactive machine learning; predictive modeling; partial depen-
dence; visual analytics; model visualization

This paper was published before. The original manuscript can
be found at:
http://perer.org/papers/adamPerer-Prospector-CHI2016.
pdf.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IDEA ’16 San Francisco, California, USA
© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123_4

63

http://perer.org/papers/adamPerer-Prospector-CHI2016.pdf
http://perer.org/papers/adamPerer-Prospector-CHI2016.pdf
10.475/123_4


Interactive Exploration for Domain Discovery on the Web

Yamuna Krishnamurthy
yamuna@nyu.edu

Kien Pham
kien.pham@nyu.edu

Aécio Santos
aecio.santos@nyu.edu

Juliana Freire
juliana.freire@nyu.edu

Tandon School of Engineering
New York University

ABSTRACT
As the volume of information on the Web grows, it has be-
come increasingly difficult to find web pages that are relevant
to a specific domain or topic. In this paper, we explore the
general question of how to assist users in the domain dis-
covery process. Domain discovery entails the translation of
a user’s information needs and conceptual view of a domain
into a computational model that enables the identification
and retrieval of relevant content from the Web. We dis-
cuss the challenges and propose an initial approach based
on exploratory data analysis that combines techniques from
information retrieval, machine learning and data mining to
streamline domain discovery. We implemented the approach
in an open-source tool and present the results of a prelimi-
nary evaluation.

Keywords
Exploratory data analysis, exploratory search, human in-
teraction, visualization, information retrieval, text mining,
focused crawling

1. INTRODUCTION
Domain discovery is the process through which a user

identifies and retrieves information and sources from the
Web that are relevant for a specific information need. Con-
sider the following scenario. Analysts at a law enforcement
agency that is tasked with investigating and preventing the
illegal use and trafficking of firearms regularly search the
Web to discover and track potentially illicit activities. They
want to find suspicious brokers and online stores, forbidden
weapons for sale, reports of stolen weapons, and leads into
trafficking activities. While they have a clear idea of the
information they need, finding this information on the Web
is challenging. They often start by issuing queries to Google
or Bing using keywords such as “AR15” or “no paperwork”,
which based on their prior knowledge, provide a good indi-
cation of illegal weapon sales. While search engines provide
broad coverage of the Web, for domain specific searches they
have an important drawback: they return a very large num-
ber of irrelevant results. Figure 1 shows results from Google
for the queries ar15 no paperwork and sell ar15 no pa-
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perwork. Most of these results are not related to the sale of
the weapons with no paperwork.

The experts need to analyze the results of the search ei-
ther by reading the snippets returned by the search engine
or the actual pages. When they identify a relevant page
which contains information like phone numbers, user ids in
forums and images, they bookmark or save it locally. As
they perform multiple investigations, it is easy to lose the
search context. Moreover, content on the Web is very dy-
namic: existing pages change or are deleted, and new pages
are added at a high rate. Thus, just keeping track of URLs
visited is not sufficient. To maintain the information up-
to-date and discover new relevant content, the expert must
continuously query the search engine. This process is time
consuming and tedious.

Another challenge lies in formulating keyword queries.
While these queries are simple, selecting the right terms for
a domain-specific search can be daunting. The representa-
tion of a given domain on the Web can differ from what an
analyst expects, and the analyst may not be aware of certain
nuances. During exploration, by examining pages returned
by a search engine, the analyst can discover other related
terms. For example, as illustrated in Figure 1, another term
that appears in the search results that is potentially related
to illegal activity is background check. Currently, analysts
have to read the pages, manually record the keywords of
interest they discover, and later use these keywords as addi-
tional queries. This clearly does not scale.

The simplicity of keyword queries is a strength and also a
limitation. In theory, an analyst could improve the relevance
of the results by issuing more specific queries. For example,
an analyst could search all forums and user ids associated
with the sale of a particular illegal weapon. Or when she
finds a user in a forum who posted an ad for a gun without
paperwork, she would like to check whether this user is active
in other forums. Such queries cannot be expressed using the
interfaces supported by search engines.

These challenges are commonplace in many different tasks,
from tracking criminal activities to understanding how re-
search areas evolve over time.

Contributions. To address these challenges, we developed
a visual analytics framework for interactive domain discov-
ery that augments the functionality provided by search en-
gines to support analysts in exploratory search. The frame-
work (1) supports exploratory data analysis (EDA) [27] of
web pages, and (2) translates the analyst’s interactions with
this data into a computational model of the domain of in-
terest. By organizing and summarizing the search results,
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the framework helps users better understand and analyze
the retrieved content as well as provide feedback. By clus-
tering the retrieved pages and grouping similar pages to-
gether, it simplifies the process of selecting and annotating
the pages. It also automatically extracts important key-
words and phrases in the pages. These not only serve as
a summary of the content, but also as suggestions for new
queries to be issued. In the course of exploration, the search
context is maintained: queries and their results are per-
sisted, allowing users to revisit and analyze the content. The
annotations provided by the users regarding the relevance of
pages is used to build the domain model, a computational
specification of the domain, which can then be used to con-
figure a focused crawler [2, 4]. The focused crawler, in turn,
provides a scalable mechanism to retrieve additional pages
which feeds back into the domain discovery process. Fig-
ure 2 illustrates the interactive domain discovery process.

We have implemented the framework in the Domain Dis-
covery Tool (DDT),1 an open-source system that imple-
ments these mechanisms. We also report the results of a
preliminary user evaluation.

2. RELATED WORK
Search user interfaces have been extensively studied and

implemented. Hearst [8] provides a comprehensive summary
of work on search interface design. She also discusses the
broader problem of sensemaking [16, 20, 21], the “iterative

1DDT is available at https://github.com/ViDA-NYU/
domain discovery tool. For demos see: https://youtu.be/
XmZUnMwI10M, https://youtu.be/YKAI9HPg4FM, https:
//youtu.be/HPX8lR 8QS4.

process of formulating a conceptual representation from a
large volume of information”, and argues that “the standard
Web search interface does not do a good job of support-
ing the sensemaking process”. Tools such as Sandbox [28]
provide an interface for advanced analysis of the informa-
tion gathered, from various sources, by allowing free-form
organization of retrieved results. However, it misses an im-
portant step in sensemaking: the collection of a good set of
resources, representative of the domain. Search is an integral
part of this domain discovery process which enables analy-
sis and information extraction. The framework we propose
provides this missing step towards sensemaking.

Vertical search engines focus on a specific segment of on-
line content. For example, Google Scholar2 stores informa-
tion about scientific publications and Yelp3 helps users find
information about local businesses. These systems have sev-
eral benefits over general search engines. Notably, because
of their limited scope, they return more relevant results and
lead to higher precision. In addition, they support domain-
specific tasks. For example, in Google Scholar, it is possible
to search for papers written by a given author. These verti-
cal engines, however, are expensive to build and hence they
are available only for broad topics of wide interest. Our
framework allows exploration of any given domain, and is
a step towards lowering the costs of building vertical search
engines for any domain available on the Web.

Focused crawling [2, 4] has been proposed as a scalable
mechanism to gather data about specific domains from the
Web. In order to bootstrap a focused crawler, it is neces-
sary to provide a set of seed URLs that serve as the starting
points for the crawl, and a page classifier that can decide
whether a retrieved page is relevant or not. While these
systems are effective and address many of the challenges
discussed previously, they require substantial human input.
Collecting a set of positive and negative examples to train
classifiers that recognize the target concept is time consum-
ing; and as new pages are obtained by the crawler, the classi-
fier needs to be iteratively refined. Not surprisingly, focused
crawlers have not been widely adopted. The framework pro-
posed in this paper helps to solve the crawler bootstrapping
problem by helping the user to acquire seed URLs and build
models to classify Web pages.

Domain discovery requires exploration of text corpora gath-
ered from the Web. Interactive text mining techniques help
address this problem. Over the years there has been sub-
stantial research on various aspects of interactive text min-
ing, for both web and other documents, such as clustering [5,
11, 12, 15, 17, 23, 30], topic modeling [10, 29], and semantic
analysis [25]. Interactive applications like STREAMIT [1]
and i-GNSSMM [14] have attempted to bring some of this
work together to analyze web documents. However, STREA-
MIT assumes the existence of an external continuous source
of documents. The user cannot add documents to this source
during exploration using STREAMIT. It does not allow users
to annotate the documents and create their own clusters –
users can only tweak certain parameters to adjust the sys-
tem’s clustering algorithm. i-GNSSMM extracts the topic
graph from a collection of web pages. Although this could
be a useful representation of the content it is not always
appropriate for a user’s information seeking needs.

2http://scholar.google.com
3http://www.yelp.com
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There are also a number of text mining software pack-
ages.4 Since these require technical expertise to configure
and use them, they are out of reach for domain experts with-
out training in computing.

Recent work in dynamic search [31] improves search over
time by learning from the user’s interaction with the sys-
tem. This work is complementary to our effort. We may
leverage dynamic search to improve the search and filter-
ing of documents in our framework. More closely related to
our framework is the intent modeling work by Ruotsalo et
al. [19]. But this work uses only the feedback of important
keywords to model the intent of the user. It does not allow
the users to provide feedback on the relevance of documents
or group them as they see fit.

3. DESIDERATA OF INTERACTIVE
DOMAIN DISCOVERY

This work was originally motivated by challenges of do-
main specific search that were encountered as part of the
DARPA Memex program.5 In this project, we have inter-
acted with experts with a wide range of information needs
in different domains, including human trafficking, sale of ex-
plosives, illegal weapons and counterfeit electronics, micro
cap fraud and patent trolls. In what follows, we discuss the
desiderata for domain discovery based on our interactions
with these experts, their feedback on existing state-of-the-
art tools, and information needs.

Translation of conceptual definition of a domain into
a computational model. Domain definition and discovery
can be viewed as the iterative process of mapping an expert’s
conceptual view of a domain into a set of artifacts available
on the Web (e.g., web sites, web pages, terms, phrases and
topics). Since the human is clearly the biggest bottleneck in
this process, we need usable and scalable mechanisms that
guide and support the user. Capturing the domain defini-
tion as a computational model enables this process to scale:
with such a model, automated processes can be deployed to
retrieve relevant information.

Data gathering. Analysts use various information retrieval
mechanisms to collect relevant data for subsequent analy-
sis. Some of the common mechanisms include, but are not
limited to, web searches to locate new information and up-
loading already known relevant web pages. As they identify
relevant pages, they often crawl forward and backward in
an attempt to find additional content. A tool for domain
discovery should support these mechanisms and make them
easy to use.

Maintaining search context and capturing user feed-
back. Search engines treat each query independently. While
there is a notion of session which either refers to a specific
period of time or the linear chain of links followed, in domain
discovery the context should take the domain into account.
This would be an aggregation of sessions of exploration of
that domain. The history and bookmarking mechanisms al-
low users to save some of the search context, but it is hard to
reason about and revisit previously viewed content. This is
a major roadblock for domain discovery. The search context
should include queries issued, pages retrieved, indications

4https://en.wikipedia.org/wiki/List of text mining
software
5http://www.darpa.mil/program/memex

provided by users regarding the relevance of both pages and
keywords extracted from them. This information should be
readily available and easily interrogated.

Summarizing search results. The simple list of links
with snippets provided by existing search engines is not suf-
ficient for quick analysis and annotation of pages especially
when the number of results returned is large. The list fails
to provide an overview of the results. As we discuss in Sec-
tion 4, we explored different techniques to better summarize
the information.

Streamlining annotations. An important component of
domain discovery is user feedback regarding the relevance of
pages and sites. This feedback is essential to: Guide users
in the process of understanding a domain and help them
construct effective queries to be issued to a search engine;
and configure focused crawlers [4] that efficiently search the
Web for additional pages on the topic by using the feedback
to build page classifier models and gather seed URLs.

Exploring and Filtering Results. Once a set of pages
is gathered for a particular domain, the experts, as part of
their investigation, benefit from exploring subsets of these
results. Useful filtering mechanisms include, for example,
filter by keywords or specific time period.

Minimal setup and configuration. Analysts working on
domain discovery do not necessarily have technical expertise
to setup and configure tools and applications. They usually
require systems that have a simple, intuitive, visual and in-
teractive interface that has a very low learning curve with
minimal or no configuration required.

4. DOMAIN DISCOVERY TOOL
Informed by the desiderata described in Section 3, we

designed a framework to support domain discovery. The
framework aims to support users in the construction of a
computational model of their conceptual view of the do-
main. To achieve this, it includes several mechanisms that
aid analysts to explore, interact with and learn about the do-
main from the Web content retrieved, and that also gather
user feedback . The mechanisms, which we describe below,
combine techniques from data mining, machine learning and
information retrieval, and their results are presented to the
expert through interactive visualizations. They were im-
plemented in Domain Discovery Tool (DDT), whose user
interface is shown in Figure 3.

4.1 Data Gathering and Persistence
Search context is maintained by persisting it in an index6,

created for each domain, where all the domain specific ex-
ploration activities are stored. Domain experts can use a
variety of methods to make pages of interest available for
analysis through DDT.

Querying the Web. DDT allows users to query the Web
using Google or Bing. They can leverage the large collections
already crawled by the search engines to discover interest-
ing pages across the Web using simple queries. Since search
engines only return the URLs and associated snippet, DDT
downloads the HTML content given the URLs and stores it
in the selected domain’s index. This content can be used
later for analysis of the domain and also as seeds for fo-

6Our prototype makes use of an elastic search index: https:
//www.elastic.co/products/elasticsearch
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Figure 3: Domain Discovery Tool Interface Components

cused crawlers. Since downloading a large number of pages
(including the raw HTML content) takes significant time,
DDT performs this operation in the background.

Uploading URLs. In our interviews with experts and use
cases we explored, experts often have a set of sites (or pages)
they know are relevant. Therefore, it is important to provide
a mechanism for incorporating this background knowledge.
DDT allows users to provide URLs either through the in-
put box provided or by uploading a file containing a list of
URLs. DDT then downloads the pages corresponding to
these URLs and makes them available through its interface.

Forward and Backward Crawling. While users can
manually follow links forward and backward from the pages
they explore, this process is tedious. DDT automates these
tasks. Given a page, crawling backwards retrieves the back-
links (the resources that contain a link to the selected page)
of that page and then downloads the corresponding pages.
Forward crawling from a selected page retrieves all the pages
whose links are contained in that page. The intuition behind
the effectiveness of these operations is that there is a high
probability that the backlink of a page and the page itself
will contain links to other pages that are relevant.

4.2 Visual Summary of Search Results
To provide the analyst an overview of the pages they have

explored, DDT summarizes them visually in different ways.

4.2.1 Multidimensional Scaling
DDT uses multidimensional scaling (MDS) (see Figure 3)

for visualizing the retrieved content. Instead of displaying
just a list of snippets, DDT applies MDS to create a visu-
alization of the retrieved pages that maintains the relative
similarity and dissimilarity of the pages. This allows the user
to more easily select (e.g., using lasso selection), inspect and
annotate a set of pages.

MDS is currently achieved by principal component anal-
ysis (PCA) [26] of the documents. Since initially all pages
are unlabeled we need an unsupervised learning method to

group the pages by similarity. Note that other unsuper-
vised clustering methods such as K-Means [7] and hierarchi-
cal clustering [18] can be used, and we plan to explore these
in future work.

To improve scalability, instead of using the sparse document×
term (words in a document) matrix of TF-IDF [22] as the
input to the scaling algorithms, we use Google’s word2vec [13]
pre-trained vectors that were trained on part of Google News
dataset (about 100 billion words). The model contains a
300-dimensional vector for each word in a set W2V of 3 mil-
lion words and phrases. The archive is available online as
GoogleNews-vectors-negative300.bin.gz7.

We convert each document using the word vectors as fol-
lows. Let D = {d1, d2, ..., dn} be the set of documents to
be scaled. ∀d ∈ D let Wd = {w1, w2..., wm} where Wd is
the set of all words in the document (after removing stop-
words). The word2vec archive provides a 300 dimension vec-
tor V = {v1, v2, ..., v300}, ∀w ∈ {Wd ∩W2V }. So ∀d ∈ D

the vector corresponding to d =
∑

Vw, ∀w∈{Wd∩W2V }
|{Wd∩W2V }| . This

generates an input matrix of dimension n× 300, where n is
the number of documents, which is much smaller than the
original document × term matrix. By mapping words to
word vector representations, we saw a significant improve-
ment in the speed of scaling computation, and also got the
benefits of a word vector representation trained on a large
text corpus.

4.2.2 Descriptive Statistics
Real-time Page Statistics. As new pages are retrieved,
DDT dynamically updates the following statistics:

• Total pages - total number of pages in the domain

• Relevant pages - number of pages marked as relevant

• Irrelevant pages - number of pages marked as irrelevant

• Neutral pages - pages that have yet to be annotated

7https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
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• New pages - number of pages downloaded in the back-
ground since last update. This indicates that there are
new pages yet to be analyzed.

Page Statistics Dashboard. This dashboard, shown in
Figure 4, displays various statistics over the entire content
in the domain such as the distribution summary of sites, the
distributions and intersections of the search queries issued,
summary of page tags and their intersections and number of
pages added to the domain over time. This provides the user
a map of the domain represented by the retrieved pages.

Topic Distribution Dashboard. This dashboard, shown
in Figure 5, visualizes the various topics contained in the do-
main. The topics are generated using the Topik8 topic mod-
eling toolkit. Topics can be generated using either LDA [3]
or PLSA [9]. Visualization of the topics is done with LDAvis
[24]. It shows the topics, the overlap of topics and the most
frequent words contained in each topic.

4.2.3 Keywords and Phrases Extraction
The keywords and phrases extracted from the pages dis-

played in the MDS window are shown in the Terms window.
They provide a summary of the content of the result pages
from which the analyst can learn new information about the
domain and use some of the keywords and phrases as new
search queries to retrieve additional pages from the Web.

An example is shown in the zoomed region in Figure 3,
which shows important terms for the “Machine Learning”
domain. The initial set of keywords and phrases (bi-grams
and tri-grams) displayed are the ones with high TF-IDF [22]
in the retrieved pages. But as the pages are annotated, the
keywords and phrases are selected from the pages that are
annotated as relevant.

When the user hovers the mouse over a term, snippets
of result pages that contain the corresponding keyword or
phrase are shown below the Terms window. This helps to
better understand the context in which the keyword and
phrase appear.

4.3 User Annotations
DDT allows users to provide feedback for both pages and

terms extracted. In addition to marking individual pages,
users can select a group of documents for analysis and mark
them as relevant (or irrelevant). Users may also annotate
pages with user-defined tags. These tags are useful to de-
fine sub-domains, for example, in the “Machine Learning”
domain we can have sub-domains like ”Deep Learning” and
”Generative Models”

Users can also mark the keywords and phrases extracted
by DDT as relevant or irrelevant. Based on the relevant
terms, the system re-ranks the untagged keywords and phrases,
by relatedness to the relevant terms using Bayesian sets [6].
This brings in more related terms and phrases that help the
user both understand the domain further and formulate new
search queries. Given a query consisting of a few items of
the cluster, the Bayesian sets algorithm retrieves more items
belonging to that cluster. It achieves this by computing a
score for each item, that indicates how related it is to the
query cluster. We modeled our ranking of untagged terms
and phrases, based on a few tagged terms and phrases, to
this setting. The terms and phrases that are marked as rel-

8http://topik.readthedocs.io/en/latest/
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Figure 4: Page Statistics Dashboard

evant by the user make the query cluster. Each term or
phrase is represented by a binary vector of all documents in
the corpus. The binary value 1 indicates that the term or
phrase occurs in the corresponding document and 0 other-
wise. So we have two sparse binary matrices as inputs to
the Bayesian sets algorithm, (1) query terms × documents
and (2) untagged terms × documents. The output is a
list of the untagged terms ranked in the decreasing order of
their score. We chose to use Bayesian sets as it computes
the score exactly using a single sparse matrix multiplica-
tion, making it possible to apply the algorithm to very large
datasets, which in our case is the large vocabulary of the
corpus.

Users may also integrate background knowledge by adding
custom keywords and phrases. To guide users and provide
them a better understanding of the importance and dis-
criminative power of the extracted terms, DDT shows the
percentage of relevant and irrelevant pages the keyword or
phrase appears in.

4.4 Domain Model and Focused Crawling
By using the pages marked relevant and irrelevant as pos-

itive and negative examples, respectively, DDT supports the
construction of a page classifier which serves as a model for
the domain. This classifier together with a set of seeds (rel-
evant pages) can be used to configure a focused crawler. In
DDT, we support the ACHE [2] crawler.
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Figure 5: Topic Distribution Dashboard

4.5 Implementation
DDT is designed as a client-server model. The client is

a web-based Javascript interface. This ensures that there is
no client side setup as the analysts using the system could
have a non-technical background.

The server is a Java and Python based cherrypy server
that supports multiple clients simultaneously. The core fea-
tures and functionality of DDT’s domain search interface
are shown in Figure 3. DDT is also packaged as a docker9

container for easy deployment on the server.

5. USER EVALUATION
As an initial validation for our design decisions, we carried

out a small-scale study. Since search engines are the most
common tool used for gathering information on the Web,
our study compares the effectiveness of DDT with that of
Google for gathering information in a specific domain.

5.1 Experimental Setup
The evaluation involved six participants. The participants

were graduate students or research associates with back-
ground in computer science. The two primary criteria for
their selection was (1) that they should be very familiar
with using search engines, especially Google and Bing, and
(2) they should be capable of exploring information about
a given topic on the Web. The users were given a demo of
DDT and all its features, and they were allowed to use DDT
to get familiar with it before the actual evaluation.

In order to keep the topics easy to understand and to en-
sure that the participants were not experts in the domain
(as the goal here is for them to discover the topics), we se-
lected topics from the Ebola domain in the TREC Dynamic
Domain (DD) Track 2015 dataset10. The dataset for the
Ebola domain consists of ∼ 143, 044 pages of which ∼ 5, 832
pages are labeled by humans into 20 topics.

9https://www.docker.com/what-docker
10http://trec-dd.org/2015dataset.html

Each user was then given the same 2 topics, in the same
domain, and asked to find as many pages as they could for
each of those topics using Google and DDT. While using
Google the users annotated pages relevant to each topic by
bookmarking them under corresponding folders. For DDT,
the users annotated the pages for each topic with a custom
tag corresponding to that topic. They were allowed 15 min-
utes for each topic on Google and DDT.

Since we used Google as a search engine in our experi-
ments, we needed a “domain expert” that could consistently
judge whether a page annotated by a user belonged to the
given topic or not. Since we did not have access to such
an expert directly, we instead built a multiclass SVM clas-
sifier11, using the TREC DD data that was labeled by hu-
mans. The words (excluding stopwords) in the pages were
used as features and the topic a page belonged to was the
output class. The model was tested using cross validation
which produced an average accuracy of 74.6%. Given the
topic distribution, where the most frequent topic consisted
of 700 pages, the model is still quite good, as a max baseline
accuracy, if we labeled all samples with the most frequent
topic label, would be (700/5832) ∗ 100 = 12% << 74.6%.

5.2 Results
We measured the total number of pages that the users

were able to annotate with Google and DDT. We executed
the model on the annotated pages to find how many of them
were actually relevant to the given topics. The results are
shown in Figure 6.

Figure 6a plots the average number of pages annotated for
the topics by each user. Users were able to annotate more
pages using DDT than Google. Users reported that visual-
ization and grouping of the pages by similarity made it easier
for them to select and annotate a set of pages. Whereas on
Google, they had to go through the list of results on mul-
tiple pages to be able to find the relevant pages and then
bookmark them individually.

11We used LinearSVC from the scikit-learn library
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(a) (b)
Figure 6: Evaluation: Google vs. DDT

Figure 6b shows the average number of relevant pages
found by each user. The plot shows that the majority of the
users were able to find more relevant pages with DDT than
Google – in some cases 2-3 times more pages. This indi-
cates that the features provided by DDT do help streamline
domain discovery. The only exception was user U1. This
user used the least number of features of DDT, which could
explain the lower relevant pages found.

5.3 User Feedback
Users also completed a questionnaire about their experi-

ence with DDT. The following are the summarized positive
and negative feedback we received. Given the duration of 15
minutes for each topic the users were not able to use all the
features of DDT. The union of the set of features used by
each user for this experiment were web search, MDS visual-
ization window, backlinks and forward links, various filtering
options and page tagging.

Positive.
• The users found the MDS visualization of the pages

useful to see the similarity between the pages, analyze
and annotate a group of pages

• The various methods to filter pages, such as by queries,
tags and “more like this” (pages similar to a selected
set of pages), facilitated finding and bringing in more
pages related to the domain for analysis

• Ability to add user defined tags to annotate a set of
pages allowed grouping them by topic

• Avoiding annotating the same pages multiple times as
they are brought in through different queries

• Though none of the users was able to use the terms
extracted due to the limited time of the test, the con-
sensus was that the extracted terms were relevant to
the domain and improved with page annotations

Negative.
• The feature for crawling forward and backwards from

selected pages was difficult to use and led to a large
number of irrelevant pages. This was especially true
for the Ebola domain as most of the pages for this
domain were news articles with links to different unre-
lated topics

• Although DDT was easy to use with little training,
some aspects like the need for tagging extracted terms,
the workflow (the sequence in which data gathering
and analysis should be done) were not clear.

6. CONCLUSION AND FUTURE WORK
In this paper, we discussed the challenges in domain dis-

covery on the Web and presented our first step towards
building a solution to this problem. We proposed a new ex-
ploratory data analysis framework that combines techniques
from information retrieval, data mining and interactive visu-
alization to guide users in exploratory search. This frame-
work was implemented and has been released as an open
source system. We have also carried out a preliminary eval-
uation whose results are promising and indicate that the
framework is effective.

The preliminary evaluation suggests that a framework like
DDT can considerably improve the quality and speed of do-
main discovery. We have been able to achieve these results
by using fairly simple mechanisms. In future work, we plan
to explore more sophisticated interactive data mining tech-
niques to leverage all the user feedback available to further
improve the performance and accuracy of DDT, including
interactive document clustering [11] and interactive topic
modeling [10, 29].

An important feedback we received as part of the evalua-
tion was the difficulty in using forward and backward crawl-
ing. This was because many documents, irrelevant to the
domain of interest, were downloaded. We plan to use a clas-
sifier, created in an online fashion using the pages labeled by
the user, to filter the downloaded pages and thereby consid-
erably reduce the number of irrelevant documents that the
analyst must analyze.

While our results are promising, we need to perform a
comprehensive user study with a larger number of partici-
pants of diverse background. We would also like to conduct
various evaluations of the effectiveness of DDT for non-Web
text corpora.
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ABSTRACT
Exploring event sequences in big data is challenging. Though
many mining algorithms have been developed to derive the
most frequently occurring and the most meaningful sequen-
tial patterns, it is yet difficult to make sense of the results.
To tackle the problem, we introduce a visual analytics ap-
proach, Peekquence. In this paper, we describe the design
of Peekquence, which aims to increase the interpretability of
machine learning-based sequence mining algorithms.

CCS Concepts
•Human-centered computing → Visual analytics;

Keywords
Event Sequence; Sequence Mining; Healthcare; Electronic
Health Records

1. INTRODUCTION
Finding temporal patterns in longitudinal event sequences

is a challenging task, as the volume and variety of events of-
ten make it difficult to extract salient patterns. In response
to this challenge, data scientists have turned to machine
learning, known as frequent sequence mining (FSM) tech-
niques, to automatically detect the most common sequences
of events to unearth interesting patterns. However, these
algorithms often require users to specify a support thresh-
old that, if too high, will yield only a few patterns, or if too
low, will yield numerous patterns that may be difficult for
data scientists to determine the interesting sequences from
the mundane. In this work, we aim to make the results of
frequent sequence mining algorithms more interpretable by
giving end-users powerful ways to explore the data.

In particular, we propose several new techniques that in-
clude: 1) powerful ways to navigate the patterns by sort-
ing with metrics relevant to users (variability, correlation to
outcome, etc), 2) integration of patterns with patient time
lines, so users can understand where the patterns occur in
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the actual data, and 3) overviews the summarize the most
common events in the patterns.

2. RELATED WORK
There are a large number of visual analytics tools designed

to making temporal event sequences more interpretable. How-
ever, as a recently survey points out, many of them have
difficulty handling the volume and variety of data [2].

Recently, there have been several approaches that inte-
grate visualization with machine learning algorithms to sur-
face the most interesting patterns, so only a manageable
subset of patterns need to be visualized. Frequent Sequence
Mining (FSM) is a popular data mining technique for finding
sets of frequently occurring subsequences from a larger set
of temporal event sequences. Peekquence uses SPAM (Se-
quential Pattern Mining) [1] as its FSM algorithm, which
uses a bitmap-based representation for event sequences for
efficiency reasons. Integrating visualization with the data
mining algorithms is a promising approach, as it can help
users understand algorithmic uncertainties, as well as trust
the results of algorithms [9].

There have been other visualization systems that have in-
tegrated with FSM techniques. For instance, Frequence [5]
integrates SPAM with visualization to support finding fre-
quent patterns from longitudinal event sequences. This work
was later extended and adapted to a medical context as Care
Pathway Explorer [6]. However, the visualizations are sim-
ilar to Sankey Diagrams [8], which have scalability issues
when there are many patterns and large event dictionaries.
Another system, TimeStitch [7], relies on the PrefixSpan
[4] algorithm, which has several limitations, and is demon-
strated on only small event sequences, generally composed
of 2 or less events. Peekquence addresses these issues by hav-
ing interactive sorting, clustering, and overviews to visualize
thousands of patterns with large event dictionaries.

3. PEEKQUENCE
Peekquence is designed to make the results of the SPAM

frequent sequence mining algorithm [1] more interpretable.
To achieve the goal, the system has four views that present
visual representations of the mining results. Figure 1 illus-
trates the four views: (A) the sequence network view, (B)
the event co-occurrence histogram view, (C) the pattern list
view, and (D) the patient timeline view. Using four co-
ordinated views, users can interactively explore commonly
occurring event sequences as well as their occurrences within
patients’ records.
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Figure 1: Peekquence consists of four views: (A) the sequence network view showing the frequency of event sequence oc-
currences within patterns mined from SPAM; (B) the event co-occurence histogram view showing the frequency of events
co-occuring with a pattern selected (“S”, “H” in this example); (C) the pattern list view showing patterns mined from SPAM
with event sequences (colored circles with letters) as well as bars of patients with the ratio of case and control labels (diagnosis
of a disease); (D) the patient timeline view showing patients’ event sequences aligned with respect to the pattern selected (“S”
and “H” events are vertically algined in this example).

Figure 2: The design of visual elements: circle for unit time
duration, pie for event, color and letter for event type.

All four views use a common visual element to visualize
event sequences: an event glyphs that visually encodes each
unique event type that occurs in the mined data. The event
glyphs are visually encoded as circles, colored according to
an categorical ontology, and labeled with an abbreviation of
the event type’s name.

In the situation where multiple event types occur concur-
rently, the glyph is divided into multiple slices, similar to a
pie chart, where each slices represents an event type. For
example, Figure 2 shows a pattern consisting of three event
types occurring sequentially: L, A, and L & A. In this medi-
cal dataset used throughout this paper, the colors represent
the category of the clinical event according to ICD-9 (In-
ternational Classification of Diseases) codes for classifying
medical events.

The sequence network view in Figure 1 (A), also shown
in Figure 3, acts as an overview, and shows the frequency of
co-occurring event types within patterns mined from SPAM.
The nodes indicate the types of events, and edges indicate

Figure 3: The sequence network view showing the most fre-
quently occurring event types and their co-occurrences.

that two nodes co-occur within patterns. The size of nodes
and the thickness of edges show the number of patients that
include events and event sequences within their records, re-
spectively. For example, the purple “H” event, representing
Hypertension events (a clinical event type indicating high
blood pressure), has the largest size and the most edges to
other events, showing that many event sequences in mined
patterns contain the event. Users can click on a node or an
edge to filter the pattern list view (Figure 1 (C)).

The pattern list view in Figure 1 (C) shows all patterns
mined from SPAM, aligned vertically. Each row shows a pat-
tern, visualized as a sequence of circular event glyphs that
describe the sequence of the mined pattern. In addition,
the pattern’s association with outcome is represented by the
stacked bar chart to the left of the sequence. In this medical
example, the bars are divided into red and green, indicating
the proportion of the case patients (patients diagnosed with
the disease) and control patients (patients without the dis-
ease). This synchronization between pattern and outcome
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Figure 4: The pattern list view showing patterns of events
spread out based on average time duration between events.

allows users to understand the impact of each pattern. This
view is interactive, so users can sort the pattern list view
by various attributes of the pattern: 1) the number of pa-
tients that have the pattern; 2) length of the pattern; 3)
odds ratio of outcome; 4) variability of events in sequences;
5) clusters based on sequence similarity. Users can choose
to horizontally spread event glyphs so that spaces between
events indicate the average duration of occurrences of the
events within patient records. Figure 4 shows a list of pat-
terns, in which events are spread out to show average du-
ration between the events. Users can click on a pattern to
populate patient information in the event co-occurrence his-
togram view (Figure 1 (B)) and the patient timeline view
(Figure 1 (D)).

The event co-occurrence histogram view in Figure 1 (B)
shows the summary of patient records which contain the se-
lected pattern from the pattern list view. The summary is
the histogram of events co-occurring with the selected pat-
tern within patients. Each bar indicating a event type is di-
vided into three blocks that show events occurring 1) before,
2) within, and 3) after the selected pattern, respectively. For
example, Figure 1 (B) shows the histogram of the selected
pattern of “D” and “H” events. The top block of each bar
in indicates the number of occurrences of the corresponding
event before the “D” event within patient records. Subse-
quently, the second block shows the number of co-occurring
events on the same day of or later than the“D”event and be-
fore or on the same day of the “H” event. Lastly, the bottom

(a) Before (b) Within (c) After

Figure 5: The histogram view sorted by before, within, and
after the pattern.

(a) No filter is applied

(b) When filtered by ‘within’

(c) When filtered by ‘after’

Figure 6: The patient timeline view 6a before filter, 6b fil-
tered by within pattern, and 6c filtered by after pattern.

block indicates the number of co-occurring events later than
the “H” event. Using the view, users can find the most com-
monly co-occurring events with the selected pattern. The
view allows users to sort the histogram horizontally by the
frequency of events before, within, and after the pattern as
shown in Figure 5. In this view, users can select a block of
histogram bar to highlight the events within patient records
shown in the the patient timeline view (Figure 1 (D)).

The patient timeline view shows individual patient’s en-
tire event sequences per row in Figure 1 (D). The sequences
are aligned horizontally so that the selected pattern occurs
at the same horizontal location. To do so, we shift patients’
records horizontally, which sometimes creates empty space
between events. Thus, in Figure 1 (D), the horizontal dis-
tance between events of “D” and “H” indicates the maximum
days of events that occurred between the “D” and “H” events
within a patient’s record. As mentioned earlier, by clicking
a block of the event co-occurrence histogram view, users can
filter the patient timeline view. Figure 6 shows the patient
timeline view filtered by the event“H”, shown as purple pies,
6b within and 6c after the selected pattern of “D” and “H”.

In Peekquence, the four views independently show in-
formation about patterns mined from an algorithm, and
they also connect to each other by highlighting and filter-
ing other views. The divided views ensure participants to
gain new insights in different levels. At the same time, the
interactive exploration enables users to progressively inves-
tigate event sequences from overview (top views) to details
(bottom views) and vice versa. The sections also let users
smoothly switch back and forth between pattern-level in-
vestigation (left views) and patient-level investigation (right
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views). The design of Peekquence captures information in
different granularities providing users with appropriate in-
terpretation layers, which confirm the importance of paving
the cow path of users’ analysis pattern [3]. To increase
the transparency of complex pattern mining algorithms like
SPAM, we believe that it is important to provide users with
visual channels to different modalities and depths of infor-
mation through divided-but-connected views.

The current status of Peekquence shows the potential of
visual analytics approach to make frequent sequence mining
algorithms more interpretable. At the same time, we believe
that much work remains to be done to improve the proto-
type. First, we need to allow users to run the SPAM algo-
rithm with a subset of data as well as user-specified param-
eters. By doing so, users will have an ability to detect user-
defined patterns. Second, we are investigating new methods
for visually summarizing event sequences that share com-
mon events within them. As the number of patterns grow,
it is difficult for users to explore patterns. Thus, visual ag-
gregation will help users understand the difference and sim-
ilarity between event sequences. Lastly, we are investigating
ways to incorporate predictive models so that the model can
provide the probability of having certain diseases based on
event sequences of users.

4. CONCLUSION
In this paper, we presented our visual analytics approach,

called Peekquence, which aims to increase the interpretabil-
ity of frequent sequence mining algorithm such as SPAM.
The four views combined with interactions provide useful
functionalities for users to make sense of patterns as well as
their occurrences within patients’ records. In future work,
we aim to integrate the visual representation with the algo-
rithm so that users can iteratively run the algorithm with
new parameters based on insights gained from previous runs.
Work is also in progress to exploit the hierarchy of events
and provide users the ability to run SPAM at different levels
of detail.

5. ACKNOWLEDGMENTS
We would like to thank our colleagues who provided con-

structive feedback for the research.

6. REFERENCES
[1] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick.

Sequential pattern mining using bitmaps. pages
429–435, 2002.

[2] F. Du, B. Shneiderman, C. Plaisant, S. Malik, and
A. Perer. Coping with volume and variety in temporal
event sequences: Strategies for sharpening analytic
focus. IEEE Transactions on Visualization and
Computer Graphics, In press.

[3] B. C. Kwon, S.-H. Kim, S. Lee, J. Choo, J. Huh, and
J. S. Yi. Visohc: Designing visual analytics for online
health communities. IEEE Transactions on
Visualization and Computer Graphics (Proceedings of
the Visual Analytics Science and Technology),
22(1):71–80, 2016.

[4] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto,
Q. Chen, U. Dayal, and M. Hsu. Mining sequential
patterns by pattern-growth: The prefixspan approach.

IEEE Transactions on Knowledge and Data
Engineering, 16(11):1424–1440, 2004.

[5] A. Perer and F. Wang. Frequence: Interactive mining
and visualization of temporal frequent event sequences.
In Proceedings of the 19th International Conference on
Intelligent User Interfaces, pages 153–162, New York,
NY, USA, 2014. ACM.

[6] A. Perer, F. Wang, and J. Hu. Mining and exploring
care pathways from electronic medical records with
visual analytics. Journal of Biomedical Informatics,
56(C):369–378, Aug. 2015.

[7] P. J. Polack Jr, S.-T. Chen, M. Kahng, M. Sharmin,
and D. H. Chau. Timestitch: Interactive multi-focus
cohort discovery and comparison. In IEEE Proceedings
of the Visual Analytics Science and Technology
(VAST), pages 209–210. IEEE, 2015.

[8] P. Riehmann, M. Hanfler, and B. Froehlich. Interactive
sankey diagrams. In IEEE InfoVis, pages 233–240,
2005.

[9] D. Sacha, H. Senaratne, B. C. Kwon, G. Ellis, and
D. A. Keim. The Role of Uncertainty, Awareness, and
Trust in Visual Analytics. IEEE Transactions on
Visualization and Computer Graphics (Proceedings of
the Visual Analytics Science and Technology),
22(01):240–249, Jan. 2016.

75



Human-guided Flood Mapping on Satellite Images

Jiongqian Liang
Department of Computer Science and

Engineering
The Ohio State University

liangji@cse.ohio-state.edu

Peter Jacobs
Data Analytics

The Ohio State University
jacobs.269@osu.edu

Srinivasan Parthasarathy
Department of Computer Science and

Engineering
The Ohio State University

srini@cse.ohio-state.edu

ABSTRACT
Flooding is responsible for substantial loss of life and econ-
omy. Flood mapping, the process of distinguishing flooded
areas from non-flooded areas during and after a disaster, can
be very useful in guiding first response resources in a disas-
ter situation, and in assessing flood risk in future disaster
scenarios. This paper involves the use of image segmenta-
tion methods and human guidance to provide a mechanism
for flood mapping. Previous image segmentation methods
do not work well in flood mapping because they are de-
signed to segment objects out of an image, where there are
only a few objects, e.g., foreground-background segmenta-
tion. However, satellite images of flooded areas often contain
hundreds to thousands of large and small water areas that
need to be identified. Therefore, we design a semi-supervised
learning algorithm specifically to tackle the flood mapping
problem. We first divide the satellite image into patches
using a graph-based approach depending on the proximity
and intensity of pixels. We then classify each of the patches
in an interactive and incremental way, where each time the
user is asked to label a few patches and we learn a classi-
fier to automatically classify other patches into water area
or land area. We run our algorithm on satellite images of
Chennai, India during the 2015 Chennai flood period. The
results show that our algorithm can robustly and correctly
detect water areas compared to baseline methods. We com-
pare the segmentation results of post-flood with pre-flood
and conduct an effective flood evolution analysis.

Keywords
Flood mapping; Graph-based approach; Semi-supervised;
Image Segmentation
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According to Hallegatte et al. [11], if worldwide flood
probabilities remain constant over the next 35 years, ris-
ing sea levels, sinking land areas, and growing urban coastal
populations are expected to drive annual global flood losses
from 6 billion U.S. Dollars per year to upwards of 60 Billion
US Dollars per year by 2050.
It is of paramount importance to identify ways to reduce

the probability of flooding in coastal urban areas. A first
step in achieving this goal is the reliable identification of
regions in coastal cities that are most susceptible to flood-
ing. If these regions can be identified, action can be taken
to better protect these areas from flooding, and public pol-
icy can prevent development in areas that have a high risk
of flood damage. Flood mapping allows for identification of
areas of high, medium, and low risk of flooding, which can
help prevent serious flooding from happening. Another ap-
plication of flood mapping is the quick identification of areas
that have been severely flooded during or immediately af-
ter a storm. This information can be utilized to guide first
responders to where they are most needed.
In order to conduct flood mapping, satellite images promise

tremendous potential in monitoring flood disasters due to
their low cost and consistent and repetitive data acquisition
capability over large spatial areas [17, 20]. Compared to
the sparse in situ physical sensing data (e.g., river gauge
data and weather station records), satellite images offer a
synoptic view of the landscape and provide a comprehen-
sive geo-spatial perspective on flood events. The problem
here is how to correctly identify areas flooded areas given
high-resolution satellite images.
This problem can be regarded as an image segmentation

task, where one wants to segment flooded areas out of the
whole region. While image segmentation has been widely
studied in the image processing community [19, 7, 5, 1],
these approaches cannot directly be applied in flood map-
ping. On one hand, they mostly focus on background and
foreground segmentation and the total number of segments
is relatively small. On the other hand, these approaches
are usually not scalable on large datasets and cannot work
on high-resolution satellite images. Moreover, the difference
between flooded regions and other regions can be so subtle
that human guidance is required in order to correctly locate
floods. To address these difficulties, we propose a semi-
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supervised learning method that can interact with humans
and incrementally conduct flood mapping efficiently.
In this paper, we explore novel ideas to integrate network-

analysis and human guidance for flood mapping, where we
use network clustering approaches to divide images into patches
and adopt human guidance to interactively label the patches
as water and land areas. The method for flood mapping
involves segmentation of satellite images of the given city
before and after a flood occurred to identify land and water
areas. This is followed by a comparison of these pre and post
disaster segmentations to identify flooded vs. non-flooded
areas. The experiments on satellite images of Chennai, India
during the 2015 floods show that our method can more ef-
fectively identify flooding areas compared to state-of-the-art
approaches. Our method is also much more efficient, which
enables real-time incremental learning and provides instant
information to help prioritize post disaster repair and relief
activities.
The rest of the paper is organized in the following way.

Section 2 reviews related literature. Section 3 presents our
methodology for flood mapping. Section 4 describes an ex-
tensive experiment conducted to show the efficiency and ef-
ficacy of our method. We describe ongoing and future work
in Section 5. Finally, we provide a summary in the last
section.

2. RELATED WORK
The problem of flood mapping satellite images is related

to the field of image segmentation while the incorporation of
human guidance is connected to semi-supervised clustering.
Therefore, we review some existing work on image segmen-
tation and semi-supervised clustering in this section. We
also discuss past work from the flood mapping domain.
Image segmentation is a long-standing problem and a wide

range of techniques has been developed to attempt to seg-
ment an image [19, 7, 1, 5, 3, 2]. Some classic methods
for image segmentation involve thresholding. Thresholding-
based techniques for grayscale image segmentation pick a
pixel intensity T and force all pixels with intensity above
T to be one color, while all pixels with intensity below T
become another color [2]. Thresholding produces a binary
image, and if the threshold T is selected carefully, this bi-
nary image can isolate foreground objects from the image
background, which can be an effective mechanism for im-
age segmentation [2]. Picking the value of T is the main
challenge in thresholding. Many methods have been devel-
oped for selecting the threshold pixel intensity T [1, 15, 18,
21, 13]. One common method for picking T , known as Otsu
thresholding [1], involves finding the pixel intensity that cre-
ates the greatest separation and least overlap between the
modes in the pixel intensity histogram; this method works
best for images with bi-modal pixel intensity distributions.
However, Otsu thresholding is not robust when applied to
images with noise because the segmentation produced is
merely based on the intensity of each pixel without look-
ing at the pixels nearby. If applied to satellite images, it
will generate many tiny spots that do not represent relevant
higher level structure in the image.
Other methods of image segmentation include the region

merging technique proposed by Baatz et al. [3]. They treat
pixels as objects initially, and at each iteration, the two ob-
jects are merged that lead to the smallest increase in het-
erogeneity. More recently, graph-based methods have been

introduced for image segmentation. Graph-based techniques
formulate the image as a graph, and then use some form of
community detection to find a segmentation. Shi et al. [19]
create a graph with weighted edges and use the normalized
cut criterion to segment the image. Browet et al. [7] also
formulate the image as a graph; they use modularity as a
criterion to find a segmentation for the image. However,
these methods are computationally expensive and are not
scalable on large satellite images.
Furthermore, there are some semi-supervised learning ap-

proaches for image segmentation [5, 14, 4]. One influen-
tial semi-supervised method for image segmentation is the
watershed algorithm, developed by Beucher and Meyer [5].
The watershed algorithm allows the user to mark different
segments in the image. The algorithm then performs a re-
gion growing technique, starting from the user placed marks,
that operates on the gradient of the original image. While it
allows interaction with users and can conduct image segmen-
tation incrementally, the watershed algorithm requires the
user to place at least one marker for each segment, which
is inefficient in the scenario of flood mapping on satellite
images.
Beyond image segmentation, our problem is also relevant

to semi-supervised clustering [10]. Semi-supervised cluster-
ing involves the addition of “must-link” and “cannot-link”
information into the clustering process. “Must-link” infor-
mation indicates that two objects “must” be in the same
cluster. “Cannot-link” information indicates two objects
“cannot” be in the same cluster. Wagstaff et al. [22] show
that insertion of “must-link” and “cannot-link” information
into the clustering process can lead to improved accuracy
and efficiency in clustering. However, our problem on satel-
lite images is quite different from the traditional setting of
semi-supervised clustering and we need a more convenient
way than “must-link”/“cannot-link” for human to provide
supervision.
Flood mapping itself has been the subject of previous

work. Wang et al. [23] use Thematic Mapping, a type of
earth observing sensor, to identify land and water areas be-
fore and after flooding, followed by the use of a classification
algorithm to identify flooded and non-flooded areas. Henry
et al. [12] use Advanced Synthetic Aperture Radar (ASAR)
data for flood mapping. These methods both rely on data
sources from earth-observing satellites (landsat 7 and En-
visat respectively). These data sources are not always avail-
able at the time of a disaster. For example, Envisat, the
satellite that provided the ASAR data used in the paper
by Henry et al., is no longer in operation. Moreover, these
methods do not support interactions with ordinary users and
cannot update the results incrementally.

3. METHODOLOGY
To effectively solve our problem and overcome limitations

in prior work, we state the following desiderata:

• Fast flood mapping: Conduct efficient/scalable flood
mapping for large satellite images. Efficiency is nec-
essary to facilitate interactive learning and it is also
vital if the method is used to help guide emergency
first responders in a flood disaster.

• Guided by human: Incorporate guidance from hu-
mans to achieve better results.
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• Easy to use: Ordinary users can easily use the method
and conveniently provide supervision.

• High quality results: Generate effective flood map-
pings that can be easily interpreted.

Building on these desiderata, we propose a novel method
for flood mapping. Our method first preprocesses the satel-
lite images and then detects water areas from satellite im-
ages in an interactive fashion using human guidance. Then
by comparing the water areas pre and post disaster, it can
identify the flood areas. We describe the method in detail
below.

3.1 Preprocessing
To label areas of a satellite image as either land or wa-

ter, we need to decide on a primary unit for labeling. A
straightforward way is to treat each pixel as a unit and con-
duct pixel-based labeling. The drawback is that we lose
the information derived from geographic correlations, and
the results will tend to be noisy. The labeling results will
involve fuzzy and blurring boundaries, and there might be
many small spots. Also, it is difficult to label one pixel man-
ually. Another alternative is to conduct uniform grouping,
which involves treating the image as a grid with squares of
uniform size. However, without using the intensity informa-
tion of the image, this grouping can go across boundaries
(many patches include both water and land), which is not
desirable. In this paper, we adopt a graph-based approach
for patch generation, which is efficient and can not only ef-
fectively detect regions of different sizes, but can also avoid
generating regions across land-water boundaries.

3.1.1 Graph Construction
Graph-based segmentation has been widely studied in the

literature [19, 9, 6, 7]. In this paper, we convert the image
into an undirected graph following the approach proposed
by Cour et al. [8]. Each pixel of the image is treated as one
node and each pixel has edges to nearby pixels within the
distance of dmax, where dmax is a user-defined parameter.
The weight of the edge between pixel i and pixel j is defined
using the following approach.

wij =

{
e

− d(i,j)2

σ2
x

− |F (i)−F (j)|2

σ2
i if d(i, j) < dmax

0 otherwise.
(1)

where d(i, j) is the Euclidean distance between pixels i and j
and F (i) is a feature vector evaluated at pixel i. The feature
vector can be the scalar intensity value or the RGB values
of an image. σx, σi and dmax are parameters controlled by
the user.
Note that the number of nodes in the constructed graph

n is equal to the number of pixels in the image, and the
number of edges is m = k ∗ n, where k is a small constant
factor depending on the setting of dmax.

3.1.2 Graph Clustering to Generate Patches
After we construct the graph from the image, we cluster

the graph. Since the satellite image usually contains hun-
dreds of millions of pixels, we need a highly scalable graph
clustering algorithm. In this paper, we leverage the off-the-
shelf tool Multi-level Regularized Markov Clustering (MLR-
MCL) [16], which is an efficient multi-level graph clustering
software.

Since the goal of graph clustering is to generate basic units
for labeling, we tend to produce a large number of clusters.
Empirically, we find the method works well when the aver-
age size of clusters is a few hundred pixels. Once we have
the graph clustering results, pixels in the same cluster are
considered to be in the same patch.
There are many advantages to producing patches using

this graph-based approach. This approach can avoid the
edges/boundaries of a segment being in a patch (e.g. land
and water areas being in the same patch). Also, it be-
comes very easy to control the number of patches using
MLR-MCL. Moreover, MLR-MCL has time complexity lin-
ear to the number of edges and is very efficient to run in our
graph (the number of edges is proportional to the number
of nodes).

3.2 Human-guided Labeling
After generating patches, the next step is to ask the user

for a couple of labels. The user will place a few markers
in the image to label a few patches that they identify as
land/water. To utilize this user-provided supervision, a bi-
nary classifier is learnt and then applied to the rest of the
unlabeled patches.

3.2.1 Learning the Binary Classifier
In this paper, we use k-NN as the classifier since there are

only a few features and they are interpretable. In particular,
we define the distance function between two patches i and
j as follows.

D(i, j) =
∥∥F̄ (i) − F̄ (j)

∥∥
2

∗ log (dist(i, j)) (2)

Eq. 2 contains two factors. The first factor compares the fea-
tures of the two patches while the second factor calculates
the Euclidean distance between the two patches. Specifi-
cally, to calculate the first factor, we average the feature
vectors of the two patches respectively and compute the L2-
norm of their difference. For the second factor, we compute
the centroids of both patches and compute the Euclidean
distance between the centroids. To decrease the effect of ge-
ographical distance, we take the logarithm of the Euclidean
distance.
To classify an unlabeled patch, we find the k most similar

labeled patches based on the distance function in Eq. 2.
The classification of the patch is then decided by a vote
conducted using the labels of these k most similar labeled
patches.

3.2.2 Interactive Labeling And Incremental Update
Instead of asking the user to label the patches at one time,

we create an interactive environment for labeling. The user
is asked to label one patch at one time and our method
generates classification results based on the labels currently
available. The results are presented to the user in real-time
and the user decides whether to label more patches or not.
If/when the user provides a new label, the method will incre-
mentally update the results. Our algorithm terminates only
when the user does not plan to label more patches; at this
point, the result is saved. In practice, we find out that the
user usually only needs to mark 2 to 6 patches to generate
reasonably good results.
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Image Date Size of Image σ2
x σ2

i dmax # patches
11/24/2015 800x444 3 16 2 12946
10/19/2015 4500x2500 2 16 2 69674
10/31/2015 4500x2500 2 16 2 69674
11/12/2015 4500x2500 2 16 2 69674
11/24/2015 4500x2500 2 16 2 69674
12/06/2015 4500x2500 2 16 2 69674
12/18/2015 4500x2500 2 16 2 69674

Table 1: Parameter settings used to construct the graph and
generate patches

3.3 Flood Mapping
After obtaining segmentations of an urban area before and

after a flood, flood mapping can be performed through com-
parison of the segmentations. We treat the satellite images
before the flood as a baseline and compare satellite images
during and after the flood with this baseline. Areas that are
not segmented as water before the flood, but are segmented
as water after the flood are considered flooded areas.

4. EXPERIMENTS AND ANALYSIS
We run our algorithm on real-world satellite images and

conduct analysis in this section.

4.1 Dataset and Baseline
We use satellite images of Chennai, India during the 2015

South Indian Floods 1. In total, we collect six satellite im-
ages during the flood, one for every twelve days, shown in
Figure 1.
We compare our algorithm with some state-of-the-art al-

gorithms for image segmentation: 1) Watershed algorithm [5];
2) Normalized cut algorithm [19]; 3) Graph-based image seg-
mentation with post-processing. The method for generating
patches in the 3rd baseline is the same method used to gen-
erate patches in our method. However, the second step of
the 3rd baseline method is purely unsupervised; the step
involves continued merging of nearby patches based on the
similarity of pairs of patches until the designated number of
patches has been generated.
Considering the fact that some baselines (e.g., Normalized

cut algorithm and Watershed algorithm) are very computa-
tionally expensive and cannot finish on the large satellite
images in a reasonable amount of time, we divide our ex-
periment into two parts. In the first part, we downscale the
satellite images and run our method and baselines on them
for comparison. As an example, we run all the algorithms
on the satellite image of Chennai on 11/24/2015, which is
re-sized from 4,500×2,500 to 800×444. We then run our
method on the full-size satellite images and conduct further
performance analysis.
For the experiments, we implement our algorithm using

Python. We use the OpenCV API for the Watershed algo-
rithm. For the Normalized cut, we obtain the source code
from authors 2. We also implement the graph-based method
with post-processing. Basic information about the datasets
and parameter settings for our algorithm are displayed in
Table 1.

4.2 Comparing Different Methods
1https://en.wikipedia.org/wiki/2015_South_Indian_floods
2https://www.cis.upenn.edu/~jshi/software/

Method # Markers Total
Time
(s)

Interactive
Labeling
Time (s)

Our Approach 2 30.551 0.057
Watershed Algorithm 11 0.225 0.225
N-cuts Algorithm 0 538.615 0.000
Graph method w. post-
process

0 558.220 0.000

Table 2: Running time comparisons of different methods. #
markers is the number of markers the human provides for
the algorithm.

We now compare the performance of our algorithm with
the baselines on the downscaled image as shown in Figure 2
(Chennai area on 11/24/2015). The results of segmenting
water areas are shown in Figure 3 while the execution time
is listed in Table 2. We hereby highlight the following ob-
servations:

• Among all the approaches, our method is apparently
the best. Our method can clearly identify most of the
water areas and even long thin rivers while all other
methods fail to do this. Particularly, our method is
good at identifying regions of arbitrary shape and it
does not limit the size of each segment. We notice
that Otsu thresholding [1] might also have similar ad-
vantages, but it tends to generate more tiny partitions
because its segmentation results only depend on the
intensity of each pixel and one pixel can be an individ-
ual partition if its pixel intensity is far different from
its neighboring pixels 3.

• Compared to the Watershed algorithm, our method
produces better results while requiring less effort from
humans. The Watershed algorithm seems to correctly
capture some boundaries but could not segment out
small water areas, including the long thin rivers. In
the example shown in Figure 3, we place nine mark-
ers in different water areas and two markers in the
land areas (see Figure 4). But the segmentation re-
sults are still not desirable. On the other hand, using
our method, we only need to place one marker in wa-
ter and one in land respectively (see Figure 4) and the
results are much better than the Watershed algorithm.
One of the reasons for this difference is that labeling of
the Watershed Algorithm grows from the user marked
regions in a local fashion and therefore requires much
more manual labels for it to work reasonably well.

• The Normalized Cut algorithm tends to generate over-
balanced segments and cannot extract segments of long
thin shape (shown in Figure 3(c)). Though it performs
well in detecting most of the boundaries, it breaks large
areas into pieces that should be in one partition. This
can be seen from the split of some large lakes. As a
whole, the results are much worse than our algorithm.

• Graph-based segmentation with post-processing in gen-
eral works well in detecting some large areas (see Fig-
ure 3(d)). However, similar to the Normalized Cut
algorithm, it cannot detect small water regions, espe-
cially those long thin rivers.

3Further investigation shows that Otsu generates two times
as many segments as our method on the image.
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(a) 10/19 (b) 10/31

(c) 11/12 (d) 11/24

(e) 12/06 (f) 12/18

Figure 1: Satellite images of Chennai from 10/19/2015 to 12/18/2015. One image for every 12 days.
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Figure 2: Down-scaled satellite image of Chennai area on 11/24/2015.

(a) Our Method (b) Watershed Algorithm

(c) Normalized Cuts Algorithm (100 partitions) (d) Graph-based Clustering with Post-processing (100 par-
titions)

Figure 3: Image segmentation results of different approaches on satellite images of 11/24/2015 (down-scaled). (a) is the result
of our algorithm, where blue color indicates water areas while green represents land areas. (b) is the result of Watershed
algorithm, where blue color indicates water areas and green represents land areas. (c) is the result of Normalized Cut
method, where red line marks out the boundaries between land and water areas. (d) is the result of graph-based method with
post-processing, where red line also highlights the boundaries between land and water areas.
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(a) Two markers provided by the user to our method (b) Eleven markers provided to Watershed algorithm

Figure 4: Labels that the user provided for the algorithm to learn labeling. Blue points label the areas as water while green
points label them as land.

• As shown in Table 2, our method is very fast during
interactive labeling and with regard to overall time, it
outperforms 2 of the other 3 algorithms. The Normal-
ized Cut algorithm is very slow because it uses spectral
clustering and requires computation of the eigenvec-
tors of the Laplacian matrix, which is very compu-
tationally expensive. The Graph-based segmentation
with post-processing method requires a great deal of
computation at the stage of hierarchical merging and
is also much slower. Even considering the time of
preprocessing for patch generation (30.494 seconds),
our method is still much more efficient than the two
just mentioned algorithms. Due to the length of patch
generation preprocessing, the Watershed algorithm is
faster than our method, but our method requires less
time during the stage of interactive labeling, which is
an important convenience for human users. For ex-
ample, for one image, we only need to conduct pre-
processing once; then, as a result of the efficiency in
interactive labeling, the preprocessed image can be in-
teractively labeled by many human users many times
easily. This process allows users to find what they con-
sider the ’best’ segmentation through trial and error,
without long wait times.

4.3 Segmenting out Water Areas on Original
Satellite Image

We have shown the advantages of our method compared
to other baselines above. Now, we further show the results
of our method on all the full-size satellite images in Fig-
ure 1. Basic information about the datasets and parameter
settings for our algorithm are displayed in Table 1. The seg-
mentation results are shown in Figure 5. From Figure 5, we
can observe that our algorithm consistently generates high
quality segmentations and is capable of correctly detecting
the arbitrary boundaries between land and water. Most long
thin rivers, small irregular water bodies, and large wide lakes
are correctly extracted.

4.4 Dynamic Analysis for Flood Mapping
While we mainly focus on image segmentation as a method

for distinguishing water from land in satellite images above,
we now discuss how we adopt the image segmentation method
developed to detect flood areas. To this end, we refer to the

historical satellite image from before the flood and conduct
dynamic analysis.
By simply looking at Figure 5, which shows images of

Chennai from 10/19 to 12/18, we can see the water areas
greatly increase between 10/31 and 11/12. The water areas
start decreasing from 12/06 onward.
To create a flood map, we use the segmentation result

from 10/31/2015 as the baseline and compare this segmenta-
tion to the segmentations from later dates. Figure 6 presents
the dynamic changes of water areas. Red color indicates the
areas that change from land into water while yellow color in-
dicates the opposite change. From Figure 6, we can clearly
observe that 11/24 and 12/06 have the largest number of
water areas; water areas seem to decrease following 12/06.
Red areas are likely regions affected by the flood. The flood
maps are quite consistent with the fact that the South In-
dian floods lasted from 11/08/2015 to 12/14/2015.
In addition, we generate two animated gifs and put them

on our website 4. The changes of water areas can be more
clearly seen on the animated gifs, revealing the flood surges
and recessions.

5. ONGOING AND FUTURE WORK
In this section, we discuss some of the directions that we

are working on.

• Improve the learning models. While we use very
simple k-NN method for classification in this paper, we
would like to adopt more advanced classifiers to label
patches, such as SVM and neural networks. Mean-
while, more features for each pixel can be leveraged,
such as RGB values instead of just intensity. We also
want to design an active learning mechanism so that
the user will be encouraged to label patches that our
algorithm is most uncertain about. This will further
reduce the efforts of humans and also improve the flood
mapping quality.

• Crowd Sourcing Experiments. Some satellite im-
ages might be difficult for one person to label and there
might be uncertainties and confusions at some parts
of images (water or land) due to various reasons, such

4http://web.cse.ohio-state.edu/~liangji/floodmap.html
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(a) 10/19 (b) 10/31

(c) 11/12 (d) 11/24

(e) 12/06 (f) 12/18

Figure 5: Results of our segmentation algorithm on satellite images from 10/19/2015 to 12/18/2015. One image for every 12
days.
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(a) 11/12 (b) 11/24

(c) 12/06 (d) 12/18

Figure 6: Water area changes from 11/12/2015 to 12/18/2015 using 10/31/2015 as the baseline. One image for every 12 days.
Red color indicates areas that were land on 10/30/2015 but were water on the given date, while yellow color indicates areas
that were water on 10/30/2015 but were land on the given date. Blue and green represent areas that were originally water or
land on 10/30/2015 and remain so on the given date.
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as the limitation of resolution. Motivated by this, we
plan to lauch a crowd sourcing experiment at platform
such as Amazon Mechanical Turk, where we ask dif-
ferent people to help interactively label the satellite
images. The segmentation results on the same image
are then aggregated. We employ more humans to label
those images that involve more conflicts.

• Incorporating Social Media Information. Dur-
ing the flood, social media users might publish use-
ful information on social media, which can potentially
provide supervision to our method. For example, users
might publish tweets on Twitter about the flood in a
specific region, and this information can be used as
a marker in our method. This means that the infor-
mation on flood from social media can be used as su-
pervision and labeled markers for the flood mapping
approach.

6. CONCLUSION
In this paper, we provide an effective and efficient so-

lution to the flood mapping problem by leveraging human
guidance. We generate patches using a graph-based ap-
proach and adopt a semi-supervised algorithm involving hu-
man guidance to label the patches. Our results show that
our algorithm can correctly segment out water and land ar-
eas with less noise, compared to other baselines. Further
dynamic analysis reveals that it can effectively detect the
flooded areas.
Acknowledgements. This work is supported by NSF Award
NSF-EAR-1520870 and NSF-DMS-1418265. We also thank
Desheng Liu and Jiayong Liang for useful discussions and
help with data collection.

7. REFERENCES
[1] A threshold selection method from gray-level

histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62–66, Jan 1979.

[2] S. S. Al-Amri, N. V. Kalyankar, et al. Image
segmentation by using threshold techniques. arXiv
preprint arXiv:1005.4020, 2010.

[3] M. Baatz and A. Schäpe. Multiresolution
segmentation: an optimization approach for high
quality multi-scale image segmentation, 2000.

[4] A. M. Bensaid, L. O. Hall, J. C. Bezdek, and L. P.
Clarke. Partially supervised clustering for image
segmentation. Pattern Recognition, 29(5):859–871,
1996.

[5] S. Beucher and F. Meyer. The morphological approach
to segmentation: the watershed transformation.
OPTICAL ENGINEERING-NEW YORK-MARCEL
DEKKER INCORPORATED-, 34:433–433, 1992.

[6] Y. Boykov and G. Funka-Lea. Graph cuts and efficient
nd image segmentation. International journal of
computer vision, 70(2):109–131, 2006.

[7] A. Browet, P. A. Absil, and P. Van Dooren.
Combinatorial Image Analysis: 14th International
Workshop, IWCIA 2011, Madrid, Spain, May 23-25,
2011. Proceedings, chapter Community Detection for
Hierarchical Image Segmentation, pages 358–371.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[8] T. Cour, F. Benezit, and J. Shi. Spectral segmentation
with multiscale graph decomposition. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 2,
pages 1124–1131. IEEE, 2005.

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. International
Journal of Computer Vision, 59(2):167–181, 2004.

[10] N. Grira, M. Crucianu, and N. Boujemaa.
Unsupervised and semi-supervised clustering: a brief
survey. A review of machine learning techniques for
processing multimedia content, Report of the MUSCLE
European Network of Excellence (FP6), 2004.

[11] S. Hallegatte, C. Green, R. J. Nicholls, and
J. Corfee-Morlot. Future flood losses in major coastal
cities. Nature climate change, 3(9):802–806, 2013.

[12] J.-B. Henry, P. Chastanet, K. Fellah, and Y.-L.
Desnos. Envisat multi-polarized asar data for flood
mapping. International Journal of Remote Sensing,
27(10):1921–1929, 2006.

[13] J. N. Kapur, P. K. Sahoo, and A. K. Wong. A new
method for gray-level picture thresholding using the
entropy of the histogram. Computer vision, graphics,
and image processing, 29(3):273–285, 1985.

[14] G. A. Lazarova. Semi-supervised image segmentation.
In Artificial Intelligence: Methodology, Systems, and
Applications, pages 59–68. Springer, 2014.

[15] A. Rosenfeld and P. De La Torre. Histogram concavity
analysis as an aid in threshold selection. Systems, Man
and Cybernetics, IEEE Transactions on, (2):231–235,
1983.

[16] V. Satuluri and S. Parthasarathy. Scalable graph
clustering using stochastic flows: applications to
community discovery. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 737–746. ACM,
2009.

[17] S. B. Serpico, S. Dellepiane, G. Boni, G. Moser,
E. Angiati, and R. Rudari. Information extraction
from remote sensing images for flood monitoring and
damage evaluation. Proceedings of the IEEE,
100(10):2946–2970, 2012.

[18] M. I. Sezan. A peak detection algorithm and its
application to histogram-based image data reduction.
Computer vision, graphics, and image processing,
49(1):36–51, 1990.

[19] J. Shi and J. Malik. Normalized cuts and image
segmentation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(8):888–905,
2000.

[20] S. P. Simonovic and P. Eng. Role of remote sensing in
disaster management. 2002.

[21] D.-M. Tsai. A fast thresholding selection procedure for
multimodal and unimodal histograms. Pattern
Recognition Letters, 16(6):653–666, 1995.

[22] K. Wagstaff and C. Cardie. Clustering with
instance-level constraints. AAAI/IAAI, 1097, 2000.

[23] Y. Wang, J. Colby, and K. Mulcahy. An efficient
method for mapping flood extent in a coastal
floodplain using landsat tm and dem data.
International Journal of Remote Sensing,
23(18):3681–3696, 2002.

85



SIDE: A Web App for Interactive Visual Data Exploration
with Subjective Feedback

Jefrey Lijffijt1 Bo Kang1 Kai Puolamäki2 Tijl De Bie1

1 Data Science Lab, Ghent University, Belgium
2 Finnish Institute of Occupational Health, Finland

{jefrey.lijffijt;bo.kang;tijl.debie}@ugent.be, kai.puolamaki@ttl.fi

ABSTRACT
Data visualization and iterative/interactive data mining are
growing rapidly in attention, both in research as well as in
industry. However, integrated methods and tools that com-
bine advanced visualization and/or interaction with data
mining techniques are rare, and those that exist are spe-
cialized to a single problem or domain. We present SIDE,
a generic tool for Subjective Interactive Data Exploration,
which lets users explore high dimensional data via subjec-
tively informative two-dimensional data visualizations. In
contrast to most visualization tools, it is not based on the
traditional dogma of manually zooming and rotating data.
Instead, the tool initially presents the user with an ‘interest-
ing’ projection, and then allows users to flexibly and intu-
itively express their interests or beliefs using visual interac-
tions that update/constrain a background model of the data.
These constraints expressed by the user are then taken into
account by a projection-finding algorithm employing data
randomization to compute a new ‘interesting’ projection.
This process can be iterated until the user runs out of time
or finds that the difference between the randomized data
and the real data is no longer interesting. We present the
tool by means of two case studies, one controlled study on
synthetic data and another on real census data.

Keywords
Exploratory Data Mining; Dimensionality Reduction; Data
Randomization; Subjective Interestingness

1. INTRODUCTION
Data visualization and iterative/interactive data mining

are both mature, actively researched topics of great prac-
tical importance. However, while progress in both fields is
abundant (see Section 4), methods that combine iterative
data mining with visualization and interaction are rare; only
a few tools designed for specific problem domains exist.

Yet, tools that combine state-of-the-art data mining with
visualization and interaction are highly desirable as they
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would maximally exploit the strengths of both human data
analysts and computer algorithms. Humans are unmatched
in spotting interesting patterns in low-dimensional visual
representations, but poor at reading high-dimensional data,
while computers excel in manipulating high-dimensional data
and are weaker at identifying patterns that are truly rele-
vant to the user. A symbiosis of human analysts and well-
designed computer systems thus promises to provide an effi-
cient way of navigating the complex information space hid-
den within high-dimensional data [17].

Contributions.
In this paper we introduce a generically applicable method

for finding interesting projections of data, given some prior
knowledge about that data, and we introduce a tool that
demonstrates the proposed approach for interactive visual
exploration of (high-dimensional) data. The underlying idea
is that the analysis process is iterative, and during each iter-
ation there are three steps. The hypothesis is that through-
out the iterations, the user builds up an increasingly ac-
curate understanding of the data. This understanding is
explicated in the background model, which is used at the
beginning of each iteration in order to find a maximally in-
formative projection. More generally, the background model
is a representation for the user’s belief state. The tool works
as indicated in Figure 1. Details of all steps are given below.
Step 1. The tool initially presents the user with an ‘inter-
esting’ projection of the data, visualized as a scatter plot.
Here, interestingness is formalized with respect to the initial
belief state.
Step 2. On investigation of this scatter plot, the user may
take note of some features of the data that contrast with, or
add to, their beliefs about the data. We will refer to such
features as patterns. The user then interacts with the tool

(1) Data 
Visualization

(2) User
Feedback

(3) Update
Background

Model

User

Algorithm

Figure 1: The three steps of SIDE’s operation cycle.
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to indicate what patterns they have seen and assimilated.
Step 3. The tool updates the background model according
to the user feedback, in order to reflect the newly assimilated
information.
Next iteration. Then the most interesting projection with
respect to this updated background model can be computed,
and the cyclic process iterates until the user runs out of time
or finds that background model (and thus the user’s belief
state) explains everything the user is currently interested in.

Formalization of the background model.
A crucial challenge in the realization of such a tool is the

formalization of the background model. To allow the process
to be iterative, the formalization has to allow for the model
to be updated after a user has been provided with new in-
formation (i.e., shown a visualization) and given feedback
on it. There exist two frameworks for iterative data mining:
FORSIED [3, 4] and a framework that has no name yet, but
which we will refer to as CORAND [7, 13], for COnstrained
RANDomization. In both cases, the background model is a
probability distribution over data sets and the user beliefs
are modelled as a set of constraints on that distribution.

The CORAND approach is to specify a randomization
procedure that, when applied to the data, does not affect
how plausible the user would deem it to be. That is, the
user’s beliefs should be satisfied, and otherwise the data
should be shuffled as much as possible. Given an appro-
priate randomization scheme, we can then find interesting
remaining structure that is not yet known to the user by con-
trasting the real data against the randomized data. New be-
liefs can be incorporated in the background model by adding
corresponding constraints to the randomization procedure,
ensuring that the patterns observed by the user are present
also in the subsequent randomized data.

An illustrative example.
As an example, consider a synthetic data set that consists

of 1000 ten-dimensional data vectors of which dimensions
1–4 can be clustered into five clusters, dimensions 5–6 into
four clusters involving different subsets of data points, and of
which dimensions 7–10 are Gaussian noise. All dimensions
have equal variance.

We designed this example to illustrate the two types of
feedback that a user can give in the current implementation
of our tool. Additionally, it shows how the tool succeeds
in finding interesting projections given previously identified
patterns. Thirdly, it also demonstrates how the user in-
teractions meaningfully affect subsequent visualizations. In
this example we aim to provide an overview of how the tool
works, technical details are presented in Section 2.

We observe that the first projection computed by SIDE
maps the data onto a two-dimensional (2D) subspace of the
dimensions 1–4 (Figure 2a), i.e., to a subspace of the space
where the data is clustered into 5 clusters. This is indeed
sensible, as the structure within this 4D subspace is arguably
the most striking.

We then consider two possible user actions (Step 2, Fig-
ure 2b). In the first scenario (Figure 2 left path), the user
marks all points within each cluster (one cluster at a time),
indicating they have taken note of the positions of these
groups of points within this particular projection. In the
second scenario (Figure 2 right path), the user gives the
feedback that these points appear to be clustered in this

projection and possibly also in other dimensions.
Both these ‘pattern types’ lead to a set of constraints on

the randomization procedure. The effect of these constraints
is identical with respect to the current 2D projection (Fig-
ure 2c): the projections of the randomized points onto this
plane are identical to the projections of the original points
onto this plane. Not visible though is that in the second
scenario the randomization is restricted also in orthogonal
dimensions (possibly different ones for different clusters), to
account for the user feedback that also orthogonal subspaces
that yield the same clusters are not interesting anymore.

The subsequent most interesting projection is different in
the two scenarios (Figure 2d). In the first scenario, the
remaining cluster structure within dimensions 1–4 is shown.
However, in the second scenario this cluster structure is fully
explained by the constraints, and as a result, the cluster
structure in dimensions 5–6 being is shown instead.

The difference can be observed in the visualization be-
cause on the left three clusters are pure and one is mixed
(an artefact of how we chose the cluster centers). Yet, on the
right all clusters are mixed with respect the previous clus-
tering. This indeed shows the two clusterings in dimensions
1–4 and dimensions 5–6 are unrelated.

Outline of this paper.
As discussed in Section 2, three challenges had to be ad-

dressed to use the CORAND approach: (1) defining intuitive
pattern types (constraints) that can be observed and speci-
fied based on a scatter plot of a two-dimensional projection
of the data; (2) defining a suitable randomization scheme,
that can be constrained to take account of such patterns;
and (3) a way to identify the most interesting projections
given the background model. The evaluation with respect
to usefulness as well as computational properties of the re-
sulting system is presented in Section 3. Experiments were
conducted both on synthetic data and on a census dataset.
Finally, related work and conclusions are discussed in Sec-
tions 4 and 5, respectively.

NB. This manuscript is an integration of two publications
that are to appear in the Proceedings of the European Con-
ference on Machine Learning and Principles and Practice of
Knowledge Discovery [10, 16].

2. METHODS
We will use the notational convention that upper case bold

face symbols represent matrices, lower case bold face sym-
bols represent column vectors, and lower case standard face
symbols represent scalars. We assume that our data set
consists of n d-dimensional data vectors xi. The data set is
represented by a real matrix X =

(
xT1 xT2 · · · xTn

)T ∈
Rn×d. More generally, we will denote the transpose of the
ith row of any matrix A as ai (i.e., ai is a column vector).
Finally, we will use the shorthand notation [n] = {1, . . . , n}.

2.1 Projection tile patterns in two flavours
In the interaction step, the proposed system allows users

to declare that they have become aware of (and thus are no
longer interested in seeing) the value of the projections of a
set of points onto a specific subspace of the data space. We
call such information a projection tile pattern for reasons
that will become clear later. A projection tile parametrizes
a set of constraints to the randomization.
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Figure 2: Two user interaction scenarios for the toy data set. Solid dots represent actual data vectors, whereas open circles
represent vectors from the randomized data. Row (a) shows the first visualization, which is the starting point for both
scenarios. Row (b) shows the sets of data points marked by the user. Although not shown, on the left the user gives feedback
to incorporate the selected cluster structure in the currently shown dimensions, while on the right the feedback is that the
user expects the cluster structure to generalize to other unshown dimensions. Row (c) shows the newly randomized data and
the original data projected still in the same subspace. As expected, the randomized data fully aligns with the real data. Then,
row (d) shows the most interesting visualization given the specified patterns (constraints). The left path shows the scenario
when the user assumes nothing beyond the values of the data points in the projection in row (a), whereas the right path shows
the scenario when the user assumes each of these sets of points may be clustered in other dimensions as well.
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Formally, a projection tile pattern, denoted τ , is defined
by a k-dimensional (with k ≤ d and k = 2 in the simplest
case) subspace of Rd, and a subset of data points Iτ ⊆ [n].
We will formalize the k-dimensional subspace as the column
space of an orthonormal matrix Wτ ∈ Rd×k with WT

τ Wτ =
I, and can thus denote the projection tile as τ = (Wτ , Iτ ).
The proposed tool provides two ways in which the user can
define the projection vectors Wτ for a projection tile τ .

2D tiles.
The first approach simply chooses Wτ as the two weight

vectors defining the projection within which the data vec-
tors belonging to Iτ were marked. This approach allows the
user to simply specify that they have taken note of the po-
sitions of that set of data points within this projection. The
user makes no further assumptions—they assimilate solely
what they see without drawing conclusions not supported
by direct evidence, see Figure 2b (left).

Clustering tiles.
It seems plausible, however, that when the marked points

are tightly clustered, the user concludes that these points
are clustered not just within the two dimensions shown in
the scatter plot. To allow the user to express such belief, the
second approach takes Wτ to additionally include a basis for
other dimensions along which these data points are strongly
clustered, see Figure 2b (right). This is achieved as follows.

Let X(Iτ , :) represent a matrix containing the rows in-
dexed by elements from Iτ from X. Let W ∈ Rd×2 contain
the two weight vectors onto which the data was projected
for the current scatter plot. In addition to W, we want
to find any other dimensions along which these data vectors
are clustered. These dimensions can be found as those along
which the variance of these data points is not much larger
than the variance of the projection X(Iτ , :)W.

To find these dimensions, we first project the data onto the
subspace orthogonal to W. Let us represent this subspace
by a matrix with orthonormal columns, further denoted as

W⊥. Thus, W⊥TW⊥ = I and WTW⊥ = 0. Then, Princi-
pal Component Analysis (PCA) is applied to the resulting
matrix X(Iτ , :)W⊥. The principal directions corresponding
to a variance smaller than a threshold are then selected and
stored as columns in a matrix V. In other words, the vari-
ance of each of the columns of X(Iτ , :)W⊥V is below the
threshold.

The matrix Wτ associated to the projection tile pattern
is then taken to be:

Wτ =
(
W W⊥V

)
.

The threshold on the variance used could be a tunable pa-
rameter, but was set here to twice the average of the variance
of the two dimensions of X(Iτ , :)W.

2.2 The randomization procedure
Here we describe the approach to randomizing the data.

The randomized data should represent a sample from an im-
plicitly defined background model that represents the user’s
belief state about the data. Initially, our approach assumes
the user merely has an idea about the overall scale of the
data. However, throughout the interactive exploration, the
patterns in the data described by the projection tiles will be
maintained in the randomization.

Initial randomization.
The proposed randomization procedure is parametrized

by n orthogonal rotation matrices Ui ∈ Rd×d, where i ∈
[n], and the matrices satisfy (Ui)

T = (Ui)
−1. We further

assume that we have a bijective mapping f : [n] × [d] 7→
[n]× [d] that can be used to permute the indices of the data
matrix. The randomization proceeds in three steps:

Random rotation of the rows Each data vector xi is ro-
tated by multiplication with its corresponding random
rotation matrix Ui, leading to a randomised matrix Y
with rows yTi that are defined by:

∀i : yi = Uixi.

Global permutation The matrix Y is further randomized
by randomly permuting all its elements, leading to the
matrix Z defined as:

∀i, j : Zi,j = Yf(i,j).

Inverse rotation of the rows Each randomised data vec-
tor in Z is rotated with the inverse rotation applied in
step 1, leading to the fully randomised matrix X∗ with
rows x∗i defined as follows in terms of the rows zTi of
Z:

∀i : x∗i = Ui
T zi.

The random rotations Ui and the permutation f are sam-
pled uniformly at random from all possible rotation matrices
and permutations, respectively.

Intuitively, this randomization scheme preserves the scale
of the data points. Indeed, the random rotations leave their
lengths unchanged, and the global permutation subsequently
shuffles the values of the d components of the rotated data
points. Note that without the permutation step, the two
rotation steps would undo each other such that X∗ = X.
Thus, it is the combined effect that results in a randomiza-
tion of the data set.

The random rotations may seem superfluous: the global
permutation randomizes the data so dramatically that the
added effect of the rotations is relatively unimportant. How-
ever, their role is to make it possible to formalize the grow-
ing understanding of the user as simple constraints on this
randomization procedure, as discussed next.

Accounting for one projection tile.
Once the user has assimilated the information in a pro-

jection tile τ = (Wτ , Iτ ), the randomization scheme should
incorporate this information by ensuring that it is present
also in all randomized versions of the data. This ensures
that the randomized data is a sample from a distribution
representing the user’s belief state about the data. This is
achieved by imposing the following constraints on the pa-
rameters defining the randomization:

Rotation matrix constraints For each i ∈ Iτ , the com-
ponent of xi that is within the column space of Wτ

must be mapped onto the first k dimensions of yi =
Uixi by the rotation matrix Ui. This can be achieved
by ensuring that:

∀i ∈ Iτ : WT
τ Ui = (I 0) . (1)

This explains the name projection tile: the information
to be preserved in the randomization is concentrated
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in a ‘tile’ (i.e. the intersection of a set of rows and a
set of columns) in the intermediate matrix Y created
during the randomization procedure.

Permutation constraints The permutation should not af-
fect any matrix cells with row indices i ∈ Iτ and
columns indices j ∈ [k]:

∀i ∈ Iτ , j ∈ [k] : f(i, j) = (i, j). (2)

Proposition 1. Using the above constraints on the rota-
tion matrices Ui and the permutation f , it holds that:

∀i ∈ Iτ ,xTi Wτ = x∗i
T
Wτ . (3)

Thus, the values of the projections of the points in the pro-
jection tile remain unaltered by the constrained random-
ization. Hence, the randomization keeps the user’s beliefs
intact. We omit the proof as the more general Proposition 2
is provided with proof further below.

Accounting for multiple projection tiles.
Throughout subsequent iterations, additional projection

tile patterns will be specified by the user. A set of tiles τi
for which Iτi∩Iτj = ∅ if i 6= j is straightforwardly combined
by applying the relevant constraints on the rotation matrices
to the respective rows. When the sets of data points affected
by the projection tiles overlap though, the constraints on the
rotation matrices need to be combined. The aim of such a
combined constraint should be to preserve the values of the
projections onto the projection directions for each of the
projection tiles a data vector was part of.

The combined effect of a set of tiles will thus be that
the constraint on the rotation matrix Ui will vary per data
vector, and depends on the set of projections Wτ for which
i ∈ Iτ . More specifically, we propose to use the following
constraint on the rotation matrices:

Rotation matrix constraints Let Wi ∈ Rd×di denote a
matrix of which the columns are an orthonormal basis
for space spanned by the union of the columns of the
matrices Wτ for τ with i ∈ Iτ . Thus, for any i and
τ : i ∈ Iτ , it holds that Wτ = Wivτ for some vτ ∈
Rdi . Then, for each data vector i, the rotation matrix
Ui must satisfy:

∀i ∈ Iτ : WT
i Ui = (I 0) . (4)

Permutation constraints Then the permutation should
not affect any matrix cells in row i and columns [di]:

∀i ∈ [n], j ∈ [di] : f(i, j) = (i, j).

Proposition 2. Using the above constraints on the rota-
tion matrices Ui and the permutation f , it holds that:

∀τ,∀i ∈ Iτ ,xTi Wτ = x∗i
T
Wτ .

Proof. We first show that x∗i
TWi = xTi Wi:

x∗i
T
Wi = zTi U

T
i Wi = zTi

(
I
0

)
= zi(1 : di)

T = yi(1 : di)
T = yTi

(
I
0

)
= xTi Wi.

The result now follows from the fact that Wτ = Wivτ for
some vτ ∈ Rdi .

Technical implementation of the randomization.
To ensure the randomization can be carried out efficiently

throughout the process, note that the matrix Wi for the i ∈
Iτ for a new projection tile τ can be updated by computing
an orthonormal basis for (Wi W). Such a basis can be
found efficiently as the columns of Wi in addition to the
columns of an orthonormal basis of W −WT

i WiW (the
components of W orthogonal to Wi), the latter of which
can be computed using the QR-decomposition.

Additionally, note that the tiles define an equivalence re-
lation over the row indices, in which i and j are equivalent if
they were included in the same set of projection tiles so far.
Within each equivalence class, the matrix Wi will be con-
stant, such that it suffices to compute it only once, keeping
track of which points belong to which equivalence class.

2.3 Visualization: Finding the most interest-
ing two-dimensional projection

Given the data set X and the randomized data set X∗, it
is now possible to quantify the extent to which the empirical
distribution of a projection Xw and X∗w onto a weight vec-
tor w differ. There are various ways in which this difference
can be quantified. We investigated a number of possibilities
and found that the L1-distance between the cumulative dis-
tribution functions works well in practice. Thus, with Fx

the empirical cumulative distribution function for the set of
values in x, the optimal projection is found by solving:

max
w
‖FXw − FX∗w‖1 .

The second dimension of the scatter plot can be sought by
optimizing the same objective while requiring it to be or-
thogonal to the first dimension.

We are unaware of any special structure of this optimiza-
tion problem that makes solving it particularly efficient. Yet,
using the standard quasi-Newton solver in R [18] with ran-
dom initialization and default settings (the general-purpose
optim function with method=”BFGS”) already yields satis-
factory results, as shown in the experiments below.

2.4 Interface
The full interface of SIDE is shown in Figure 3. SIDE was

designed according to three principles for visually control-
lable data mining [17], which essentially says that both the
model and the interactions should be transparent to users,
and that the analysis method should be fast enough such
that the user does not lose its trail of thought.

The main component is the interactive scatter plot (3a).
The scatter plot visualizes the projected data (solid dots)
and the randomized data (open gray circles) in the current
2D projection. By drawing circles (3b), the user can high-
light data points to define a projection tile pattern. Once a
set of points is marked, the user can press either of the two
feedback buttons (3c), to indicate these points form a clus-
ter. If the user thinks the points are clustered only in the
shown projection, they click ‘2D Constraint’, while ‘Cluster
Constraint’ indicates they expect that these points will be
clustered in other dimensions as well.

To identify the defined clusters, data points associated
with the same feedback (i.e., user’s belief) are filled by the
same color (3d), and their statistics are shown in a table.
The user can define multiple clusters in a single projection,
and they can also undo (3e) the feedback. Once a user fin-
ishes exploring the current projection, they can press ‘Up-

90



Figure 3: Layout of our web app SIDE, which contains the data visualization and interaction area (a–f), projection meta
information (g), and timeline (h).

date Background Model’ (3f). Then, the background model
is updated with the provided feedback and a new scatter
plot is computed and presented to the user, etc.

A few extra features are provided to assist the data explo-
ration process: to gain an understanding of a projection, the
weight vectors associated with the projection axes are plot-
ted as bar charts (3g). At the bottom of 3g, a table lists the
mean vectors of each colored point set (i.e., cluster). The
exploration history is maintained by taking snapshots of the
background model when updated, together with the associ-
ated data projection (scatter plot) and bar charts (weight
vectors). This history in reverse chronological order is illus-
trated in Figure 3h.

The tool also allows a user to click and revert back to a
certain snapshot (3i), to restart from that time point. This
allows the user to discover different aspects of a dataset more
consistently. Finally, custom datasets can be selected for
analysis from the drop-down menu (3j). Currently our tool
only works with CSV files and it automatically sub-samples
the custom data set so that the interactive experience is not
compromised. By default, two datasets are preloaded so
that users can get familiar with the tool.

3. EXPERIMENTS
We present two case studies to illustrate the framework

and its utility. The case studies are completed with the
a JavaScript version of our tool, which is available freely
online, along with the used data for reproducibility.1

3.1 Synthetic data case study
This section gives an extended discussion of the illustra-

tive example from the introduction, namely the synthetic
data case study. The data is described in Section 1. The first
projection shows that the projected data (solid blue dots in
Figure 2a) differs strongly from the randomized data (open
gray circles). The weight vectors defining the projection,
shown in the 1st row of Table 1, contain large weights in
dimensions 1–4. Therefore, the cluster structure seen here
mainly corresponds to dimensions 1–4 of the data.

A user can indicate this insight by means of a cluster-
ing tile for each of the clustered sets of data points (2b,
right). Encoding this into the background model, results
in a randomization, where the randomized points perfectly

1http://www.interesting-patterns.net/forsied/
a-tool-for-subjective-and-interactive-visual-data-exploration/)
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Table 1: Projection weight vectors for the synthetic data (Sections 1 and 3.1).

Figure axis 1 2 3 4 5 6 7 8 9 10

2a
X 0.194 0.545 -0.630 0.499 -0.119 -0.041 0.057 0.001 -0.029 0.003
Y -0.269 -0.754 -0.481 0.340 0.091 -0.004 0.016 -0.057 0.003 0.005

2d X 0.143 -0.118 0.005 0.981 0.001 -0.013 -0.031 -0.022 0.044 -0.031
(left) Y -0.245 0.448 0.854 0.088 0.004 -0.001 0.005 0.008 -0.043 0.023

2d X 0.121 0.019 -0.232 0.017 -0.963 -0.008 0.022 0.023 0.037 0.004
(right) Y -0.139 -0.067 -0.369 -0.082 0.111 -0.898 -0.083 0.086 0.005 -0.017

Table 2: Projection weight vectors for the UCI Adult data (Section 3.2).

Figure axis Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4a
X -0.039 -0.001 0.001 0.312 -0.530 -0.193 0.763 0.017 0.008
Y 0.004 -0.004 -0.002 0.816 -0.141 0.465 -0.313 -0.011 0.002

4c
X 0.081 -0.028 -0.022 -0.259 -0.233 -0.104 -0.380 -0.846 -0.001
Y -0.590 0.541 0.143 -0.233 -0.380 -0.026 -0.293 0.232 0.000

4d
X 0.119 -0.149 0.047 0.102 0.191 0.104 -0.556 0.0581 -0.769
Y -0.382 -0.626 -0.406 0.346 0.317 -0.0287 0.111 -0.248 0.059

Table 3: Mean vectors of user marked clusters for the UCI Adult data (Section 3.2).

Figure Cluster Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4b

top left 35.0 8.67 34.7 0.00 0.00 1.00 0.00 0.667 0.333
bott. left 37.2 9.43 40.3 0.00 1.00 0.00 0.00 0.286 0.071
top right 35.6 1.3 51.1 1.00 0.00 0.00 0.00 0.750 0.250

bott. right 38.4 10.2 41.6 0.00 0.00 0.00 1.00 0.762 0.275

4c
left 39.0 10.2 43.3 0.0377 0.0252 0.0126 0.925 1.00 0.321

right 36.0 9.95 37.9 0.0339 0.169 0.0169 0.780 0.00 0.102
4d left 42.5 11.6 46.3 0.00 0.00 0.00 1.00 1.00 1.00

align with data points (2c, right). The new projection that
differs most from this updated background model reveals the
four clusters in dimensions 5–6 that the user was not aware
of before (2d, right).

If the user does not want to draw conclusions about the
points being clustered in dimensions other than those shown,
she can use 2D tiles instead of clustering tiles (Figure 2b,
left). The updated background model then results in a ran-
domization that is indistinguishable in the given projection
from the one with a clustering tile (2c, left), but it results
in a different subsequent projection (2d, left). Indeed, this
leads to just another view of the five clusters in dimensions
1–4, as confirmed by the large weights for dimensions 1–4
(2nd row of Table 1). Thus, by these simple interactions
the user can choose whether she will allow additional explo-
ration of the cluster structure in dimensions 1–4 or if she is
now already aware of the cluster structure, in which case the
system directs her to the structure occurring in dimensions
5–6. This behavior aligns perfectly with our expectations.

3.2 UCI Adult dataset case study
In this case study, we demonstrate the utility of our method

by exploring a real world dataset. The data is compiled
from UCI Adult dataset2. To ensure the real time inter-
activity, we sub-sampled 218 data points and selected six
features: “Age” (17− 90), “Education” (1− 16), “HoursPer-
Week” (1 − 99), “Ethnic Group” (White, AsianPacIslander,
Black, Other), “Gender” (Female, Male), “Income” (≥ 50k).
Among the selected features, “Ethnic Group” is a categorical
feature with five categories, “Gender” and “Income” are bi-

2https://archive.ics.uci.edu/ml/datasets/Adult

nary features, the rest are all numeric. To make our method
applicable to this dataset, we further binarized the “Ethnic
Group” feature (yielding four binary features), and the final
dataset consists of 218 points and 9 features.

We assume the user uses clustering tiles throughout the
exploration. Each of the patterns discovered during the ex-
ploration process thus corresponds to a certain demographic
clustering pattern. To illustrate how our tool helps the user
rapidly gain an understanding of the data, we discuss the
first three iterations of the exploration process. The first
projection (Figure 4a) visually consists of four clusters. The
user notes that the weight vectors corresponding to the axes
of the plot assign large weights to the “Ethnic Group” at-
tributes (Table 2, 1st row). As mentioned, we assume the
user marks these points as part of the same clustering tile.
When marking the clusters (Figure 4b), the tool informs the
user of the mean vectors of the points within each clustering
tile. The 1st row of Table 3 shows that each cluster com-
pletely represents one out of four ethnic groups, which may
corroborate with the user’s understanding.

Taking the user’s feedback into consideration, a new pro-
jection is generated by the tool. The new scatter plot (Fig-
ure 4c) shows two large clusters, each consisting of some
points from the previous four-cluster structure (points from
these four clusters are colored differently). Thus, the new
scatter plot elucidates structure not shown in the previous
one. Indeed, the weight vectors (2nd row of Table 2) show
that the clusters are separated mainly according to the“Gen-
der” attribute. After marking the two clusters separately,
the mean vector of each cluster (2nd row of Table 3) again
confirms this: the cluster on the left represents male group,
and the female group is on the right.
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Figure 4: Projections of UCI Adult dataset: (a) projection in the 1st iteration, (b) clusters marked by user in the 1st iteration,
(c) projection in the 2nd iteration, and (d) projection in the 3rd iteration

The projection in the third iteration (Figure 4d) consists
of three clusters, separated only along the x-axis. Interest-
ingly, the corresponding weight vector (3rd row of Table 2)
has strongly negative weights for the attributes “Income”
and “Ethnic Group - White”. This indicates the left cluster
mainly represents the people with high income and whose
ethnic group is also “White”. This cluster has relatively low
y-value; according to the weight vector, they are also gen-
erally older and more highly educated. These observations
are corroborated by the cluster mean (Table 3, 3rd row).

This case study illustrates how the proposed tool facili-
tates human data exploration by iteratively presenting an
informative projection, considering what the user has al-
ready learned about the data.

3.3 Performance on synthetic data
Ideally interactive data exploration tools should work in

close to real time. This section contains an empirical anal-
ysis of an (unoptimized) R implementation of our tool, as a
function of the size, dimensionality, and complexity of the
data. Note that limits on screen resolution as well as on hu-
man visual perception render it useless to display more than
of the order of a few hundred data vectors, such that larger
data sets can be down-sampled without noticeably affecting
the content of the visualizations.

We evaluated the scalability on synthetic data with d ∈
{16, 32, 64, 128} dimensions and n ∈ {64, 128, 256, 512} data
points scattered around k ∈ {2, 4, 8, 16} randomly drawn
cluster centroids (Table 4). The randomization is done here

with the initial background model. The most costly part
in randomization is usually the multiplication of orthogo-
nal matrices, indeed, the running time of the randomization
scales roughly as nd2−3. The results suggests that the run-
ning time of the optimization is roughly proportional to the
size of the data matrix nd and that the complexity of data
k has here only a minimal effect in the running time of the
optimization.

Furthermore, in 90% of the tests, the L1 loss on the first
axis is within 1% of the best L1 norm out of ten restarts.
The optimization algorithm is therefore quite stable, and in
practical applications it may well be be sufficient to run the
optimization algorithm only once. These results have been
obtained with unoptimized and single-threaded R implemen-
tation on a laptop having 1.7 GHz Intel Core i7 processor.3

The performance could probably be significantly boosted by,
e.g., carefully optimizing the code and the implementation.
Yet, even with this unoptimized code, response times are
already of the order of 1 second to 1 minute.

4. RELATED WORK

Dimensionality reduction.
Dimensionality reduction for exploratory data analysis has

been studied for decades. Early research into visual explo-
ration of data led to approaches such as multidimensional

3The R implementation used to produce Table 4 is available
also via the demo page (footnote 1).
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Table 4: Median wall clock running times, for random-
ization and optimization over ten iterations of finding 2D-
projections using L1 loss. Also shown is the number of itera-
tions in which the L1 norm first component ended up within
1% of the result with the largest L1 norm (out of 10 tries).
A high number indicates the solution quality is stable, even
though the actual projections may vary.

rand. k ∈ {2, 4, 8, 16}
n d (s) optim. (s) #tries ∆ < 1%
64 16 0.1 {1.0, 1.2, 0.9, 1.2} {10, 10, 9, 8}
64 32 0.5 {1.8, 2.1, 2.4, 2.5} {10, 8, 10, 10}
64 64 2.5 {5.6, 3.5, 4.6, 4.5} {10, 9, 10, 8}
64 128 11.5 {8.9, 10.1, 11.4, 10.2} {10, 10, 8, 9}
128 16 0.2 {2.0, 1.7, 2.4, 2.0} {10, 1, 6, 8}
128 32 0.8 {2.6, 3.5, 4.0, 4.8} {9, 10, 10, 10}
128 64 5.1 {6.7, 5.3, 8.3, 9.6} {8, 10, 10, 9}
128 128 24.5 {13.8, 17.4, 15.2, 20.4} {10, 9, 10, 7}
256 16 0.4 {4.3, 2.6, 3.3, 4.7} {10, 8, 10, 9}
256 32 1.8 {6.3, 8.2, 7.9, 8.8} {8, 9, 10, 10}
256 64 9.2 {12.4, 10.1, 19.2, 16.3} {10, 10, 10, 9}
256 128 39.9 {33.5, 36.3, 30.6, 35.6} {10, 9, 8, 9}
512 16 0.5 {6.7, 6.3, 6.1, 7.5} {10, 9, 10, 10}
512 32 2.4 {16.6, 19.6, 20.2, 17.5} {9, 9, 10, 10}
512 64 13.6 {34.9, 23.5, 22.3, 41.0} {10, 10, 8, 7}
512 128 68.0 {74.5, 68.1, 72.3, 62.8} {10, 1, 9, 9}

scaling [12, 21] and projection pursuit [6, 9]. Most recent
research on this topic (also referred to as manifold learning)
is still inspired by the aim of multi-dimensional scaling; find
a low-dimensional embedding of points such that their dis-
tances in the high-dimensional space are well represented.
In contrast to Principal Component Analysis [15], one usu-
ally does not treat all distances equal. Rather, the idea is
to preserve small distances well, while large distances are
irrelevant, as long as they remain large; examples are Local
Linear and (t-)Stochastic Neighbor Embedding [8, 19, 22].
Even that is typically not possible to achieve perfectly, and
a trade-off between precision and recall arises [24]. Recent
works are mostly spectral methods along this line.

Iterative data mining and machine learning.
There are two general frameworks for iterative data min-

ing: FORSIED [3, 4] is based on modeling the belief state
of the user as an evolving probability distribution in order
to formalize subjective interestingness of patterns. This dis-
tribution is chosen as the Maximum Entropy distribution
subject to the user beliefs as constraints, at that moment
in time. Given a pattern syntax, one then aims to find the
pattern that provides the most information, quantified as
the ‘subjective information content’ of the pattern.

The other framework, which we here named CORAND [7,
13], is similar, but the evolving distribution does not neces-
sarily have an explicit form. Instead, it relies on sampling, or
put differently, on randomization of the data, given the user
beliefs as constraints. Both these frameworks are general in
the sense that it has been shown they can be applied in var-
ious data mining settings; local pattern mining, clustering,
dimensionality reduction, etc.

The main difference is that in FORSIED, the background
model is expressed analytically, while in CORAND it is de-
fined implicitly. This leads to differences in how they are
deployed and when they are effective. From a research and

development perspective, randomization schemes are easier
to propose, or at least they require little mathematical skills.
Explicit models have the advantage that they often enable
faster search of the best pattern, and the models may be
more transparent. Also, randomization schemes are com-
putationally demanding when many randomizations are re-
quired. Yet, in cases like the current paper, a single ran-
domization suffices, and the approach scales very well. For
both frameworks, it is ultimately the pattern syntax that
determines their relative tractability.

Besides FORSIED and CORAND, many special-purpose
methods have been developed for active learning, a form of
iterative mining or learning, in diverse settings: classifica-
tion, ranking, and more, as well as explicit models for user
preferences. However, since these approaches are not tar-
geted at data exploration, we do not review them here. Fi-
nally, several special-purpose methods have been developed
for visual iterative data exploration in specific contexts, for
example for itemset mining and subgroup discovery [1, 5,
23, 14], information retrieval [20], and network analysis [2].

Visually controllable data mining.
This work was motivated by and can be considered an

instance of visually controllable data mining [17], where the
objective is to implement advanced data analysis method so
that they are understandable and efficiently controllable by
the user. Our proposed method satisfies the properties of a
visually controllable data mining method (see [17], Section II
B): (VC1) the data and model space are presented visually,
(VC2) there are intuitive visual interactions that allow the
user to modify the model space, and (VC3) the method is
fast enough to allow for visual interaction.

Information visualization and visual analytics.
Many new interactive visualization methods are presented

yearly at the IEEE Conference on Visual Analytics Science
and Technology (VAST). The focus in these communities is
not on the use or development of advanced data mining or
machine learning techniques, and more on human cognition
and efficient use of displays, as well as efficient exploration
via selection of data objects and features. Yet, the need
to interact with the data mining community was already
recognized long ago [11].

5. CONCLUSIONS
In order to improve the efficiency and efficacy of data ex-

ploration, there is a growing need for generic tools that in-
tegrate advanced visualization with data mining techniques
to facilitate effective visual data analysis by human users.
Our aim with this paper was to present a proof of concept
for how this need can be addressed: a tool that initially
presents the user with an ‘interesting’ projection of the data
and then employs data randomization with constraints to al-
low users to flexibly express their interests or beliefs. These
constraints expressed by the user are then taken into ac-
count by a projection-finding algorithm to compute a new
‘interesting’ projection, a process that can be iterated until
the user runs out of time or finds that constraints explain
everything the user needs to know about the data.

In our example, the user can associate two types of con-
straints on a chosen subset of data points: the appearance
of the points in the particular projection or the fact that
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the points can be nearby also in other projections. We also
tested the tool on two data sets, one controlled experiment
on synthetic data and another on real census data. We found
that the tool performs according to our expectations; it man-
ages to find interesting projections. Yet, interestingness can
be case specific and relies on the definition of an appropri-
ate interestingness measure, here the L1 norm was employed.
More research into this choice is warranted. Nonetheless, we
think this approach is useful in constructing new tools and
methods for interactive visually controllable data mining in
variety of settings.

In further work we intend to investigate the use of the
FORSIED framework to also formalize an analytical back-
ground model [3, 4], as well as its use for computing the most
informative data projections. Additionally, alternative pat-
tern syntaxes (constraints) will be investigated.

Acknowledgements.
This work was supported by the European Union through

the ERC Consolidator Grant FORSIED (project reference
615517), Academy of Finland (decision 288814), and Tekes
(Revolution of Knowledge Work project).

6. REFERENCES
[1] M. Boley, M. Mampaey, B. Kang, P. Tokmakov, and

S. Wrobel. One click mining—interactive local pattern
discovery through implicit preference and performance
learning. In Proc. of KDD IDEA, pages 27–35, 2013.

[2] D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos.
Apolo: making sense of large network data by
combining rich user interaction and machine learning.
In Proc. of CHI, pages 167–176, 2011.

[3] T. De Bie. An information-theoretic framework for
data mining. In Proc. of KDD, pages 564–572, 2011.

[4] T. De Bie. Subjective interestingness in exploratory
data mining. In Proc. of IDA, pages 19–31, 2013.

[5] V. Dzyuba and M. van Leeuwen. Interactive discovery
of interesting subgroup sets. In Proc. of IDA, pages
150–161, 2013.

[6] J. H. Friedman and J. W. Tukey. A projection pursuit
algorithm for exploratory data analysis. IEEE Tr.
Comp., 100(23):881–890, 1974.

[7] S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki,
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ABSTRACT
Boolean matrix factorization (BMF) has become one of the
standard methods in data mining with applications to fields
such as lifted inference, bioinformatics, and role mining, to
name a few. But the standard formalization of BMF assumes
all errors are equal, at most giving the user a chance to weigh
different types of errors differently. In many cases, however—
and here role mining is a good example—making errors at one
element of the matrix can be inacceptable, while the value
in another element might be rather inconsequential. It is
therefore preferable that the user can express her constraints
to the mining algorithm. Unfortunately, deciding on the
constraints for every element of the matrix easily becomes
infeasible. To solve that problem, we propose to query the
constraints from the user only when they are needed. In this
paper we demonstrate our system for interactive constrained
BMF. We will present the problem and the algorithm, and
in addition to the demonstration, we will also present a short
experimental evaluation showing that our approach can find
good factorizations in the presence of constraints.

CSS Concepts
•Human-centered computing → Interactive systems
and tools; •Information systems → Data mining

Keywords
Boolean matrix factorization; interactive data mining; role
mining

1. INTRODUCTION
In role mining, we are given a relation between a set of

users and a set of rights telling us which user has which right.
Such relation is naturally expressed as a binary matrix, and
an example of such a matrix is presented in Figure 1. In
Figure 1, we have three users, Alice, Bob, and Charles (A,
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A B C( )
p 1 1 0
e 1 0 1
d 0 1 1

Figure 1: Example role mining dataset with three
users, (A)lice, (B)ob, and (C)harles, and three rights,
(p)rint, (e)xecute, and (d)elete

B, and C, respectively) and three rights, print, delete, and
execute (respectively p, d, and e), and Alice, for instance,
has the right to print and execute, but not delete. The goal
of role mining is to find a small collection of roles, that is,
sets of rights, and corresponding collection of sets of users
so that each user of set i has all the rights in role i.

There are two common variants of the general role mining
problem: either every user must get exactly the rights they
held via the roles and the goal is to achieve this with the
minimum number of roles, or we are given the maximum
allowable number of roles, and the goal is minimize the
errors we make (giving users new rights or taking existing
ones away). If the data admits a description using a small
sets of roles, the former variant is clearly more desirable (and
indeed, many real-world data do admit it [2]). But other
data could potentially take hundreds of roles to describe
exactly (e.g. if the users are smartphone applications and the
rights the permissions they ask [3]). In such cases we might
be willing to give some users some new rights, and take some
existing rights away, in an attempt to find a concise set of
roles. Consider the example in Figure 1: to exactly express
every user’s right, we would need three roles, that is, one role
for each user. But if we give Bob the ‘execute’ right, we can
do with just two roles, namely r1 = {p, e} and r2 = {e, d},
and Alice would have only role r1, Charles would have only
role r2, and Bob would have both roles r1 and r2.

But a short moment of thought will immediately tell us
that not every right is of equal importance to every user;
indeed, there might be a very good reason why Bob is not
granted the right to execute. If, instead, we want to describe
the data with just two roles, we have to take away at least
two rights from the users: we can, for instance, remove Bob’s
right to delete and Alice’s right to execute, or we can remove
Bob’s right to print and Charles’ right to execute. Both of
these two cases will cause the same amount of error, but they
might not be equal in other ways. Printing, for example, can
be vital for Bob’s job and he should not loose that right.
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The user can enter these constraints before she starts find-
ing the roles and tell the algorithm which user–right pairs
cannot be changed by giving the user the right or taking it
away. But often there are too many constraints to consider:
if the data has n users and m rights, there are nm user-right
combinations, and each of them is a potential constraint.
For example, in Section 5, we report results of our exper-
iments using an Android application permission data that
has 117 036 applications and 173 permissions. Considering
all of the over twenty million application–permission pairs a
priori is practically impossible.

Not only impossible, considering each of these pairs a priori
is also often useless: frequently, the role mining algorithm
will honor the vast majority of the constraints even without
knowing about them. In order to allow the user to concen-
trate on those right assignments whose changing would help
the algorithm to find a smaller set of roles, we propose an
interactive approach, where the algorithm will inform the
user whenever it is about to add a new or remove an existing
right. The user can then decide whether the change can be
done or whether this user–right pair should be left untouched.
In the latter case, the algorithm will never try to change that
pair again.

To formalize our problem, we cast it as an equivalent
Boolean matrix factorization (BMF) problem, and indeed,
our algorithm is designed for interactive constrained BMF. As
BMF has many other applications areas besides role mining,
so has our algorithm. Although we will use role mining as the
motivating application throughout this paper, in Section 5,
we will show that our algorithm can be used with many other
datasets as well.

The main purpose of this paper is to demonstrate our algo-
rithm, iConFaRe (Interactive Constrained Factor Reducer),
and we will explain the proposed demonstration in Section 6.
Let us first, however, formally define BMF in Section 2 and
cover the related work in Section 3. After presenting our al-
gorithm in Section 4, we present our experimental evaluation
in Section 5 before concluding in Section 7.

2. NOTATION AND DEFINITIONS
As we explained, in order to have a general framework,

we will describe our method in the terms of Boolean matrix
factorization. We denote a matrix by upper-case boldface
letters (A), and vectors by lower-case boldface letters (a).
For a matrix A we denote its ith row by Ai and its jth
column by Aj .

We use the shorthand [n] to denote the set of integers up
to n, [n] = {1, 2, . . . , n}.

Let A ∈ {0, 1}n×m, B ∈ {0, 1}n×k and C ∈ {0, 1}k×m.
We denote by B ◦C the n-by-m Boolean product of matrices
B and C. The Boolean matrix product is defined like the
normal product, but over the Boolean semiring, that is,
(B ◦C)ij =

∨k
`=1 Bi`C`j .

Let 〈B,C〉 be an (approximate) Boolean decomposition
of A, A ≈ B ◦ C. We call B and C factors of this de-
composition, and for any 1 ≤ l ≤ k, we refer to the rank-1
matrix formed by the vector pair 〈Bl,Cl〉 as a block. If
X and Y are n-by-m binary matrices, we use X ⊕ Y to
denote their element-wise exclusive or. Finally, we denote
by |A| the number of non-zeros in Boolean matrix A, that
is, |A| =

∑
i,j aij .

The standard Boolean matrix factorization (BMF) problem
is now:

Problem 1. Given A ∈ {0, 1}n×m and k ∈ N, find B ∈
{0, 1}n×k and C ∈ {0, 1}k×m that minimize

|A−B ◦C| . (1)

As we explained, the standard BMF considers all errors
equal, but for example in the role mining application, this
is not what is wanted. To address that problem, we can
formulate the constrained BMF (cBMF) problem, where
we are additionally given a set of index pairs denoting the
locations of A where the factorization is not allowed to make
mistakes:

Problem 2. Given A ∈ {0, 1}n×m, k ∈ N, and a set of
constraints C = {(i, j) : i ∈ [n], j ∈ [m]}, find B ∈ {0, 1}n×k

and C ∈ {0, 1}k×m that minimize (1) while admitting the
constraints, that is,

aij = (B ◦C)ij for all (i, j) ∈ C. (2)

Notice that our definition of cBMF has a significant prob-
lem: it is possible that there exists no valid solution. A simple
example is if we let A to be the n-by-n identity matrix, set
C = [n] × [n] (i.e. require exact decomposition), and set
k < n. We can avoid this problem by requiring that the rank
k is always high-enough, for example, by requiring that k ≥
max{|{i ∈ [n] : (i, j) ∈ C}| , |{j ∈ [m] : (i, j) ∈ C}|}; with this
inequality, we know we can always represent the rows (or
columns) with constraints exactly.

Another, and arguably more severe, problem of the above
formulation is that it requires the user to pre-specify all
constraints. Our approach is to make the algorithm query
for the constraints when it needs to, and let the rank k
be implicitly set: the algorithm tries to reduce the rank
as much as possible without violating any constraints. To
formalize the process of obtaining the constraints, consider a
functionQA : [n]×[m]→ {0, 1}. For every element (i, j) of A,
function QA(i, j) returns 0 if the element is not constrained,
and 1 if the element is constrained. We assume that our
algorithm does not know the definition of QA, but it does
have a way to evaluate it for any element (by asking the
user). With these, we can define the problem we study in
this paper, the interactive constrained BMF (icBMF):

Problem 3. Given A ∈ {0, 1}n×m and a way to evaluate
the function QA, find B ∈ {0, 1}n×k and C ∈ {0, 1}k×m

such that k is minimized and the factorization B ◦C does
not violate any constraints, that is

n∑
i=1

m∑
j=1

(aij − (B ◦C)ij)QA(i, j) = 0 . (3)

Problem 3 does not consider the error at all. Obviously,
it should be considered, but in the definition of Problem 3,
it is implicit in the constraint query QA: if the user feels
that there is going to be too much error, she can limit it
by imposing more constraints. There are definitely other
possible approaches, and we point the reader to Section 7
for more discussion on this topic.

3. RELATED WORK
Boolean matrix factorizations have received considerable

research interest in data mining. The problem was intro-
duced to the field in [11] together with the Asso algorithm.
Subsequent papers have proposed new algorithms [1, 8], new
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Algorithm 1 iConFaRe

Input: matrix A ∈ {0, 1}n×m, a way to evaluate function QA

Output: Factors B ∈ {0, 1}n×k and C ∈ {0, 1}k×m

1: function iConFaRe(A,QA)
2: 〈B,C〉 ← exact Boolean factorization of A
3: repeat
4: d← the block 〈Bd,Cd〉 that causes the least error if

deleted
5: (m1,m2)← the pair of blocks 〈Bm1 ,Cm1 〉,
〈Bm2 ,Cm2 〉 that cause the least error if merged

6: op← the delete or merge operation that causes the
least error

7: query QA if op violates any constraints
8: if op does not violate any constraints then
9: perform op to obtain new B and C

10: mark all elements with errors unconstrained
11: else
12: mark op as inadmissible operation
13: update the constraints
14: end if
15: until there are no admissible operations
16: return B and C
17: end function

optimization goals [12], and new algorithms aiming to opti-
mize these goals [5].

The special cases of exact Boolean matrix factorization
(a.k.a. Boolean rank) and dominated Boolean matrix fac-
torization were studied even earlier [4], although under the
different name of tiling.

The role mining problem and its connections to BMF,
were popularized in [15]. This approach was later extended
in [6, 16], leading to constraint-aware role mining in [7]. No-
tice, however, that in [7], the constraints are something the
algorithm is supposed to mine and express via negative per-
missions, while in our work, the user has to explicitly state the
constraints. On the other hand, [2] provided an algorithm for
computing the optimal Boolean matrix factorization (in ex-
ponential time) and applied it to many real-world user–right
datasets. All of these approaches are based on combinatorial
approaches; recently, [3] proposed a probabilistic approach.

4. OUR ALGORITHM
In this section we will present our approach for the icBMF

problem. We divide our treatise into two parts, the back-
end that is responsible for doing the computation, and the
front-end that provides the user interface and in essence
implements the evaluation of QA, although our front-end
also allows for the user to steer the computation in other
ways, as well.

Our algorithm, including the user interface, is implemented
in Python and it is freely available from http://people.

mpi-inf.mpg.de/~pmiettin/bmf/interactive/.

4.1 The Back-End
The general process of our algorithm, iConFaRe, is straight-

forward: it starts with an exact factorization and then re-
duces the factors, either by removing them, or by merging
them, while making sure that it never violates any constraints.
When it cannot anymore do any changes, it terminates. The
pseudo-code of iConFaRe is presented in Algorithm 1.

Finding the exact decomposition.
We start iConFaRe by finding an exact Boolean matrix

factorization of A in line 2. As this is an NP-hard problem,

we use the heuristic minimum tiling algorithm of Geerts et
al. [4]. That algorithm works essentially by first finding all
closed itemsets of the data, and then solving the minimum set
cover problem on an instance where each 1 of the data is an
element, and each closed itemset is a set. For efficiency we use
a slight modification of that idea, and instead of considering
all closed itemsets, we allow the user to set a minimum-
frequency threshold. To ensure that we can find an exact
decomposition, we add all columns as closed itemsets, even
if their frequency is below the user-set minimum-frequency
threshold.

Instead of using the tiling algorithm, we could of course
use any other algorithm returning an exact BMF; for smaller
matrices, for instance, the method proposed by Ene et al. [2]
can provide the optimal exact decomposition. We could also
use non-exact decompositions, but then we would have to
ensure that we do not violate any constraints as our algorithm
is not guaranteed to fix errors that were committed during
the exact factorization process.

Reducing the rank.
The exact decomposition usually has a rank that is too

high for the application, and the main part of iConFaRe is to
reduce that rank while ensuring it does not violate any con-
straints. It considers two ways of reducing the rank: delete
a block, or merge two blocks (see below for how the blocks
are selected for these operations). Both of these operations
result in a new factorization that has one block less. To
choose which of these operations it should perform, iCon-
FaRe compares the errors the operations cause and selects
the one that causes the least error. While we do not directly
aim at minimizing the error, an operation that causes only
little error is less likely to violate any constraint than an
operation that causes a large error. Therefore, selecting the
operation that causes the least error (lines 4–6) is a sensible
heuristic.

The error is defined to be the number of elements where
the operation would cause an error and that are not known
to be constrained. If the operation would cause an error
on any constrained element, it cannot be performed, and
consequently, iConFaRe does not consider it. On the other
hand, iConFaRe does not penalize operations for causing
errors on known-unconstrained elements. The logic behind
this is that if an element is known to be unconstrained, we
can set it to whatever value we want. Further, iConFaRe

will only consider elements to be unconstrained if it has
already committed errors on those elements, and ignoring
those elements avoids double-counting the errors.

Before iConFaRe commits the operation, it evaluates QA

(i.e. queries the user) to guarantee that it is not violating any
constraints. This querying needs to be done for all new errors
committed by the operation (the user has already allowed
the old errors, so those elements cannot be constrained). If
the operation does not violate any constraints, iConFaRe

commits it in line 9. It also marks all elements where the
new error is committed as unconstrained.

If the operation violates some constraints, iConFaRe marks
it as inadmissible (to avoid considering it again) and updates
the information regarding the constrained elements (in prac-
tise, though, the latter information might not be available;
see Section 4.2).

The main loop, and the algorithm, end when iConFaRe

cannot anymore find any operations that would not violate
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some constraints. At that point it simply returns the current
factorization.

The delete and merge operations.
The operation of deleting a block is straightforward, and

so is finding the block to delete. For every block in the
factorization, iConFaRe keeps a list of elements that are 1
only in this block. If that element is 1 also in the data,
we know that removing this block would also commit an
error of not covering the 1 (e.g. removing a right from a
user). Deleting a block, obviously, cannot ever add 1s in
the factorization. An inverted index, matching every 1 in
the data to the blocks in the factorization, can be used to
efficiently update the information whether a block is the only
one covering a 1.

The merge operation is more complicated, and in fact
we consider two different merge operations: and-merge and
or-merge. Consider two blocks

B1 =


1
1
0
0

 C1 =
(
1 1 0 0

)

B2 =


1
0
1
0

 C2 =
(
1 0 1 0

)

The and-merge of the two blocks would result to factors
Band = (1000)T and Cand = (1000)T , while the or-merge
would result to factors Bor = (1110)T and Cor = (1110)T .
Notice that the and-merge can only remove 1s from the
factorization, while the or-merge can only add them.

Finding good blocks to merge is harder than with deletions
as it is hard to know how much error each operation would
cause without first computing all pair-wise merges (or both
types). That, naturally, is infeasible. Rather, we try to find
two rows of C that have a high Jaccard similarity, that is,
the value J(x,y) = |x ∧ y| / |x ∨ y| is high. For such vectors,
both types of merges should yield small errors as the vectors
are already rather similar and hence we will only consider
the pair of vectors with the highest similarity for merging.

Finding pairs of vectors with high Jaccard similarity will
still require us to consider all

(
k
2

)
pairs of rows of C for every

run of the loop. As iConFaRe is supposed to be an interactive
algorithm, we might not be able to wait so long. To speed
up the processing, we use the minhash signatures [14, Ch. 3]:
we use the min-wise hashing (or minhashing) to compute a
short signature for each row of C, and the similarity between
these signatures gives us a good approximation of the Jaccard
similarity of the rows.

After iConFaRe has selected the pair of blocks for merging,
it simply checks which of and-merge or or-merge yields the
smallest error and recommends it to the user.

4.2 The Front-End
The back-end of iConFaRe is essentially non-interactive,

and all of the interaction happens during the evaluation of
the function QA: this evaluation is done by the front-end
that queries the user whether the recommended operation
is admissible. The front-end will then inform the back-end
whether it can commit the operation or not. Computing the
exact decomposition is not done in an interactive way, and

as it can be time-consuming, we have implemented it as a
separate pre-processing step.

The front-end allows for other types of interaction than just
verifying the recommended operations. In particular, it lets
the user mark full rows or columns restricted and remove and
merge blocks herself, even if iConFaRe did not recommend
those operations. Our goal here is to allow the user to use
her domain knowledge and semantic understanding of the
data to perform operations that might seem sub-optimal
for the back-end, but that the user knows are admissible in
the domain. For example, the user might know that certain
users have a right to use machinery that is decommissioned.
Removing that right, then, will not harm the user’s capability
to carry on their duties, but it can help iConFaRe to find
more concise set of roles. On the other hand, being able to
mark the whole column (or row) restricted will reduce the
number of unnecessarily proposed deletes and merges. This
can be useful if some rights are considered very sensitive.

The main user interface.
The main user interface of iConFaRe’s front-end consists

of a list view showing the current blocks (see Figure 2).
This view allows the user to see all of the factors, sort them
using different criteria, and manually perform merge and
delete operations. It also allows the user to interact with
the back-end, asking it to produce the next recommended
operation (i.e. run one iteration of the main loop until the
next evaluation of the constraints). The next tabs of the
main view allow the user to see more information on the
rows and columns in the data, and specify entire rows and
columns as constraints in a fashion similar to constrained
clustering.

A simple but powerful application of the main list view
is to quickly delete a number of blocks. In particular, the
exact initial decomposition can yield an excessive number of
very small blocks (covering only few, or just one, rows and
columns). In many applications, they can be deleted with
only minimal consideration. In the main view, the user can
easily sort the blocks based on their size and quickly delete
all small blocks from the list.

In addition to the list view, iConFaRe has also a persistent
global view of the data (Figure 3). This view shows the
effects of operations on the full data. The main information
this visualization conveys is the effects of the operations on
the current factorization. For example, if we want to delete
a block, we can see which 1s in the current factorization
would turn into 0s (e.g. which rights would be removed from
which users), which 1s would be covered by only one block
(removal of which would remove the 1s from the factorization),
and which other 1s this block covers (together with at least
two other blocks). Further information is shown for merge
operations. This allows the user to do long-term planning
beyond that of iConFaRe: if an operation is going to make
many 1s dependable on one other block only, the user might
cancel the operation to allow for deleting other factors in the
future.

Especially with big datasets, the global view might not be
detailed enough and the effects scattered around the data
can be hard to interpret. For that purpose, iConFaRe also
includes a local view (Figure 4) that shows only the elements
that the operation is going to affect.

Figure 4 shows a case of or-merge where few elements
would turn into 1 in the factorization (denoted using blue
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Figure 2: The main user interface of iConFaRe. The list shows the current factors with associated statistics,
and the space at the bottom-left shows detailed statistics for the selected factor. At the middle, the buttons
allow the user to commit a delete or merge operation, with relevant statistics shown next to the button, or
to ask the iConFaRe to propose the next operation. This view shows factors from the AndroidApps data.

Figure 3: Visualization of the full data. One factor is selected, and the visualization shows how it effects the
current factorization. For example, deleting this factor would mean that all the red dots in the data would
turn to 0 in the factorization. The dataset shown is the Mammals data.
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Figure 4: Visualization of the local view. Two factors are to be merged with or-merge, and the visualization
shows how it effects the current factorization. The colors are the same as in Figure 3. The dataset shown is
the Mammals data.

color). As the overall area of the blue color is rather small,
the user might as well decide to merge these two blocks
unless she knows that Eptesicus nilssonii (a type of a bat)
should never appear in the areas corresponding to the rows,
for example, in square 35SKD3 (latitude 39.26, longitude
24.00, close to the East coast of Greece); indeed, E. nilssonii
is not supposed to live so south, and the user might well
reject this block for being unintuitive.

Communicating with the back-end.
When the user clicks the “Recommend” button at the main

view, iConFaRe computes the next recommended operation
that is then shown to the user. If the user commits the
operation, iConFaRe knows that all errors committed are
allowed, and consequently marks all those elements to be
unconstrained. If, on the other hand, the user skips the
operation, iConFaRe does not know what was the reason:
not all errors might have been in the constrained elements,
or the user might have decided to skip the recommended
operation for other reasons. Hence, by default, iConFaRe will
not mark any elements constrained even if the user does not
allow an operation. However, iConFaRe does not recommend
the same operation again as the user skipped it before, but
recommends the user the next operation resulting in the
smallest error.

To mark elements as constrained, the user must take spe-
cific action. In particular, she has to select the row on which
the element is, and left-click the element on the local view to
constrain it. This extra step is needed as otherwise iConFaRe

cannot infer the constraints. Also, in many situations the
user might elect to not give the constraints explicitly the first
time they are violated. It might be simplest to just skip the
recommended operation, and only mark it as a constraint if
iConFaRe repeatedly recommends violating it.

To mark full rows or columns constrained, the user can
use the two other tabs of iConFaRe’s main interface. These
tabs show information regarding all the rows and columns of
the data, and also allow the user to mark them constrained.

5. EXPERIMENTAL EVALUATIONS
While the main purpose of this manuscript is to demon-

strate the interactive iConFaRe system, we have also run
some off-line experiments to validate our approach.

5.1 Real-World Datasets
We have tested iConFaRe with three real-world datasets.

We summarize the characteristics of the datasets in Table 1.
The first is the DBLP dataset. It contains the names of

6 980 authors and which of the 19 conferences they have
published to. The dataset was collected from the DBLP
database1, and is pre-processed as in [9]. It is the first dataset
on which iConFaRe was tested to see its performance as a
system for constrained Boolean matrix factorization given
user’s constraints, because it is sparse and has less features
(only 19 columns, corresponding to the 19 conferences).

The second real-world dataset that iConFaRe was tested on
is the Mammals dataset. It consists of presence–absence data2

of European mammals with geographical areas of 50-by-50
kilometers [13]. This dataset is denser than the DBLP dataset
and has far more features (194 columns).

The third real-world dataset that we used is the An-
droidApps dataset3 [3]. For each application, the dataset
provides the permissions requested by the application, the
price, the number of downloads, the average user rating,
and a short prosaic description. The original data was pre-

1http://www.informatik.uni-trier.de/~ley/db/
2Available for research purposes from the Societas Europaea
Mammalogica at http://www.european-mammals.org
3http://www.mariofrank.net/andrApps/
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Dataset Rows Columns Density (%)

DBLP 6 980 19 13
Mammals 2 618 194 16
AndroidApps 117 036 173 2

Table 1: Real world datasets overview.

Dataset Rank

DBLP 11
Mammals 129
AndroidApps 67

Table 2: Factorization ranks returned by iConFaRe

with real-world data.

processed by removing all applications with ratings and
number of downloads less than the average rating and num-
ber of downloads. We also removed all applications which
request no permission at all during the pre-processing step.
Additionally, all columns which are not permissions (the
price, the number of downloads, the average user rating, and
a short prosaic description) were removed from the data.
After the pre-processing step, the dataset contained 117 036
android applications and the presence (1) or absence (0) of
173 permission. This dataset is a good use-case for the role
mining application of iConFaRe.

5.2 Algorithms Used
To test iConFaRe in a controlled manner, we used it in a

non-interactive way. Namely, we sampled random constraints
for the data and replaced the evaluation ofQA with a function
that checked whether the proposed option would violate the
constraints or not.

To the best of our knowledge, iConFaRe is the first algo-
rithm for icBMF (or cBMF). To compare it against other
algorithms, we took Asso [11], a popular algorithm for stan-
dard BMF, and edited it to accept pre-defined constraints.
This edit was done essentially by adjusting the evaluation
function of Asso to make any factorization that would violate
the constraints infinitely bad. Notice however, that as Asso

builds the factorization from bottom up (i.e. it starts with
an empty factorization), it cannot guarantee that the final
factorization does cover all constrained 1s in the data.

5.3 Results
To test these two algorithms, we computed the cBMF

factorizations with both algorithms using the same sets of
random constraints. As Asso requires the rank as an input,
we could not compare the methods based on the rank they
returned. Instead, we first ran iConFaRe with the given
datasets to obtain the error it gave and the rank it returned
(iConFaRe was reducing the rank until it could not find any
admissible operations). The ranks proposed by iConFaRe are
listed in Table 2. We want to emphasize that these ranks
do not denote any kind of “latent rank” of the data (see,
e.g. [5,12]) as they depend heavily on the constraints we have
randomly set.

After we got the ranks, we ran the modified Asso with the
same ranks and constraints, and recorded the error. Errors
for both iConFaRe and Asso are reported in Table 3. In DBLP,
the modified Asso algorithm obtains smaller reconstruction

Dataset iConFaRe Asso

DBLP 78.3148 68.3515
Mammals 44.7505 48.5783
AndroidApps 1.3058 3.7815

Table 3: Errors in percentages of 1s in the data for
iConFaRe and a constrained version of Asso on real-
world datasets.

error, but in the other datasets, Mammals and AndroidApps,
iConFaRe is actually better.

The error especially on DBLP, and arguably also on Mam-
mals, is high with both systems. This is probably due to
the constraints that we imposed as the standard version of
Asso is known to perform relatively well on both of these
datasets. Hence, in this experiment the actual error is much
less important than the error relative to modified Asso. In
this respect iConFaRe performs very well especially as, unlike
Asso, it actually guarantees to admit all constraints.

In our final experiment we tested the effects of the differ-
ent constraint sets. For this experiment, we generated five
different random sets of constraints and ran both iConFaRe

and the modified Asso on all of them. The average error
of iConFaRe was 1.31% (with standard deviation of ±0.01),
while for Asso the average error was 6.62 (±3.28), showing
that not only is iConFaRe significantly better than Asso, but
also more consistent.

6. THE DEMONSTRATION
iConFaRe is inherently interactive, and hence best demon-

strated in a way that allows the audience to have hands-on
time with it. On the other hand, the initial pre-processing
step can be time-consuming, and consequently unsuitable for
demonstrations. Hence we have to limit the demonstration
to the pre-processed datasets, for which we are planning to
use the three datasets used in the experiments.

At the beginning of the demonstration, the audience is
explained the goal of constrained BMF and the general ideas
behind iConFaRe. They can then choose one of the pre-
processed datasets based on their interests. For the purpose
of the demonstration, we plan to use the AndroidApps dataset,
as most audience members are expected to have at least a
passing familiarity with smartphone application permissions.
Hence, barring special request from the audience, we will
use it. The demonstrator will then walk them through the
basic functionality of iConFaRe by means of example merges
and deletions. This step also explains the visualizations
and their interpretations. The audience could then come up
with constraints as they see fit, and test if iConFaRe indeed
recommends operations which do not violate any of those
constraints.

After the user has become used to the system—and pro-
vided that they are interested—we can load a new dataset
(or re-load the AndroidApps data) and set the user a task:
come up with the least-error decomposition of given rank (to
be defined later) and admitting some constraints (also to be
defined). The goal of this experiment is two-fold: for one, it
should give the user better understanding of iConFaRe, but
it should also give us important data on how well iConFaRe
performs in these situations. Furthermore, it is interesting to
see whether the humans with their semantic understanding
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and pattern recognition skills can perform better than the
automated iConFaRe setup.

7. CONCLUSIONS
In this paper we have presented our system called iConFaRe

for interactive constrained Boolean matrix factorization. In
some sense iConFaRe presents a first-order system: after
starting with an exact decomposition, it always considers
only one step ahead. Hence, it never tries to add any new
blocks but only to merge or delete the existing ones—adding a
new block will never be an optimal move alone. On the other
hand, a higher-order system would consider multiple steps
ahead, and it could consider adding new blocks if they would
allow it to remove many existing blocks in the subsequent
steps. Such higher-order systems are, however, significantly
more complicated, and it is also unclear how to present their
operations to the user.

As of now, iConFaRe attempts only to minimize the rank.
This was partially done to avoid the problematic bi-opti-
mization criterium that tries to balance the rank and the
error. This criterium is problematic as it requires us to
decide the relative weights between reducing the rank and
increasing the error. One way to do that, though, would be
to use the Minimum Description Length (MDL) principle.
Using the MDL principle for BMF was pioneered in [12], and
algorithms optimizing MDL directly have been proposed in
recent years [5, 8].

Systems similar to iConFaRe could use the MDL principle
to choose which operation to perform and when to stop. We
argue, however, that in the iConFaRe system this would be
unlikely to provide much, or any, benefits. For one, being
able to infer the rank is a less important problem in iConFaRe

as the user is able to stop the algorithm when she feels it
has obtained small-enough decomposition. The selection of
the next operation, on the other hand, would probably not
see much changes: in a first-order system like iConFaRe, the
MDL-optimal way to reduce the rank by 1 is often to do that
in a way that minimizes the increase in the error. Here a
higher-order system could behave differently.

Another aspect omitted from iConFaRe’s formal problem
statement is the amount of user-involvement required. In
practical terms, an interactive system like iConFaRe should
aim to minimize the cases the user needs to consider. This is
not explicitly stated in the definition of Problem 3, but we
have designed iConFaRe to follow these guidelines as much
as possible. In particular, the goal to minimize the error the
operation causes implies that the user needs to consider the
least number of elements for constraints.

The goal of minimizing the user involvement could be
formalized in a budgeted problem, where the system has a fixed
budged B and each query of QA reduces it. This budged-
based approach could allow for more principled approaches
on selecting which operation to perform. In particular, when
in iConFaRe we select the operation that tries to minimize
the amount of error, a potential approach to the budgeted
approach could be to first query the status of few elements
that, if unrestricted, would let the algorithm reduce the
number of factors the most. We leave the study of the
budgeted version and its algorithms as a future work.

Another very interesting direction of future work would
involve the user as a helper for the algorithm. Particularly,
we could approach the unconstrained Boolean matrix fac-
torization as a human-assisted data mining problem where

the algorithm could ask from the user which operation she
would think would be the best. The greedy algorithms often
involved in BMF-style problems try to make locally optimal
decisions, but these can lead into globally very sub-optimal
outcomes. It could be that by involving the human in the
decision-making process (in a limited manner), the overall
quality of the results would improve.

We believe that iConFaRe is capable of providing practi-
cal benefits to real-world applications of BMF beyond our
poster child application of role mining. Being able to tell
the algorithm to avoid non-intuitive factors before they are
being created, but without having to pre-specify what “non-
intuitive” means, can greatly improve the usability of the
results to the end-user. On the other hand, such great powers
come with great responsibly, and there is a real risk that
when iConFaRe (and similar tools) are applied to general
data mining, the user inadvertently guides the system to
find only results she knew a priori [10]. Designing checks to
prevent such outcomes is an interesting direction of future
work.
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ABSTRACT
Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model.
Such understanding also provides insights into the model,
which can be used to transform an untrustworthy model or
prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predictions and their explanations in a non-redundant
way, framing the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by
explaining different models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human subjects, on various scenarios that require
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and
identifying why a classifier should not be trusted.

This work will be presented at the main conference of
KDD.

1. INTRODUCTION
Machine learning is at the core of many recent advances in
science and technology. Unfortunately, the important role
of humans is an oft-overlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploying models within other products, a vital concern
remains: if the users do not trust a model or a prediction,
they will not use it. It is important to differentiate between
two different (but related) definitions of trust: (1) trusting a
prediction, i.e. whether a user trusts an individual prediction
sufficiently to take some action based on it, and (2) trusting
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a model, i.e. whether the user trusts a model to behave in
reasonable ways if deployed. Both are directly impacted by
how much the human understands a model’s behaviour, as
opposed to seeing it as a black box.

Determining trust in individual predictions is an important
problem when the model is used for decision making. When
using machine learning for medical diagnosis [6] or terrorism
detection, for example, predictions cannot be acted upon on
blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a
need to evaluate the model as a whole before deploying it “in
the wild”. To make this decision, users need to be confident
that the model will perform well on real-world data, according
to the metrics of interest. Currently, models are evaluated
using accuracy metrics on an available validation dataset.
However, real-world data is often significantly different, and
further, the evaluation metric may not be indicative of the
product’s goal. Inspecting individual predictions and their
explanations is a worthwhile solution, in addition to such
metrics. In this case, it is important to aid users by suggesting
which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indi-
vidual predictions as a solution to the “trusting a prediction”
problem, and selecting multiple such predictions (and expla-
nations) as a solution to the “trusting the model” problem.
Our main contributions are summarized as follows.

• LIME, an algorithm that can explain the predictions of any
classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.

• SP-LIME, a method that selects a set of representative
instances with explanations to address the “trusting the
model” problem, via submodular optimization.

• Comprehensive evaluation with simulated and human sub-
jects, where we measure the impact of explanations on
trust and associated tasks. In our experiments, non-experts
using LIME are able to pick which classifier from a pair
generalizes better in the real world. Further, they are able
to greatly improve an untrustworthy classifier trained on
20 newsgroups, by doing feature engineering using LIME.
We also show how understanding the predictions of a neu-
ral network on images helps practitioners know when and
why they should not trust a model.

2. THE CASE FOR EXPLANATIONS
By“explaining a prediction”, we mean presenting textual or

visual artifacts that provide qualitative understanding of the

105



sneeze
weight
headache
no fatigue
age

Flu sneeze

headache

Model Data and Prediction

Explainer 
(LIME)

Explanation

Explainer 
(LIME)

Human makes 
decision Explanation

no fatigue

sneeze

headache

active

Human makes decision

Figure 1: Explaining individual predictions. A model predicts that a patient has the flu, and LIME highlights
the symptoms in the patient’s history that led to the prediction. Sneeze and headache are portrayed as
contributing to the “flu” prediction, while “no fatigue” is evidence against it. With these, a doctor can make
an informed decision about whether to trust the model’s prediction.

relationship between the instance’s components (e.g. words
in text, patches in an image) and the model’s prediction. We
argue that explaining predictions is an important aspect in
getting humans to trust and use machine learning effectively,
if the explanations are faithful and intelligible.

The process of explaining individual predictions is illus-
trated in Figure 1. It is clear that a doctor is much better
positioned to make a decision with the help of a model if
intelligible explanations are provided. In this case, an ex-
planation is a small list of symptoms with relative weights –
symptoms that either contribute to the prediction (in green)
or are evidence against it (in red). Humans usually have prior
knowledge about the application domain, which they can use
to accept (trust) or reject a prediction if they understand the
reasoning behind it. It has been observed, for example, that
providing explanations can increase the acceptance of movie
recommendations [12] and other automated systems [8].

Every machine learning application also requires a certain
measure of overall trust in the model. Development and
evaluation of a classification model often consists of collect-
ing annotated data, of which a held-out subset is used for
automated evaluation. Although this is a useful pipeline for
many applications, evaluation on validation data may not
correspond to performance “in the wild”, as practitioners
often overestimate the accuracy of their models [21], and
thus trust cannot rely solely on it. Looking at examples
offers an alternative method to assess truth in the model,
especially if the examples are explained. We thus propose
explaining several representative individual predictions of a
model as a way to provide a global understanding.

There are several ways a model or its evaluation can go
wrong. Data leakage, for example, defined as the uninten-
tional leakage of signal into the training (and validation) data
that would not appear when deployed [14], potentially in-
creases accuracy. A challenging example cited by (author?)
[14] is one where the patient ID was found to be heavily corre-
lated with the target class in the training and validation data.
This issue would be incredibly challenging to identify just by
observing the predictions and the raw data, but much easier
if explanations such as the one in Figure 1 are provided, as
patient ID would be listed as an explanation for predictions.
Another particularly hard to detect problem is dataset shift
[5], where training data is different than test data (we give
an example in the famous 20 newsgroups dataset later on).
The insights given by explanations are particularly helpful in
identifying what must be done to convert an untrustworthy
model into a trustworthy one – for example, removing leaked
data or changing the training data to avoid dataset shift.

Machine learning practitioners often have to select a model

Figure 2: Explaining individual predictions of com-
peting classifiers trying to determine if a document
is about “Christianity” or “Atheism”. The bar chart
represents the importance given to the most rele-
vant words, also highlighted in the text. Color indi-
cates which class the word contributes to (green for
“Christianity”, magenta for “Atheism”).

from a number of alternatives, requiring them to assess
the relative trust between two or more models. In Figure
2, we show how individual prediction explanations can be
used to select between models, in conjunction with accuracy.
In this case, the algorithm with higher accuracy on the
validation set is actually much worse, a fact that is easy to see
when explanations are provided (again, due to human prior
knowledge), but hard otherwise. Further, there is frequently
a mismatch between the metrics that we can compute and
optimize (e.g. accuracy) and the actual metrics of interest
such as user engagement and retention. While we may not
be able to measure such metrics, we have knowledge about
how certain model behaviors can influence them. Therefore,
a practitioner may wish to choose a less accurate model for
content recommendation that does not place high importance
in features related to “clickbait” articles (which may hurt
user retention), even if exploiting such features increases
the accuracy of the model in cross validation. We note
that explanations are particularly useful in these (and other)
scenarios if a method can produce them for any model, so
that a variety of models can be compared.

Desired Characteristics for Explainers
We now outline a number of desired characteristics from
explanation methods.

An essential criterion for explanations is that they must
be interpretable, i.e., provide qualitative understanding
between the input variables and the response. We note that
interpretability must take into account the user’s limitations.

106



Thus, a linear model [24], a gradient vector [2] or an additive
model [6] may or may not be interpretable. For example, if
hundreds or thousands of features significantly contribute
to a prediction, it is not reasonable to expect any user to
comprehend why the prediction was made, even if individual
weights can be inspected. This requirement further implies
that explanations should be easy to understand, which is
not necessarily true of the features used by the model, and
thus the “input variables” in the explanations may need
to be different than the features. Finally, we note that the
notion of interpretability also depends on the target audience.
Machine learning practitioners may be able to interpret small
Bayesian networks, but laymen may be more comfortable
with a small number of weighted features as an explanation.

Another essential criterion is local fidelity. Although it is
often impossible for an explanation to be completely faithful
unless it is the complete description of the model itself, for
an explanation to be meaningful it must at least be locally
faithful, i.e. it must correspond to how the model behaves in
the vicinity of the instance being predicted. We note that
local fidelity does not imply global fidelity: features that
are globally important may not be important in the local
context, and vice versa. While global fidelity would imply
local fidelity, identifying globally faithful explanations that
are interpretable remains a challenge for complex models.

While there are models that are inherently interpretable [6,
17, 26, 27], an explainer should be able to explain any model,
and thus be model-agnostic (i.e. treat the original model
as a black box). Apart from the fact that many state-of-
the-art classifiers are not currently interpretable, this also
provides flexibility to explain future classifiers.

In addition to explaining predictions, providing a global
perspective is important to ascertain trust in the model.
As mentioned before, accuracy may often not be a suitable
metric to evaluate the model, and thus we want to explain
the model. Building upon the explanations for individual
predictions, we select a few explanations to present to the
user, such that they are representative of the model.

3. LOCAL INTERPRETABLE
MODEL-AGNOSTIC EXPLANATIONS

We now present Local Interpretable Model-agnostic Expla-
nations (LIME). The overall goal of LIME is to identify an
interpretable model over the interpretable representation
that is locally faithful to the classifier.

3.1 Interpretable Data Representations
Before we present the explanation system, it is impor-

tant to distinguish between features and interpretable data
representations. As mentioned before, interpretable expla-
nations need to use a representation that is understandable
to humans, regardless of the actual features used by the
model. For example, a possible interpretable representation
for text classification is a binary vector indicating the pres-
ence or absence of a word, even though the classifier may
use more complex (and incomprehensible) features such as
word embeddings. Likewise for image classification, an in-
terpretable representation may be a binary vector indicating
the “presence” or “absence” of a contiguous patch of similar
pixels (a super-pixel), while the classifier may represent the
image as a tensor with three color channels per pixel. We
denote x ∈ Rd be the original representation of an instance

being explained, and we use x′ ∈ {0, 1}d
′

to denote a binary
vector for its interpretable representation.

3.2 Fidelity-Interpretability Trade-off
Formally, we define an explanation as a model g ∈ G,

where G is a class of potentially interpretable models, such
as linear models, decision trees, or falling rule lists [27], i.e. a
model g ∈ G can be readily presented to the user with visual

or textual artifacts. The domain of g is {0, 1}d
′
, i.e. g acts

over absence/presence of the interpretable components. As
not every g ∈ G may be simple enough to be interpretable -
thus we let Ω(g) be a measure of complexity (as opposed to
interpretability) of the explanation g ∈ G. For example, for
decision trees Ω(g) may be the depth of the tree, while for
linear models, Ω(g) may be the number of non-zero weights.

Let the model being explained be denoted f : Rd → R. In
classification, f(x) is the probability (or a binary indicator)
that x belongs to a certain class1. We further use πx(z) as a
proximity measure between an instance z to x, so as to define
locality around x. Finally, let L(f, g, πx) be a measure of
how unfaithful g is in approximating f in the locality defined
by πx. In order to ensure both interpretability and local
fidelity, we must minimize L(f, g, πx) while having Ω(g) be
low enough to be interpretable by humans. The explanation
produced by LIME is obtained by the following:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

This formulation can be used with different explanation
families G, fidelity functions L, and complexity measures Ω.
Here we focus on sparse linear models as explanations, and
on performing the search using perturbations.

3.3 Sampling for Local Exploration
We want to minimize the locality-aware loss L(f, g, πx)

without making any assumptions about f , since we want the
explainer to be model-agnostic. Thus, in order to learn
the local behavior of f as the interpretable inputs vary, we
approximate L(f, g, πx) by drawing samples, weighted by
πx. We sample instances around x′ by drawing nonzero
elements of x′ uniformly at random (where the number of
such draws is also uniformly sampled). Given a perturbed

sample z′ ∈ {0, 1}d
′

(which contains a fraction of the nonzero
elements of x′), we recover the sample in the original repre-
sentation z ∈ Rd and obtain f(z), which is used as a label for
the explanation model. Given this dataset Z of perturbed
samples with the associated labels, we optimize Eq. (1) to
get an explanation ξ(x). The primary intuition behind LIME
is presented in Figure 3, where we sample instances both
in the vicinity of x (which have a high weight due to πx)
and far away from x (low weight from πx). Even though
the original model may be too complex to explain globally,
LIME presents an explanation that is locally faithful (linear
in this case), where the locality is captured by πx. It is worth
noting that our method is fairly robust to sampling noise
since the samples are weighted by πx in Eq. (1). We now
present a concrete instance of this general framework.

3.4 Sparse Linear Explanations
For the rest of this paper, we let G be the class of linear

models, such that g(z′) = wg ·z′. We use the locally weighted

1For multiple classes, we explain each class separately, thus
f(x) is the prediction of the relevant class.
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Figure 3: Toy example to present intuition for LIME.
The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink
background, which cannot be approximated well by
a linear model. The bold red cross is the instance
being explained. LIME samples instances, gets pre-
dictions using f , and weighs them by the proximity
to the instance being explained (represented here
by size). The dashed line is the learned explanation
that is locally (but not globally) faithful.

square loss as L, as defined in Eq. (2), where we let πx(z) =
exp(−D(x, z)2/σ2) be an exponential kernel defined on some
distance function D (e.g. cosine distance for text, L2 distance
for images) with width σ.

L(f, g, πx) =
∑

z,z′∈Z

πx(z)
(
f(z)− g(z′)

)2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. Ω(g) =∞1[‖wg‖0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have different values of K for different instances. In this
paper we use a constant value for K, leaving the exploration
of different values to future work. We use the same Ω for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of Ω makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.

Any choice of interpretable representations and G will
have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x′

Require: Similarity kernel πx, Length of explanation K
Z ← {}
for i ∈ {1, 2, 3, ..., N} do

z′i ← sample around(x′)
Z ← Z ∪ 〈z′i, f(zi), πx(zi)〉

end for
w ← K-Lasso(Z,K) . with z′i as features, f(z) as target
return w

in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of
the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to differentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.

After getting such insights from explanations, it is clear
that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.
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(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not sufficient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.

Even though explanations of multiple instances can be
insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n× d′ explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ξ(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many different instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d′ = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

√∑n
i=1Wij . For images, I must measure something

that is comparable across the super-pixels in different images,

f1 f2 f3 f4 f5

Covered Features
Figure 5: Toy example W. Rows represent in-
stances (documents) and columns represent features
(words). Feature f2 (dotted blue) has the highest im-
portance. Rows 2 and 5 (in red) would be selected
by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi ∈ X do
Wi ← explain(xi, x

′
i) . Using Algorithm 1

end for
for j ∈ {1 . . . d′} do

Ij ←
√∑n

i=1 |Wij | . Compute feature importances
end for
V ← {}
while |V | < B do . Greedy optimization of Eq (4)

V ← V ∪ argmaxi c(V ∪ {i},W, I)
end while
return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .
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c(V,W, I) =

d′∑
j=1

1[∃i∈V :Wij>0]Ij (3)

The pick problem, defined in Eq. (4), consists of finding the
set V, |V | ≤ B that achieves highest coverage.

Pick(W, I) = argmax
V,|V |≤B

c(V,W, I) (4)

The problem in Eq. (4) is maximizing a weighted coverage
function, and is NP-hard [10]. Let c(V ∪{i},W, I)−c(V,W, I)
be the marginal coverage gain of adding an instance i to a set
V . Due to submodularity, a greedy algorithm that iteratively
adds the instance with the highest marginal coverage gain to
the solution offers a constant-factor approximation guarantee
of 1−1/e to the optimum [15]. We outline this approximation
in Algorithm 2, and call it submodular pick.

5. SIMULATED USER EXPERIMENTS
In this section, we present simulated user experiments to

evaluate the utility of explanations in trust-related tasks. In
particular, we address the following questions: (1) Are the
explanations faithful to the model, (2) Can the explanations
aid users in ascertaining trust in predictions, and (3) Are
the explanations useful for evaluating the model as a whole.
Code and data for replicating our experiments are available
at https://github.com/marcotcr/lime-experiments.

5.1 Experiment Setup
We use two sentiment analysis datasets (books and DVDs,

2000 instances each) where the task is to classify prod-
uct reviews as positive or negative [4]. We train decision
trees (DT), logistic regression with L2 regularization (LR),
nearest neighbors (NN), and support vector machines with
RBF kernel (SVM), all using bag of words as features. We
also include random forests (with 1000 trees) trained with
the average word2vec embedding [19] (RF), a model that is
impossible to interpret without a technique like LIME. We
use the implementations and default parameters of scikit-
learn, unless noted otherwise. We divide each dataset into
train (1600 instances) and test (400 instances).

To explain individual predictions, we compare our pro-
posed approach (LIME), with parzen [2], a method that
approximates the black box classifier globally with Parzen
windows, and explains individual predictions by taking the
gradient of the prediction probability function. For parzen,
we take the K features with the highest absolute gradients
as explanations. We set the hyper-parameters for parzen and
LIME using cross validation, and set N = 15, 000. We also
compare against a greedy procedure (similar to (author?)
[18]) in which we greedily remove features that contribute
the most to the predicted class until the prediction changes
(or we reach the maximum of K features), and a random
procedure that randomly picks K features as an explanation.
We set K to 10 for our experiments.

For experiments where the pick procedure applies, we either
do random selection (random pick, RP) or the procedure
described in §4 (submodular pick, SP). We refer to pick-
explainer combinations by adding RP or SP as a prefix.

5.2 Are explanations faithful to the model?
We measure faithfulness of explanations on classifiers that

are by themselves interpretable (sparse logistic regression
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Figure 6: Recall on truly important features for two
interpretable classifiers on the books dataset.
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Figure 7: Recall on truly important features for two
interpretable classifiers on the DVDs dataset.

and decision trees). In particular, we train both classifiers
such that the maximum number of features they use for any
instance is 10, and thus we know the gold set of features
that the are considered important by these models. For
each prediction on the test set, we generate explanations and
compute the fraction of these gold features that are recovered
by the explanations. We report this recall averaged over all
the test instances in Figures 6 and 7. We observe that
the greedy approach is comparable to parzen on logistic
regression, but is substantially worse on decision trees since
changing a single feature at a time often does not have an
effect on the prediction. The overall recall by parzen is low,
likely due to the difficulty in approximating the original high-
dimensional classifier. LIME consistently provides > 90%
recall for both classifiers on both datasets, demonstrating
that LIME explanations are faithful to the models.

5.3 Should I trust this prediction?
In order to simulate trust in individual predictions, we first

randomly select 25% of the features to be “untrustworthy”,
and assume that the users can identify and would not want
to trust these features (such as the headers in 20 newsgroups,
leaked data, etc). We thus develop oracle “trustworthiness”
by labeling test set predictions from a black box classifier as
“untrustworthy” if the prediction changes when untrustworthy
features are removed from the instance, and “trustworthy”
otherwise. In order to simulate users, we assume that users
deem predictions untrustworthy from LIME and parzen ex-
planations if the prediction from the linear approximation
changes when all untrustworthy features that appear in the
explanations are removed (the simulated human “discounts”
the effect of untrustworthy features). For greedy and random,
the prediction is mistrusted if any untrustworthy features
are present in the explanation, since these methods do not
provide a notion of the contribution of each feature to the
prediction. Thus for each test set prediction, we can evaluate
whether the simulated user trusts it using each explanation
method, and compare it to the trustworthiness oracle.

Using this setup, we report the F1 on the trustworthy
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Table 1: Average F1 of trustworthiness for different
explainers on a collection of classifiers and datasets.

Books DVDs

LR NN RF SVM LR NN RF SVM

Random 14.6 14.8 14.7 14.7 14.2 14.3 14.5 14.4
Parzen 84.0 87.6 94.3 92.3 87.0 81.7 94.2 87.3
Greedy 53.7 47.4 45.0 53.3 52.4 58.1 46.6 55.1
LIME 96.6 94.5 96.2 96.7 96.6 91.8 96.1 95.6

0 10 20 30
# of instances seen by the user

45

65

85

%
 c

or
re

ct
 c

ho
ic

e

SP-LIME
RP-LIME
SP-greedy
RP-greedy

(a) Books dataset

0 10 20 30
# of instances seen by the user

45

65

85
%

 c
or

re
ct

 c
ho

ic
e

SP-LIME
RP-LIME
SP-greedy
RP-greedy

(b) DVDs dataset

Figure 8: Choosing between two classifiers, as the
number of instances shown to a simulated user is
varied. Averages and standard errors from 800 runs.

predictions for each explanation method, averaged over 100
runs, in Table 1. The results indicate that LIME dominates
others (all results are significant at p = 0.01) on both datasets,
and for all of the black box models. The other methods either
achieve a lower recall (i.e. they mistrust predictions more
than they should) or lower precision (i.e. they trust too many
predictions), while LIME maintains both high precision and
high recall. Even though we artificially select which features
are untrustworthy, these results indicate that LIME is helpful
in assessing trust in individual predictions.

5.4 Can I trust this model?
In the final simulated user experiment, we evaluate whether

the explanations can be used for model selection, simulating
the case where a human has to decide between two competing
models with similar accuracy on validation data. For this
purpose, we add 10 artificially “noisy” features. Specifically,
on training and validation sets (80/20 split of the original
training data), each artificial feature appears in 10% of the
examples in one class, and 20% of the other, while on the
test instances, each artificial feature appears in 10% of the
examples in each class. This recreates the situation where the
models use not only features that are informative in the real
world, but also ones that introduce spurious correlations. We
create pairs of competing classifiers by repeatedly training
pairs of random forests with 30 trees until their validation
accuracy is within 0.1% of each other, but their test accuracy
differs by at least 5%. Thus, it is not possible to identify the
better classifier (the one with higher test accuracy) from the
accuracy on the validation data.

The goal of this experiment is to evaluate whether a user
can identify the better classifier based on the explanations of
B instances from the validation set. The simulated human
marks the set of artificial features that appear in the B
explanations as untrustworthy, following which we evaluate
how many total predictions in the validation set should be
trusted (as in the previous section, treating only marked
features as untrustworthy). Then, we select the classifier with

fewer untrustworthy predictions, and compare this choice to
the classifier with higher held-out test set accuracy.

We present the accuracy of picking the correct classifier
as B varies, averaged over 800 runs, in Figure 8. We omit
SP-parzen and RP-parzen from the figure since they did not
produce useful explanations, performing only slightly better
than random. LIME is consistently better than greedy, irre-
spective of the pick method. Further, combining submodular
pick with LIME outperforms all other methods, in particular
it is much better than RP-LIME when only a few examples
are shown to the users. These results demonstrate that the
trust assessments provided by SP-selected LIME explana-
tions are good indicators of generalization, which we validate
with human experiments in the next section.

6. EVALUATION WITH HUMAN SUBJECTS
In this section, we recreate three scenarios in machine

learning that require trust and understanding of predictions
and models. In particular, we evaluate LIME and SP-LIME
in the following settings: (1) Can users choose which of two
classifiers generalizes better (§ 6.2), (2) based on the explana-
tions, can users perform feature engineering to improve the
model (§ 6.3), and (3) are users able to identify and describe
classifier irregularities by looking at explanations (§ 6.4).

6.1 Experiment setup
For experiments in §6.2 and §6.3, we use the “Christianity”

and “Atheism” documents from the 20 newsgroups dataset
mentioned beforehand. This dataset is problematic since it
contains features that do not generalize (e.g. very informative
header information and author names), and thus validation
accuracy considerably overestimates real-world performance.

In order to estimate the real world performance, we create
a new religion dataset for evaluation. We download Atheism
and Christianity websites from the DMOZ directory and
human curated lists, yielding 819 webpages in each class.
High accuracy on this dataset by a classifier trained on 20
newsgroups indicates that the classifier is generalizing using
semantic content, instead of placing importance on the data
specific issues outlined above. Unless noted otherwise, we
use SVM with RBF kernel, trained on the 20 newsgroups
data with hyper-parameters tuned via the cross-validation.

6.2 Can users select the best classifier?
In this section, we want to evaluate whether explanations

can help users decide which classifier generalizes better, i.e.,
which classifier would the user deploy “in the wild”. Specif-
ically, users have to decide between two classifiers: SVM
trained on the original 20 newsgroups dataset, and a version
of the same classifier trained on a “cleaned” dataset where
many of the features that do not generalize have been man-
ually removed. The original classifier achieves an accuracy
score of 57.3% on the religion dataset, while the “cleaned”
classifier achieves a score of 69.0%. In contrast, the test accu-
racy on the original 20 newsgroups split is 94.0% and 88.6%,
respectively – suggesting that the worse classifier would be
selected if accuracy alone is used as a measure of trust.

We recruit human subjects on Amazon Mechanical Turk –
by no means machine learning experts, but instead people
with basic knowledge about religion. We measure their
ability to choose the better algorithm by seeing side-by-
side explanations with the associated raw data (as shown
in Figure 2). We restrict both the number of words in each
explanation (K) and the number of documents that each
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Figure 10: Feature engineering experiment. Each
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jects in a path starting from one of the initial 10 sub-
jects. Each solid line represents the average across
all paths per round of interaction.

person inspects (B) to 6. The position of each algorithm
and the order of the instances seen are randomized between
subjects. After examining the explanations, users are asked
to select which algorithm will perform best in the real world.
The explanations are produced by either greedy (chosen
as a baseline due to its performance in the simulated user
experiment) or LIME, and the instances are selected either
by random (RP) or submodular pick (SP). We modify the
greedy step in Algorithm 2 slightly so it alternates between
explanations of the two classifiers. For each setting, we repeat
the experiment with 100 users.

The results are presented in Figure 9. Note that all of
the methods are good at identifying the better classifier,
demonstrating that the explanations are useful in determining
which classifier to trust, while using test set accuracy would
result in the selection of the wrong classifier. Further, we see
that the submodular pick (SP) greatly improves the user’s
ability to select the best classifier when compared to random
pick (RP), with LIME outperforming greedy in both cases.

6.3 Can non-experts improve a classifier?
If one notes that a classifier is untrustworthy, a common

task in machine learning is feature engineering, i.e. modifying
the set of features and retraining in order to improve gener-
alization. Explanations can aid in this process by presenting
the important features, particularly for removing features
that the users feel do not generalize.

We use the 20 newsgroups data here as well, and ask Ama-
zon Mechanical Turk users to identify which words from the
explanations should be removed from subsequent training, for
the worse classifier from the previous section (§6.2). In each
round, the subject marks words for deletion after observing

B = 10 instances with K = 10 words in each explanation (an
interface similar to Figure 2, but with a single algorithm).
As a reminder, the users here are not experts in machine
learning and are unfamiliar with feature engineering, thus
are only identifying words based on their semantic content.
Further, users do not have any access to the religion dataset
– they do not even know of its existence. We start the experi-
ment with 10 subjects. After they mark words for deletion,
we train 10 different classifiers, one for each subject (with the
corresponding words removed). The explanations for each
classifier are then presented to a set of 5 users in a new round
of interaction, which results in 50 new classifiers. We do a
final round, after which we have 250 classifiers, each with a
path of interaction tracing back to the first 10 subjects.

The explanations and instances shown to each user are
produced by SP-LIME or RP-LIME. We show the average
accuracy on the religion dataset at each interaction round
for the paths originating from each of the original 10 subjects
(shaded lines), and the average across all paths (solid lines)
in Figure 10. It is clear from the figure that the crowd
workers are able to improve the model by removing features
they deem unimportant for the task. Further, SP-LIME
outperforms RP-LIME, indicating selection of the instances
to show the users is crucial for efficient feature engineering.

Each subject took an average of 3.6 minutes per round
of cleaning, resulting in just under 11 minutes to produce
a classifier that generalizes much better to real world data.
Each path had on average 200 words removed with SP,
and 157 with RP, indicating that incorporating coverage of
important features is useful for feature engineering. Further,
out of an average of 200 words selected with SP, 174 were
selected by at least half of the users, while 68 by all the
users. Along with the fact that the variance in the accuracy
decreases across rounds, this high agreement demonstrates
that the users are converging to similar correct models. This
evaluation is an example of how explanations make it easy
to improve an untrustworthy classifier – in this case easy
enough that machine learning knowledge is not required.

6.4 Do explanations lead to insights?
Often artifacts of data collection can induce undesirable

correlations that the classifiers pick up during training. These
issues can be very difficult to identify just by looking at
the raw data and predictions. In an effort to reproduce
such a setting, we take the task of distinguishing between
photos of Wolves and Eskimo Dogs (huskies). We train a
logistic regression classifier on a training set of 20 images,
hand selected such that all pictures of wolves had snow in
the background, while pictures of huskies did not. As the
features for the images, we use the first max-pooling layer
of Google’s pre-trained Inception neural network [25]. On
a collection of additional 60 images, the classifier predicts
“Wolf” if there is snow (or light background at the bottom),
and “Husky” otherwise, regardless of animal color, position,
pose, etc. We trained this bad classifier intentionally, to
evaluate whether subjects are able to detect it.

The experiment proceeds as follows: we first present a
balanced set of 10 test predictions (without explanations),
where one wolf is not in a snowy background (and thus the
prediction is “Husky”) and one husky is (and is thus predicted
as “Wolf”). We show the “Husky” mistake in Figure 11a. The
other 8 examples are classified correctly. We then ask the
subject three questions: (1) Do they trust this algorithm
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(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to distinguish between these
photos of wolves and huskies. After getting these responses,
we show the same images with the associated explanations,
such as in Figure 11b, and ask the same questions.

Since this task requires some familiarity with the notion of
spurious correlations and generalization, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject mentioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight, and report these numbers
before and after showing the explanations in Table 2.

Before observing the explanations, more than a third
trusted the classifier, and a little less than half mentioned
the snow pattern as something the neural network was using
– although all speculated on other patterns. After examining
the explanations, however, almost all of the subjects identi-
fied the correct insight, with much more certainty that it was
a determining factor. Further, the trust in the classifier also
dropped substantially. Although our sample size is small,
this experiment demonstrates the utility of explaining indi-
vidual predictions for getting insights into classifiers knowing
when not to trust them and why.

7. RELATED WORK
The problems with relying on validation set accuracy as

the primary measure of trust have been well studied. Practi-
tioners consistently overestimate their model’s accuracy [21],
propagate feedback loops [23], or fail to notice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [20] and Modeltracker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.
Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigating larger datasets.

Some recent work aims to anticipate failures in machine

learning, specifically for vision tasks [3, 29]. Letting users
know when the systems are likely to fail can lead to an
increase in trust, by avoiding “silly mistakes” [8]. These
solutions either require additional annotations and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be trusted. Further-
more, they assume that the current evaluation metrics are
reliable, which may not be the case if problems such as data
leakage are present. Other recent work [11] focuses on ex-
posing users to different kinds of mistakes (our pick step).
Interestingly, the subjects in their study did not notice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggesting that examining raw data
is not sufficient. Note that (author?) [11] are not alone in
this regard, many researchers in the field have unwittingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
identify these irregularities when explanations are present.
Further, LIME can complement these existing systems, and
allow users to assess trust even when a prediction seems
“correct” but is made for the wrong reasons.

Recognizing the utility of explanations in assessing trust,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5− 10 features is unsuitable for text applications). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or efficiency. For text, EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detection to produce
candidate alignments [13] or attention [28] are able to pro-
duce explanations for their predictions. These are, however,
constrained to specific neural network architectures or inca-
pable of detecting “non object” parts of the images. Here we
focus on general, model-agnostic explanations that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet to be proposed.

A common approach to model-agnostic explanation is learn-
ing a potentially interpretable model on the predictions of
the original model [2, 7, 22]. Having the explanation be a
gradient vector [2] captures a similar locality intuition to
that of LIME. However, interpreting the coefficients on the
gradient is difficult, particularly for confident predictions
(where gradient is near zero). Further, these explanations ap-
proximate the original model globally, thus maintaining local
fidelity becomes a significant challenge, as our experiments
demonstrate. In contrast, LIME solves the much more feasi-
ble task of finding a model that approximates the original
model locally. The idea of perturbing inputs for explanations
has been explored before [24], where the authors focus on
learning a specific contribution model, as opposed to our
general framework. None of these approaches explicitly take
cognitive limitations into account, and thus may produce
non-interpretable explanations, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In contrast, LIME incor-
porates interpretability both in the optimization and in our
notion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.
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8. CONCLUSION AND FUTURE WORK
In this paper, we argued that trust is crucial for effective
human interaction with machine learning systems, and that
explaining individual predictions is important in assessing
trust. We proposed LIME, a modular and extensible ap-
proach to faithfully explain the predictions of any model in
an interpretable manner. We also introduced SP-LIME, a
method to select representative and non-redundant predic-
tions, providing a global view of the model to users. Our
experiments demonstrated that explanations are useful for a
variety of models in trust-related tasks in the text and image
domains, with both expert and non-expert users: deciding
between models, assessing trust, improving untrustworthy
models, and getting insights into predictions.

There are a number of avenues of future work that we
would like to explore. Although we describe only sparse
linear models as explanations, our framework supports the
exploration of a variety of explanation families, such as de-
cision trees; it would be interesting to see a comparative
study on these with real users. One issue that we do not
mention in this work was how to perform the pick step for
images, and we would like to address this limitation in the
future. The domain and model agnosticism enables us to
explore a variety of applications, and we would like to inves-
tigate potential uses in speech, video, and medical domains,
as well as recommendation systems. Finally, we would like
to explore theoretical properties (such as the appropriate
number of samples) and computational optimizations (such
as using parallelization and GPU processing), in order to
provide the accurate, real-time explanations that are critical
for any human-in-the-loop machine learning system.

Acknowledgements
We would like to thank Scott Lundberg, Tianqi Chen, and
Tyler Johnson for helpful discussions and feedback. This
work was supported in part by ONR awards #W911NF-13-
1-0246 and #N00014-13-1-0023, and in part by TerraSwarm,
one of six centers of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.

9. REFERENCES
[1] S. Amershi, M. Chickering, S. M. Drucker, B. Lee,

P. Simard, and J. Suh. Modeltracker: Redesigning
performance analysis tools for machine learning. In Human
Factors in Computing Systems (CHI), 2015.

[2] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe,
K. Hansen, and K.-R. Müller. How to explain individual
classification decisions. Journal of Machine Learning
Research, 11, 2010.

[3] A. Bansal, A. Farhadi, and D. Parikh. Towards transparent
systems: Semantic characterization of failure modes. In
European Conference on Computer Vision (ECCV), 2014.

[4] J. Blitzer, M. Dredze, and F. Pereira. Biographies,
bollywood, boom-boxes and blenders: Domain adaptation
for sentiment classification. In Association for
Computational Linguistics (ACL), 2007.

[5] J. Q. Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence. Dataset Shift in Machine Learning. MIT, 2009.

[6] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and
N. Elhadad. Intelligible models for healthcare: Predicting
pneumonia risk and hospital 30-day readmission. In
Knowledge Discovery and Data Mining (KDD), 2015.

[7] M. W. Craven and J. W. Shavlik. Extracting tree-structured
representations of trained networks. Neural information
processing systems (NIPS), pages 24–30, 1996.

[8] M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G.
Pierce, and H. P. Beck. The role of trust in automation
reliance. Int. J. Hum.-Comput. Stud., 58(6), 2003.

[9] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32:407–499, 2004.

[10] U. Feige. A threshold of ln n for approximating set cover. J.
ACM, 45(4), July 1998.

[11] A. Groce, T. Kulesza, C. Zhang, S. Shamasunder,
M. Burnett, W.-K. Wong, S. Stumpf, S. Das, A. Shinsel,
F. Bice, and K. McIntosh. You are the only possible oracle:
Effective test selection for end users of interactive machine
learning systems. IEEE Trans. Softw. Eng., 40(3), 2014.

[12] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining
collaborative filtering recommendations. In Conference on
Computer Supported Cooperative Work (CSCW), 2000.

[13] A. Karpathy and F. Li. Deep visual-semantic alignments for
generating image descriptions. In Computer Vision and
Pattern Recognition (CVPR), 2015.

[14] S. Kaufman, S. Rosset, and C. Perlich. Leakage in data
mining: Formulation, detection, and avoidance. In
Knowledge Discovery and Data Mining (KDD), 2011.

[15] A. Krause and D. Golovin. Submodular function
maximization. In Tractability: Practical Approaches to Hard
Problems. Cambridge University Press, February 2014.

[16] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf.
Principles of explanatory debugging to personalize
interactive machine learning. In Intelligent User Interfaces
(IUI), 2015.

[17] B. Letham, C. Rudin, T. H. McCormick, and D. Madigan.
Interpretable classifiers using rules and bayesian analysis:
Building a better stroke prediction model. Annals of Applied
Statistics, 2015.

[18] D. Martens and F. Provost. Explaining data-driven
document classifications. MIS Q., 38(1), 2014.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Neural Information
Processing Systems (NIPS). 2013.

[20] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko,
and J. Landay. Gestalt: Integrated support for
implementation and analysis in machine learning. In User
Interface Software and Technology (UIST), 2010.

[21] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison.
Investigating statistical machine learning as a tool for
software development. In Human Factors in Computing
Systems (CHI), 2008.

[22] I. Sanchez, T. Rocktaschel, S. Riedel, and S. Singh. Towards
extracting faithful and descriptive representations of latent
variable models. In AAAI Spring Syposium on Knowledge
Representation and Reasoning (KRR): Integrating Symbolic
and Neural Approaches, 2015.

[23] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, M. Young, and J.-F. Crespo.
Hidden technical debt in machine learning systems. In
Neural Information Processing Systems (NIPS). 2015.

[24] E. Strumbelj and I. Kononenko. An efficient explanation of
individual classifications using game theory. Journal of
Machine Learning Research, 11, 2010.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Computer Vision and
Pattern Recognition (CVPR), 2015.

[26] B. Ustun and C. Rudin. Supersparse linear integer models
for optimized medical scoring systems. Machine Learning,
2015.

[27] F. Wang and C. Rudin. Falling rule lists. In Artificial
Intelligence and Statistics (AISTATS), 2015.

[28] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend
and tell: Neural image caption generation with visual
attention. In International Conference on Machine Learning
(ICML), 2015.

[29] P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh.
Predicting failures of vision systems. In Computer Vision
and Pattern Recognition (CVPR), 2014.

114



Direct-Manipulation Visualization of Deep Networks

Daniel Smilkov
Google, Inc.

5 Cambridge Center,
Cambridge MA, 02142

smilkov@google.com

Shan Carter
Google, Inc.

1600 Amphitheater Parkway,
Mountain View CA, 94043

shancarter@google.com

D. Sculley
Google, Inc.

5 Cambridge Center,
Cambridge MA, 02142

dsculley@google.com
Fernanda B. Viégas

Google, Inc.
5 Cambridge Center,

Cambridge MA, 02142
viegas@google.com

Martin Wattenberg
Google, Inc.

5 Cambridge Center,
Cambridge MA, 02142

wattenberg@google.com

ABSTRACT
Disclaimer: This work has been previously submitted to
the ICML 2016 Workshop on Visualization for Deep Learn-
ing. We are submitting it here with permission from orga-
nizers of both workshops.

The recent successes of deep learning have led to a wave
of interest from non-experts. Gaining an understanding of
this technology, however, is difficult. While the theory is im-
portant, it is also helpful for novices to develop an intuitive
feel for the effect of different hyperparameters and struc-
tural variations. We describe TensorFlow Playground1, an
interactive, open sourced2 visualization that allows users to
experiment via direct manipulation rather than coding, en-
abling them to quickly build an intuition about neural nets.

1. INTRODUCTION
Deep learning systems are currently attracting a huge

amount of interest, as they see continued success in prac-
tical applications. Students who want to understand this
new technology encounter two primary challenges.

First, the theoretical foundations of the field are not al-
ways easy for a typical software engineer or computer science
student, since they require a solid mathematical intuition.
It’s not trivial to translate the equations defining a deep
network into a mental model of the underlying geometric
transformations.

Even more challenging are aspects of deep learning where
theory does not provide crisp, clean explanations. Critical
choices experts make in building a real-world system–the
number of units and layers, the activation function, regu-
larization techniques, etc.–are currently guided by intuition

1http://playground.tensorflow.org
2https://github.com/tensorflow/playground

Copyright is held by the owner/author(s).

and experience as much as theory. Acquiring this intuition
is a lengthy process, since it typically requires coding and
training many different working systems.

One possible shortcut is to use interactive visualization
to help novices with mathematical and practical intuition.
Recently, several impressive systems have appeared that do
exactly this. Olah’s elegant interactive online essays [5] let
a viewer watch the training of a simple classifier, providing
a multiple perspectives on how a network learns a transfor-
mation of space. Karpathy created a Javascript library [4]
and provided a series of dynamic views of networks train-
ing, again in a browser. Others have found beautiful ways
to visualize the features learned by image classification nets
[10], [9].

Taking inspiration from the success of these examples, we
created the TensorFlow Playground. As with the work of
Olah and Karpathy, the Playground is an in-browser visu-
alization of a running neural network. However, it is specif-
ically designed for experimentation by direct manipulation,
and also visualizes the derived“features” found by every unit
in the network simultaneously. The system provides a va-
riety of affordances for rapidly and incrementally changing
hyperparameters and immediately seeing the effects of those
changes, as well as for sharing experiments with others.

2. TENSORFLOW PLAYGROUND: VISUAL-
IZATION

The structure of the Playground visualization is a stan-
dard network diagram. The visualization shows a network
that is designed to solve either classification or regression
problems based on two abstract real-valued features, x1 and
x2, which vary between -1 and 1. Input units, representing
these features and various mathematical combinations, are
at the left. Units in hidden layers are shown as small boxes,
with connections between units drawn as curves whose color
and width indicate weight values. Finally, on the right, a vi-
sualization of the output of the network is shown: a square
with a heatmap showing the output value of the single unit
that makes up the final layer of the network. When the user
presses the ”play” button, the network begins to train.

There is a new twist in this visualization, however. Inside
the box that represents each unit is a heatmap that maps the
unit’s response to all values of (x1, x2) in a square centered
at the origin. As seen in Figure 1, this provides a quick geo-
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Figure 1: TensorFlow Playground. This network is, roughly speaking, classifying data based on distance to
the origin. Curves show weight parameters, with thickness denoting absolute magnitude and color indicating
sign. The feature heatmaps for each unit show how the classification function (large heatmap at right) is
built from input features, then near-linear combinations of these features, and finally more complex features.
At upper right is a graph showing loss over time. At left are possible features; x1 and x2 are highlighted,
while other mathematical combinations are faded to indicate they should not be used by the network.

metric view of how the network builds complex features from
simpler ones. For example, in the figure the input features
are simply x1 and x2, which themselves are represented by
the same type of heatmap. In the next layer, we see units
that correspond to various linear combinations, leading to
a final layer with more complicated non-linear classifiers.
Moving the mouse over any of these units projects a larger
version of the heatmap, on the final unit, where it can be
overlaid with input and test data.

The activation heatmaps help users build a mental model
of the mathematics underlying deep networks. For many
configurations of the network, after training there is an ob-
vious visual progression in complexity across the network.
In these configurations, viewers can see how the first layer
of units (modulo activation function, acting as linear clas-
sifiers) combine to recognize clearly nonlinear regions. The
heatmaps also help viewers understand the different effects
of various activation functions. For example, there is a clear
visual difference in the effect of ReLU and tanh functions.
Just as instructive, however, are suboptimal combinations
of architecture and hyperparameters. Often when there are
redundant units (Figure 3), it is easy to see that units in
intermediate layers have actually learned the classifier per-
fectly well and that many other units have little effect on
the final outcome. In cases where learning is simply unsuc-
cessful, the viewer will often see weights going to zero, and

that there is no natural progression of complexity in the
activation heatmaps (Figure 4).

The visualization is implemented in JavaScript using d3.js[3].
It is worth noting that for the neural network computation,
we are not using the TensorFlow library[1] since we needed
the whole visualization to run in the browser. Instead, we
wrote a small library3 that meets the demands of this edu-
cational visualization.

3. AFFORDANCES FOR EDUCATION AND
EXPERIMENTATION

The real strength of this visualization is its interactiv-
ity, which is especially helpful for gaining an intuition for
the practical aspects of training a deep network. The Play-
ground lets users make the following choices of network struc-
ture and hyperparameters:

• Problem type: regression or classification

• Training data: a choice of four synthetic data sets,
from well-separated clusters to interleaved ”swiss roll”
spirals.

• Number of layers

3https://github.com/tensorflow/playground/blob/master/
nn.ts

116



Figure 2: A complex configuration of TensorFlow Playground, in which a user is attempting to find hyper-
parameters that will allow the classification of spiral data. Many possible feature combinations have been
activated.

• Number of units in each layer

• Activation function

• Learning rate

• Batch size

• Regularization: L1, L2, or none

• Input features: in addition to the two real-valued fea-
tures x1 and x2, the Playground allows users to add
some simple algebraic combinations, such as x1x2 and
x2
1.

• Noise level for input data

These particular variations were chosen based on experi-
ence teaching software engineers how to use neural networks
in their applications, and are meant to highlight key deci-
sions that are made in real life. They are also meant to be
easily combined to support particular lessons. For instance,
allowing users to add algebraic combinations of the two pri-
mary features makes it easy to show how a linear classifier
can do ”non-linear”tasks when given non-linear feature com-
binations.

The user interface is designed to make these choices as
easy to modify as possible. The standard definition of di-
rect manipulation is that changes should be ”rapid, incre-
mental and reversible” [7]. Allowing fast, smooth changes to
variables helps build intuition for their effects. Reversibility

encourages experimentation: indeed, we chose as our tagline
for the visualization, ”You can’t break it. We promise.”

Additional aspects of the visualization make it well-suited
to education. We have found that the smooth animation
engages users. It also lends itself to a good “spectator ex-
perience” [6], drawing students in during presentations. We
have seen onlookers laugh and even gasp as they watch a
network try and fail to classify the spiral data set, for ex-
ample. Although animation has not always been found to
be helpful in educational contexts, simulations are one case
where there is good evidence that it is beneficial [2].

One particularly important feature is the ability to seam-
lessly bookmark [8] a particular configuration of hyperpa-
rameters and structure. As the user plays with the tool,
the URL in the browser dynamically updates to reflect its
current state. If the user (or a teacher preparing a lesson
plan) finds a configuration they would like to share with oth-
ers, they need only copy the URL. Additionally, using the
checkboxes below the visualization, each UI component can
be hidden, making it easy to repurpose the interface.

We have found this bookmarking capability invaluable in
the teaching process. For example, it has allowed us to put
together tutorials in which students can move, step by step,
through a series of lessons that focus on particular aspects
of neural networks. Using the visualization in these “liv-
ing lessons” makes it straightforward to create a dynamic,
interactive educational experience.

4. CONCLUSION AND FUTURE WORK
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The TensorFlow Playground illustrates a direct-manipulation
approach to understanding neural nets. Given the impor-
tance of intuition and experimentation to the field of deep
learning, the visualization is designed to make it easy to
get a hands-on feel for how these systems work without any
coding. Not only does this extend the reach of the tool to
people who aren’t programmers, it provides a much faster
route, even for coders, to try many variations quickly. By
playing with the visualization, users have a chance to build
a mental model of the mathematics behind deep learning,
as well as develop a natural feeling for how these networks
respond to tweaks in architecture and hyperparameters.

In addition to internal success with the tool, we have seen
a strong positive reaction since it has been open-sourced.
Besides general positive comments, we have seen interesting,
playful interactions. On one Reddit thread, for example,
people competed to find a way to classify the spiral data,
posting screenshots of their successful configurations. This
suggests that the tool is instigating a vibrant social reaction
to the visualization.

Since the launch of TensorFlow Playground, we have seen
many suggestions for extensions. Affordances for many other
structural variations and hyperparameters could be added;
for instance, a common request is for an option to see the
effect of dropout. Architectures such as convolutional nets
and LSTMs could also be illuminated through direct ma-
nipulation techniques. Our hope is that, as an open-source
project, the Playground will be extended to accommodate
many such ideas. More broadly, the ideas of visualization,
direct manipulation, and shareability that we have used may
prove useful in explaining other aspects of deep learning be-
sides network structure and hyperparameters.

A further question is whether this same direct-manipulation
environment can be extended to help researchers as well
as students. While there are obvious technical obstacles–
breaking new ground often requires large data sets and com-
putational resources beyond what a browser offers–it may be
possible to create minimal ”research playgrounds” that yield
insights and allow rapid experimentation.
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Figure 3: A network architecture with redundant layers and units. Several units in the first hidden layer have
already essentially learned to classify the data, as seen by inspecting the in-network activation visualizations.

Figure 4: This network has completely failed to classify the data, even after many epochs. The high-contrast
activation visualizations and thick weight connections hint at a systemic problem. This diagram was the
result of setting the learning rate to the maximum speed.
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ABSTRACT
A good clustering can help a data analyst to explore and
understand a data set, but what constitutes a good cluster-
ing may depend on domain-specific and application-specific
criteria. These criteria can be difficult to formalize, even
when it is easy for an analyst to know a good clustering
when she sees one. We present a new approach to interactive
clustering for data exploration, called Tinder, based on a
particularly simple feedback mechanism, in which an analyst
can choose to reject individual clusters and request new ones.
The new clusters should be different from previously rejected
clusters while still fitting the data well. We formalize this
interaction in a novel Bayesian prior elicitation framework.
In each iteration, the prior is adapted to account for all the
previous feedback, and a new clustering is then produced
from the posterior distribution. To achieve the computational
efficiency necessary for an interactive setting, we propose
an incremental optimization method over data minibatches
using Lagrangian relaxation. Experiments demonstrate that
Tinder can produce accurate and diverse clusterings.

1. INTRODUCTION
Clustering is a popular tool for exploratory data analysis.

A good clustering can help to guide the analyst to better
understanding of the data set at hand. An informative
clustering captures not only the properties of the data, but
also the goals of the analyst. What makes it challenging to
identify a good clustering is that it is often difficult to encode
the analyst’s goals explicitly as machine learning objectives.
Moreover, in many settings, the analyst does not have a well-
specified objective in mind prior to encountering the data,
but rather continuously updates her goals as she learns more
through exploratory analysis. Because the clustering problem
is ill-posed, many good clusterings of similar quantitative
value exist for a given data set. Even if a clustering algorithm

.
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succeeds in finding a quantitatively good clustering, it still
may not be what the user qualitatively wanted. Nevertheless,
the data analyst may not be able to formalize precisely as a
quantitative criterion what differentiates a “good” clustering
from a “bad” one. Still, it seems reasonable to expect that
the analyst will know a good clustering when she sees one.

This gap between formal clustering criteria and the user’s
exploratory intuition is the motivation for interactive clus-
tering [9, 3, 24, 6] and alternative clustering approaches [7,
8, 18, 10]. Interactive clustering methods focus on allowing
the user to specify precisely how the clustering should be
improved, such as by splitting or merging clusters [9, 3].
Although this can be useful, there are other situations in
which the analyst can tell that a clustering does not meet
her exploratory needs, without having a clear idea of how it
should be improved. Alternative clustering methods, on the
other hand, produce a set of clusterings which are chosen
to be as diverse as possible while still fitting the data. This
supports a more exploratory type of data analysis, but many
such methods do not scale well to an interactive setting, and
sometimes the notion of an alternative is too coarse-grained:
An analyst may wish to preserve some parts of a clustering
while discarding others.

To allow the user to provide fine-grained “non-constructive”
feedback on a clustering, we introduce a simple rejection-
based approach to interactive clustering, in which the analyst
chooses to reject a subset of clusters and replace them with
different ones. This framework contains alternative clustering
as the special case in which the user rejects all clusters. The
system returns another clustering, which is chosen fit the data
as well as possible, while avoiding the creation of any cluster
that is similar to the rejected ones. To reflect the notion
of “rejecting” a cluster, we call this interaction mechanism
Tinder (Technique for INteractive Data Exploration via
Rejection).

We formalize this process in a Bayesian framework, in
which we view the interaction procedure as a mechanism
for prior elicitation. After the user rejects a set of clusters,
we modify the prior distribution over model parameters to
severely downweight regions of the parameter space that
would lead to clusters that are similar to those previously
rejected. This prior downweighting is achieved through a
mutual information criterion, defined in such a way to pre-
vent the rejection feedback from simply resulting in label
permutation. In interactive settings, it is important that the
response to the user’s feedback be produced quickly, which

120



suggests the use of a stochastic method, but unfortunately
our penalty function does not decompose into a simple sum
over data points. To surmount this, we propose an opti-
mization method that introduces an auxiliary distribution,
similar in spirit to variational methods, but that follows a
Langrangian duality type argument rather than Jensen’s
inequality. The resulting objective function can then be op-
timized using a stochastic coordinate descent algorithm over
minibatches of data points, which we show to be efficient in
practice.

2. RELATED WORK
Previous work on interactive clustering methods exploits

various types of user feedback. One type is must-link and
cannot-link constraints between pairs of data points [24, 5].
Alternately, a second type of feedback is to request that
entire clusters be split or merged [9, 3, 4]. A third type of
feedback is for the analyst to explicitly choose the set of
features to use in the clustering procedure [6, 11]. Similarly,
interactive methods have been proposed for topic models
using must-link / cannot-link [1], split/merge [15, 22], and
feature-level feedback [17]. While all three types of feedback
improve clustering quality, they require that the analyst
have a certain level of knowledge about the data set and her
information need, which might not be appropriate for a highly
exploratory analysis. They can also be quite demanding in
requiring active guidance from the user. We are unaware of
previous work that uses cluster-level accept/reject feedback
like we do.

In contrast, alternative clustering methods [13, 2, 7, 18,
10, 8] focus on generating a set of high-quality clusterings
that are chosen to be different from each other, which the
user can select between. Work in this area has generated
diverse sets of clusters by randomly reweighting features [7],
by exploring the space of possible clusterings using Markov
Chain Monte Carlo [8], or by penalizing the objective func-
tion to encourage clusterings to be diverse [13, 18, 10]. Our
framework for interactive clustering includes alternative clus-
tering as a special case, bridging between interactive and
alternative clustering. In particular, the objective function
that we propose recovers the CAMI method [10] as a special
case in which the user always rejects all clusters, and the
objective function is optimized jointly over all clusterings,
rather than one clustering at a time in response to user
feedback. Additionally, the optimization method that we
propose (Section 3) is different from the previous work and
necessary for obtaining interactive performance.

Our work is similar in motivation to diverse subset selection,
which is concerned with selecting subsets of data from a
collection such that the inter-set diversity and the intra-set
diversity is maximized, for example in summarization [14].
The application of diverse k-best summarization presented
in [12] is a related problem to alternative clustering, if one
considers a set of cluster centroids to be a summary of a
data set. Finally, contrastive learning is aimed at fitting a
latent variable model so that the latent variables explain the
difference between one data set from another, for example, a
data set of Chinese news articles versus a dataset of economic
articles [25]. Our current work is somewhat analogous to this,
in that to support interactive data exploration, we search for
different latent variable explanations of a single data set.

3. INTERACTIVE CLUSTERING WITH RE-
JECTIONS

Now we describe our rejection-based framework for interac-
tive clustering. We begin with an overview of the interaction
method. The data are first clustered according to a stan-
dard clustering algorithm. We present this clustering to the
analyst for inspection, for example, by displaying the data
points or the features that are most closely associated with
each cluster. Then if the clustering does not meet the infor-
mation need of the analyst, she can provide feedback. For
each cluster, the analyst can either: (a) reject the cluster
if it is not relevant to her information need, (b) accept the
cluster if it is relevant, or else (c) do neither, expressing no
opinion about the cluster. Once this feedback is complete,
we cluster the data again, modifying the objective function of
the clustering algorithm to penalize clusters that are similar
to rejected clusters, and to reward clusters that are similar
to accepted ones. This modified objective encourages the
algorithm to return a new clustering that still fits the data
well but that respects the user feedback. The process can be
repeated as many times as desired. We call each iteration of
this process a feedback iteration.

Now we describe the clustering method used in Tinder.
We formalize the interaction mechanism as a type of Bayesian
prior elicitation [21]. At each feedback iteration t, we perform
Bayesian clustering with parameters θ, but with a different
prior πt(θ) that strongly downweights parameter vectors that
are associated with rejected clusters, and strongly upweights
parameters that are associated with accepted clusters. We
perform clustering using a standard Bayesian mixture model.
Let x denote a single data item, h ∈ {1, . . .K} be a discrete
latent variable that indicates the cluster membership of x,
and the vector θ denote all of the model parameters, that is,
the parameters of the prior distribution p(h|θ) over clusters,
and the parameters of the conditional distribution p(x|h, θ)
of data items given the cluster label. At feedback iteration t,
the data is modelled as

pt(x, θ) =
∑
h

p(x|h, θ)p(h|θ)πt(θ). (1)

As the subscripting in (1) suggests, the prior distribution will
change after every feedback iteration (in a way that we shall
discuss in a moment), but the other parts of the probabilistic
model will not.

For computational reasons, we perform maximum a poste-
riori (MAP) estimation. Let x = (x1 . . . xN ) denote the data,
where xi is a single data point, and h = (h1 . . . hN ) denote an
assignment of cluster labels to all data points. Then, at each
feedback iteration, MAP estimation computes the parameter
estimate θt = maxθ log p(θ|x) and a soft cluster assignment
p(h|x, θt) over cluster labels. (Note that this distribution has
the same functional form across all iterations, and the pa-
rameter θt could be different in iteration t.) After reviewing
the clustering, the analyst chooses a set of clusters to accept
and reject. Let At ⊆ {1, . . . K} be the indices of the clusters
that the user has accepted and Rt ⊆ {1, . . .K} be those the
user has rejected. The sets At and Rt are disjoint. Cluster
indices that do not appear in At ∪Rt are those clusters for
which the analyst has expressed no opinion.

Now we describe how Tinder produces a revised clustering
at feedback iteration t. Following a Bayesian framework, we
interpret the user feedback from clusterings 0 . . . t − 1 as
an indirect source of information about the analyst’s prior
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beliefs over θ, that she was unable to encode mathematically
into the prior distribution. Therefore we define a revised
prior distribution πt(θ) based on all the previous feedback,
which is designed in such a way that the resulting clustering,
which we denote p(h|x, θt), will respect the feedback. The
prior πt(θ) has the form

πt(θ) ∝ π0(θ)

t−1∏
s=0

exp{−βfs(θ, θs)},

where fs is a function that measures how well the parameter
vector θ respects the feedback (As, Rs) from iteration s (lower
is better). The parameter β is a temperature parameter.

For example, consider the case of “reject all” feedback,
in which the user has rejected all previous clusters, that is,
Rs = {1, . . . , K} for all s. This special case has been studied
in the literature under the name of alternative clustering
(Section 2). In this context, we want fs to measure the
degree of similarity between the cluster distribution p(h|x, θ)
and the cluster distribution p(h|x, θs) that the user rejected,
so that new parameters θ which produce clusters similar to
those from θs will have lower probability. A naive choice
for fs(θ, θs) would be to use the negative Kullback-Leibler
divergence between the distributions p(h|x, θ) and p(h|x, θs).
However, in the context of clustering, this metric suffers from
the issue of label switching, i.e., merely permuting the cluster
assignments can produce high divergence.

Instead, we begin by defining a joint distribution over the
individual cluster labels h and hs that would be assigned
by the current clustering and the previous clustering to the
same data point x. This joint distribution is

pθ,θs(h, hs, x) = p(h|x, θ)p(hs|x, θs)p̃(x), (2)

where p̃(x) = N−1 ∑
i δx,xi is the empirical distribution over

data points, for the Kronecker delta function δ. This now
defines a bivariate marginal distribution

pθ,θs(h, hs) =
1

N

N∑
j=1

p(h|xj , θ)p(hs|xj , θs) (3)

that measures the overall dependence between the two dif-
ferent clusterings, marginalizing out the data. In other
words, pθ,θs is the joint distribution over pairs of cluster
labels that results from randomly choosing a data item x,
and clustering it independently according to the distribu-
tions p(h|x, θ) and p(hs|x, θs). The distribution pθ,θs also
yields marginal distributions pθ(h) =

∑
hs
pθ,θs(h, hs) and

pθs(hs) =
∑
h pθ,θs(h, hs) for each of the individual cluster-

ings, which are simply the prior probabilities of the cluster
labels from each clustering.

Now we can define fs. We begin with the special case of
reject all feedback. The distribution pθ,θs(h, hs) measures
the joint distribution between the new clustering and the
previous one at iteration s, so to ensure that these two
clusterings are different, we simply minimize their mutual
information. This yields

fs(θ, θs) = I(H;Hs) =

K∑
h=1

K∑
hs=1

pθ,θs(h, hs) log
pθ,θs(h, hs)

pθ(h)pθs(hs)
.

(4)

To handle accept feedback, fs takes a similar form, but the
sign is flipped for the clusters in As, so that fs encourages

similarity rather than dissimilarity. More specifically:

fs(θ, θs) =
∑
hs∈Rs

K∑
h=1

pθ,θs(h, hs) log
pθ,θs(h, hs)

pθ(h)pθs(hs)

−
∑
hs∈As

K∑
h=1

pθ,θs(h, hs) log
pθ,θs(h, hs)

pθ(h)pθs(hs)

(5)

Note that clusters for which the user has said “no opinion”
are in neither As nor Rs, and therefore such clusters have
no effect on πt, and hence no effect on the clustering in
subsequent feedback iterations. This completes the definition
of πt. Now, to compute the revised clustering, we perform
MAP estimation on (1), which is equivalent to maximizing

Lt(θ) =

N∑
j=1

log p(xj |θ)− β
t−1∑
s=1

fs(θ, θs) + log π0(θ), (6)

where β can now be interpreted as a weighting parameter to
bring the terms to a common scale. Denote by θt the new
MAP parameter estimate, i.e., θt = maxθ Lt(θ). Then the
new clustering that is displayed to the analyst is based on
the soft assignment p(h|x, θt).

Examples..
As an illustrative example, consider the 2D dataset shown

in Figure 1(a), which is generated from a mixture of four
isometric Gaussians. The ellipses in the figure show the clus-
tering resulting from maximizing the likelihood of a mixture
of two Gaussians using expectation maximization (EM) in
the zeroth feedback iteration of Tinder. Starting from here,
suppose the user rejects both clusters. Then Figure 1(b)
shows the resulting clustering that Tinder generates in the
next feedback iteration. Rejecting both clusters again results
in the clustering in Figure 1(c). Therefore using Tinder, an
analyst can obtain three quantitatively different explanations
of the data in three feedback iterations.

Our per-cluster feedback framework recovers alternative
clustering, in which the goal is to as explore as many di-
verse clusterings as possible, as the special case in which all
previous clusters are rejected. By providing more specific
feedback, the user can perform a more directed style of ex-
ploration, in which the user guides the clustering procedure
toward a partitioning that interests her. By incorporating
both alternative clustering and the more directed style of
per-cluster feedback in the same framework, Tinder allows
the analyst to flexibly alternate between more exploratory
and more directed navigation through the space of possible
clusterings.

Although we have described Tinder as a clustering method,
that is, where p(x, h|θ) is a mixture model, the same logic
can be applied to more general graphical models, e.g., ones
that contain other latent variables in addition to x and h.
All we require is that the model contains a discrete latent
variable that we can use in the same way as the cluster labels
h, and that MAP estimation of θ be tractable. We leave
further exploration of this idea to future work.

Optimization.
In this section we discuss how to perform MAP estimation

of θ, i.e., to efficiently optimize Lt. The gradient of Lt is
easy to compute, so it is possible to apply standard opti-
mization algorithms like conjugate gradient. However, for
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(a) Initial clustering
(b) After one“reject
all”

(c) After two“reject
all”

Figure 1: Example of Tinder clusterings produced in three
feedback iterations on synthetic data, showing (a) the initial
clustering from expectation maximization (EM), and after (b)
one round and (c) two rounds of “reject all clusters” feedback
from the user.

an interactive algorithm, each feedback iteration needs to
be relatively fast, because the computation is run while the
user is waiting. To achieve interactive performance on large
data sets, we would therefore prefer a stochastic gradient
style of algorithm, in which each update to the parameters
only depends on a small subset of data points. But the form
of fs(θ, θs) makes this difficult. Notice that the distribution
pθ,θs(h, hs) contains a summation over data points within
it, and this appears inside a log within fs. Therefore the
gradient of Lt does not decompose into a simple sum over
data items.

Alternately, we could optimize Lt using the standard EM
algorithm for MAP estimation. Recall that in this algorithm,
the E step is unchanged from maximum likelihood, but the
M step contains the log prior distribution as part of the
objective. Applying this to Lt, the M step becomes

θt ← max
θ

∑
j

∑
h

qj(h) log p(h, xj |θ)−β
∑
s

fs(θ, θs)+log π0(θ),

where qj is the standard EM auxiliary distribution. It is
not clear that this objective is any easier to optimize than
(6), nor is it clear how to derive a stochastic gradient-style
algorithm.

Instead we take a different approach, inspired by La-
grangian relaxation. To simplify the exposition, we will
describe the optimization algorithm only for the case of “re-
ject all” feedback, but the extension to the other types of
feedback is straightforward. First we introduce an auxiliary
random variable H, whose output is a cluster assignment,
and whose distribution is given by a variational distribution
qj(h) for each data point xj . As in (3), we can induce a joint
distribution over the random variable H and the random
variable Hs whose distribution is given by p(hs|xj , θs). This
joint distribution is

pq,θs(h, hs) = N−1
∑
j

qj(h)p(hs|xj , θs).

Notice that this distribution, and therefore the resulting
mutual information, which we denote Iq(H;Hs), is a function
of the variational distribution q. Then optimizing (6) is
equivalent to

max
θ,q

log pθ(x)− β
∑
s

Iq(H;Hs) + log π0(θ). (7)

s.t. KL(qj ‖ p(h|θ, xj)) = 0 ∀j ∈ {1, 2, . . . N},

where KL indicates the Kullback-Leibler divergence. Incor-
porating the constraint using a penalty term with parameter

α leads to

max
θ,q

log pθ(x)− β
∑
s

Iq(H;Hs)

− α
∑
j

KL(qj ‖ p(h|θ, xj)) + log π0(θ).

(8)

If α is large enough, then the solution of (8) will be the same
as for (7). Coordinate descent on (8) yields the EM-like
algorithm:
“E”-Step:

q ← max
q
−β

∑
s

Iq(H;Hs)− α
∑
j

KL(qj ‖ p(h|θ, xj)) (9)

“M”-Step:

θ ← max
θ
E[log p(x,h|θ)]q (10)

This is not strictly an EM algorithm, because we lose the
lower bound property that would have arisen if we had applied
Jensen’s inequality. However, if at the end of optimization
procedure, we have that qj(h) = p(h|xj , θ) for all j (which
will happen if α is set high enough, and can be easily checked),
then θ is a local maximum of Lt.

Now we can optimize the objective in the “E” step by
coordinate descent. The mutual information Iq(H;Hs) still
depends on all of the data points via pq,θs(h, hs), but now if
we perform stochastic coordinate descent on each distribution
qj , then the value of pq,θs(h, hs) can be updated incrementally,
so recomputing Iq(H;Hs) does not require iterating through
the entire data set. The “M” step is very fast, as it is exactly
the same as the M step in the EM algorithm for maximum
likelihood.

4. EXPERIMENTS
In this section, we evaluate the diversity and the quality

of the clusterings produced by Tinder. Following previous
work in alternative and interactive clustering [9, 3, 24, 6,
7, 8, 18, 10], we present an automatic evaluation in which
we measure the quality of clusterings by comparing how
well the clusters correspond to gold standard labels. An
automatic evaluation allows us to compare the output of the
learning algorithms directly without dealing with difficult
and potentially confounding aspects of user interface design.

We evaluate Tinder for both per-cluster feedback (Tinder:
Per Cluster), in which the user feedback is attempting to
drive the system toward a given clustering, and in global
mode (Tinder: Global), which is the alternative clustering
setting in which the user is exploring the data set by rejecting
all clusters. To replicate per-cluster feedback within an
automatic evaluation, we simulate a user using the following
heuristic. At each feedback iteration, the user provides
feedback on one cluster at a time. If the cluster purity is
below 50% with respect to the gold standard labels, the
simulated user rejects the cluster otherwise the cluster is
accepted. If none of the clusters are above this threshold,
then the entire clustering is rejected. The reasoning here is
that we are simulating a user whose information need is to
find a clustering similar to that defined by the gold standard
labels.

We compare Tinder to the popular Decorrelated-kMeans
(Dec-kMeans) [18] algorithm for alternative clustering, which
uses a penalized k-means objective to encourage the centroids
from the previous clustering to be orthogonal to those from

123



the current clustering. Since this method in the default
setting produces just two clusterings, we extended it by
adding additional error and penalty terms to produce more
than two clusterings at a time. We also compare to running
EM using different random initializations, which will produce
different clusterings because of its sensitivity to initialization.
We call this method random restarts.

We use two data sets: a small collection of 640 face images
of 20 people in different orientations from the CMU face
dataset [20] and a large collection of 10,000 thumbnail images
from CIFAR10 [19]. The CIFAR10 data is significantly larger
than other data sets that have been used in the alternative
clustering literature. The CIFAR10 data set is labeled with
10 classes. In the CMU face dataset, each image has three
different types of labels: the identity of the person in the
image, their gender, and the pose (orientation of the face).
This provides three natural clusterings of the data. To obtain
features, for the CIFAR10 dataset we use the the embedding
generated by training the VGG network [23] on the CIFAR10
training set. For the CMU face dataset, we apply PCA to
the raw pixel values and retain 90% of the variance from the
original data.

To evaluate diversity, the Adjusted Rand Score (ARS) is
used to measure the distance between two clusterings [16]; an
ARS of 0 indicates no association between a pair of cluster-
ings, and a score of 1 indicates a perfect match between the
clusterings. To measure the diversity of a set of clusterings,
we average the pairwise ARS over all pairs of clusterings in
the set. To evaluate the quality of a clustering, we report
its purity with respect to a set of ground truth labels. To
evaluate the quality of a set of clusterings, we report the
maximum purity of any clustering the set, reflecting the idea
that, after examining a set of different clusterings, an analyst
can choose the single clustering that she finds most useful.

We use a mixture of Gaussians (GMM) for modeling the
CMU Face and the CIFAR10 datasets. In both cases, for
the zeroth feedback iteration we set π0(θ) to be one. We
reabsorb the relaxed Lagrange multiplier α from Section 3
in β as well. Empirically, we found that TINDER performs
well by simply setting β such that the penalty term, β

∑
s f ,

and the log-likelihood have the same order of magnitude.
Dec-kMeans also has a similar weighing parameter λ, which
we set according to the guidelines provided by the original
authors [18].

All methods are allowed the same number of feedback
iterations, i.e., all methods are evaluated on the same number
of clusterings. To ensure this, first we run Tinder in per-
cluster mode until the clustering stabilizes, that is, until the
simulated user accepts all clusters. Then we run each of
the other methods, including Tinder Global, for the same
number of feedback iterations that was required by Tinder:
Per Cluster. All methods are repeated 20 times from different
random initializations, and we report the average maximum
quality and the average diversity over the repetitions. For
the CMU face data set, we use K = 8 clusters, whereas for
CIFAR10, we use K = 10 clusters.

4.1 Results
Table 1 summarizes the clustering quality of the methods.

The three columns for the CMU Face data report quality
with respect to each of the three different types of gold
standard labels. For Tinder: Per Cluster, the feedback from
the simulated user is based on same set of gold standard

(a) Clustering 0 (no feedback)

(b) Clustering 1 (after one feed-
back iteration). For space,
only two of the ten clusters are
shown.

(c) Clustering 2 (after two feed-
back iterations). For space, only
one of the ten clusters is shown.

(d) Clustering 5 (after five feed-
back iterations). For space,
only four of the ten clusters are
shown.

Figure 2: Example of Tinder clusterings on the CIFAR10
dataset.

labels that is used to evaluate quality; that is, the goal
is to measure the effectiveness of per-cluster feedback at
reaching a specific clustering that the user discovers during
exploration. We find that Tinder: Per Cluster outperforms
or matches the other methods, indicating that the more
specific guidance provided by per-cluster feedback indeed
leads to higher quality clusterings. On average Tinder
requires four feedback iterations to stabilize. The quality of
the clusters from the other three methods are similar to each
other.

We report the clustering diversity in Table 2. For both
the datasets, Tinder: Global clearly returns a much more
diverse set of clusterings, outperforming both the baseline
methods by a significant margin. On CIFAR10, Dec-kMeans
oscillates between two similar clusterings and as a result
performs worse than random restarts. These results indicate
that overall, Tinder: Global returns a more diverse set
of clusters of equivalent quality to the other alternative
clustering methods. As expected, Tinder: Per Cluster
results are not as diverse, because the goal of per-cluster
feedback is to drive the method towards a specific target
clustering, which necessarily reduces diversity.

To illustrate the effect of the feedback, we display in Figure
2 some of the clusters from Tinder: Global on the CIFAR10
dataset. Tinder: Global clusterings are not just able to
find all the original CIFAR10 clusters but other meaningful
clusters as well. In the figure, each of the rows represents a
cluster and shows the top 6 images from that cluster ordered
by their likelihood under the cluster. Figure 2(a) shows the
initial clustering for K = 10 with no feedback. Clustering 1
(Figure 2(b)) is produced by Tinder after a single iteration
of “reject all” feedback. We see that Clusters 2 and 3 from
Clustering 0 (which contain deer and horses, respectively) are
replaced in Clustering 1 by clusters 2’ and 3’, which contain
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Table 1: Clustering quality, measured by purity to ground truth labels (higher is better).

CIFAR10
CMU Face

Person
CMU Face

Gender
CMU Face

Pose
Random Restarts 0.89 0.37 0.87 0.44
Dec-kMeans 0.90 0.37 0.86 0.42
TINDER: Global 0.89 0.37 0.89 0.40
TINDER: Per Cluster 0.93 0.39 0.93 0.44

Table 2: Diversity of returned sets of clusterings, measured
by Adjusted Rand Score (lower is better).

CIFAR10 CMU Face
Random Restarts 0.56 0.55
Dec-kMeans 0.83 0.38
TINDER: Global 0.15 0.27
TINDER: Per Cluster 0.88 0.59

large animals (Cluster 2’) and horses with riders (Cluster
3’). The result of the next feedback iteration is shown in
Clustering 2 (Figure 2(c)). We see that Cluster 9 has been
replaced by Cluster 9’, which contains images of birds and
planes, which were scattered over multiple clusters in Clus-
tering 0. Finally, after five feedback iterations, Clustering
5 (Figure 2(d)) includes clusters of ships (Cluster 4’), cats
(Cluster 5’), birds (Cluster 6’) and planes (Cluster 9”), which
did not exist in Clustering 0. These new clusters replace
Clusters 4-6 and 9 from Clustering 0, which have low purity.

As for running time, each feedback iteration of Tinder
requires a few seconds for the CMU Face data set and under
a minute for CIFAR10. Our implementation of Dec-kMeans
performs comparably. Both methods take the same amount
of time as standard EM without feedback. Finally, we observe
that Tinder can be easily applied to any mixture model,
not just a mixture of Gaussians. To demonstrate this, we
also applied Tinder to a mixture of multinomials model for
text data (see supplementary material).

5. CONCLUSION
In this paper we have presented a method for interactive

clustering based on a particularly simple feedback mechanism,
in which an analyst can reject individual clusters and request
new ones. The interaction is formalized as a method of prior
elicitation in a Bayesian model of clustering. We showed
the efficacy of this method on two real world datasets. An
interesting direction of future work would be to extend our
approach to other graphical models for data exploration,
such as topic models.
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ABSTRACT
In this short paper, we propose the split-diffuse (SD) algo-
rithm that takes the output of an existing word embedding
algorithm, and distributes the data points uniformly across
the visualization space. The result improves the perceivabil-
ity and the interactability by the human.

We apply the SD algorithm to analyze the user behavior
through access logs within the cyber security domain. The
result, named the topic grids, is a set of grids on various
topics generated from the logs. On the same set of grids,
different behavioral metrics can be shown on different tar-
gets over different periods of time, to provide visualization
and interaction to the human experts.

Analysis, investigation, and other types of interaction can
be performed on the topic grids more efficiently than on the
output of existing dimension reduction methods. In addition
to the cyber security domain, the topic grids can be further
applied to other domains like e-commerce, credit card trans-
action, customer service to analyze the behavior in a large
scale.

CCS Concepts
�Human-centered computing→Visual analytics; In-
formation visualization;

Keywords
data visualization, human interaction, dimension reduction,
risk management

1. INTRODUCTION
When there are multiple measures of the each sample,

the data is described in the a high dimensional space H
by these measures. To make these high dimensional data
points visible to human, a word embedding (or dimension
reduction) technique is employed to map the data points to
a lower dimensional space L. Usually L is a two-dimensional
(2D) or three-dimensional (3D) space. The word embedding
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technique of choice attempts to preserve some relationship
among the data points in H after mapping them to L.

For example, the multi-dimensional scaling (MDS) [5] M
tries to preserve the distance between data points, during
the mapping from H to L. The stochastic neighbor em-
bedding (SNE) [6] type of algorithms further emphasize the
local relationship ahead of the global relationship. There are
other dimension reduction techniques putting emphasis on
different favored metrics over relationship. On a specific sit-
uation, one particular dimension reduction technique could
be more suitable or more efficient than others.

The output from existing dimension reduction algorithm
is a set of data points that are non-uniformly scattered
around the visualization space, which has some drawbacks:

1. Some data points may overlap with others. Overlap
makes the information less perceivable.

2. The data points are denser in some area. The hetero-
geneity makes human interaction with the data points
more difficult.

2. METHODS
In order to better utilize the visualization space, we pro-

posed to distribute the data points evenly over the visual-
ization space. The cloud of data points is deformed in the
same space defined by the dimension reduction algorithm of
choice. This deformation is denoted as S. In the meanwhile,
it is desirable to preserve the point-wise relationship main-
tained by the dimension reduction algorithm. Our strategy
in approaching this goal is prioritized as follows:

1. Points are equally spaced after the mapping S.

2. Point-wise topology is preserved. S attempts to keep
point pj on the same side of point pi as before the
mapping.

3. Point-wise geometry is loosely followed. When pi is far
from pj , S(pi) is far from S(pj).

The algorithm we propose is called the split-diffuse (SD)
algorithm (Algorithm 1), which follows the strategies above.
In our implementation, the SD algorithm first picks the x-
axis as the dimension to split. As in Figure 2 (a), it splits
the data points into two groups: the ones smaller than or
equal to the median, and the ones larger than the median.
Each group goes through this split step again over the y-
dimension, as in Figure 2 (b). We recursively split the points
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(a) 2D t-SNE output (b) 2D MDS output (c) 3D t-SNE output (d) 3D MDS output

(e) SD output from (a) (f) SD output from (b) (g) SD output from (c) (h) SD output from (d)

Figure 1: The split-diffuse (SD) algorithm takes the output of any dimension reduction technique and dis-
tributes the data points evenly while maintaining the topology among them. Example inputs of 64 data
points from (a) 2D t-SNE, (b) 2D MDS, (c) 3D t-SNE and (d) 3D MDS are distributed evenly in the same
space as shown in (e)-(h) respectively.

Algorithm 1 Split-diffuse algorithm (square of power of 2)

Input: data points {p} of length 2h × 2h, depth d = 0,
allocation string c = ''

split-diffuse ({p}, d, c)
k ← length of {p}
if k = 1, then

resolve S(p) from c
return p

end if
a← mod(depth, 2)
m← median of {p} in the dimension a
return ([split-diffuse ({p : p ≤ m|dim=a}, d+1, c+'L')],

[split-diffuse ({p : p > m|dim=a}, d+1, c+'R')])

in x- and y-dimension iteratively, until there is only one
point in current recursion.

We keep track of the splitting path in string c. At the
end of the recursion, the placement each single point p is
resolved. The indexes of the SD-mapped points, S(p), are
all integers, and forms a 2h× 2h array. This means that the
mapped data points are equally spaced in a 2h × 2h square.
To achieve this uniformity in the space L, the data points
are essentially diffused from the denser area to the coarser
area by the SD algorithm — hence the name split-diffuse.

Some sample outputs from existing dimension reduction
techniques are shown in Figure 1, as well as the correspond-
ing SD outputs. Although we only present the results from
t-SNE and MDS, the SD algorithm can be applied to out-
puts of other techniques such as the principal component
analysis (PCA) [3], isomap [4], spectral embedding [1], and
totally random trees embedding [2].

(a) first-level split (b) second-level splits

Figure 2: The split-diffuse algorithm over the 4 × 4
layout.

3. INTERACTING WITH THE DATA
The motivation to better utilize the visual space comes

from the need to interact with massive amount of data. Con-
sider the case that there are millions of items being shipped
to a city every month. How can we easily observe the dif-
ference in the monthly shipping patterns? When vectoring
each item as a data point, putting all the data points on a
chart makes the chart hard to read. Instead, using clustering
algorithms to group the points and showing the representa-
tives is a better way to present the shipping pattern. Still,
with the existing dimension reduction techniques (Figure 1
(a)-(d)), it is difficult to visually compare the difference and
interact with the representative points for more detail.

In our use case, we apply the SD algorithm to help ana-
lyzing behavioral content in the cyber security domain. The
goal of the system is to detect behavioral anomaly based
on the access logs. Topics are generated on the content of
the logs in a word vector space of 19K+ dimensions. MDS
is applied to reduce the dimension. As shown in Figure 1
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(a) current activities of
an entity

(b) historical activities
of this entity

(c) risk against the his-
torical activities of this
entity

(d) historical activities
of the peers

(e) risk against the his-
torical activities of the
peers

Figure 3: The topic grids. The self risk in (c) is derived from comparing the current activities (a) and
the historical activities (b) of a specific entity. The peer risk in (e) is derived from comparing the current
activities (a) and the peers’ activities (d) of a specific entity.

(b) and (f), topics are represented by the most relevant key-
words, encrypted. Topics close to each other may share the
same representative keyword. The SD algorithm follows to
generate the topic grids and visualize different metrics about
the behavior of a user (Figure 3).

When not directly displaying the detail keywords about a
topic, the topic grids requires less space. At the same time,
the human expert still can easily keep track of the topics
based on their indexes over all dimensions and compare the
difference between different sets of topic grids. Human inter-
action, which is the ultimate goal of the uniform placement
of the data points, can be done more easily on the topic grids
than on the raw dimension reduction output as in Figure 1
(a)-(d). For example, the mouse over event on a grid pops
up the topical summary, and the click event to overlay the
detailed topical activities.

It is also useful to monitor the behavior change over time.
In such cases, we reserve a dimension in L as the time axis.
For a 2D space L, a 1D version of SD algorithm is applied to
maintain the point-wise topology. The cumulative activities
have a shape of curtain. Meanwhile, we can pile up the
2D topic grids on the time axis over the 3D L, as shown in
Figure 4. With normal or usual behavior, it is expected to
see the consistent hot grids at the same locations over time.

4. FUTURE WORK
In addition to the cyber security domain, the topic grids

can be applied to other domains having free-form text logs
to analyze the behavior described by the logs. Some pos-
sible use cases include e-commerce, credit card transaction,
customer service, or others with large volume of behavioral
data to be analyzed.

It is also possible to apply the topic grids to the struc-
tured data, on which an arbitrary clustering algorithm can
generate cluster centers. The data points are then organized
into these cluster centers, the same way we use the topic to
represent the log entries related to it.
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(a) Topic curtain

(b) Topic shower

Figure 4: Other formats of the topic grids
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ABSTRACT 

Techniques for analyzing and visualizing process or workflow data 

have been developed and applied in a wide range of domains. 

Visual analysis of large process logs and integration of statistical 

analysis, however, have been limited. We introduce the Visual 

Interactive Tool for Process Log Analysis (VIT-PLA) that provides 

a simplified process log visualization and performs statistical 

correlation analysis on process attributes. We demonstrate its use 

by applying it to an artificial dataset and running a preliminary 

analysis of trauma team task data collected from a medical 

emergency department. 

Keywords 

Interactive Workflow Data Visualization; Trace Alignment; Trace 

Clustering; Correlation Analysis 

1. INTRODUCTION 

1.1 Motivation 
Many contemporary information systems record activity logs, 

including personal calendars and electronic health records (EHR). 

Process mining techniques attempt to extract non-trivial knowledge 

and insights from these activity logs and use them for further 

analyses [1]. Most research in process mining has focused on 

workflow discovery and process execution visualization [1][2]. 

Whe visualized, real-world workflow often produces “spaghetti-

like” graphics that are difficult to analyze and do not provide useful 

observations or insights. In addition to graphical visualization, 

other efforts have also been made to produce different 

visualizations for process executions or workflow data 

[3][4][5][6][7][8][9]. Although these systems have been shown to 

work well with focused processes and relatively small event logs, 

little work has been done with large process logs with many 

execution traces (typically hundreds or thousands of different 

process cases). Simply displaying all traces at once does not make 

a useful visualization. We observed that only several dozen traces 

can fit intelligibly on one screen at a time. Even if the symbols were 

distinguishable, the amount of displayed data make it inconvenient 

for human interpretation. When working with large workflow 

datasets, it is often useful to obtain a concise visualization that 

summarizes the data into an easily interpretable format. We present 

an approach for visualizing a summary of large process logs by 

aggregating the data with a trace clustering method. Process traces 

are clustered based on the similarity or proximity between their 

elements (i.e. process tasks). Each cluster is represented using a 

“representative” or “average” trace extracted from the 

corresponding cluster. Using this approach, we are able to usefully 

visualize large process logs. To help users better understand the 

clusters, we also included tools for running statistical tests on the 

clusters and their associated process attributes. These statistical test 

results can reveal  significant and interesting correlations between 

process executions and process attributes. We implemented these 

approaches in a Java-based application, named VIT-PLA. 

1.2 Related Work 
Recent advances have been made in the development of workflow 

data visualization techniques. EventFlow [3] visualizes temporal 

events on a timeline and can simplify workflow executions into an 

aggregated display. Outflow [5] aggregates events into a graph with 

integrated statistics. Frequence [6] and Care Pathway Explorer [7] 
are user interfaces for information exploration that integrate 

interactive visualizations with data mining to find frequent event 

sequence patterns. Dotted Chart [8] uses colored dots to visualize 

process traces in a fast and simple implementation. The trace 

alignment plugin for the ProM framework [9] is designed to align 

process traces so as to optimize interpretability and facilitate 

exploration. Despite extensive work on interactive visualization, 

little has been done to directly integrate statistical analysis into 

these applications. Some data visualization applications can show 

general statistics [5][8], but few can provide more sophisticated 

ones [4]. CoCo [4] can be used to find similarities and differences 

between two groups (“cohorts”) of process traces and to highlight 

their significant distinguishing features (e.g. activity order, 

frequency, and duration). 

From the perspective of workflow visualization, Eventflow [3] and 

ProM’s Trace Alignment [9] plugin are closest related to our work. 

Neither are suitable for visualizing large process logs with many 

traces, because both visualize all activities in the log at once. 

Without data aggregation and summarization strategies, the size of 

the dataset that can be handled is always limited. From our previous 

experience with Eventflow and ProM, visualizations using a 

standard sized computer monitor (24") generally become 

uninterpretable when the number of unique process traces exceeds 

100. EventFlow can be used to visualize logs with >100 process 

traces, but only if there are many repeated traces [21]. Eventflow 

visualizes the activities on a timeline without advanced processing 

of the data. ProM visualizes the alignment and also clusters the 
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process traces, but does not provide any statistical analyses that can 

help the user better understand their data. When visualizing clusters 

of process traces, ProM shows all traces in each cluster without any 

data aggregation or simplification. In contrast, our approach 

displays each cluster’s cluster “prototype” [8], i.e., an execution 

trace that is representative of the other traces in the cluster (the 

representative trace is not necessarily one of the original process 

traces in the input log). This strategy enables visualization of large 

process logs. This visualization also helps to identify key 

characteristics of each cluster and key differences between clusters. 

From the perspective of statistical analysis, CoCo is closest related 

to our work. Both CoCo and VIT-PLA seek to correlate trace 

structural features (e.g., sequential order of activities, their 

frequencies and durations) with process attributes (e.g., patient 

gender, age, etc.). The two approaches to statistical analysis are 

different (Figure 1). CoCo first splits the data into strictly two 

cohorts based on a background attribute (in this case gender). It 

then finds significant associations between the cohorts’ trace 

structures and attributes. It may identify a structural pattern (e.g., 

“Washing Face  Makeup”) as significantly belonging to one 

cohort (female), as opposed to the opposite (male). In contrast, our 

implementation first separates the data into clusters based on trace 

structure, and then associates cluster membership with background 

attributes. For example, the sequence “Washing Face  Makeup” 

is executed mostly by females over age 16. 

Unlike CoCo that can only make these associations based on cohort 

pairs, our system uses multinomial or binomial logistic regression 

to make associations based on multiple clusters. VIT-PLA allows 

for more comprehensive attribute-structure correlation, bringing 

the previously unusable age attribute into the analysis (see example 

above [Figure 1]). In this way, VIT-PLA’s approach reveals 

potential relationships missed by CoCo’s binary analysis. 

Our statistical analysis is important because it facilitates the 

discovery of significant correlations between clusters and 

background attributes. Given the trace attributes, we may determine 

what workflow practices (represented by the cluster prototype) are 

more likely to be observed, which is useful information for 

analyzing the workflow data and extracting insights. 

1.3 Contribution 
Our main contribution is a novel approach to producing 

summarized visualizations of large process logs and directly 

integrating statistical analyses into the visualization. These features 

help users discover attributes associated with specific sequence 

progressions and deviations within the dataset. 

The paper is organized as follows. Section 2 introduces our 

approach to process trace visualization and attribute analysis. 

Section 3 discusses our implementation and user interface design. 

Section 4 shows preliminary results from using VIT-PLA on an 

artificial dataset and a trauma resuscitation process log. Section 5 

summarizes the paper and discusses the limitations of our current 

work. 

2. METHODOLOGY 
The core methods implemented in VIT-PLA can be summarized as 

follows (Figure 2): (1) clustering of process traces (workflow data) 

based on proximity of data objects, (2) aggregation of process 

traces and selection of cluster prototype, (3) regression analysis to 

explore underlying knowledge, (4) interactive visualization of 

process traces and statistical analysis results. This section will 

describe (1), (2), and (3); (4) will be discussed in Section 3. 

2.1 Data Preprocessing: Sequencing of Traces 

Process sequencing is necessary before more advanced processing. 

Activities coded in a process log usually have start and end 

timestamps (some logs may not include end time) for each activity. 

Idle time may exist between activities, and some activities may be 

executed concurrently (Figure 3(a)). In process mining, process 

traces are usually sequenced by ascending order of the start time of 

activities (Figure 3(b)). 

2.2 Summary Visualization of Process Logs 

2.2.1 Process Trace Clustering 
Our approach uses clustering techniques to simplify the process 

trace visualizations. Clustering provides an abstraction from the 

original data objects to generalized data representatives, i.e. cluster 

prototypes. In most data mining problems, data clusters are 

calculated based on the data objects’ feature set. However, to 

aggregate process traces that follow an underlying workflow 

model, we cluster the traces based on the similarity of their 

   

Figure 2. Flowchart outlining the core methods implemented 

in VIT-PLA and their corresponding inputs and outputs. 
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Figure 3. Two steps of sequencing the traces with concurrent 

activities (such as d in T1 and c in T2) and idle times (white 

spaces between activities). (a) Example process traces before 

sequencing. (b) The same process traces after sequencing. 

T1 a b c d d

T2 a b c c a d

d
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time

concurrent activities
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Step 1: Reorder concurrent activates
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Figure 1. A simple example showing the differences between 

the statistical analysis in CoCo and VIT-PLA. This example 

describes a morning skincare ritual. The workflow includes 

three different activities (washing face, makeup, and shaving) 

and two different attributes (gender and age). 
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constituent tasks in terms of task type and sequential order of 

execution [10]. That is to say, our sole feature used for clustering is 

the structure of each trace’s task sequence, not the process 

attributes. 

In VIT-PLA, the clustering algorithm we use is agglomerative 

hierarchical clustering [15] with Ward’s method [22] as clustering 

criterion. We calculate the similarity of process traces based on Edit 

Distance [8] (a.k.a. Levenshtein Distance [11]). If activity duration 

information is also available, the similarity can be calculated with 

“Duration-Aware Edit Distance” [16], a metric derived from Edit 

Distance that penalizes dissimilarity between durations of the same 

activity type. 

2.2.2 Cluster Prototype and Trace Alignment 
After clustering, each cluster can be characterized by a cluster 

prototype (Figure 4). Because it is not practical to visualize all the 

data objects on a single computer screen, a substantial reduction in 

the data size is needed. The deployment of cluster prototypes helps 

compress the dataset. 

Several candidates can be considered as cluster prototype, such as 

the widely-used cluster centroid [14], the center of a cluster. There 

is, however, a great chance that there may not be an actual data 

point at the cluster’s center. In this case, the centroid location is 

calculated from the data in the cluster with the aim of minimizing 

the sum-squared distance to other points. 

Note that for categorical data and event-based data, the notion of a 

center (centroid) does not apply [14]. For example, the centroid of 

categorical data (e.g. {orange, apple, banana}) cannot be 

determined. In this case, we may use the cluster medoid, the most 

representative data object in the cluster, i.e. a data point with 

minimal average dissimilarity to all other objects in the cluster. The 

medoid, however, may not be adequate if the cluster does not 

contain an “appropriate” representative. 

To ensure that the chosen sequence is representative of the cluster, 

we used the consensus sequence as the cluster prototype even 

though it may not be an observed trace from the data. The 

consensus sequence, a concept derived from aligning biological 

sequences (e.g. DNA) in bioinformatics, is a sequence of the most 

frequent residues found in the alignment matrix’s columns. In 

process mining, consensus sequences may be considered the 

“average” or “common” sequence of tasks [9] (Figure 5). To find 

the consensus sequence for each cluster, trace alignment [9][16] 

needs to be performed using traces from each cluster respectively. 

Trace alignment reformats the original data by placing the same or 

similar activities of all traces to the same column of the alignment 

matrix. If a matching activity cannot be found, a gap symbol “-” is 

inserted. Bose and Van der Aalst [9] have shown how to use trace 

alignment techniques to visualize and analyze process traces 

(Figure 5(a)). In our previous work, we extended their work by 

introducing a duration-aware trace alignment algorithm [16] that 

also takes activity duration into consideration. In our 

implementation, the alignment algorithm can work for data either 

with or without activity durations (Figure 5). 

2.3 Association between Trace Clusters and 

Trace Attributes  
In addition to visualization, VIT-PLA also provides statistical 

analysis functions. The goal of our statistical analyses is to help the 

user discover the underlying associations between data cluster 

membership and trace attributes. This goal is accomplished using 

either multinomial or binary logistic regression. The user chooses 

between these two statistical methods depending on the domain 

question being asked. Multinomial logistic regression works for 

binary comparison between two clusters (one-vs.-one cluster 

comparison), while binomial logistic regression works for binary 

comparison between one cluster and the rest of the clusters (one-

vs.-rest). Using both logistic regression models can help discover 

attributes associated with particular clusters. 

2.3.1 Multinomial logistic regression  
In multinomial logistic regression [12], let K denote the number of 

independent variables, and let J denote the number of discrete 

categories of the dependent variable, where J ≥ 2. In our case, the 

independent variables correspond to the trace attributes and the 

dependent variables correspond to the trace cluster membership. 

The number of trace attributes is K and the number of clusters is J. 

By default, we define the last category (the Jth cluster) to be the 

reference category, against which logits of the first J−1 categories 

are compared. Let C denote cluster membership. Represented 

formally: 

ln (
𝑃(𝐶=𝑖)

𝑃(𝐶=𝐽)
) = ln (

𝑃(𝐶=𝑖)

1− ∑ 𝑃(𝐶=𝑗)𝐽−1
𝑗=1

)  =  𝛽𝑖0 +  𝛽𝑖1𝑥𝑖1 + 𝛽𝑖2𝑥𝑖2 + ⋯ +

 𝛽𝑖𝐾𝑥𝑖𝐾 ,         𝑖 = 1, … , 𝐾 − 1    (1) 

where 𝑥𝑖 are trace attributes, and 𝛽𝑖 are regression coefficients for 

each of the trace attributes. In VIT-PLA, users can also choose 

which cluster to use as the reference category. 

2.3.2 Binomial logistic regression 
Binary logistic regression [12] is a special case of multinomial 

logistic regression, in which there are only two categories (J = 2). 

In our problem, one category is the target cluster of interest and the 

other category is all other clusters. Let K denote the total number 

of independent variables and C denote cluster membership. 

Represented formally: 

 
Figure 4. An example showing data clustering and aggregation. 

The cluster prototype used here is cluster medoid. 

1 A B C D E

2 A B B D E

3 A B D E

4 A B D E

5 A B C D D E

6 B A C D

7 B A C D E

8 B A D E

9 E C D

10 E B C D

1 A B C D E

2 A B B D E

3 A B D E

4 A B D E

5 A B C D D E

6 B A C D

7 B A C D E

8 B A D E

9 E C D

10 E B C D
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Cluster 3

Cluster 1 (5) A B D E

Cluster 2 (3) B A C D E

Cluster 3 (2) E C D

Cluster Prototype (Medoid)
Clustering Aggregate

Input Process Log

 
Figure 5. An example of two types of trace alignment: 

(a) Context-Aware and (b) Duration-Aware. The sequences at 

the bottom of (a) and (b) are consensus sequences derived from 

the data. A gap symbol “-” or white space is inserted if a match 

cannot be found. The five process traces shown here are from 

Cluster 1 in Figure 4. 
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ln (
𝑃(𝐶=𝑖)

𝑃(𝐶≠𝑖)
) = ln (

𝑃(𝐶=𝑖)

1− 𝑃(𝐶=𝑖)
) =  𝛽𝑖0 +  𝛽𝑖1𝑥𝑖1 + 𝛽𝑖2𝑥𝑖2 + ⋯ +

 𝛽𝑖𝐾𝑥𝑖𝐾 ,         𝑖 = 1, … , 𝐾    (2) 

where the parameters have the same meaning as in Eq.1. 

2.3.3 Hypothesis Test 
To identify which trace attributes are significantly associated with 

cluster membership, we use the Wald test [13] for logistic 

regression, which is defined as: 

𝑊 =  
(𝛽̂𝑖 − 𝛽𝑖)

𝑠𝑒̂(𝛽̂𝑖)
 

where 𝛽̂𝑖 is the regression coefficient for trace attributes 𝑥𝑖; 𝛽𝑖 = 0 

is the null hypothesis, i.e. the trace attribute 𝑥𝑖 has a corresponding 

coefficient of zero; 𝑠𝑒 is standard error. In our implementation, we 

use a normal distribution and 𝓏-values for calculating p-values. The 

null hypothesis can be rejected when p-value is less than or equal 

to alpha, the significance level which is most often set at 0.05. 

3. VISUAL INTERFACE DESIGN 
During software development, we received feedback from domain 

experts and continuously improved our design. In this section, we 

describe the first prototype of VIT-PLA. The visual interface 

design (Figure 6) was developed with three main goals: 

G1. Interactive visualization of raw process traces, the basic 

visualization functionality. 

G2. Simplified visualization of process traces (for large data 

applications).  

G3. Visualization of trace cluster vs. trace attribute association 

statistics.  

Although VIT-PLA has many other functions, the rest of this paper 

focuses on how its design achieves these three goals. 

3.1 G1: Three Common Ways to Visualize 

Raw Process Traces 
VIT-PLA provides three common ways of visualizing raw process 

traces. We refer to the data as “raw process traces” to distinguish 

goal G1 from G2, where the data is visualized in an aggregated 

format. The three visualization methods are: 

1) Simple stack of activities in the process traces (Figure 7(a) 

without activity duration, and Figure 7(b) with activity 

duration). This approach is one of the simplest ways to 

visualize process traces. Activities are stacked based on their 

occurrence time. Activity information can be accessed with a 

mouse click on the corresponding symbol. This visualization 

is easily interpretable and computationally efficient, but it 

cannot provide deep insights into the data.  

2) Overlay of the process execution on the timeline (Figure 8). 

Activities are scaled based on duration and aligned to the 

timeline according to their start and end times. The advantage 

of this visualization approach is that it clearly shows the 

concurrent activities in each process. 

3) Process trace alignment (Figure 9(a) context-aware alignment 

and Figure 9(b) duration-aware alignment). The context-

aware trace alignment algorithm is based on Bose and Van der 

Aalst’s work [9] and the duration-aware trace alignment 

algorithm proposed in our previous research [16]. The 

duration of each activity in the consensus sequence (bottom 

 

Figure 6. VIT-PLA Graphical User Interface showing aggregated data, hierarchical clustering results, and statistics from the 

multinomial logistic regression analysis. The data shown here is the same as the data in our 2nd case study. Please note that there are 

other functions of VIT-PLA that are not displayed in this figure. 
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line of Figure 9(b)) of duration-aware trace alignment is the  

mean activity duration of the corresponding column. 

Compared with the previous two visualizations, the alignment 

view makes it easier to interpret process traces and extract 

insights. When considering algorithm execution time, our 

previous research found that for a moderately-sized dataset 

(e.g. 50,000 activities, ~1,000 traces and ~50 activity for each 

trace), the alignment can be effectively calculated in 25.5±1.5 

seconds [16]. This time is not instantaneous (which would be 

ideal), but is still reasonable.  

3.2 G2: Simplified Visualization of Process 

Traces 
The first interactive visualization feature in G2 is the selection of 

cluster number (clicking button   in Figure 6 and inputting cluster 

number k in the pop-up dialogue). A hierarchical tree structure with 

k clusters will be shown at the bottom panel (Figure 6 and Figure 

10) where the non-leaf (a.k.a. internal) nodes show the current 

height (a.k.a. depth) and process traces included under this node. k 

leaf nodes correspond to the k clusters and display all the process 

IDs in the cluster. 

After clustering, each cluster is represented with its own cluster 

prototype. By default, the cluster prototypes are visualized as 

activity stacks (Figure 11). The prototypes can also be visualized in 

alignment view (Figure 6 and Figure 12) by clicking on the button 

“Align Cluster Prototype” ( in Figure 6). Another interactive 

function allows the user to check the pre-aggregated traces under a 

certain cluster. This feature may be accessed by clicking on the 

buttons showing the cluster information ( in Figure 6). 

3.3 G3: Visualization of Statistics of Trace 

Clusters vs. Trace Attributes. 
Users can access statistics of trace clusters and trace attributes by 

clicking on the button “Multi-Logistic Regression” ( in Figure 6) 

 
Figure 15. Simplified visualization of raw process traces. Each 

row is a cluster’s prototype. The information in the white block 

before the prototypes shows the cluster ID that each prototype 

represents and the number of process traces in that cluster. (a) 

Cluster prototypes are consensus sequences calculated from 

context-aware alignment (Figure 9(a)); (b) Cluster prototypes 

are consensus sequences calculated from duration-aware 

alignment (Figure 9(b)). The data comes from Figure 4. 

 

 
Figure 16. Alignment view of the cluster prototypes in Figure 

15(a). The data comes from Figure 4.  

 

 
Figure 17. Statistics for regression coefficients 

 

 

 

 

 
Figure 11. Simple stack (a) Process executions are stacked (b) 

Process executions are stacked and symbol blocks are scaled 

based on activity duration. Each row represents a single trace 

and each block represents a single activity. The data comes 

from Cluster 1 in Figure 4. 
 

 
Figure 12. Visualize process traces on a timeline. The top scale 

is the timeline with second as the unit. Each row, separated by 

a bold line, represents a single process. Each block represents 

a single activity. Symbol blocks that are vertically stacked in 

one process are activities occurring simultaneously. The data 

comes from the input log in Figure 4. 

 

 
Figure 13. Alignment (a) Process trace alignment (b) Duration-

aware trace alignment. Each row represents a single process 

and each block represents an activity. The bottom line of each 

figure is the consensus sequence. Dashes or spaces are 

introduced to achieve alignment of the activities. The data 
comes from Cluster 1 in Figure 4. 

 

 
Figure 14. Hierarchical Tree Structure (we cited the same 

source code from ProM [9] here and made modifications 

showing only the number of clusters specified by the user). The 
result is based on the data in Figure 4.  

 

 

(a) (b)
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or on “Binomial Logistic Regression” (  in Figure 6). The number 

of clusters is decided by the user. The significance tests for trace 

attributes on trace clusters (p-value statistics) are shown in a chart 

(  in Figure 6, JFreeChart library [18] is used). The horizontal 

axis represents the p-value, while the vertical axis represents the 

trace attributes. The p-value of different clusters is denoted with 

different shapes and colors. Because alpha = 0.05 is widely used as 

the significance level, we placed a highlighted line at this level. 

When performing multinomial logistic regression, the reference 

category is set to the last-numbered category by default. Users, 

however, may change the reference category manually ( in Figure 

6). In addition to p-values for each trace attribute, the regression 

coefficients of the logistic regression model are also listed in a table 

( in Figure 6 and Figure 13).  

3.4 Additional supportive functions 
In addition to the three main goals, VIT-PLA also includes several 

useful supportive functions. The Activity Filter ( in Figure 6) 

allows the user to include and exclude activities in the visualization 

and analysis. The Color Map ( in Figure 6) allows the user to 

recolor the activity symbols. The Zoom Slider ( in Figure 6) 

enables the user to resize the activity symbols in the visualization 

panel (the sliders in the top-right corner control the size of the 

activity symbols). 

4. PRELIMINARY CASE STUDY 

4.1 Case Study I: Artificial Data 

4.1.1 Data Description 
This dataset was artificially generated using the Process Log 

Generator (PLG) [17]. It includes 500 process traces consisting of 

10 different activity types. The drawback of this artificial data is 

that it does not have background attributes associated with each 

process trace. For this reason, we only focus on the simplification 

of trace visualization when using this dataset. 

4.1.2 Results and Discussion 
The visualization of 500 process traces without data aggregation 

strategies can lead to extremely large and complex visualization 

results (Figure 14(a)). When represented this way, the symbols are 

too small to identify, making it difficult to extract useful 

information. To improve visualization, we used clustering to 

aggregate the original dataset into a small number of representative 

process traces (Figure 14(b). In this example, we arbitrarily chose 

10 clusters, a manageable number of clusters to understand). The 

visualization becomes clearer when put into the alignment view 

(Figure 14(c)). From these two simplified visualizations (Figure 

14(b) and Figure 14(c)), it is easy to extract some interesting 

insights: (1) the sequential order of consensus tasks (tasks that 

occur more than or equal to 50% in the column) is “ACEGFDHIB”; 

(2) the pattern “HIJ” is repeated in two of the ten clusters (cluster 1 

and cluster 2); (3) activity C is performed late in one cluster (cluster 

5); and (4) activity D is performed late in one cluster (cluster 3) and 

omitted in another (cluster 7). 

 
Figure 18. Visualization of artificially generated dataset. (a) Alignment view of all 500 process traces; (b) Simplified visualization of 

500 process traces using 10 cluster prototypes; (c) Alignment view of 10 cluster prototypes.  

 

(a)

(b)

(c)
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4.2 Case Study II: Trauma Resuscitation 

Workflow Data 

4.2.1 Data Description 
We used a trace log obtained from video analysis of 171 child 

trauma resuscitations between May and August 2013 at Children’s 

National Medical Center in Washington, DC. An event log of five 

activities typically performed during the initial evaluation was 

created and used as the dataset for this case study. We obtained the 

workflow model for these activities from domain experts (Figure 

15(a)). Activities “Airway, Breath, Circulation” follow a sequential 

order. Activities “GCS” and “Pupil check” are parallel and should 

be performed after the previous three activities. We also obtained 

from the medical chart review several patient and resuscitation 

attributes (including pre-hospital triage level, the resuscitation’s 

time of day and day of week, Injury Severity Score [ISS], 

and patient admission status after the resuscitation) (Table 1). This 

dataset is not a “large process log,” but we chose it for our 

preliminary analysis to demonstrate how our approach can be 

integrated with medical domain knowledge. 

4.2.2 Results and Discussion 

4.2.2.1 Data Interpretation from Visual Analysis 
Four cluster prototypes were generated (Figure 15(b) and (c)). 

Prototypes of clusters 1 and 3 conform to our expert model, but 

clusters 2 and 4 do not. From the alignment view of prototypes, we 

can observe that the sequential order of activity GCS (G) and pupil 

assessment (P) is interchangeable, which conforms with the parallel 

structure in our expert model. Visualizations of pre-aggregated 

traces for each prototype are not displayed, but users can visualize 

the traces by clicking on the cluster button at the front of each row 

(Figure 15(b) and (c)). 

With the attribute data for these process traces, we can perform 

statistical analysis to explore the underlying correlation between 

the trace attributes and trace cluster membership. The following are 

examples of the statistical findings, followed by feedback from 

domain experts: 

Observation #1: Attribute “Daytime Event” is statistically 

significant (p-value = 0.021, red square point in row “Daytime 

event” in Figure 15) for cluster 1. The regression coefficient of 

Daytime Event is 1.108 (Figure 13). This attribute is statistically 

significant because the proportion of data objects that have this 

feature (daytime = 1) in this cluster is 12/31 (68%), while the 

proportion of data objects that have this feature (daytime = 1) in the 

reference category (all other cluster) is 71/140 (51%). 

Observation #2: Attribute “Daytime Event” is statistically 

significant (p-value = 0.017, blue circle point in row “Daytime 

event” in Figure 15) for cluster 2. The regression coefficient of 

Daytime Event is −1.375 (Figure 13). This attribute is significantly 

significant because the proportion of data objects that have this 

feature (daytime = 1) in this cluster is 6/19 (31%), while the 

proportion of data objects that have this feature (daytime = 1) in the 

reference category (all other cluster) is 86/152 (57%).  

Medical expert feedback: For the care of injured patients, 

improved outcomes are associated with compliance with the 

Advanced Trauma Life Support model [19], represented here as the 

expert model. We find that one cluster (cluster 1) whose cluster 

prototype follows the model occurs more often during the day and 

another cluster (cluster 2) whose cluster prototype deviates from 

the model occurs more often at night. This association finding 

supports previous work showing decreased compliance with 

trauma protocols at night [20]. 

4.2.2.2 Domain Expert Feedback on VIT-PLA 

Design: 
To evaluate the quality of our design, we had two medical domain 

experts evaluate a prototype of VIT-PLA. Both positive and 

negative feedback was received. 

Both domain experts liked the visualization’s flexibility and 

interactivity. They found that its data clustering, activity filtering, 

symbol resizing, and recoloring functions were very useful. They 

Table 1 Process trace attributes 

Attribute List  Values 

Weekend Event  1 0  

Daytime Event  1 0  

ISS Score  <15 ≥15  

Activation 

Levela 

 Attending 

Stat 
Stat Transfer 

EDDISPGroupb  Non-

critical 

Admission 

Critical 

Admission 
Discharged 

a. Activation level = pre-hospital triage level 
b. EDDISPGroup = admission status of patients after ED care 

 

  
Figure 19. (a) Workflow model (drawn based on BPMN) given by domain expert describing the initial evaluation of trauma, (b) 

Simplified visualization of 171 traces using four cluster prototypes, (c) Alignment view of four cluster prototypes (d) p-value for 

binomial logistic regression coefficients  

 

(a)

(b) (c) (d)
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were also found that with the knowledge uncovered by the 

program’s statistical analysis was useful. One domain expert found 

it useful to switch between the aggregated data and the original 

traces, and also commented on the helpfulness of the cluster’s 

“average sequence”. 

Most negative comments focused on our approach for statistical 

analysis. One domain expert felt that data-driven clustering 

approach lacked consistency because its result varied when 

different clustering algorithms or similarity metrics were used. 

Also, the domain expert found that some small clusters did not have 

sufficient data to support the statistical hypothesis test correlating 

trace clusters and trace attributes. 

5. SUMMARY AND FUTURE WORK 
As process mining finds increased usage in many domains, visual 

analytic tools for process sequences are in high demand. We 

introduced VIT-PLA, a visual and interactive workflow data 

analysis tool that is able to visualize large process logs. With these 

visualizations and integrated statistical testing, VIT-PLA is able to 

obtain results not revealed by simple observation. 

The limitation of our current work is that we only implemented the 

hierarchical clustering approach with two process trace proximity 

metrics. In our future work, we will evaluate other clustering 

algorithms (e.g. KNN, feature-based k-means, HMM-based 

clustering). Also, the determination of cluster number, a typically 

non-trivial task, is still manual. In the future, we plan on building a 

function that suggests cluster number based on some cluster metric. 
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