

CrowdLearner: Rapidly Creating Mobile Recognizers
Using Crowdsourcing

Shahriyar Amini*
Carnegie Mellon University

Pittsburgh, PA
shahriyar@cmu.edu

Yang Li
Google Research

Mountain View, CA
yangli@acm.org

ABSTRACT
Mobile applications can offer improved user experience
through the use of novel modalities and user context. How-
ever, these new input dimensions often require recognition-
based techniques, with which mobile app developers or
designers may not be familiar. Furthermore, the recruiting,
data collection and labeling, necessary for using these tech-
niques, are usually time-consuming and expensive. We pre-
sent CrowdLearner, a framework based on crowdsourcing
to automatically generate recognizers using mobile sensor
input such as accelerometer or touchscreen readings.
CrowdLearner allows a developer to easily create a recogni-
tion task, distribute it to the crowd, and monitor its progress
as more data becomes available. We deployed
CrowdLearner to a crowd of 72 mobile users over a period
of 2.5 weeks. We evaluated the system by experimenting
with 6 recognition tasks concerning motion gestures, touch-
screen gestures, and activity recognition. The experimental
results indicated that CrowdLearner enables a developer to
quickly acquire a usable recognizer for their specific appli-
cation by spending a moderate amount of money, often less
than $10, in a short period of time, often in the order of 2
hours. Our exploration also revealed challenges and pro-
vided insights into the design of future crowdsourcing sys-
tems for machine learning tasks.

Author Keywords
Crowdsourcing; crowdsensing; mobile interaction; gesture
recognition; activity recognition; machine learning.

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; H.5.2 [Information Interfaces And Presentation]:
User Interfaces; I.5.2 [Pattern Recognition]: Design
Methodology.

INTRODUCTION
Mobile users experience diverse interaction scenarios
throughout everyday activities. These diverse scenarios call
for novel input modalities and the use of context to provide
users with intuitive and fast access to their mobile re-
sources. Such interaction techniques often involve recog-
nizing user context and intentions from mobile sensory in-

put, such as accelerometer readings. However, creating
recognizers is a time-consuming and expensive feat, often
requiring expert knowledge in machine learning. This is
beyond the reach of many developers. Thus, it is important
to investigate how to empower developers to rapidly create
recognizers for improving mobile user experience. ∗

Several off-the-shelf machine learning tools such as Weka
[28] and GART [27], and lightweight recognition algo-
rithms such as the $1 recognizer [29] have gained traction
with developers and researchers. However, these tools often
act more as libraries or even source code that do not encap-
sulate the complexity of creating recognizers from develop-
ers. High-level tools, such as Gestalt by Patel et al., have
been developed for using and understanding machine learn-
ing techniques [20]. Though promising, prior work has of-
ten left out data collection, a critical but time-consuming
and labor-intensive step for producing efficient recognizers.

In this paper, we present CrowdLearner, a framework that
employs crowdsourcing to enable an end-to-end solution
for generating recognizers for mobile interaction. These
recognizers, referred to as mobile recognizers, take in built-
in mobile sensor input such as touchscreen events or accel-
erometer readings and infer target user actions, such as ges-
tures or physical activities. CrowdLearner allows non-
expert users (such as mobile app developers, researchers,
and interaction designers), referred to here as developers, to
easily create mobile recognizers by creating a recognition

* This work was done while the author was an intern at Google Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the owner/author(s). Copyright is held
by the author/owner(s).
UIST’13, October 8–11, 2013, St. Andrews, United Kingdom.
ACM 978-1-4503-2268-3/13/10.
http://dx.doi.org/10.1145/2501988.2502029

Figure 1. A developer submits a task and provides funds to run

it on CrowdLearner. CrowdLearner publishes the task and
compensates mobile workers who answer questions and label
samples. CrowdLearner continuously builds and updates a
recognizer and presents its performance to the developer.

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

163

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2501988.2502029&domain=pdf&date_stamp=2013-10-08

task and publishing it to mobile users, referred to here as
workers (see Figure 1). Through CrowdLearner’s web inter-
face, a developer can create a recognition task by specifying
a set of targets for recognition (i.e., classes in machine
learning), the sensor inputs to use, data collection strategies
and the amount of funds allocated for the task. With a high-
level task description, CrowdLearner automatically deter-
mines the technical details for constructing the recognizer
and scheduling data collection. CrowdLearner then collects
and labels samples by relying on the wisdom and scale of
the crowd, generates a recognizer, evaluates it, and presents
its accuracy to the developer as the recognizer evolves with
additional data collection. Once satisfied, the developer can
export the recognizer for use in the intended application.

Our focus in this paper is to design and experiment with
new frameworks and methods for creating mobile recogniz-
ers using crowdsourcing, instead of focusing on specific
details such as featurization and classification techniques.
This paper makes the following contributions:

First, we present an end-to-end framework for developers to
rapidly create mobile recognizers that are specific to their
tasks by ordering them. In doing so, we eliminate the over-
head of recruiting and data collection, and reduce the need
for expert knowledge of machine learning.
Second, we demonstrate two strategies as well as the sup-
porting UI for collecting training data in the wild: partici-
patory and opportunistic sampling, which complement tra-
ditional, laboratory-based data collection by allowing a
more diverse and realistic set of observations. We also pro-
vide a collaborative temporal sampling model to further
improve opportunistic sampling.
Finally, through deploying and experimenting with
CrowdLearner, we reveal how developers and crowd
workers reacted to this kind of system, and provide insights
into designing such systems in the future.

RELATED WORK
Crowdsourcing has been used in the past to accomplish
complex tasks by reducing them to smaller ones and vali-
dating the results from the crowd. Bernstein et al. use a
Find-Fix-Verify approach to bring the wisdom of crowds to
word processing [2]. Kittur and Kraut explore crowd-
sourcing with respect to creation of Wikipedia articles [15].
Heer and Bostock use crowdsourcing to assess visualization
design [12]. Song et al. use real-time crowdsourcing to la-
bel unrecognized activities in activity recognition systems
[25]. JANA is a commercial mobile crowdsourcing plat-
form that rewards workers with airtime for performing tasks
such as consumer research and product promotion.
CrowdLearner uses crowdsourcing in a new light by auto-
matically creating mobile recognizers for non-experts.

Prior work has explored how participants game crowd-
sourcing platforms and how to mitigate this problem [8,
14]. CrowdLearner workers perform simple tasks such as
drawing a stroke gesture or labeling data samples (similar

to Captchas [26]) to receive monetary compensation. Al-
though we touch on mechanisms for validating sensor data,
it is not our focus. As the first step to addressing the issue,
we concentrate on enabling the end-to-end workflow for
non-experts to create mobile recognizers using a crowd-
sourcing approach. However, the body of prior art focusing
on validating crowd input would also prove useful in the
case of CrowdLearner.

CrowdLearner is also closely related to crowdsensing [5, 7,
24] and in situ experience sampling [9, 10]. CrowdLearner
shares the goal of previous work for collecting samples in
users’ natural environments. However, CrowdLearner goes
beyond prior work by making sense of collected mobile
sensor data and user labeling, and employing machine
learning techniques to automatically generate recognizers
for high-level events and user actions. In particular,
CrowdLearner’s data collection mechanisms and interfaces
were designed for capturing mobile on-device sensor data
and facilitating mobile user labeling, which are not de-
signed for general mobile data collection purposes. As such,
the outcome of CrowdLearner can be directly incorporated
into developers’ applications. Existing mobile crowdsens-
ing platforms (e.g., CrowdLab [6], PRISM [7] and Medusa
[21]) enable researchers and developers to run custom ex-
periments on crowd devices. However, the level of knowl-
edge required to setup and use these platforms place them
beyond the reach of non-experts. CrowdLearner obviates
the need for developers to have expert knowledge of sens-
ing, data analysis, feature extraction, and classification.

Past work has looked at high-level tools for producing clas-
sifiers while reducing the need for expert knowledge of
machine learning, e.g., MAGIC [1] and Exemplar [11].
CrowdLearner expands prior work by taking the event gen-
eration and data collection to mobile users’ natural envi-
ronments. It minimizes the burden on developers by elimi-
nating recruiting and data collection. Furthermore, it creates
recognizers for diverse devices that might be in use in the
wild, rather than only a limited set of devices and sensors
that are accessible to the developer.

INTERACTING WITH CROWDLEARNER
In this section, we discuss how a developer can create a
recognition task and monitor its progress in CrowdLearner
and how a mobile crowd worker interacts with the system
to contribute labeled training data.

Developers: Creating a Recognition Task
To create a recognition task, a developer uses a web inter-
face that streamlines task creation with a wizard. The wiz-
ard only requests a small amount of information, such as
the targets to be recognized, sensors to use on a mobile de-
vice, data collection strategies and the amount of funds that
the developer is willing to allocate for the task.

Adding a Task Description
The wizard includes four tabs for task Description, Sensors,
Targets, and Strategy. On the Description tab, the developer

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

164

provides basic information about a task, such as the task
title, a short summary about the task, and a set of instruc-
tions for crowd workers to perform the task. Once the task
is published, all this information is displayed on a worker’s
mobile device. For example, for the Motion Commands
Task, the basic task information is as follows:

Title: Motion Commands; Summary: Perform a set of mo-
tion gestures with your phone; Instructions: Imagine you
can operate your phone by moving it in certain ways, e.g.,
shaking the phone to ignore a phone call. We will ask you
to perform a set of motions with your phone. Please hold
your phone in one hand and make sure that your phone's
screen is facing you when conducting these gestures. The
top of your device should point away from you.

Selecting Mobile Sensors
On the Sensors tab (Figure 2), the developer selects sensor
input for the recognizer to use. The developer can directly
pick specific sensors from the list, such as Accelerometer,
Microphone or Touchscreen. Based on the selected sensors,
CrowdLearner automatically generates an appropriate fea-
ture vector for recognition (classification).

Alternatively, the developer can select a group of necessary
sensors for recognizing high-level event types, such as Mo-
tion, Audio or Touch. These high-level event types are use-
ful for developers who are less familiar with built-in sen-
sors on mobile devices. For example, when a developer
selects Motion, both Accelerometer and Gyroscope are se-
lected, as they are typical sensors for inferring motion. An-
other advantage of this feature is that a developer can also
explore how a sensor is typically used. When a sensor is
selected, the corresponding high-level event type will be
selected as well. For instance, selecting Microphone will
also select the high-level event type, Audio.

Composing Recognition Targets
After choosing the sensors, the developer specifies the tar-
gets for the recognizer in the Targets tab (see Figure 3). The
developer can give each target a name and describe it fur-
ther by uploading an image or a video clip. Targets are pre-
sented to workers to perform actions or answer questions as
instructed by the task. With images and video, developers
can explain target actions that would otherwise be difficult
to describe in text. For example, when instructing a worker

to perform a Rotate action in the Motion Commands task,
the accompanying video for Rotate can easily explain how
the worker should move his phone to perform the action.

Specifying Task Strategies
On the Strategy tab, developers provide the learning strat-
egy and monetary constraints for performing the task.
CrowdLearner supports two learning strategies: participa-
tory and opportunistic sampling. The developer chooses
between “learn when I ask the user to do something”—in a
participatory fashion—or “learn when something interesting
happens”—an opportunistic fashion. The developer decides
on how she wants to collect data. For instance, for a task
concerning touchscreen handwritten symbols, she would
choose participatory sampling because this kind of behav-
ior—writing specific symbols on the touchscreen—only
happens when the worker is asked to do so. However, for a
task concerning daily physical activity, she would use op-
portunistic sampling, as events can occur even when the
phone is not in active use. The developer also selects the
maximum number of questions a worker could answer, the
compensation per question, and the total funds allocated for
the task. These constraints ensure that the generated recog-
nizer does not rely on samples from only a small group of
workers, and that CrowdLearner does not go beyond the
developer’s budget. Once the developer is satisfied with the
task, she can publish it to CrowdLearner, which automati-
cally distributes the task to the workers.

Crowd Workers: Performing a CrowdLearner Task
CrowdLearner distributes a task to a worker’s mobile de-
vice if the sensors required by the task are available on the
device. On the mobile client’s main screen, workers can see
all available tasks and also check the rewards accumulated
so far (Figure 1). After selecting a task, the worker will be
greeted with the task instructions. On the next screen, he
will see the amount of compensation received for each
question answered (i.e., each sample contributed). If moti-

Figure 2. The developer selects which sensors CrowdLearner
should sample. CrowdLearner decides on the set of features

for training a recognizer based on the sensors.

Figure 3. The developer specifies a set of targets along with

images or videos for the task. The developer can add or
edit targets in the wizard and view/play the media.

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

165

vated, he can proceed to participate in the task. Depending
on the type of task chosen, participatory or opportunistic,
the worker performs the task through a different procedure.

Participatory Tasks
During a participatory task, CrowdLearner prompts the
worker to perform a particular action (considered a question
in CrowdLearner) at a time. The task repeats a Question
and Answer pattern. On the Question screen (Figure 4),
CrowdLearner instructs the worker the action to perform by
showing the action name along with a pictorial or video
description. On the following Answer screen (Figure 4), the
worker has the opportunity to perform the action, redo it if
needed, or skip it. The order of questions is randomized.

Once the worker understands the target action, he can go to
next screen. Depending on the type of sensors that the task
involves, CrowdLearner presents different screens to the
worker. For a touchscreen gesture task, because a worker is
expected to interact on the touchscreen, such as drawing a
gesture symbol, CrowdLearner leaves the screen blank with
only the name of the symbol and its associated media dis-
played at the right corner. The worker needs to recall the
target gesture and draw it on the screen. Once finished, the
worker can click on a button to go to the next question.

Unlike a touchscreen that stops sensing when a worker lifts
his finger from the screen, sensors such as accelerometers
continuously sense. As a result, we need a mechanism for
the system and the worker to agree on the beginning and the
end of sensing. For example, if a worker has to click a but-
ton to signal the system to stop sensing, the motion for
stopping the sensing will be captured as part of the target
action. In addition, the action that a worker is to perform
puts the phone in a state where he cannot interact with the
display. For instance, for the “Put the phone to ear” action
in the Motion Commands task, we do not want workers to
place the phone to their ear and then bring it down to con-

firm the answer. To address this issue, CrowdLearner em-
ploys a count down timer. Once a worker moves to the An-
swer Question screen, a timer starts and the worker is to
perform the action before the timer ends (see Figure 4). The
worker is instructed to not move the phone or perform any
other actions until the timer runs out and he hears an audio
notification. We currently use 3 seconds for the timer,
which we empirically found is an upper bound for the exe-
cution time for many motion-related actions.

Opportunistic Tasks
An opportunistic task is designed to capture events (training
samples) that do not occur at a predefined time, such as
walking or biking. These events are difficult to capture us-
ing a participatory approach in which a worker is asked to
perform a target action. When a worker signs up for an op-
portunistic task, such as one collecting daily physical activ-
ity samples, the worker does not need to perform any action
at the signup. Instead, CrowdLearner will notify the worker
to answer a question regarding an observed event. The an-
swer to this question effectively labels a collected sample.

However, there is a dilemma in executing opportunistic
tasks. When the system observes an event of interest during
the day, asking a question about the event may disturb the
worker’s ongoing activity, e.g., the worker might be biking
and having difficulty to take out the phone and answer a
question. Therefore, it is impractical to ask a worker to an-
swer the question immediately when an event occurs. To
address this problem, we employ a notification and expira-
tion mechanism. When an event of interest occurs, the sys-
tem sends the worker’s phone a notification along with a
distinct vibration pattern. The worker does not have to an-
swer the notification immediately.

When a worker joins an opportunistic task, the system plays
a sample of the vibration pattern and instructs what the vi-
bration means: “CrowdLearner will send you a notification
question along this vibration pattern whenever it observes
something relevant to the task. You don’t have to respond to
the question right away, but remember your state at the
time of vibration for answering the question later.” We
designed the vibration pattern to be similar to SOS in Morse
code, which is distinctive from many vibration patterns
used by other applications. However, a worker may not be
able to answer the question for a while, which may lead to
him forgetting the event. Therefore, CrowdLearner keeps
the notification question available for a limited amount of
time only. We chose 30 minutes to ensure that the workers
are able to recall their state at the time of the vibration.

When selecting their state at the time of the event, workers
have other choices available in addition to the targets speci-
fied by the developer. These choices consist of, “Didn’t
have the phone on me”, “Don’t remember” and “None of
the above”. Based on the answer selected by the worker, the
event is used as a positive sample, a negative sample, or
ignored. Positive samples confirm a certain type of event;
whereas negative samples are discounted for a particular

Figure 4. On the Question screen, workers are prompted to
perform an action through a target and a pictorial or video

description. On the Answer screen, workers perform the
action instructed on the previous Question screen. A count

down timer informs when to perform the action.

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

166

event. In an actual deployment, the system could avoid
workers who provide too many negative samples to prevent
workers from gaming the system.

Developers: Monitoring the Progress via a Dashboard
The developer can monitor the progress of the task through
a web-based dashboard. The dashboard shows a list of all
the tasks created by the developer. By selecting a task, the
developer can view the accuracy of the recognizer and its
progression through a chart. A table presents the accuracy
and number of samples for each target. The developer can
also view the total amount of funds allocated and remain-
ing, the number of participating workers and sample, and
the average number of samples per worker. The dashboard
also allows the developer to allocate more funds to the task.

IMPLEMENTATION
In this section, we describe the technical details of our cur-
rent implementation. These specific technical aspects are
not our focus, but are essential for creating a fully-
functional system that can be deployed in the wild to exam-
ine the workflow of CrowdLearner. We built CrowdLearner
as a cloud service. It uses Google App Engine (GAE) to
serve tasks and store training data, recognizers, and per-
formance measures. We used Google Web Toolkit (GWT)
for implementing the web-based task creation wizard and
presenting recognizer evaluation. The CrowedLearner cli-
ent, used by workers to perform tasks, is implemented
based on the Android platform.

Sampling
CrowdLearner aims to abstract away sampling and data
collection. Currently, it allows a task to leverage several
popular mobile sensors as shown in Figure 2.
CrowdLearner collects the profile for each type of device
presented in the workers’ pool of devices. These device
profiles enable CrowdLearner to account for variations in
device sensors and packaging by producing a recognizer for
each type of device. A default sampling rate is set for each
type of sensor at which samples from all devices are resam-
pled, e.g., 40Hz for accelerometers.

Sampling Conditions for Opportunistic Tasks
For opportunistic tasks, we have a set of requirements be-
fore any data collection takes place to improve user experi-
ence and also to respect workers’ computational resources.
Opportunistic sampling takes place at random intervals
throughout the day. In our current implementation, data
collections are set to occur 30 to 90 minutes apart, which
enable CrowdLearner to work around workers’ daily rou-
tines. The sampling duration is set to be 30 seconds. Never-
theless, the sampling interval and duration should be devel-
oper-configurable in actual deployments.

Opportunistic sampling is activated upon satisfying several
requirements. The mobile client checks local time to ensure
that data collection takes place between 9am and 8pm. We
made a usability trade-off here, in that we do not want to
disturb workers at night. However, this prevents capturing
events such as eating breakfast or brushing in the morning.

We also require the worker’s device to have at least 25% of
its battery capacity charged, to prevent CrowdLearner from
depleting the device’s battery power.

Validating Samples
Prior work in crowdsourcing has used verification questions
and obtaining multiple samples in order to validate samples
[14]. CrowdLearner requests multiple samples from work-
ers for each of the targets. Since CrowdLearner focuses on
building recognizers, it can use classifiers that are resistant
to outliers such as SVM as is the case with our current pro-
totype. Alternatively, we can train a k-nearest neighbor
classifier in parallel to detect and discard outliers, although
false detection may skew sample distributions.

Feature Extraction
Feature extraction is dependent on the types of sensors se-
lected. In CrowdLearner, each sensor employs a different
process to generate features, e.g., a featurization for touch-
screen traces might not be appropriate for accelerometer
readings. When multiple sensors are selected for a task,
CrowdLearner combines the feature vector of all sensors to
form a single vector. This modular design allows us to eas-
ily incorporate new sensors when they become available.
For accelerometer or gyroscope readings, we currently use
common features such as means, standard deviations, FFT
coefficients, cepstral coefficients, spectral entropy, correla-
tions, and integrations [17]. For the touchscreen, we use
features similar to prior work for gesture and handwriting
recognition [19]. When combining the features from differ-
ent sensors, we always concatenate them in the same order.

Generating a Recognizer through Continuous Learning
CrowdLearner continuously updates the recognizer as
workers provide more samples and allows the developer to
monitor the progress of the task and acquire the latest rec-
ognizer or one generated in the past at any time. We first
seed our learning process with a null recognizer, which
simply returns a null target for any sample received. We
keep a counter for the number of errors that the recognizer
has made for predicting each newly observed sample. Once
the error count reaches a threshold—20 in our case, we
generate a new recognizer with the data that has been col-
lected, and reset the error counter and repeat the process.

In the beginning of the process, as more samples come in,
the classifier is likely to make more errors and rebuilds (re-
trains) more frequently. With this valved continuous learn-
ing process, CrowdLearner continuously learns from the
samples that it receives, but also does not spend too many
cycles retraining a recognizer when it would only provide
marginal benefit. As a proof of concept, we use an imple-
mentation of Linear SVM, which performs reasonably well
and quickly for many classification purposes [3].

To present the learning progress to the developer,
CrowdLearner visualizes the performance of a generated
recognizer based on 10-fold cross validation that splits the
collected samples based on workers.

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

167

EVALUATION
We deployed CrowdLearner internally in a large IT com-
pany to 72 participants (M=51, F=21) for a period of 2.5
weeks. We recruited workers by emailing company-wide
lists, and sent the mobile client via email. We never met or
had any direct contact with the workers. Our workers were
between 18 and 55 years old, with approximately 75% of
ages falling uniformly between 18 and 35. Workers had a
variety of occupations including Administrative, Legal, HR
and engineering. We evaluated CrowdLeaner through 6
recognition tasks. At the end of our study, we awarded
workers monetary compensation for the credits earned by
emailing gift certificates. Workers were paid $0.10 for each
question they answered, and up to $10 per task. This remote
hands-off deployment is a good approximation for a realis-
tic crowdsourcing platform.

Experimental Tasks
We created 4 of the recognition tasks ourselves. The Media
Player Gestures task was used to generate a recognizer for
10 stroke gestures for controlling a media player applica-
tion: Play, Pause, Stop, Rewind, Fast Forward, Previous,
Next, Accept, Reject, and Help. The $1 Recognizer Ges-
tures task concerned 16 stroke gestures as defined by Wob-
brock et al. [29]. The Phone Call Motion task involved 3
motion gestures for receiving phone calls: Shake, Rotate,
and Place Phone To Ear. The Daily Physical Activities task
was to detect four user activities: Still (sitting or standing),
Walking, Biking, and Riding in a car or on a bus. The Daily
Physical Activities task employed opportunistic sampling.

To understand how developers would react to
CrowdLearner, we invited two developers, who were not
involved with our project, to use CrowdLearner to create
mobile recognizers that can be useful to their projects. One
developer wanted to recognize handwritten digits 0 through
9 for a Number Pad application. The other developer cre-
ated the Directional Motion task for recognizing 5 motion
gestures: Left, Right, Up, Down, and Double Flip [22]. The
directional commands are flicks toward the designated di-
rection and back to the initial position similar to those de-
fined in [18].

Experimental Results
To deal with device variation, CrowdLearner builds a rec-
ognizer for each type of device available in the worker
pool. Table 1 shows the recognition performances for Gal-
axy Nexus devices, which were most common in our pool
of devices. In general, the tasks involving touchscreen

stroke gestures performed well and it took less than 2 hours
and $10 for their recognizers to reach 80% of the final ac-
curacy. With respect to motion gesture recognition, recog-
nizers reached 80% of the final accuracy within 3 hours.

The Phone Call Motion task performed reasonably with
77% final accuracy. However, the Directional Motion task
performed poorly with final accuracy of 42%. Upon our
examination of the results, we noticed that the recognizer
performed well with respect to detecting Double Flip and
separating vertical and horizontal flicks. However, it failed
to discern different directions within vertical or horizontal
movements—it could not separate Up from Down or Left
from Right. By carefully examining the collected data, we
found although our current featurization mechanism for
accelerometer and gyro readings is able to capture the over-
all movement profile of the phone, e.g., rotating versus
shifting, it is ineffective to capture detailed sequence varia-
tion in motions such as these quick directional flicks. We
can address this issue by introducing features that can better
capture the temporal characteristics of motion or employing
more advanced featurization techniques (e.g., [17]).

Opportunistic Learning
While the Daily Physical Activities task achieved 78% ac-
curacy, it was most effective at recognizing sitting or stand-
ing events. Specifically, the produced recognizer detected
over 99% of sitting events. However, it only recognized
2.5% of walking and 2.5% of riding in a car or bus activi-
ties and did not recognize any of the biking activities (3
total). We attribute this performance to the scarcity of non-
stationary activities during data collection. Moreover,
physical activity recognition using a single sensor pack with
a non-static location on the body is challenging [17]. Never-
theless, we still observed some interesting trends when ex-
amining the data for the Daily Physical Activities task.

Based on our logs, the workers answered only 25% of all
CrowdLearner opportunistic notifications. We observed that
motion activities were generally sparse. In one week of data
collection (including the weekend), we collected 285 sam-
ples for Still (sitting or standing), 40 for Walking, 3 for
Biking, and 44 for Riding on a bus or in a car.

There are several ways to address the scarcity of sampled
target events. One approach is to employ a base event de-
tector that decides if an event of interest is likely happening
so as to help CrowdLearner determine when to perform
opportunistic sampling. However, developing an effective

Task (Number of Targets) Workers Samples Time to 80% A* Funds to 80% A* Final Accuracy (A)
Media Player Gestures (10) 52 2119 1 hr $5 99.2%
$1 Recognizer Gestures (16) 48 2200 1.5 hrs $5 98.4%
Number Pad Gestures (10) 47 2473 1 hr $10 95.2%
Phone Call Motion (3) 45 1487 3 hrs $12 77.4%
Directional Motion (5) 34 1227 3 hrs $5 42.2%
Daily Physical Activities (4) 30 368 2 hr $3 78.1%

Table 1: Participation and Accuracy for CrowdLearner tasks (*80% of Final Accuracy).

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

168

base event detector itself might be challenging. A developer
can create the detector in the laboratory or also in
CrowdLearner.

By examining the occurrence of these activities (see Figure
5), we found the workers were most likely to be on the
move during the evening, and often moved around noon-
time. We conjecture that these events correspond to heading
home from work and going for lunch, respectively. Consid-
ering the emerging trends, we devised a model for sampling
events based on their occurrence, which we will discuss in
detail in the Collaborative Temporal Sampling section.

Sampling in the Wild
To understand how CrowdLearner data, which is collected
in the wild, is different from data collected in laboratories,
we compared the dataset of CrowdLearner’s $1 Recognizer
Gestures task to the original $1 Recognizer dataset. The
original dataset was collected in the laboratory from ten
individuals and is published on the web [29]. CrowdLearner
aims to collect and train on data generated in users’ natural
environments. To test out the theory that CrowdLearner
data collection exhibits more variation than that conducted
in a laboratory environment, we ran the $1 Recognizer al-
gorithm—based on template matching (or the Nearest
Neighbor)—on both datasets. To be comparable with the
original $1 dataset, we limited our dataset to samples col-
lected from 10 individuals only, and manually checked
them for mislabeled data. When manually (visually) exam-
ining our entire dataset of 2200 samples, we found 19 out-
liers. 12 of these outliers were gestures for another label
and 7 were not distinguishable to be any of the targets.
Since each gesture might have an unequal number of sam-
ples in the CrowdLearner dataset due to the uncontrolled
collection process, we sampled the original $1 dataset to
have the same distribution as our dataset across the three
gesture speeds present in the original $1 dataset. We then
trained and tested the $1 Recognizer on all possible training
and testing pairs across the two datasets. In all tests, we
trained on half the data and tested on the remaining half.

Training and testing on the $1 dataset produced an accuracy
of 99.2%. This was not surprising as it is in line with the
published performance of the $1 Recognizer. Training and
testing on the CrowdLearner’s $1 dataset produced 81.2%
accuracy. However, the most interesting results were ob-
tained when we trained on CrowdLearner’s $1 dataset and
tested on the original $1 dataset (87.9% accuracy) versus
training on the original $1 dataset and testing on
CrowdLearner’s $1 dataset (77.7% accuracy). As $1 Rec-
ognizer is a template matching gesture recognition algo-
rithm, these results indicated that gestures collected in the
wild (via CrowdLearner) exhibit more variation. Specifi-
cally data produced by the crowd is more representative as
it can describe data present in the $1 dataset, however, is
not as describable using the $1 dataset templates.

Feedback from the Workers
At the end of our study, we asked our worker participants to
provide feedback through a web-based survey. We asked
workers general questions regarding CrowdLearner and
also specific questions regarding each of the tasks.
Participating workers rated ease of use, usability of the user
interface, awareness of availability of tasks, adequacy of
compensation per question, awareness of total rewards, and
the possibility that they would perform tasks using the
CrowdLearner app in the future on a 5-point Likert scale.
More than 75% of the workers responded positively to each
of the aforementioned attributes of the system (Agree or
Strongly Agree).

Two worker participants commented that the instructions
for motion-related tasks (target and associated video) were
given too often and requested to be able to skip them faster.
One worker mentioned that because of the audio notifica-
tion for the count down timer, he was not able to perform
the Phone Call Motion and Directional Motion tasks quietly
during down times (e.g., on his subway commute) without
disturbing others in his vicinity. This would suggest provid-
ing an option of audio or vibration notifications at the end
of the count down timer. He preferred more silent tasks
during these periods (e.g., Media Player Gestures).

With respect to the Daily Physical Activities task, most
workers found the vibration helpful in remembering their
state (85% Agree or Strongly Agree). Similarly, they found
that knowing the time that the activity occurred was helpful
(over 85% Agree or Strongly Agree). However, workers
were divided with respect to usually not having their phone
on them when the phone vibrated (median=Neutral) or not
being able remember the event (median=Disagree). This
confirmed our log-based finding that workers answered
25% of the opportunistic notifications. One worker did not
find the vibration notifications useful as she used a pouch to
hold her phone. Another worker suggested giving workers
the ability to inform CrowdLearner about their activities
beforehand: “allow the user to say ‘I’m about to go Bik-
ing’” to enable sampling of non-stationary activities.

Figure 5. Probability of observing activities aggregated
across users. Our workers were more likely to be on the

move at noon and during the evening.

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

169

Feedback from the Developers
Both developers found CrowdLearner easy to use with re-
spect to creating tasks and targets, associating media with
targets, and monitoring the performance of the recognizers,
responding positively with Agree and Strongly Agree on a
5-point Likert scale.

The creator of the Directional Motion task (referred to as
C1 hereafter) commented that it would be useful to allow
workers to try out a task without affecting the results for the
recognizer, specifically for when they are unsure as to how
to perform a certain gesture. This would be a valuable im-
provement as some worker participants also mentioned that
they were not sure what to do when first starting a task. C1
felt that the produced recognizer was muddled by too many
poor initial samples. He also felt that it would be useful to
allow the developer to select a particular set of samples to
train the final recognizer. The creator of the Number Pad
Gestures task (C2) also suggested being able to select a
specific set of samples for training and being able to look at
and validate the samples provided by workers. C2 recom-
mended adding information about whether the recognizer
was able to classify the samples successfully, and present-
ing the developer with visualizations for clusters of samples
to support inference of general types and trends.

COLLABORATIVE TEMPORAL SAMPLING
One important lesson that we learned from the experiment
is that it is challenging to determine when to perform op-
portunistic sampling. Sampling uniformly in time can be
inefficient, especially when some of the target events occur
less frequently, such as biking or driving. By examining the
dataset of the Daily Physical Activities task, we discovered
that the occurrence of target events follows temporal trends.
As a result, we devised a model to discover these trends in
order to enable more intelligent sampling.

With this model, CrowdLearner can sample conditionally
based on when an event of interest is likely to occur. More
specifically, when a worker’s device wakes up, it first
checks with the CrowdLearner service to determine if the
wake up time is associated with a period of uninteresting
samples, e.g., when workers would be most likely sitting. If
this is the case, CrowdLearner would inform the device not
to sample. We present here the result of an offline analysis
of the Daily Physical Activities task to evaluate our condi-
tional sampling model.

The conditional sampling model consists of two compo-
nents. One component captures general trends for the entire
worker population, while the other captures trends for a
specific worker. These two components perform in an on-
line fashion in that they are trained based on prior days of
data and then combined to decide whether to sample. When
an opportunistic task first starts, any time of the day is a
“good” time for sampling—a uniform distribution. How-
ever, each day, the model is updated to learn from prior
days’ samples. Both the individual and population compo-
nents are trained in the same fashion. For the individual

component, only a single worker’s data is used for training,
whereas for the global component, data from the entire
population is used.

We train each component using a system of linear equations
for each target, and add extra constraints to smooth the data.
Specifically, we divide days to N timeslots, where N is de-
pendent on the sampling interval. For our case, since we
sample approximately once an hour, N is 168. Timeslots are
indexed in day-major order with the first timeslot starting at
00:00 on Sunday. We add an equation to the system for
each timeslot for a particular label, where the probability of
occurrence of event x in that timeslot is defined as:

pi = nx / ntotal

We also add constraints to smooth the probabilities:

λ / 2() pi−1 + 1− λ() pi + λ / 2() pi+1 = pi

λ is between 0 and 0.5 and controls the smoothing of each
pi. Additional constrains may be added to control variations
in weekdays or weekends. Using this system of equations
and a least squares solver, the probabilities of occurrence
for each target can be computed to create a sampling model.
Figure 6 presents the model for riding in a vehicle.

Once probabilities are generated for each target, sampling
can be done to either obtain a more diversified set of sam-
ples, or a different criterion based on targets deemed inter-
esting. We combine the individual and global models line-
arly:

pi = 1−α() pi
global +α pi

individual

where α is between 0 and 1. α is learnt based on correct
predictions using the individual component, in the follow-
ing fashion:

α t + 1() = α t() + γ F pi ,t
individual()()

where γ controls how quickly α updates, and F outputs 1
for correct predictions and -1 for incorrect ones. For our
evaluation, we set alpha to be a constant of 0.5.

Figure 6. Global sampling model trained for riding in a

vehicle based on data collected for the Daily Physical Activ-
ity Task. Workers are more likely to ride in a vehicle early

in the morning and in the evening hours.

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

170

Using the aforementioned approach, we created a sampling
model for the Daily Physical Activity task and verified our
results by training on prior days of data, and testing on cur-
rent day’s events. Specifically, we tested the model against
a uniform sampling approach for the riding in a car or on a
bus target. The results are based on data from the global
model and one worker’s individual model. Figure 7 shows
the mean squared error (MSE) for the conditional sampling
model and the baseline approach using uniform sampling.
The error is computed as the temporal distance (as the
number of hours) between when the model predicts an
event would occur and when the event actually occurred. In
Figure 7, we see a jump in MSE for our model after day 4.
This corresponds to a shift from the worker’s habits to also
drive in the morning. We see great potential in using col-
laborative temporal sampling models to learn about peo-
ple’s activities in an opportunistic fashion. The model helps
improve the answering rate for opportunistic sampling and
optimizes the power and computation consumption on the
worker’s device to obtain useful samples.

CRITICAL REFLECTION
CrowdLearner is the first general end-to-end framework for
non-machine learning experts to quickly create recognizers
with ecologically valid data. It eliminates the effort for data
collection and the technical barrier for training and testing
recognizers. However, its machine learning component
currently offers a single classification model and a limited
set of features, which are insufficient for all kinds of recog-
nition tasks. As our experiments indicated, CrowdLearner
performed well for stroke gestures but less than ideal for
motion-based recognition. We can address this issue by
offering a suite of machine learning techniques and featuri-
zation mechanisms and enabling CrowdLearner to evaluate
these alternatives in parallel—automatically selecting an
optimal one for a specific task.

It is also possible to expose more learning parameters to the
developer for finely tuning a recognizer. For example,
popular ML toolkits such as Weka allow developers to ad-

just various ML parameters specific to a model. However,
adjusting these parameters often requires the developer to
have a deeper understanding about the machine learning
techniques, which deviates from our motivation to support
developers who have no ML expertise. We can potentially
benefit from extensive work in interactive ML (e.g., [20])
that attempts to make it easy for average developers to ad-
just and iterate on ML techniques.

The performance of CrowdLearner is also impacted by sen-
sors that are available on a target mobile device and the
type of recognition task that the developer orders. Given the
sensors on a mobile device, the targets in a task might be
fundamentally ambiguous (e.g., sitting or standing still) or
too fine-grained to be captured (e.g., minor gradual move-
ments of the device). As such, it is crucial to communicate
with developers about what CrowdLearner is capable of
recognizing and explain reasons for poorly performed tasks.

Similar to much design-oriented work, iteration is essential.
More relevantly, Patel et al. reveal the critical role that it-
eration plays in designing a machine learning method [20].
Currently, CrowdLearner supports in-flight changes such as
adding more funds to a task, editing the task’s name and
instructions, adding or removing targets, and changing the
targets’ associated media. It would be valuable to explore a
more systematic support for iteration in CrowdLearner. We
can potentially add advanced iteration support that are con-
ceptually akin to Version Control System mechanisms, e.g.,
versioning, merging and branching [23], for better manag-
ing changes and supporting collaboration in CrowdLearner.

CrowdLearner adopts a continuous learning concept by re-
building and improving recognizers as more workers are
added and more samples are collected. This process can be
furthered by also automatically synchronizing the perform-
ance of the CrowdLearner recognizers that are active in the
field. Specifically, these recognizers could send their incor-
rectly recognized observations to the CrowdLearner service
for further improvement of recognition. CrowdLearner
could also adopt active-learning concepts to achieve greater
accuracy with fewer samples by requesting workers to per-
form specific gestures or actions [4], e.g., gestures that are
often misclassified.

CrowdLearner mitigates the problem of variability in de-
vices by maintaining profiles of workers’ devices and build-
ing a recognizer for each type of device present. As an arti-
fact of this approach, popular devices will have more train-
ing data and potentially more accurate recognizers. How-
ever, there still exists variability in samples with respect to
workers. A problem that is inherent to the use of crowd
workers is that characteristics such as age, gender, and
physical attributes can affect the samples provided. We do
not explore this problem ourselves, however, prior work by
Lane et al. has presented promising results in using Social
Networks to identify people with similar characteristics to
build recognizers that are tailored towards individuals and
more specific user types [16]. Similar approaches may be

Figure 7. Collaborative temporal sampling performance

compared to uniform sampling for the Riding in a Car or
on a Bus target. The Collaborative Temporal Sampling

model has a jump after the 4th day as the worker shifts to
also drive in the morning.

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

171

used in CrowdLearner to improve recognizer performance.
Another solution would be to obtain demographic informa-
tion from workers and perform intelligent crowd sampling
based on demographics and trends, similar to how we use
activity trends for the temporal conditional sampling.

CrowdLearner currently enables a “free market” in which
developers determine the allocations of funds for tasks and
workers freely opt in or out. However, it is valuable to offer
additional support for fund allocation, such as suggesting
how much a sample or interaction is worth. It is also worth
investigating how to incentivize workers for specific tar-
gets, e.g., by increasing compensation for targets with fewer
samples. In addition to using monetary compensation as a
general incentive, we can potentially leverage game-based
schemes (e.g., [13]) for certain tasks such that workers can
motivate each other to contribute more quality data.

CONCLUSION
We presented CrowdLearner, a crowdsourcing platform
that automatically creates recognizers for non-machine
learning experts for mobile applications. CrowdLearner
reduces the barriers presented by recruiting participants,
data collection and labeling, and the technical knowledge
required to train recognizers. We discussed our design and
implementation of CrowdLearner as a cloud service and
presented the findings of our evaluation through experi-
menting with 6 recognition tasks with 72 workers and 2
developers. Our results provide insight into designing future
crowdsourcing systems for machine learning tasks.

REFERENCES
1. Ashbrook, D. and Starner, T. MAGIC: a motion gesture design

tool. In Proc. CHI 2010, ACM Press (2010).
2. Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ack-

erman, M. S., Karger, D.R., Crowell, D. and Panovich, K.
Soylent: a word processor with a crowd inside. In Proc. UIST
2010, ACM Press (2010).

3. Boser, B., Guyon, I.M. and Vapnik, V.N. A training algorithm
for optimal margin classifiers. In Proc. COLT 1992, ACM
Press (1992).

4. Burr, S. Active Learning Literature Survey. Comp. Sciences
Tech. Report 1648, University of Wisconsin-Madison, 2009.

5. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E. and
Peterson, R.A. People-centric urban sensing. In Proc. WICON
2006, ACM Press (2006).

6. Cuervo, E., Gilbert, P., Wu, B. and Cox, L.P. CrowdLab: An
Architecture for Volunteer Mobile Testbeds. In Proc.
COMSNETS 2011, IEEE (2011).

7. Das, T., Mohan, P., Padmanabhan, V.N., Ramjee, R. and
Sharma, A. PRISM: platform for remote sensing using smart-
phones. In Proc. MobiSys 2010, ACM Press (2010).

8. Downs, J.S., Holbrook, M.B., Sheng, S., and Cranor, L.F. Are
your participants gaming the system? screening mechanical
turk workers. In Proc. CHI 2010, ACM Press (2010).

9. Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B. and Lan-
day, J.A. MyExperience: a system for in situ tracing and cap-
turing of user feedback on mobile phones. In Proc. MobiSys
2007, ACM Press (2007).

10. Gajos, K.Z., Reinecke, K. and Herrmann, C. Accurate Meas-
urements of Pointing Performance from In Situ Observations.
In Proc. CHI 2012, ACM Press (2012).

11. Hartmann, B., Abdulla, L., Mittal, M. and Klemmer, S.R.
Authoring sensor-based interactions by demonstration with di-
rect manipulation and pattern recognition. In Proc. CHI 2007,
ACM Press (2007).

12. Heer, J. and Bostock, M. Crowdsourcing graphical perception:
using mechanical turk to assess visualization design. In Proc.
CHI 2010, ACM Press (2010).

13. Henze, N., Pielot, M., Poppinga, B., Schinke, T. and Boll, S.
My App is an Experiment: Experience from User Studies in
Mobile App Stores. International Journal of Mobile Human
Computer Interaction 3, 4 (2011), 71-91.

14. Kittur, A., Chi, E.H. and Suh, B. Crowdsourcing user studies
with Mechanical Turk. In Proc. CHI 2008, ACM Press (2008).

15. Kittur, A. and Kraut, R.E. Harnessing the wisdom of crowds in
wikipedia: quality through coordination. In Proc. CSCW 2008,
ACM Press (2008).

16. Lane, N.D., Xu, Y., Lu, H., Campbell, A.T., Choudhury, T.,
and Eisenman, S.B. Cooperative Communities (CoCo): Ex-
ploiting Social Networks for Large-scale Modeling of Human
Behavior. Pervasive Computing, IEEE (2011).

17. Lester, J., Choudhury, T. and Borriello, G. A practical ap-
proach to recognizing physical activities. In Proc. PERVASIVE
2006, Springer (2006).

18. Negulescu, M., Ruiz, J., Li, Y. and Lank, E. Tap, Swipe, or
Move: Attentional Demands for Distracted Smartphone Input.
In Proc. AVI 2012, ACM Press (2012).

19. Ouyang T. and Li, Y. Bootstrapping personal gesture shortcuts
with the wisdom of the crowd and handwriting recognition. In
Proc. CHI 2012, ACM Press (2012).

20. Patel, K., Bancroft, N., Drucker, S.M., Fogarty, J., Ko, A., and
Landay, J.A. Gestalt: Integrated Support for Implementation
and Analysis in Machine Learning Processes. In Proc. UIST
2010, ACM Press (2010).

21. Ra, M., Liu, B., La Porta, T.F. and Govindan, R. Medusa: a
programming framework for crowd-sensing applications. In
Proc. MobiSys 2012, ACM Press (2012).

22. Ruiz, J., and Li, Y. DoubleFlip: A Motion Gesture Delimiter
for Mobile Interaction. In Proc. CHI 2011, ACM Press (2011).

23. Ruparelia, N. B. The History of Version Control. SIGSOFT
Softw. Eng. Notes, 35, 1 (2010), 5-9.

24. Shepard, C., Rahmati, A., Tossell, C., Zhong, L. and Kortum,
P. LiveLab: measuring wireless networks and smartphone us-
ers in the field. SIGMETRICS Perform. Eval. Rev. 38, 3
(2011), 15-20.

25. Song, Y., Lasecki, W., Bigham, J., and Kautz, H. Training
Activity Recogntion Systems Online Using Real-Time
CrowdSourcing. In Proc. UBICOMP 2012, ACM Press.

26. Von Ahn, L., Blum, M. and Langford, J. Telling humans and
computers apart automatically. Commun. ACM 47, 2 (2004),
56-60.

27. Westeyn, T., Brashear, H., Atrash, A. and Starner, T. Georgia
tech gesture toolkit: supporting experiments in gesture recog-
nition. In Proc. ICMI 2003, ACM Press (2003).

28. Witten, I. H. and Frank, E. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San
Francisco, 2 (2005).

29. Wobbrock, J.O., Wilson, A.D. and Li, Y. Gestures without
libraries, toolkits or training: a $1 recognizer for user interface
prototypes. In Proc. UIST 2007, ACM Press (2007).

Crowd & Creativity UIST’13, October 8–11, 2013, St. Andrews, UK

172

