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ABSTRACT

In this paper, we introduce a new approach to music struc-
ture segmentation that is based on the joint estimation of
structural segments, keys and chords in one probabilistic
framework. More precisely, the boundaries of a structure
segment are determined by detecting key changes and by
utilizing the difference in prior probability of chord tran-
sitions according to their position in a structural segment.
In contrast to many of the recent approaches to structural
segmentation, this system does not work with self-similarity
matrices, although it has been designed to integrate this
kind of approach into the framework at a later stage. How-
ever, just the current version of the system, using only the
estimated harmony, is already producing encouraging re-
sults, especially with respect to the precise localization of
the boundaries.

Categories and Subject Descriptors

1.5.4 [Pattern recognition]: Applications—Signal process-
ing, Waveform analysis; J.5 [Arts and humanities]: Per-
forming arts (e.g., dance, music)
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1. INTRODUCTION

Structural segmentation of music is the process in which
an audio recording is divided into a number of non-
overlapping sections that correspond to the macro-temporal
organisation of the piece. These entities usually take the
form of verses and choruses in popular music or of move-
ments in classical music. The obtained sections can then
be used for audio summarisation, synchronization or as an
intermediate step in further content-based indexation.

Recent approaches in music structural segmentation have
mostly focussed on processing so-called self-similarity ma-
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trices [1], obtained by comparing some low level acoustic
feature, like MFCC’s or chromas, to time-delayed copies of
itself. An overview of these and other methods can be found
in [8]. However, our proposed method takes a different ap-
proach. We present a framework for the joint estimation
of structural boundaries, keys and chords that builds upon
an existing system for key and chord estimation [9]. It is
based on the premise that some chord combinations are more
common around structural boundaries, especially when ex-
pressed as relative chords in a key, giving a musicologically
richer representation that is made possible by the concur-
rent estimation of keys and chords. In that regard, it is
more similar to previous work by Maddage [5] or by Lee [3],
only do their systems work sequentially because the chord
and key estimates are used as inputs to the structure esti-
mation, whereas our model generates them concurrently.

In the remainder of this paper, we will first elaborate the
assumption on which our system is based and provide a
theoretical underpinning of its validity in Section 2. After-
wards, we will present our probabilistic framework that uses
this information to concurrently estimate keys, chords and
structural boundaries in Section 3. Its output will then be
compared to a database of manual annotations in Section 4.
Finally, some conclusions as well as possible directions for
future work will be given in Section 5.

2. STRUCTURE DEPENDENT RELATIVE
CHORD TRANSITION MODELS

The basic premise around which our approach is con-
structed, is that chord sequences have a different prior prob-
ability according to their position in a structural segment
and more specifically, that the number of different chord
combinations that occur around the structural boundaries
is lower than those occurring in the middle of a segment. A
supporting example for this assumption is that movements
in music of the Classical period often end in a limited num-
ber of specific chord combination, the so-called cadences.
In order to verify this statement in a more methodological
way, we construct three different key-chord transition mod-
els depending on the position of the chords in a structural
segment.

A key k is defined as the combination of a tonic ¢ and
a mode m (m € {major, (natural) minor}). A chord ¢
is defined as the combination of a root r and a type p
(p € {maj, min, dim, aug}). In the following we will con-
sider pairs of keys and chords (k,c). We define a relative
chord ¢’ with respect to a key k by expressing the root r
as the interval ¢ between the tonic and the root i = d(¢,r).



Table 1: Perplexity of relative chord transition mod-
els per mode according to structural position

mode | intra inter final
major | 6.10 4.10 2.88
minor | 6.24 4.37 3.68

A key-chord pair can thus equivalently be written as a key-
relative chord pair (k,c) = (t,m,r,p) = (t,m,i,p) = (k,c).
The latter representation is musicologically more informa-
tive and corresponds to the way scholars analyse harmony.

We then look at all successions of 2 consecutive chords in
a corpus that is annotated with keys, chords and structural
segments. It is annotated such that all positions are indi-
cated where at least one of key, chord or structural segment
changes. In order to study the harmonic movement like mu-
sicologists do, both chords are interpreted in the same key.
Because of the forward motion in music, this will be the key
annotated for the first chord. Finally, to take the circularity
of pitch perception into account, we ignore the tonic of the
key and only keep the mode. The resulting representation of
local harmony then consist of a mode and a pair of relative
chords (mn—_1,ch_1,ch).

These pairs of relative chords in a mode are divided into
three categories according to their position in a structural
segment. Examples for each of them have been indicated in
Figure 1. We define following classes: final, when the two
chords are the last ones in a structural segment; inter, mean-
ing that the chord change is straddling a segment boundary;
and intra, for the remaining chord transitions. These classes
We then construct transition models for each structural po-
sition classes by counting the relative number of occurrences
in a corpus. We use the part of the Isophonics set [6] that
has been used for the MIREX 2010 chord estimation com-
petition. It consists of 217 full songs, mostly by the Beatles
(180 songs), the remainder by Queen and Zweieck. There
are genres other than pop music that are a better fit for
our restricted harmony model of 48 chords and 24 keys, but
this corpus is one of the few that contains audio aligned to
annotations of all our three considered aspects.

We can then quantify the difference in chord distribution
between the various models by calculating the model per-
plexity PP (C1, C3|m) per mode m for each of them. C] and
C% represent the collection of all relative chords that appear
as first, respectively second, element in the sequence. The
model perplexity is defined as the exponential of the entropy
H (C1,C5lm) expressed in nats:

PP (C’{, C§|m) = exp (H (C{, C§|m))

=exp | — ZP (c'1|m) Z P (c'2|c/1,m) log P (c/2|c'1, m)
c cy

This expresses the mean prior uncertainty of a bigram ac-
cording to its position in the structural segmentation. A
lower value means that the transition probability is concen-
trated into fewer combinations of two chords. As can be
seen in Table 1, the values for the intra-model are indeed
significantly higher than those for the inter and final-model,
thereby confirming our hypothesis.
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Figure 1: An example annotation with the three
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s=R;is
u:

k=no-k, c=no-c
$=0_.-——-_ s=L .-
//// PS \\\ //// PS \\\
Alejolelelo} AeYeleloleN
v final i é&é&&;
TOOOO0 Hmding H
\ N e s O I 7
HOOOOQ/ [ \3OOOOS/
———— § e
Ne N,
intra
ki=k .
-1 inter
C{#Cy 1

Figure 2: The state diagram

3. A PROBABILISTIC FRAMEWORK
FOR THE JOINT ESTIMATION OF
STRUCTURAL SEGMENTS, KEYS AND
CHORDS

We will now describe a probabilistic framework in which
the transition models as derived in the previous section will
be used to determine a structural segmentation of a track,
along with an estimation of the keys and chords. Our
starting point is the system by Pauwels et al. [9] which
concurrently estimates keys and chords, but does not es-
timate structural boundaries. It consists of an HMM in
which each state represents a combination of a key and a
chord. We extend it by letting each state g represent a
structural position in addition to a key and a chord. A
key k can take one of Ny values, a chord one of N, val-
ues and the structural positions s can take one of two val-
ues: L which means that ¢ is the last state of a structural
segment or O which means that ¢ is not the last state
of a structural segment. In summary, ¢ = (k,c,s) with
k € {K1,...,KNk},C S {C1,...,CNC},S S {L,O} Fi-
nally, we add a single state to handle the case when no
chord is being played, notably at the beginning and end
of a recording. In this state, the key will accordingly take a
“no-key” value and the structural position will take a value
of s = R. A simplified state diagram can be seen in Figure 2,
in which states are grouped by their value of the structure
variable. Only the transitions that change structure vari-
able are drawn in order not to overload the picture, but the
constraints on key and chord transitions are indicated next
to the arrows. We are then looking for the state sequence
Q ={G1, G2, - .., 4r} that optimally explains the sequence of



observations X = {x1,x2,...,27}: Q = argmax P (QX).
The resulting state sequence can then be split into sepa-
rate sequences for keys, chords and structure states: K, C
and S respectively. The structural segmentation can be de-
rived from the latter sequence simply by inserting a segment
boundary for every transition from a state s = L to one
where s = O, or from or to s = R. Because the state vari-
able g consists by definition of the combination of a chord,
key and structure variable, these three optimal sequences
will always be jointly decoded.

If we assume that the first order Markov property holds
and that acoustic observations are independent from state
to state, then we can rewrite the probability that needs to
be maximized using Bayes’ theorem to

T
S, K,C = argmax HP (st, ke, celsi—1, ki—1,ci—1)
t=1

P (Xt|8t, kt, Ct)

The transition probabilities P(s¢, k¢, ct|st—1, ki—1,ce—1) are
calculated by a prior musicological model that consists of
a number of submodels. By introducing some musicologi-
cally motivated constraints to the transition probabilities,
we want to enforce a number of relationships between the
concepts of keys, chords and structural segments. These will
ensure that our estimation always produces sensible results
and have as an added benefit that this also speeds up the
calculation. The first three constraints we impose are 1) a
key change k; # k-1 is only allowed to occur together with
a chord change c¢; # ct—1, 2) there must be a change in
chord or in key between segments, 3) a structural segment
must contain at least two different chords (or a single no-
chord). These three limitations can be easily enforced by
ensuring that every state change implies a chord change. In
other words, we let the chord level control the granularity
of the key and structure estimations. This makes the state
duration model effectively a chord duration model that we
control by a single parameter Ps:

P (st, ke, ce|se—1, ke—1,ce-1) =

Py
0

The remaining probabilities P (s¢, k¢, ct|si—1, kt—1,ce—1) ,
Ve # ci—1 of the chord changing transitions are calculated
by a combination of three submodels. We further apply
Bayes’ theorem repeatedly to arrive at a decomposition into
three terms

St = St—1 N ke = ki1
,Ver = ci—1
st £ si—1Vki £k

P (st,kt,celst—1,kt—1,c6-1)
= P (ct|st, St—1,kt—1,ct—1) P (kt|st, st—1, kt—1, Ct, ce—1)

P (s¢|st—1,kt—1,ct—1)

We can already recognize the structure-dependent relative
chord transition models of the previous section in the first
term P (ct|st, st—1, kt—1, ct—1). Our three categories of chord
transitions — inter, intra and final — each correspond to a cer-
tain combination of the state variables. The intra model will
be used when s;—1 = O and s; = O, inter when s;_1 = L
and s = O and final when s;—1 = O and s; = L. Finally,
from our definition of L it follows that when s;_1 = L and
st = L, only the self probability Ps should be allowed, to
account for the fact that the last chord of a structural seg-
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ment can — and most likely will — last more than one time
step. The other probabilities are set to zero.

In the second term P (k¢|s¢, St—1, kt—1, ct, ct—1), we neglect
the influence of the chords ¢;—1, ¢; in comparison to the other
terms such that we end up with P (k¢|s¢, se—1,ke—1). We
add the supplemental constraint that a key change can only
occur between segments. This means that s;—1 = O V s¢
L = P (k¢|st, St—1,kt—1) = Ok,.k,_, With & the Kronecker-
delta. For the inter key transitions P(k¢|st = O,si-1 =
L,ki—1), we reuse the model from [9], based on Lerdahl’s
theoretical distance [4] between keys.

The third term P (s¢|st—1, kt—1,ct—1) will be used to con-
trol the ease of changing the structure variable s and thus
to control the insertion of segment boundaries. We use a
simple model that ignores the key and chord influence and
consists of a single parameter w that balances the probability
of going to s = O or s = L after leaving s = O.

w si—1=0Nst =0
l1—w si-.1=0As;=1L
P (s¢]si—1) = L s L= LAsi—O
0 St—1=LAsg =1L

The result of adding the additional constraints is that the
complete transition matrix will have a well-defined, sparse
structure. The two upper quadrants consist of block di-
agonal matrices with Ni blocks of side N., the lower left
quadrant is dense and the lower right quadrant is a diag-
onal matrix. In comparison to a system that only esti-
mates keys and chords concurrently, the number of states
gets doubled by repeating every key-chord state for s = O
and s = L. On the other hand, because of the sparsity of the
transition matrix, the increase in the number of transitions
stays limited. More specifically, the number of transitions
is (NkNC)2 + 2N, N2 4+ NN, + 1, which corresponds in our
configuration to an increase of 8% instead of the theoreti-
cally maximum of 400% that would be attained for a dense
transition matrix. This sparsity will subsequently be used
in the implementation of the Viterbi algorithm to limit the
increase in computation time.

The features x that we use for the calculation of the acous-
tic probabilities P (x¢|st, k¢, ct) are the Loudness Based
Chromagrams as developed by Ni et al. [7]. These are 24-
dimensional vectors that represent the loudness of each of
the 12 pitch classes in both the treble and the bass spec-
trum. They are calculated with a step size of 23 ms and are
afterwards averaged over interbeat segments as calculated
by ircambeat [10].

We make the assumption that keys and chords can
be independently tested for compliance with an observa-
tion and that the structure position is conditionally inde-
pendent of the observations, such that P (x¢|s:, k¢, ce) =
P (x¢|ct) P (x¢]kt). The key acoustic probability P (x¢|k:)
is then modelled as the cosine similarity between the obser-
vation vector « and Temperley’s key templates [11]. These
represent the stability of each of the 12 pitch classes relative
to a given key. The chord acoustic probability P (x¢|ct) is
modelled by a multi-variate Gaussian with full covariance
matrix. The models per chord are trained on the same data
set from which the relative chord transition models have
been derived.
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Figure 3: Evaluation measures for two tolerance set-
tings

4. EXPERIMENTAL RESULTS

The performance of the generated structural boundaries
will be evaluated by calculating a precision P (tol) and a
recall R (tol) that is a function of a tolerance tol. The pre-
cision is defined as the number of estimated boundaries for
which an annotated boundary falls within the window with
length of tol centered around its estimated position. This
number is expressed relatively to the total number of esti-
mated boundaries. The recall on the other hand, is the rela-
tive number of annotated boundaries that have an estimated
boundary within its tolerance window. Both measures are
combined into an F-measure F (tol). These measures are
calculated for every song of the previously mentioned data
set and averaged.

We evaluate our output using two settings for the toler-
ance: 0.5 s and 3 s and the aforementioned Isophonics data
set. The results in function of the structure change control-
ling parameter w can be found in Figure 3. The movement
in opposite directions of the precision and recall curves show
that w indeed is able to control the number of resulting struc-
tural segments. The optimal F-measures F (0.5s) = 36.04
and F (3s) = 56.08 are reached for w = 0.7.

Next, we will compare our results with a state-of-the-art
segmentation algorithm by Kaiser & Peeters [2]. It calcu-
lates a novelty curve by taking the correlation between three
types of kernels and the diagonal of an MFCC-based self-
similarity matrix. Segment boundaries are then inserted
at places where the novelty curve peaks. This system is
a refinement of the one that ranked among the best seg-
mentation algorithms during the MIREX 2012 contest. We
obtained the output of their algorithm on the data set we
use through personal correspondence with the authors.

From the results presented in Table 2, we can conclude
that our approach is particularly strong in the fine locali-
sation of the segment boundaries: we outperform Kaiser &
Peeters’ system for a tolerance of 0.5 s. However, increasing
the tolerance to 3 s has a much larger beneficial effect on
their performance than on ours. Consequently, their results
for a tolerance of 3 s is significantly better, especially the
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Table 2: A comparison between our proposed sys-
tem and the state-of-the-art

Kaiser & Peeters | Proposed (w = 0.7)

tolerance 0.5s 3s 0.5s 3s
F-measure | 32.94 64.53 36.04 56.08
precision | 29.78 59.87 31.82 50.81
recall 39.28 73.50 47.91 69.85

precision. The latter is a consequence of the fact that our
algorithm oversegments more than theirs (at least for the
value of w that gives the highest F-measure).

5. CONCLUSION AND FURTHER WORK

We presented a new approach to structural segmentation
by means of a probabilistic framework that concurrently esti-
mates keys, chords and structural boundaries. It is based on
the assumption that key changes indicate structural bound-
aries and that there is lesser variety in chords around struc-
tural boundaries than in the middle of structural segments.

Currently, our system is still in its proof-of-concept phase.
In the future, we will first perform additional experiments
to test the scaling of our approach to different types of mu-
sic. The final goal however, is to integrate our method with
a self-similarity matrix (SSM) based approach, aspiring to
construct a synergistic system. For instance, just a change
in instrumentation won’t be detected as a structure bound-
ary in our current system, whereas SSM methods are pretty
efficient at spotting those.
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