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ABSTRACT 
Mirage proposes an effective non body contact technique to 
infer the amount and type of body motion, gesture, and 
activity. This approach involves passive measurement of 
static electric field of the environment flowing through 
sense electrode. This sensing method leverages electric 
field distortion by the presence of an intruder (e.g. human 
body). Mirage sensor has simple analog circuitry and 
supports ultra-low power operation. It requires no 
instrumentation to the user, and can be configured as 
environmental, mobile, and peripheral-attached sensor. We 
report on a series of experiments with 10 participants 
showing robust activity and gesture recognition, as well as 
promising results for robust location classification and 
multiple user differentiation. To further illustrate the utility 
of our approach, we demonstrate real-time interactive 
applications including activity monitoring, and two games 
which allow the users to interact with a computer using 
body motion and gestures. 
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INTRODUCTION 
Electronic devices with significant computational resources 
can now be carried mobile and becoming more ubiquitous. 
Such advancements lead to a growing research interest in 
new human-computer interfaces that go beyond the 
traditional paradigm of keyboard, mouse, and touch screen, 
including explorations on leveraging human body motion, 
gesture, and activity to support always-available computing, 
either with devices that people carry on their bodies, or 
using devices embedded in the environment. 

Electric Field (EF) sensing offers strategic solution for 
these challenges, and recently has gain significant attention 
due to the availability of inexpensive electronic components 
to measure the relatively small signals. However, it is 
difficult to acquire stable and easily interpretable signal 
which is important to aggregate meaningful contextual 
information in a passive (for low-power and simple 
hardware implementation) and non body contact 
configuration (for broader support in interaction modalities). 
Our research addresses these issues to make EF sensing 
more accessible to interface designers. 

We present Mirage, a novel sensing approach to infer the 
amount and type of body motion, gesture, and activity using 
non body contact technique leveraging human-generated 
body charge. Mirage utilizes passive (i.e., no additional 
signal transmission) static EF measurement through an 
electrode placed at a distance from the subject. Human 
body will induce EF distortions when performing 
motions. We leverage this phenomenon and show that 
human body motion and gesture produce significant signals 
at useful ranges. Mirage sensing principles robustly extract 
these signals by leveraging the design of sample-and-hold 
circuit in the Successive Approximation Register (SAR) 
Analog to Digital Converter (ADC), which is widely used 
in microcontrollers boards such as Arduino [4].  

 
Figure 1. Mirage infers the type and amount of body 
motion, gesture, and activity by passively measuring 
ambient (off-body) static electric fields. Here we show three 
configurations representing supported application domains: 
(a) environmental sensor, (b) mobile sensor, and (c) 
peripheral-attached sensor. 
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Mirage software system incorporates signal processing and 
analysis approaches to provide contextual information such 
as: 1) presence detection, 2) amount and type of body 
motion, whole-body gesture, and activity, 3) location 
classification, and 4) multiple user differentiation. 

Mirage sensing approach requires no instrumentation to the 
user or electrical infrastructure. It can be configured as an 
environmental, mobile, or peripheral-attached sensor 
(Figure 1). Each setup represents different application 
domains with broad interaction modalities. The sensing 
hardware consumes as low as 1.8 µW, and only requires a 
single analog input of an off-the-shelf microcontroller. 
Moreover, the sensing unit met safety requirements, and 
inexpensive in both hardware and software. 

The sensing technology proposed is scalable, e.g., motion 
and activity sensing is equally effective across user (no 
requirement for user dependent training) and across 
environment (across buildings and outdoor). The gesture 
recognition and location classification system requires 
minimal user dependent training and incorporates real-time 
segmentation and machine learning-based classification. 

The specific contributions of this paper are: 
1) Proposal and development of a novel non body contact 

passive static electric field sensing. This technique 
leverages the design of ADC in an off-the-shelf 
microcontrollers such as Arduino. 

2) Description of the theory of operation and detailed 
implementation of the sensing system, including signal 
acquisition, signal processing, event detection, 
segmentation, feature extraction, and classification. 

3) Presentation of results from a series of controlled 
experiments to demonstrate the usability of our 
technology including: a) activity recognition, b) whole-
body gesture recognition, c) location classification, and 
d) multiple user differentiation. We also demonstrate 
Mirage’s usage in real-time interactive applications. 

RELATED WORK  
Motion sensing systems have been used in applications 
such as activity and gesture recognition, health and 
wellness monitoring, security and surveillance systems, and 
also elder care. Conventional methods have largely used 
infrared systems, computer vision techniques, or inertial 
sensors. 

Infrared systems have been widely used for human motion 
sensing. However, these systems have limitations in high-
rate of false detections and artifacts caused by the presence 
of illumination sources inside the surveillance area. Such 
systems often only detect the presence of a subject, and 
relatively difficult to infer activity or gesture. Also, these 
systems are impractical for deployment in large areas 
because they typically require significant power. 

Alternatively, computer vision and depth sensing systems 
(e.g. Kinect [29] and Motion Capture system [26]) have 
been used for detecting body motion and gesture, mainly 

because they are gradually becoming inexpensive, and at 
the same time provide accurate measurement of three-
dimensional sensing of body segments. The commercial 
success of these devices and the advancements of computer 
vision in general have stimulated the ideas of consumers 
and researchers alike, and have led to rapid growth in 
explorations (e.g. see [28]). Computer vision based 
approaches also provide measurement methods that do not 
require the user to wear any additional device, such as [16]. 
However, these approaches are limited in the potential scale 
of deployment due to their associated installation burden 
and cost. Also, these systems typically suffer from 
occlusion and require line-of-sight. 

Body-mounted inertial sensors have been used extensively 
for the detection of human body motion and activity 
recognition [2,9,12,17,20]. These techniques often require 
users to place the sensors on the body, which can be 
cumbersome. Approaches for recognizing coarse subset of 
gestures using only a single device such as a mobile phone 
have also been proposed [1,22]. These approaches achieved 
impressive results with minimal instrumentation. 
Unfortunately, these approaches can only detect gestures 
involving body parts that are instrumented with sensors. 
Arguably, users prefer non body contact approach. In this 
work, we aim to perform unobtrusive off-body sensing that 
allows broader support on interaction design. 

Other sensing methods such as microwaves-based 
approaches pose potential health and regulation problems. 
Simple pyroelectric systems have very slow response times 
(>100 milliseconds) and can only respond to changing 
signals. Methods involving lasers often require scanning 
which are line-of-sight and may cause eye damage. 

Human motion detection systems that utilize quasi-
electrostatic fields generated during walking have also been 
proposed [14,15]. However, the detection of the quasi-
electrostatic fields is strongly affected by the 
electromagnetic fields generated by surrounding electrical 
equipment. Human body models describing the 
phenomenon of electrical charge during walking have also 
been proposed [3,25,27]. These models show that motion 
detection using passive static EF sensing is possible with 
complex analog circuitry and body instrumentation. 

EF sensing has been used in HCI work for sensing gestures 
as means of user input [7,8,10,18,21,23,30,31]. These 
techniques use active approach, requiring time-varying 
signal transmitter and receiver that measure the signal at 
different location. Consequently, these solutions pose 
design complexity that can lead to additional power 
consumption. Pioneered by Rekimoto [19] and most 
recently Cohn et al. [6,7], human body motion detection 
using static EF sensing by passively measuring the voltage 
at a location on the user’s body have been proposed. Such 
approaches enable low-power implementation. These 
techniques have been relied heavily on body-mounted sense 
electrode/s, which poses usability issues (e.g. rigidly fixing 
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sense electrode/s to maintain direct contact with the skin at 
most of the time is difficult, and uncomfortable). 
Furthermore, it’s technically challenging to differ the actual 
signal from the noise caused by sensor and skin 
displacement. Also, Cohn et al. in [6] proposed sensing of 
the voltage between the body and a small ground plane near 
the body, i.e. they did not have a ground reference; hence 
the signal was very weak such that they required heavy 
amplifications. Our method has a true ground reference so 
that the signals are much stronger. In broader interaction 
design point-of-view, decoupling the sense electrode from 
the user’s body allows us to gain multitudes of interesting 
application domains we can explore.  

We extend previous work by proposing sensing method that 
leverages much simpler hardware, while aggregating more 
stable and reliable signal. Furthermore, we also investigate 
multiple user differentiation and location classification 
using ambient EF fingerprints. We are not aware of 
previous work that has explicitly observed the usage of 
passive (non-signal transmission) sensing of ambient (off-
body) static EF for HCI. 

PASSIVE AMBIENT STATIC ELECTRIC FIELD SENSING 

Off-Body Static EF Sensing Model 
The human body is electrically charged during motion 
[3,24,26]. From Figure 2, the potential UB of the human 
body when it is performing walking motion can be 
expressed as follows. 

 𝑈! = 𝑄!
𝜀!𝑆 + 𝑥𝐶!
𝐶!𝜀!𝑆

 (1) 

where CB is a capacitance between the body and the 
environment, QB is the instantaneous charge of the human 
body during walking motion, εa is the permittivity of the air 
gap between the sole and the floor, and S is the effective 
sole area at a height x above the floor. The induced charge 
Qe of the measurement electrode placed at a certain distance 
from the subject can be expressed as follows: 

 𝑄! = 𝐶! 𝑈! − 𝑉!  (2) 

where Cd is the capacitance between the human body and 
measurement electrode, and Ve is the potential of the 
measurement electrode. From the Eq. (1) and (2), the 
induced current Ie flowing through the sensor electrode can 
be expressed as follows: 

𝐼! =
𝑑𝑄!
𝑑𝑡

= 𝐶!
𝑑𝑈!
𝑑𝑡

= 𝐶!𝑄! −
𝑥

ℰ!𝑆!
𝑑𝑆
𝑑𝑡
+

1
ℰ!𝑆

𝑑𝑥
𝑑𝑡

 (3) 

Assuming that the human body is a good conductor, the 
first term in Eq. (3) represents the current induced as the 
result of foot motion just before it is lifted off the floor. The 
second term represents the current induced as the result of 
foot and leg motion after the foot is lifted off the floor. Note 
that the second term is approximately proportional to the 
velocity of the foot. Therefore, in a scenario of body motion 
near the sensor electrode, it is possible to measure the 
current generated under perfect non body contact condition. 

In practical conditions, a person walking or scuffing may 
develop potentials of over 1000 Volts depending on shoe 
sole thickness and resistance of the ground surface. 
Moreover, as s/he raises one foot his body capacitance to 
ground reaches a minimum and this in turn causes his 
potential to rise to a maximum. When both feet are 
momentarily making ground contact, the charge potential is 
lowest. These caused the characteristic of rise and fall in 
potential due to foot motion. 

Sensing Parameters 
A passive EF sensing is one in which the EF is generated 
external to the detector. If the sensor itself generates EF 
which is then perturbed by the object, the system is known 
as an active EF sensing. In this paper we deal with a passive 
detection system in which the ambient static EF is 
perturbed or distorted by the presence of an intruder (e.g. 
human body). 

Previous work by Cohn et al. describes the theory of 
operation behind static electric field sensing when the 
device is placed on the body of the user being sensed [6]. In 
this previous work, a voltage is measured between the 
user’s body and a small “local ground plane” that is located 
on the sensing device, but is electrical isolation from the 
body. In this work, the same static electric field 
phenomenon is leveraged, but the sensing device is not 
directly attached to the user’s body, and therefore the 
important capacitances are changed as shown in Figure 2. 

Firstly, we observe a capacitance CB between the body and 
the environment. In Figure 2, this is separated into two 
capacitances: the coupling capacitance CF between the 
user’s feet relative to the ground, and the coupling 
capacitance Cw between the body and other objects in the 
environment, such as the walls. We assume that there are 
two highly resistive layers between the feet of the subject 
and the ground. One layer is the sole of the subject’s 
footwear. The other is the surface of the floor. The 
capacitance CF may be calculated as the sum of the 
capacitance Cf of the sole and the capacitance Cl of the 
surface of the floor. Therefore, CB can be expressed as: 

 
Figure 2. Circuit model of capacitive coupling between the 
user’s body, the environment, and the sense electrode. The 
sensing voltage (Vs) is measured between the sense electrode 
and earth ground.  
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 𝐶! = 𝐶! + 𝐶! = 𝐶! +
𝐶!𝐶!
𝐶! + 𝐶!

 (4) 

Unlike the previous on-body sensing case, there is now a 
coupling capacitance between the body and the sense 
electrode (Cd), which is mostly a function of the proximity 
of the user to the sense electrode. The sensing unit is 
basically a sensor depicted as a probe or antenna of 
arbitrary shape connected to an ADC input of a 
microcontroller. It is assumed that probe’s size and shape 
does not disturb the field being measured. Finally, the 
sensing voltage (Vs) is measured from the sense electrode to 
earth ground (i.e., across the sense capacitor Cs). 

Since the sense capacitor (Cs) value is fixed, changes in any 
of the coupling capacitances result in an AC voltage change 
on the sensing voltage (Vs). For normal interactions, Vs is 
most affected by changes in (1) the distance between the 
user and the sense electrode–ΔCd, (2) the user’s contact area 
with the floor–ΔCF (e.g., standing on one foot vs. two), and 
(3) the proximity of the user to other objects in the 
interaction space–ΔCw. 

IMPLEMENTATION 

Hardware Approach 
Previous work on sensing static electric fields required 
custom analog hardware to DC bias, amplify, and filter the 
signal before it could be sampled and used for motion 
classification [6,7,19]. In this work, we demonstrate the 
ability to sense static electric fields using simple and 
available commodity prototyping hardware. Our hardware 
implementation consisted of only an off-the-shelf 
microcontroller such as Arduino [4]. Arduino is a very 
popular embedded systems prototyping platform in the 
hobbyist, designer, and artist communities. Our 
implementation of the static electric field sensor requires no 
additional hardware besides an Arduino and a sense 
electrode, which can be made from foil.  

Since we are interested in only an AC signal, we need to 
DC bias the signal in order to sample it using the single-
ended analog-to-digital converter (ADC) on the 
microcontroller board. Traditionally, a DC level is 
established by adding a high impedance path to a reference 
voltage. Unfortunately, we would need an extremely large 
resistor value in order to avoid cutting off the 60 Hz signals 
we want to observe. In previous work, this was 
accomplished using custom hardware before the ADC. 

In contrast to the previous approaches, we use a simple 
channel-switching method to DC bias the ADC signal (i.e. 
we implemented alternate-sampling of the internal voltage 
reference (VREF) and the analog input). In the case of 
Successive Approximation Register ADC, sampling the 
VREF will pre-charge the ADC input to a known level. 
This should establish a DC level when we switch back to 
sample the analog input (which shares that stored charge). 
Broad range of microcontroller boards such as Arduino 

incorporate Successive Approximation Register ADC in 
their design, due to low-cost and ease of interfacing. 

Our hardware configuration requires no filtering before the 
ADC, because we do not utilize the raw EF samples as our 
main signal. Typically, when sampling low frequency EF, 
the extremely strong main noise (60 Hz) and it's harmonics 
will alias into the reading, which can cause the reading to 
clip as the AC amplitude becomes too high. Previous work 
such as [6] required hardware implementation of a low pass 
filter. Our approach can be implemented digitally in 
software, which supports easy deployment in already 
existing microcontroller boards. 

Processing 

Data acquisition 
In our prototype, we used an off-the-shelf microcontroller 
(prototyped with ATmega 2560/328/168) and attached a 
sense electrode in one of its analog input. Each analog input 
available on the microcontroller potentially forms an EF 
sensor channel. Small electrode surface area may be 
sufficient if the sensing unit is placed near the human body, 
e.g. in-pocket sensing configuration. The microcontroller 
then stacked with lithium-ion battery pack for power, and a 
XBee for wireless communication to the signal processing 
PC. In scenarios that do not require wireless 
communication, the microcontroller was connected to a 
FTDI FT232RL USB to serial IC, thus further redirects all 
the communication with PC through a USB connection.  

The data acquisition algorithm was implemented in AVR C 
firmware for the microcontroller. Each channel was 
sampled at 20 Hz, a sampling rate that would be considered 
too low for any significant noise other than EF disturbance 
that we are examining, but was able to represent the 
relevant spectrum for motion, gesture, and activity 
recognition. This reduced sample rate (and consequently 
low processing bandwidth) makes our technique readily 
portable to embedded processors with limited resources.  

Real-time signal capture 
Serial communication client written in Java was used for 
interfacing the sensing unit and PC. Furthermore, this 
program performed several other key functions. First, it 
provides live visualization of the data from our sensor/s, 
which is useful to identify distinctive features for analysis. 

A single packet of our raw data stream consisted of a 10-bit 
sample of sense electrode reading (Figure 3, red line), and 
offset ó (Figure 3, yellow line, multiplied by 100 for better 
visualization). We defined ó as a ratio of ideal and actual 
VREF reading when measured against Vcc. It essentially 
shows very small fluctuations in Vcc. We accommodate 
these small fluctuations in our measurements to have more 
accurate ADC readings. In the case of ATmega 168/328, 
VREF is 1.1 V and Vcc is 5 V, hence: 

 ó =
1.1
5 ×1023

𝑉𝑅𝐸𝐹  𝑟𝑒𝑎𝑑𝑖𝑛𝑔
=

225.06
𝑉𝑅𝐸𝐹  𝑟𝑒𝑎𝑑𝑖𝑛𝑔

 (5) 
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Our first treatment to the raw sense electrode reading was to 
apply a 3rd order Butterworth IIR low-pass filter with a 3 
dB corner at 7 Hz. This filter reduces the high frequency 
component (higher than 7Hz) of sampled signal (Figure 3, 
green line). The DC waveform is then multiplied with ó. 
After multiplying the DC waveform with ó, we aggregate 
our signal that fluctuates relative to the magnitude of user’s 
movements. This signal is plotted in Figure 3 (white line). 

From the raw data stream (Figure 3, red line) we can also 
examine that the amplitude of the AC components also 
changes significantly during a gesture. This is mainly 
caused by changes of proximity between the body and 
electromagnetic sources in the environment (ΔCw in Figure 
2), in addition to changes in the frequency response. We 
extracted the AC components by applying a 3rd order 
Butterworth IIR high-pass filter with a 3 dB corner at 7 Hz 
to our raw data stream. The AC component of our signal is 
plotted in Figure 3 (blue line). To capture the AC amplitude 
in this signal, we compute the root-mean-square (RMS) 
over each window. 

Analysis 
To give a clear target on the signal features we need to 
explore, we focused our activity and gesture recognition 
study in the following domains: 

1. Continuous activity recognition 
This domain focuses to recognize relatively long-
duration activities. These problems generally have the 
property of using relatively long windows (since 
activities don't change rapidly) and not focusing on 
individual events. In this paper, we test our sensing 
approach to recognize when the user is standing still, 
walking, running, or doing jumping jacks. 

2. Discrete activity recognition 
This domain focuses on repeated events, which have 
more tolerance to false negatives. In our study, we 
perform activity counting and activity density 

calculation (e.g. step per-second) from the 
aforementioned continuous activities (walking, running, 
and jumping jacks). 

3. Gesture recognition 
This domain focuses on recognizing discrete command 
gestures, which generally have the properties of 
occurring slowly and infrequently, with high cost of 
false positives and false negatives. We investigate the 
feasibility of our system to detect, segment, and classify 
whole-body gestures. 

Based on the aforementioned activity and gesture 
recognition targets, we implemented necessary signal 
analysis approaches such as event detection (including 
counting), gesture segmentation, feature extraction, and 
gesture classification. 

Real-time event detection 
In this stage, we aimed to detect real-time events of EF 
disturbances mainly caused by body movements to perform 
continuous and discrete activity recognition. Our system 
incorporates heuristic based adaptive threshold approach to 
detect these events. This simple approach is sufficient and 
effective for our signal mainly because the aggregated 
signal is clean, stable, and has predictable behavior. The 
signal rise and fall (as illustrated in Figure 3 by light green 
and light yellow highlights, also shown in Figure 7 and 8a) 
were direct effects of foot lift and foot land. Hence, 
continuous activities such as walking, running, jumping 
jacks, or standing still can be inferred simply by analyzing 
the signal amplitude and frequency. Our step-counting 
algorithm is based on threshold crossings, with rejection of 
crossings that are too close in time.  

Real-time segmentation 
Next, the program segmented inputs from the data stream 
into independent instances. Our system requires a real-time 
segmenter that automatically identifies gesture events from 
the live signal stream. We used similar adaptive 
thresholding method as the event detection described above, 
and then compute finite difference (i.e. sample-to-sample 
difference) of the signal in 1-second non-overlapping 
window. We set 1-second window because the designated 
gestures are unlikely to exceed 1-second period. By 
implementing this, the latency of our real-time 
segmentation algorithm is purely limited to sampling time 
(group delay of low pass filter). The mean value of the 
computed finite difference is then compared to a dynamic 
threshold aggregated from the adaptive algorithm similar to 
that implemented in our real-time event detection; if the 
absolute value of the mean is greater than the threshold, the 
system considers the current instance to be a gesture. The 
real-time segmentation results are illustrated in Figure 3 
marked by light grey highlights. 

Real-time feature extraction 
In this stage, the program analyzed segmented signals and 
performs feature extractions. Below are the 77 features we 
exploited for our gesture classification: 

 
Figure 3. Signal acquisition in Mirage, showing raw sample 
(red line), DC component (green line), AC component (blue 
line), main signal (white line), event detection (green and 
yellow highlights) and gesture segmentation (grey 
highlights). 
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• Signal waveform (20, Figure 3 – white line). 
• DC & AC waveform (40, Figure 3 – green and blue line) 
• Mean (1): average value of the signal over the window 
• Median (1): the median signal value over the window 
• Standard Deviation (1): the spreadness of the signal over 

the window 
• Variance (1): the square of standard deviation 
• Root Mean Square (1): The quadratic mean value of the 

signal over the window 
• Zero Crossing Rate (1): The total number of times the 

signal changes from positive to negative or back or vice 
versa normalized by the window length 

• Mean Crossing Rate (1): The total number of times the 
signal changes from below average to above average or 
vice versa normalized by the window length 

• Signal spectrum (10): 20-points FFT of the signal. 

Real-time classification 
Our system classified these input instances into a set of 
gestures using Sequential Minimal Optimization (SMO) 
implementation of the Support Vector Machine (SVM) 
classifier found included in the WEKA [11]. Our system 
runs the new features against a previously trained model to 
produce gesture classification results. 

Resolution and Signal-to-Noise Ratio 
In the current configuration, our sensor has an update rate 
of 20 Hz. This is considered sufficient because we are 
dealing with body movements which are not likely to 
exceed 10 Hz. It is important to note that our system is 
capable of performing much higher refresh rate, but at the 
same time we also focused on reducing unnecessary data 
transfer to perform ultra-low power sensing. 

Our sensing method passively measures noise in electric 
field due to body motion. To evaluate our signal, we choose 
the alternative Signal-to-Noise Ratio (SNR) definition, 
which is a reciprocal of the coefficient of variation of a set 
of samples taken over a period of time. We collected an 
hour-long sample of our signal and measured the mean and 
standard deviation. The mean was 224.65 (SD=2.59), hence 
the SNR is: 

 𝑆𝑁𝑅 =
𝜇
𝜎
=
224.65
2.59

= 86.74 (6) 

Note that our measurement includes variations from nearby 
electrical appliances, and also from the presence of 
experimenter who was standing still near the sense 
electrode during the data collection. This measurement 
scenario closely resembles actual usage scenario of Mirage. 

EVALUATION 
We designed and carried out a series of experiments to 
investigate the usability of our sensing approach, as well as 
to establish the baseline performance of the recognition 
engine. The experiment was conducted in 10 separate 
locations in 2 different office buildings. The office 
buildings had 4 and 3 floors with basements. We selected 
these locations to represent different flooring materials, 

building constructions, and surrounding electrical 
appliances, thus form a wide variety of ambient static EF. 
For a single location, experiments were conducted in a 
single visit. 

Our participants were unique for every location, totaling in 
10 participants (3 female), weighed between 47 and 84 kg 
(mean=65 kg), and height between 163 and 184 cm 
(mean=172 cm). Throughout our experiments, we did not 
require participants to use certain footwear. However, we 
did suggested participants to wear shoes, i.e. not 
barefooting. During our experiments, we avoid non-
participants from entering the experiment space. 

Activity Recognition 

Setup 
We developed a system that acquires signals produced by 
Mirage sensor, detects when a user is present, and 
recognize the amount and type of user’s activity. To test the 
robustness of this system, we conducted evaluations where 
the participants in different locations performed the 
following activities: (1) participant not in the room, 
participant in the room and (2) standing still, (3) walking, 
(4) running, and (5) jumping. 

To support these scenarios, we attached a 50×5 mm copper 
tape as our sense electrode on the notebook PC monitor 
frame and our microcontroller was connected to the 
notebook PC by USB cable (similar setup as Figure 4a, but 
attached on notebook PC monitor). The notebook PC was 
powered by internal li-ion battery. 

Procedure 
We instructed the participants to subsequently perform each 
of the designated activities for 10 seconds period at the 

 
Figure 4. Setup used in our evaluation: (a) microcontroller 
with sense electrode attached to a monitor frame, and (b) 
microcontroller (with wireless connection) without 
additional sense electrode for in-pocket usage. 
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same location in the experimental space (i.e. without 
locomotion). In general, our signal exists regardless of 
locomotion. Participants performed activities within the 
sensible distance from the sensor (typically <2m). We also 
instructed the participants to count their steps during 
walking, running, and jumping activities. Participants then 
reported their counting results to the experimenter. We 
repeated this session 5 times for each of the participants. 
Overall, we obtained 250 samples. 

The real-time event detection was done automatically 
during each session. Our system logs signal peaks and 
valleys together with their amplitudes, as well as signal 
frequencies obtained by spectral analysis (FFT). Combined, 
these data served as features for activity recognition. In this 
experiment, we set static thresholds for the aforementioned 
features to identify activities; therefore our activity 
recognition system does not require training. 

Results 
By comparing the aggregated activity recognition results 
with the ground truth data, we obtain 96.72% average 
accuracy (SD=5.35%) across 5 activities for 10 participants. 
Note that we used heuristic threshold to identify activities 
in a simple, low-power, and fast way (in contrast to 
machine learning based approaches), which can be 
extended to leverage more advanced recognition algorithm 
for supporting broader type of activities.  

Furthermore, we compared the automated and self-reported 
step counting results; yielding an average of 8.41% error 
margin (SD=3.12%). Note that high-quality research grade 
pedometers available in the market have typical error 
margin of ±5% [5,22]. These results seem promising with 
plenty of headroom for fine-tuning. 

Gesture Classification 

Setup 
To aggregate whole-body gestures, we extended our 
activity recognition system (which is basically a real-time 
event detection and heuristic threshold setting) with real-
time segmentation, feature extraction, and SMO based 
classifier. We used the techniques described in the previous 
section. To evaluate this system, we recruited the same 
participants and adopted similar setup as our previous 
experiment. The designated gestures include: (1) left arm 
lift, (2) right arm lift, (3) left hand rotation, (4) right hand 
rotation, and (5) jump. We illustrate these gestures in 
Figure 5. 

Procedure 
First, the participants were instructed to train themselves to 
perform the gestures. Soon after, the participants were 
instructed to subsequently perform each of the gesture for 5 
times. To avoid over fitting, we treat the aforementioned 
session as one fold, and then we repeated the session for 5 
times (5-fold). Overall, we aggregated 1250 samples of 
gestures. Our system performs segmentation and feature 
extraction automatically. It labeled and recorded each 
sample for our 5-fold cross-validation test. Prior to the test, 
we trained our SMO classifier in user dependent manner. 

Results 
The average accuracy across 10 participants and locations 
was 92.11% (SD=6.84%) when classifying between 5 
gestures. These results are encouraging for explorations on 
inferring gestures from completely passive static EF 
sensing using no body contact approach. It also validate our 
assumption that Mirage would work equally well across a 
reasonably wide set of people and homes. 

Location Classification 

Setup 
We conducted a study on location classification based on 
our hypothesis that different environments will give 
different fingerprints of ambient EF features. This is mainly 
caused by the variation of electrical appliances and 
electricity wiring that acts as electromagnetic sources. To 
be able to see wider range of the spectrum, we modified our 
sampling mechanism to sample only from the sense 
electrode. In this experiment, we sampled our ADC at 400 
Hz, resulting in a spectrum width of 200 Hz, easily 
containing 60 Hz mains and its harmonics. 

We measured EF fingerprint in 6 locations: (1) work desk, 
(2) meeting room, (3) kitchen, (4) hallways, (5) hardware 
lab, and (6) soccer field. The examples of the signals for 
each location are available in Figure 6. This ambient EF 
reading confirmed our hypothesis on the variability of EF 
fingerprints across different locations. 

We recruited the same participants as previous experiments. 
The sensor was placed in the user’s pocket, with no 
additional electrode attached to the analog input of the 
microcontroller (Figure 4b). This usage scenario works well 
to capture the EF fingerprint mainly because the human 
body acting as an antenna receives wide-range of frequency 
from the environment. Moreover, the analog input in close 
proximity to the body picks significantly stronger signal 
(ΔCd in Figure 2). 

Procedure 
We instructed the participants to freely choose a spot at 
above locations, and remember it for the next round of data 
collection. Each location of every round naturally separated 
in time due to participants moving from one location to 
another. Hence the training and testing data were from the 
relatively same spot, but separated in time.  

 
Figure 5. Stick figures describing the 5 gestures performed 
by participants in our gesture classification experiment. 
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At the measurement location, participants pressed a 
keyboard key to start collecting 100 samples of EF 
fingerprints (each consists of spectral features), which took 
approximately 100 seconds. We subsequently perform the 
data collection for all the locations and repeat it again for 5 
rounds. Overall, we aggregated 30000 samples that were 
trained in user dependent manner. 

Results 
We performed 5-fold cross validation using our SMO 
classifier. The average accuracy was 98.12% (SD=4.47%) 
when classifying between 6 locations. This is impressive, 
given that the approach was simple, and there is still plenty 
of headroom to fine-tune the parameters. 

Multiple User Differentiation 

Setup 
We conducted a study to leverage 2-channel Mirage sensor 
and Independent Component Analysis (ICA) algorithm to 
differentiate signal source coming from multiple user. In 
this experiment, we used the same implementation as our 
activity recognition, except that we had utilized two-
channel Mirage sensor and applied ICA to the signals. 

Procedure 
We instructed 2 participants to perform foot motion 
(without locomotion) in a 2×2 m work desk cubicle. We 
also asked the participants to perform foot motion in 
different speeds relative to each other. 

We applied our ICA based multiple user differentiation 
approach to the real-time signal. We observe the behavior 
of the signals and the aggregated independent components. 

Results 
Our system successfully aggregated independent 
components of the signals originated from 2 participants. 
We show an exemplary result in Figure 7, where a 
participant was walking and another participant was 
running. 

Combining ICA with simple amplitude based proximity 
sensing has the potential to help multiple user tracking. ICA 
can also be used to filter out noise from the signal, 
especially in the crowded environment. Exploring user 
tracking and noise filtering using ICA remains future work. 

Interactive Application 
We developed three applications to demonstrate Mirage 
real-time interactive capabilities. The first application 
shows the capability of Mirage to perform activity 
monitoring. This application provides real-time 
visualization of the raw data stream, results of the signal 
processing (AC/DC components, signal, FFT of the signal) 
as well as context aggregation results such as standing still, 
walking, running, and jumping, with their respective speeds 
and step counts (Figure 8a). 

The second application leverages activity detection to 
control the movement of a game character. Figure 8b shows 
a user playing the game where he tries to avoid obstacles by 
walking, running, and jumping. 

The third application is a Tetris game, which the user 
controls were mapped to a player’s whole-body gestures. 
Although a wide range of gestures can be trained, we 
leverage intuitive arm and foot motions such as: lifting left 
or right arm for left or right movement respectively, 
rotation gesture with one hand for Tetris block rotation, and 
jumping gesture to drop the block on the top of the stacks. 
In this application, we pre-trained the gesture classifier 

 
Figure 7. Multiple users differentiation using Independent 
Component Analysis (ICA). Upper left graph shows 
mixtures of signals captured by 1-channel sensor, and 
consequently mixed spectrum as shown in lower left graph. 
Using two-channel sensor and implementing ICA separates 
the independent components of the signal, revealing two 
signal sources as shown in lower right graph.  

Figure 6. The ambient electric field fingerprints sampled 
from 6 different locations show distinctive features that we 
leveraged in our location classification. 
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(SMO) using 10 examples of each gesture. Figure 8c shows 
the actual image of a user playing our Tetris game. 

DISCUSSION 
Through the experiments presented in this paper, we have 
shown that using the proposed off-body static electric field 
sensing, our system is able to perform activity recognition, 
gesture recognition, location classification, and multiple 
user differentiation in encouraging results. In addition, by 
developing three interactive applications we have 
demonstrated the ability to run our system in real-time. This 
section discusses the limitations of the current system, and 
future work to improve the system. 

Limitations and Future Work 
The EF strength E at a distance r away from a point charge 
Q is given by: 

 𝐸 = 𝑘
𝑄
𝑟!

 (7) 

where k is Coulomb’s Law constant (9.0×10!𝑁𝑚! 𝐶!). 
Hence, the EF strength is inversely proportional to the 
square of the distance. Consistent with this, the sensitivity 
of our sensing approach is limited to a certain distance from 
the subject to sensor (ΔCd in Figure 2). Fortunately, 
depending on the usage scenario this limitation can also be 
a feature. Limiting sensible space helps to avoid noisy 
signal, and useful to recognize events only from users who 
are nearby the sensors. This can also be a hint for proximity 
sensing. Also, by leveraging spatially distributed sensors 
we can upscale the usage to indoor location estimation. 

Circuit model represented in Figure 2 and physics model 
represented in Eq. (1-4) note that the capacitance of the foot 
to the ground (CF) and the body to nearby objects (Cw) 
influence the resulted sensing voltage (Vs). Hence, the 
resistance of user’s footwear also highly influences the 
magnitude of our signal (i.e., the higher the resistance, the 
higher magnitude of the signal our system can capture). 
While we do not have exact solution for this particular 
limitation yet, our pilot experiments showed wide-range of 

footwear could produce detectable signal. Furthermore, our 
heuristic-base adaptive threshold approach also helps to 
detect marginal changes in the signal for further processing. 

From the physics model represented in Eq. (2), capacitance 
between body and sense electrode (Cd) is directly 
proportional to the induced charge of the measurement 
electrode. Thus, the area size of the sense electrode also 
influences the magnitude of our signal (bigger electrode 
yields more sensitive system). Fortunately, using Mirage as 
a mobile sensor (e.g. in-pocket usage scenario) will mitigate 
this limitation; i.e., if the distance between the sensor and 
subject decrease, the signal magnitude will increase 
significantly. Using Mirage as peripheral attached sensor or 
environmental sensor also gives more headroom for 
attaching larger sense electrode. 

For future iteration of this work, we plan to explore the 
interaction design space for Mirage in mobile devices, as 
well as exploring integration of Mirage in homes 
(interfacing with powerline). Also, we plan to further 
explore our multiple user differentiation to support multiple 
user tracking. 

CONCLUSION 
In this paper, we have presented a novel approach to infer 
the amount and type of motion, gesture, and activity, as 
well as location classification and multiple user 
differentiation using non body contact and passive static 
electric field sensing, namely Mirage. We have described 
the theory of operation and detailed implementation of the 
sensing system that leverages the design of ADC in off-the-
shelf microcontrollers, which allows simple setup with no 
instrumentation on the user. Mirage systems can be 
extremely small, lightweight and low power. Since electric 
fields penetrate non-conductors, electrode sensors can be 
hidden, providing protection from weather and wear, while 
simultaneously adds the element of disappearing input 
interface. Mirage also works outdoor, enabling truly mobile 
solution. Results from our experiments have demonstrated 
that our system performs reasonably well for a series of 

   
Figure 8. Our interactive applications build on: (a) continuous and discrete activity recognition for activity monitoring, (b) discrete 
activity recognition embedded in an avatar-controlling game where a user has to physically walk, run, or jump to avoid obstacles, 
and (c) gesture recognition embedded in a Tetris game where user controls are mapped to whole-body gestures. 
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activity and gestures. Additionally, we have presented 
results on location classification within a building and 
outdoor, as well as multiple user differentiation using ICA. 
We conclude with demonstration of an activity monitoring 
application, and two interactive applications showing 
immediate applicability and rich interaction design space 
enabled by Mirage.  
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