
Histo- and Dynamorphisms Revisited

Ralf Hinze Nicolas Wu ∗

Department of Computer Science
University of Oxford

{ralf.hinze,nicolas.wu}@cs.ox.ac.uk

Abstract
Dynamic programming algorithms embody a widely used program-
ming technique that optimizes recursively defined equations that
have repeating subproblems. The standard solution uses arrays to
share common results between successive steps, and while effec-
tive, this fails to exploit the structural properties present in these
problems. Histomorphisms and dynamorphisms have been intro-
duced to expresses such algorithms in terms of structured recur-
sion schemes that leverage this structure. In this paper, we revisit
and relate these schemes and show how they can be expressed in
terms of recursion schemes from comonads, as well as from recur-
sive coalgebras. Our constructions rely on properties of bialgebras
and dicoalgebras, and we are careful to consider optimizations and
efficiency concerns. Throughout the paper we illustrate these tech-
niques through several worked-out examples discussed in a tuto-
rial style, and show how a recursive specification can be expressed
both as an array-based algorithm as well as one that uses recursion
schemes.

Keywords dynamic programming, recursion schemes, histomor-
phisms, dynamorphisms

1. Introduction
Many important algorithms can be expressed using recursion equa-
tions where solutions are built up from recursive steps. In divide-
and-conquer algorithms such recursion equations can often be exe-
cuted efficiently, since a problem is divided up into independent
subproblems that are then solved recursively before being com-
bined to form a final solution. However, in the particular case where
a subproblem is repeated at different stages in the computation, re-
cursion equations should be considered no more than a specifica-
tion: the solution to each repeated subproblem is naively recom-
puted, often leading to exponential complexity that can be avoided.
The key observation made by dynamic programming algorithms
is that that solutions to subproblems can be memoised and reused
when identical subproblems are later encountered, thus preventing
the expense of needless recomputation.

The standard approach to implementing a dynamic program-
ming algorithm is to use a table of values to store intermediate re-

∗ This work has been funded by EPSRC grant number EP/J010995/1.

[Copyright notice will appear here once ’preprint’ option is removed.]

sults. Such tables are usually indexed by the input parameters of the
recursion, and are populated with values the first time a particular
subproblem has been encountered, which are then reused when this
subproblem is encountered again. In a functional programming lan-
guage with lazy evaluation, such tables are easy to construct, since
values are populated as they are demanded, which leads to imple-
mentations that closely resemble their recursive counterparts, but
do not suffer from their inefficiencies.

Our goal is to show how categorically-inspired recursion schemes
can be used to efficiently solve such problems, and we hope that
this study will become useful to programmers who are interested
in understanding how category theory can be used in the design
of algorithms where the structure of the computation is important.
This is not the first time that dynamic programming algorithms
have been investigated from a categorical perspective. Histomor-
phisms have long been understood as a means of capturing course-
of-value recursion, which is sufficient for some dynamic program-
ming algorithms, where the recursion follows the pattern of the
input data [13]. In particular, histomorphisms are constrained to
work on problems where the input can be expressed as an initial
algebra. However, not all problems follow such a rigid pattern, and
dynamorphisms are a more general recursion scheme that was in-
troduced to lift this restriction in the setting of CPO [9]. We extend
this work by using recursive coalgebras to prove uniqueness within
the setting of a wider range of categories.

In order to make this material accessible, we present a number
of solutions to classic dynamic programming problems, and work
through various solutions in a tutorial style. Our development is
in Haskell [12], not only because the ensuing programs can be
efficiently executed, but also because the language allows us to
express solutions that closely resemble the categorical notions that
underpin the theory.

On a more theoretical note, we also show how histomorphisms
relate not only to one another, but also how they can be expressed
as recursion schemes from comonads, and as recursion schemes
from recursive coalgebras. Much of this work builds on the notions
presented in [7], where distributive laws and bialgebras witness
the correspondence between adjoint folds and recursion schemes
from comonads. In this paper, we present an extensive case study
based on that material, and show how further optimizations can be
derived.

This paper makes the following novel contributions.

• We demonstrate how histomorphisms and dynamorphism can
be applied to a number of different problems.

• We show how bialgebras relate histomorphisms to recursion
schemes from comonads, and how dicoalgebras relate dy-
namorphisms to recursion schemes from recursive coalgebras.

• We use these relationships to derive optimized versions of histo-
and dynamorphisms.

1 2013/7/12

• We use type families to witness efficient implementations of
inductive types from base functors in Haskell.

The work in this paper draws significantly from categorical
machinery. As such, we assume that the reader has at least some
basic knowledge of the categorical trinity: categories, functors and
natural transformations. Aside from these, we also assume that the
reader has an understanding of initial algebras and comonads; these
notions will be introduced formally, but we will not linger long
on these constructions. Aside from these, no further knowledge
will be required, and we will introduce such notions as cofree
comonads, distributive laws, bialgebras, and the (co)-Eilenberg-
Moore category when they are required.

The paper is structured as follows. Section 2 introduces a num-
ber of dynamic programming algorithms that will be revisited
throughout the paper. A brief overview of some of the basic con-
cepts we use is given in Section 3. We introduce histomorphisms
in Section 4 and relate these to recursion schemes from comonads
in Section 5. We then introduce dynamorphisms in Section 6 and
relate these to recursion schemes from recursive coalgebras in Sec-
tion 7. Finally, we present related work in Section 8, and conclude
in Section 9.

2. Dynamic Programming
Before looking at the construction of histo- and dynamorphisms we
first take a look at at the different kinds of algorithms that fit under
the umbrella of dynamic programming. Dynamic programming
relies on the principle of optimality, where the optimal solution to
a problem can be determined by first breaking the problem into
subproblems, optimally solving those subproblems, and combining
the ensuing subsolutions into a final answer.

The knapsack problem A classic example of of a dynamic algo-
rithm is the unbounded knapsack problem. Suppose we are inter-
ested in maximizing the total value of elements that are placed into
a knapsack with a fixed weight capacity. The elements are chosen
from a set of items that are assigned a particular weight and value,
each item being unbounded in number. We might represent the set
of items as a list of pairs (w,v), where w is the weight and v is the
value. For instance, consider the following list:

wvs :: [(N,Double)]
wvs = [(12,4),(1,2),(2,2),(1,1),(4,10)] .

With a knapsack of capacity 15 the optimal solution is to choose
three elements from the 2nd and 5th items, for a total value of 36.

This problem can be solved using a recursive function, that
forms the basis of a specification:

knapsack1 ::N→ Double
knapsack1 c = maximum0

[v+ knapsack1 (c−w) | (w,v)← wvs,0<w ∧ w 6 c] .

The value of a knapsack with capacity c is determined by finding
the item in wvs that maximizes the value of the knapsack when
it has been added: an element of weight w and value v increases
the value of a knapsack by v, and decreases its capacity by w.
Only items with positive weight that can fit into the knapsack are
considered. The function maximum0 returns 0 when given an empty
list, and otherwise returns the maximum value in the list.

This specification makes no attempt to be efficient, and naively
recomputes the values of knapsacks with capacities that have al-
ready been explored. In order to avoid these recomputations, the
intermediate results can be stored in a table that is populated by the
recursion itself, and used to lookup values that have already been

visited.
knapsack2 ::N→ Double
knapsack2 n = table ! n where

table = tabulate (0,n) knapsack
knapsack c = maximum0

[v+ table ! (c−w) | (w,v)← wvs,0<w ∧ w 6 c]

This definition closely mirrors the specification, where the main
body of knapsack is almost identical to knapsack1. The key differ-
ence is that the recursive calls have been replaced by looking up
values in a table. This table is constructed by the function tabulate,
which takes as its arguments the bounds of the array that is to be
constructed, as well as a function that produces values for given
indices.

tabulate :: (Ix i)⇒ (i, i)→ (i→ a)→ Array i a
tabulate ixs f = array ixs [(i, f i) | i← range ixs]

Thus the function knapsack and the array table are mutually recur-
sive: values are initially tabulated by using the function knapsack,
and knapsack makes use of the table to find values that have al-
ready been computed. This relies on lazy evaluation, where values
are generated only as they are demanded: it is the calling conven-
tion that determines which values are calculated next. We shall see
how this sets the pattern of how dynamic programming algorithms
can be solved using arrays in the problems that follow. Note that
there is an unfulfilled proof obligation here: one must show that the
recursion is well-founded; it is precisely this proof that histomor-
phisms and dynamorphisms provide, and, as we shall see, we will
have to work hard to transmogrify the original formulation into the
form required by these schemes.

Catalan numbers A simple example of a course-of-value pro-
gram that makes use of all its subcomponents is the evaluation of
the Catalan numbers. Amongst other things, the Catalan numbers
can be used to find the number of distinct well-formed arrange-
ments that can be made with a set of n matching parentheses. The
recursive definition is as follows:
catalan1 ::N→ N
catalan1 0 = 1
catalan1 (n+1) = sum [catalan1 i∗ catalan1 (n− i) | i← [0 . .n]]

For example, the value of catalan1 3 is 5, which can be seen through
a simple enumeration of the possibilities:

() () (),() (()),(()) (),(() ()),((())) .

The recursive solution works by considering all of the different
ways of splitting an expression with parentheses.

Strictly speaking this is not a dynamic programming problem,
since we are not seeking an optimal solution. However, it does ex-
hibit the same hallmarks: common subproblems are encountered
time and again, and there is scope to share solutions between re-
cursive calls to increase the efficiency of this algorithm. As before,
we apply the technique dynamic programming, where array-based
memoisation is used to store and share results.

catalan2 ::N→ N
catalan2 p = table ! p where

table = tabulate (0,p) catalan
catalan 0 = 1
catalan (n+1) = sum [table ! i∗ table ! (n− i) | i← [0 . .n]]

Again this implementation builds an array that is indexed in place
of recursive calls.

Chain matrix multiplication The chain matrix multiplication
problem concerns finding the minimal number of operations re-
quired to multiply a chain of matrices of arbitrary length. The
multiplication of a p×q matrix by a q× r matrix yields a matrix of

2 2013/7/12

size p× r in pqr scalar operations. This multiplication is associa-
tive, yielding the same result regardless of the order in which more
than two matrices are multiplied. However it is easy to show that
different parenthesisations can lead to different costs. For example,
consider multiplying a chain of three matrices of sizes 2×3, 3×5,
and 5×7. There are two solutions, where multiplying the first two
matrices and then the third costs 100 operations, whereas multiply-
ing the last two matrices and then the first costs 147 operations.

The naive solution to this problem is to compute the cost of all
possible parenthesisations. This algorithm takes time proportional
to the Catalan numbers to generate all the different sequences,
each of which is checked in isolation. We can improve upon this
solution by using dynamic programming, where the results for any
(sub)-parenthesisation is calculated only once and reused where
appropriate. As usual, we start with a recurrence equation that
solves the problem. We assume that the matrices A1 . . . An are given
to be multiplied, and matrix Ak has dimensions given by ak−1×ak.

chain1 :: (N,N)→ N
chain1 (i, j)
| i j = 0
| i< j = minimum [ai−1 ∗ak ∗aj +

chain1 (i,k)+ chain1 (k+1, j) | k← [i . . j−1]]

(In a sense, the specification is already geared towards an imper-
ative array-based solution: the argument to the recursion is repre-
sented as a pair, which is an efficient representation of a contiguous
segment when the data is globally stored in an array.) This solution
makes use of the principle of optimality, by noting that the opti-
mal solutions to subproblems can be combined to form the final
solution. In this case, the optimal chain for multiplying matrices
Ai . . .A j is given by finding the value k that minimizes the number
of scalar operations, when the optimal values for chaining matrices
Ai . . .Ak and Ak+1 . . .A j are known. The final answer for this is held
in chain1 (1,n), where n is the number of matrices that are being
multiplied.

To turn this into a more efficient array-based version, we employ
the usual technique and memoise the results of the recursion:

chain2 :: (N,N)→ N
chain2 (m,n) = table ! (m,n) where

table = tabulate ((1,1),(n,n)) chain
chain (i, j)
| i j = 0
| i< j = minimum [ai−1 ∗ak ∗aj +

table ! (i,k)+ table ! (k+1, j) | k← [i . . j−1]]

Although the recursive definition is in two variables, we can capture
this quite simply by creating a multi-dimensional array. Note that
all the complexity is hidden in the function tabulate, which is
overloaded on the type of indices.

The bitonic travelling-salesman problem The bitonic travelling-
salesman problem is a variation of the classic NP-hard travelling-
salesman problem: given a set of points and distances between each
pair of points, the task is to find the shortest route that visits each
point exactly once before returning back to the start. The variation
is that the points are assumed to be on a plane, and share no x
coordinate, and furthermore, the solutions are restricted to consider
only bitonic tours: paths that start at the leftmost point, then move
strictly towards the rightmost point, and then strictly left again back
to the start, having covered all points. For convenience we assume
that there are m points, x0 . .xm, ordered by their x coordinate. We
denote the distance between the points xi and xj by xi xj. Under
these circumstances, we can show that the optimal path can be
found in O(m2) time.

First we present a solution that uses strong induction on the
naturals. We ensure that the value of bitonic1 n is the length of

the shortest tour that includes all the points x0 . .xn+1. The base
case is bitonic1 0, which is simply twice the distance between the
first two points. For the inductive case, we assume that all values
bitonic1 i contain the shortest path when i 6 n, and show how to
find the shortest path for bitonic1 (n+ 1). If we consider the point
n+2, at the far right of the tour, then this must be connected to the
point n+ 1, and also to some other point k 6 n. Since the tour is
bitonic, this implies that the path also connects the points k+1 . .n
in succession. Therefore, a bitonic tour with n+ 1 at its rightmost
is given by bitonic k plus these connections, and minus the path
between k and k + 1. We are obviously interested in finding the
shortest tour given by some k. This is expressed precisely in the
following recursively defined function:

bitonic1 ::N→ Double
bitonic1 0 = 2∗ x0 x1
bitonic1 (n+1) = minimum [bitonic1 k− xk xk+1 + xk xn+2

+ sum [xi xi+1 | i← [k+1 . .n+1]] | k← [0 . .n]]

Using this recurrence, the solution is found in bitonic1 (m− 1).
To turn this into an efficient version we must memoise the results
of bitonic1 k, to avoid the recomputation of subsolutions. We omit
this definition, since it is similar to the array-based solutions of the
previous examples.

A second solution to the bitonic travelling-salesman problem
can be formulated that has quite a different invariant. The recursion
equation for bitonic2 i j expresses the minimal traversal of the
points that starts at xi, travels strictly left to x0, and then strictly
right to xj. We assume that i 6 j, and that all points smaller than j
are in the path. Clearly, when i j we have a cycle: the final answer
is to be found in bitonic m m.

bitonic2 :: (N,N)→ Double
bitonic2 (0,0) = 0
bitonic2 (0,1) = x0 x1
bitonic2 (i, j)
| i< j−1 = bitonic2 (i, j−1)+ xj−1 xj
| otherwise = minimum [bitonic2 (k, i)+ xk xj | k← [0 . . i−1]]

There are two base cases for this recursion. The first is the tour that
contains only the point x0, which has a distance of 0. The second
base case is a path that connects x0 and x1, which has length x0 x1.
Now we consider a path from xi to xj. When i < j− 1, then we
must connect xj−1 and xj, since our invariant is that all points less
than j are in the path, so this distance is added to the result of
bitonic2 i (j− 1). Otherwise, either i j− 1 or i j, and in both
cases we find the minimal path that has one end at i, and the other
end going through some k and immediately to j. To turn this into an
efficient version we must construct a table in two dimensions.

bitonic3 :: (N,N)→ Double
bitonic3 ij = table ! ij where

table = tabulate ((0,1),(m,m)) bitonic
bitonic (0,0) = 0
bitonic (0,1) = x0 x1
bitonic (i, j)
| i< j−1 = table ! (i, j−1)+ xj−1 xj
| otherwise = minimum [table ! (k, i)+ xk xj | k← [0 . . i−1]]

Again this efficient version follows quite naturally from the recur-
sive specification.

In each of these examples, we turn a recursive definition into a
more efficient array-based solution that solves the problem. How-
ever, this is unsatisfactory in the sense that we have no guarantee
that the recursion is well-defined. In the remainder of the paper we
will focus on recursion schemes where the structure of the lookup
table comes from the data itself.

3 2013/7/12

3. Background
In this section we introduce some of the basic concepts that will be
used in the remainder of the paper, and show how these notions can
be implemented in Haskell.

Algebras and coalgebras Algebras and coalgebras form the basis
for the categorical description of many recursion schemes. Given
an endofunctor F : C → C , an F-algebra is a pair (a,A), where
a : F A→ A is an arrow and A : C is an object, which are known as
the action and carrier of the algebra. (This deviates a little from the
standard notation (A,a), since it gives us syntax that distinguishes
algebras from coalgebras.) An F-homomorphism between algebras
(a,A) and (b,B) is an arrow h : A→ B : C such that h · a = b · F h.

F A F B

A B

a

F h

b

h

F-homomorphisms compose and have an identity, so it follows that
F-algebras and F-homomorphisms form a category, which we call
F-Alg(C). The initial object of this category, if it exists, is given by
(in,µF) and called the initial F-algebra. The initiality implies that
to each F-algebra, (a,A), there exists a unique F-homomorphism,
a : (in,µF)→ (a,A), called a fold. The algebra in is, in fact, an

isomorphism, so µF is a fixed-point of F (the least fixed-point), a
fact known as Lambek’s lemma [11].

Dually, given an endofunctor G : C → C , a G-coalgebra is a
pair (C,c), where C : C is the carrier and c : C → G C is the
action of the coalgebra. A G-homomorphism between coalgebras
(C,c) and (D,d) is an arrow h : C → D : C that satisfies G h ·
c = d · h. Just as before, a category G-Coalg(C) can be formed
from G-coalgebras and G-homomorphisms. The final object of this
category, if it exists, is given by (νG,out) and called the final
G-coalgebra. The unique homomorphism to the G-algebra (C,c),
called an unfold, is written c : C→ νG.

The category F-Alg(C) has more structure than C . The forget-
ful or underlying functor UF : F-Alg(C)→ C forgets about the
additional structure: UF (a,A) = A and UF h = h. An analogous
functor can be defined for coalgebras: UG : G-Coalg(C)→ C .

Inductive types Since the action of an initial algebra is an isomor-
phism, initial algebras can be used to assign a semantics to recur-
sively defined datatypes. As an example, the inductive datatype

data Tree = Empty | Node Tree N Tree

is modelled by the initial algebra (in,µTree), where the so-called
base functor

data Tree tree = Empty | Node tree N tree

abstracts away from the recursive occurrences of Tree. Note that
we use a different font to distinguish the base functor from the
inductive datatype. The Haskell rendering of the isomorphism in,
the action of the initial algebra,

in ::Tree Tree→ Tree
in (Empty) = Empty
in (Node l a r) = Node l a r

amounts to a simple renaming of constructors.
Turning to the semantics of recursively defined functions, a

simple tree consumer such as

depth :: Tree→ N
depth (Empty) = 0
depth (Node l a r) = 1+(depth l ‘max‘ depth r)

can be modelled by the fold depth , where the algebra

depth ::Tree N→ N
depth (Empty) = 0
depth (Node dl a dr) = 1+(dl ‘max‘ dr)

is a non-recursive function that maps the results of the recursive
calls to the overall result.

The standard approach to implementing this machinery in
Haskell is to make in a data constructor of a generic fixed-point
constructor: data µF = In {in◦ :: F (µF)}. We depart from this
approach, and instead use Haskell’s type classes and family syn-
onyms [3] to witness this isomorphism. Thus, for inductive types,
we introduce the following class:

class (Functor F)⇒ Inductive F where
type µF ::∗
in ::F (µF)→ µF
in◦ ::µF→ F (µF)
- :: (F a→ a)→ (µF→ a) .

Here, in is implemented as a function rather than a data constructor,
and there is an obligation on the implementor to ensure that in
and in◦ are indeed inverses. However, it is possible to define in◦
in terms of a fold, and vice versa, so these form suitable default
implementations:

in◦ = fmap in
a = a · fmap a · in◦

This allows us to keep the implementation of the fixed point ab-
stract, and in turn, gives us the freedom to associate efficient repre-
sentations to base functors.

This is particularly useful for primitive types such as natural
numbers. The base functor for these is expressed by Nat:

data Nat n = Zero | Succ n
instance Functor Nat where

fmap f Zero = Zero
fmap f (Succ x) = Succ (f x) .

The Inductive instance for this datatype is simply the natural num-
bers, which are implemented efficiently as integers in Haskell:

type N= Int
instance Inductive Nat where

type µNat= N
in Zero = 0
in (Succ n) = n+1
in◦ 0 = Zero
in◦ (n+1) = Succ n .

This lets us freely use properties of the structure of natural numbers
without being too heavily penalized.

Comonads Functional programmers have embraced monads, and
to a lesser extent, comonads, to capture effectful and context-
sensitive computations. We shall use comonads to model ‘recursive
calls in context’. A comonad is a functor N : C →C equipped with
a natural transformation ε : N →̇ Id (counit), that extracts a value
from a context, and a second natural transformation δ : N→̇N◦N
(comultiplication) that duplicates a context. These functions are
subject to the comonad laws:

(ε◦N) · δ= N , (1a)
(N◦ε) · δ= N , (1b)
(δ◦N) · δ= (N◦δ) · δ . (1c)

Here we use categorical notation, where natural transformations
can be composed horizontally (◦), and vertically (·), and the identity
natural transformation for a functor is denoted by the functor itself.

4 2013/7/12

The first two properties, the counit laws, state that duplicating
a context and then discarding a duplicate is the same as doing
nothing. The third property, the coassociative law, equates the two
ways of duplicating a context twice.

4. Histomorphisms
Dynamic programming algorithms make use of solutions to pre-
viously visited subproblems to compute the values of new ones.
In other words, values that are computed are placed in some con-
text, and then extracted from that context when needed. As a first
approximation, this pattern is captured by a histomorphism, which
has access to the whole history of a computation. Recall that a fold
is made available the result of the recursive calls on the immediate
substructures. By contrast, a histomorphism can resort to the results
of the recursive calls on all substructures.

Before we go into the details of how a histomorphism is de-
fined, we first introduce the so-called cofree comonad of a func-
tor F, which we write as F∞. This comonad serves to provide the
context in which results are placed during recursive calls. Loosely
speaking, it serves as a generic counterpart of the memo tables im-
plemented by arrays above.

Cofree comonad Categorically speaking, the cofree comonad
comes from the following adjunction between the category of coal-
gebras and its underlying category:

C F-Coalg(C)⊥
CofreeF

UF

. (2)

The forgetful functor UF has a right adjoint CofreeF that maps an
object A to the cofree coalgebra CofreeF A = (F∞ A, tail∞ A). Very
generally speaking, CofreeF can be used to capture the behaviour
of ‘systems’. It may help to think of the functor F as a static de-
scription of all possible transitions for a class of different systems,
and of the object A as a type of system states. The elements of F∞ A
then capture the entire behaviour of a system as the infinite unfold-
ing of all possible transitions. The action of the cofree coalgebra
tail∞ : F∞ A→ F (F∞ A) maps such a description to the F-structure
of all possible successor systems.

The adjunction provides further infrastructure: the counit ε
which we denote head∞ :F∞ A→A extracts the initial state of a sys-
tem; given a state-transition function expressed as an F-coalgebra
a : A→ F A, the unit η which we write η (A,a) = a : A→ F∞ A
constructs the infinite unfolding from a given initial state. This
data satisfies an important property, which establishes a bijection
between certain arrows in C and certain arrows in F-Coalg(C).
Specifically, an F-coalgebra homomorphism g : (A,a)→CofreeF B
is uniquely determined by a mapping f : A→B from states of type A
to observations of type B. This so-called universal property can be
neatly expressed as an equivalence:

f = head∞ B · g ⇐⇒ F∞ f · a = g , (3)

for all arrows f : A→B and homomorphisms g : (A,a)→CofreeF B.
Now, every adjunction induces a comonad [8]. The adjunc-

tion (2) gives rise to the cofree comonad F∞ = UF ◦CofreeF.

The cofree comonad in Haskell One can show that final coalge-
bras and cofree coalgebras are interdefinable. In one direction we
have νF ∼= F∞ 1 where 1 is the final object. In the other direction
we have F∞ A ∼= ν X . A×F X, which forms the basis for an im-
plementation in Haskell. Using Haskell’s higher-kinded datatypes,
F∞ A can be readily implemented as follows.

data F∞ a = Cons∞ {head∞ :: a, tail∞ ::F (F∞ a)}
instance (Functor F)⇒ Functor (F∞) where

fmap f (Cons∞ a ts) = Cons∞ (f a) (fmap (fmap f) ts)

Here, Cons∞ is the inverse of the isomorphism head∞ M tail∞.
The type F∞ can be seen as the type of generalized streams of
observations—it behaves as a ‘stream’ because each successive
layer has a head∞ that contains a value, and ‘generalized’ because
the ‘tail’ is an F-structure of ‘streams’ rather than just a single
one. A generalized stream is, in fact, very similar to a generalized
rose tree, except that the latter is usually seen as an element of an
inductive type, whereas this construction is patently coinductive.
If we instantiate the base functor of the cofree comonad to Id, we
obtain the type of simple streams.

Given a coalgebra a : A→ F A, the implementation of the unit
a : a→ F∞ a is fairly straightforward, where the function cons∞ ::
(a,F (F∞ a))→ F∞ a is the uncurried version of Cons∞:

- :: (Functor F)⇒ (a→ F a)→ (a→ F∞ a)
a = h where h = cons∞ · (idM fmap h · a) .

This takes an initial seed that is used to create the head of the
structure, and is also combined with the algebra to recursively grow
the next level of values in the tails.

As its name suggests, the cofree comonad is comonadic, and so
comes equipped with a means of extracting a value from its context,
ε= head∞, and a means of duplicating a context, δ= tail∞ , which
uses an entire F∞-structure as the state.

We have noted above that Id∞ yields the type of streams. A more
interesting base functor is Nat which gives rise to the type Nat∞ of
non-empty colists. For example, the call in◦ 2 generates the colist

Cons∞ 2 (Succ (Cons∞ 1 (Succ (Cons∞ 0 Zero)))) .

This corresponds to the list of all predecessors of 2.

Histomorphisms With these basics in place, we are now ready to
give the original formulation of histomorphisms [13].

The argument to a histomorphism is a ‘context-sensitive’ alge-
bra a : F (F∞ A)→ A that works on a structure that contains all
the recursive subsolutions, and combines these to form a new solu-
tion of type A. Informally, F∞ A is a hierarchical memo-table where
each successive level contains a subsolution of type A together with
an F-substructure; the deepest level is the base case of the datatype.

A histomorphism is defined to be the unique solution x :µF→ A
of the equation:

x · in = a · F (F∞ x · in◦) . (4)

The coalgebra in◦ : µF→ F∞ (µF) turns an element of an induc-
tive type into a table of all substructures. The histomorphism is
recursively applied to each of the substructures, making the results
of the recursive calls readily available to the algebra a.
Remark. There are a number of different variations of this defi-
nition, depending on how the argument of F is expressed. In the
definition above we have used a formulation that is based on the
unit of the adjunction (2): h = F∞ x · in◦ . The original character-
ization in [13] is recovered if we identify F∞ A and ν X . A×F X,
thus giving us h = xM in◦ .

Equation (4) specifies the notion of an histomorphism, however,
it does not serve as a blue-print for an efficient implementation.
Indeed, as an implementation it is exponential in the sense that the
annotated tree is recomputed at every recursive call. Also, at the
outset it is not clear that the equation (4) has a unique solution.
We postpone both issues until Section 5 where we attack them in a
more general setting.

Histomorphisms in Haskell We can turn the naive definition of a
histomorphism into a recursion scheme in Haskell by making the
most of the fact that in has an inverse, in◦, which is provided by the
Inductive typeclass:

histo1 :: (Inductive F)⇒ (F (F∞ a)→ a)→ (µF→ a)
histo1 a = x where x = a · fmap (fmap x · in◦) · in◦ .

5 2013/7/12

The histomorphism first deconstructs a recursive type to expose
one level of its base functor. The function in◦ ::µF→ F∞ (µF)
is then applied to the functor arguments, turning them into a table
of predecessors, before the histomorphism is recursively applied
with fmap (histo1 a) to produce subsolutions as labels to each
level. Finally, the algebra a takes this structure that contains all
subsolutions, and combines them to form a final solution.

5. Recursion Schemes From Comonads
Histomorphisms involve both an algebra and a coalgebra, and com-
bine them in an interesting way. We have noted above that in◦ is
a coalgebra, but it is actually a bit more: it is a coalgebra for the
comonad F∞. Furthermore, the algebra in and the coalgebra in◦
go hand-in-hand. They are related by a so-called distributive law λ :
F ◦F∞ →̇F∞ ◦F and form what is known as a λ-bialgebra, a com-
bination of an algebra and a coalgebra with a common carrier. In
particular, in and in◦ satisfy the so-called pentagonal law.

F (µF)

F (F∞ (µF))

µF

F∞ (F (µF))

F∞ (µF)

in

F in◦

λ (µF)

in◦

F∞ in

(5)

Loosely speaking, the distributive law λ : F◦F∞ →̇F∞ ◦F defined

λ A = F∞ (F (head∞ A)) · F (tail∞ A) (6)

allows us to swap the functors F and F∞.
The cofree comonad is by no means special. In fact, histomor-

phisms are an instance of recursion schemes from comonads [14].
We postpone a formal introduction of the scheme after we have
provided the necessary background in the following section, which
can be skipped by those already familiar with the material.

5.1 Background
Coalgebras for a comonad A coalgebra for a comonad N is an
N-coalgebra (C,c) that respects ε and δ:

ε C · c = idC , (7a)
δ C · c = N c · c . (7b)

If we first create a context using c and then focus, we obtain the
original value. Creating a nested context is the same as first creating
a context and then duplicating it. For example, the so-called cofree
coalgebra (NC,δC) is respectful, which follows directly from (1b)
and (1c).

Coalgebras that respect ε and δ and N-coalgebra homomor-
phisms form a category, known as the (co)-Eilenberg-Moore cat-
egory and denoted CN.

Eilenberg-Moore construction As noted above, every adjunction
generates a comonad. The converse is also true: every comonad N
induces an adjunction that generates N—in fact, in two canonical
ways. One construction was discovered by Kleisli [10], the other by
Eilenberg and Moore [4]. We shall need the latter, which constructs
a right adjoint to the forgetful functor UN : CN→ C .

C CN⊥
CofreeN

UN

The functor CofreeN maps an object to the cofree coalgebra for N:

CofreeN B = (N B,δ B) , (8a)
CofreeN f = N f . (8b)

The adjunction establishes a bijection between certain arrows in C
and certain arrows in CN. Specifically, an N-coalgebra homomor-
phism h : (A,a)→ CofreeN B is uniquely determined by an arrow
f : A→ B in C . As before, this universal property can be expressed
as an equivalence:

f = ε B · h ⇐⇒ N f · a = h , (9)

for all arrows f : A→B and homomorphisms h : (A,a)→ (NB,δB).
The homomorphism h is also called the transpose of f and is de-
noted bf c = N f · a. Conversely, f is the transpose of h, denoted
dhe= ε B · h.

Eilenberg-Moore categories generalize categories of coalge-
bras: we have F-Coalg(C) ∼= CN where N = F∞ is the cofree
comonad. In particular, F-coalgebra homomorphisms are in 1-1
correspondence to N-coalgebra homomorphisms:

A B

F A F B

h

a b

F h

⇐⇒
A B

F∞ A F∞ B

h

a b

F∞ h

. (10)

Note that the isomorphism F-Coalg(C)∼=CN implies that a is al-
ways a coalgebra for the comonad F∞. Conversely, each respectful
F∞-coalgebra is of this form.

Distributive laws A distributive law λ : F ◦N →̇N ◦F of an end-
ofunctor F over a comonad N is a natural transformation satisfying
the two coherence conditions:

(ε◦F) · λ= F◦ε , (11a)
(δ◦F) · λ= (N◦λ) · (λ◦N) · (F◦δ) . (11b)

The first law has type F◦N→ F, and states that there are two equiv-
alent ways of extracting a value from a comonadic context that is
nested in a functor: either by first exposing the comonad to the out-
side by applying a distributive law, and then extracting the functo-
rial value from the comonadic context; or by working directly in-
side the functor, and extracting a value from the comonadic context
that is there. The second law has type F◦N→ N◦N◦F and states
that pushing a functorial value into a context and then duplicating
the context is equivalent to first duplicating the context embedded
in a functor, and then shifting the functorial inside the contexts.

One can show that the distributive law λ : F ◦ F∞ →̇ F∞ ◦ F
defined in Equation (6) obeys these laws; the proof is beyond the
scope of this paper.

Bialgebras A bialgebra combines an algebra and a coalgebra
with a common carrier. Bialgebras come in many flavours; we
need the variant that combines F-algebras and coalgebras for a
comonad N. The two functors have to interact coherently, described
by a distributive law.

Let λ : F◦N→̇N◦F be a distributive law for the endofunctor F
over the comonad N. A λ-bialgebra (a,X,c) consists of an F-
algebra a and a coalgebra c for the comonad N such that the
pentagonal law holds:

c · a = N a · λ X · F c . (12)

Loosely speaking, this law allows us to swap the algebra a and the
coalgebra c. A λ-bialgebra homomorphism is both simultaneously
an F-algebra and an N-coalgebra homomorphism.

6 2013/7/12

The pentagonal law (12) has two asymmetric renderings, which
identify the algebra a and the coalgebra c as homomorphisms.

F X F (N X)

X N X

a

F c

N a·λ X

c

F X

F (N X)

X

N (F X)

N X

a

F c

λ X

c

N a

X F X

N X N (F X)

c

a

λ X·F c

N a

The diagram on the left shows that c is an F-algebra homomor-
phism. Dually, the diagram on the right identifies a as an N-
coalgebra homomorphism.

5.2 Recursion Schemes from Comonads
Now that the terminology is in place, we are in a position to gener-
alize histomorphisms to recursion schemes from comonads [14].
These form a general recursion principle that makes use of a
comonad N to provide ‘contextual information’ to the algebra of
the to-be-defined function.

Let λ : F◦N→̇N◦F be a distributive law, and let (in,µF,c) be a
λ-bialgebra. For any (F◦N)-algebra (b,B) there is a unique arrow
f : µF→ B such that

f · in = b · F (N f · c) . (13)

The composition N f · c creates a context that makes the results of
recursive calls available to the algebra b. Note that b is a ‘context-
sensitive’ algebra—an (F ◦N)-algebra, rather than merely an F-
algebra.

One way to prove uniqueness is to use the Eilenberg-Moore
adjunction (9) to relate solutions of (13) to certain λ-bialgebra
homomorphisms. Abstracting away from in and identifying N f · c
as the transpose of f , one can establish the following equivalence

f · a = b · F h ⇐⇒ h · a = bbc · F h , (14)

where h = bf c = N f · c is the transpose of f . The diagrammatical
rendering makes explicit that h is not only an F-algebra homomor-
phism but also a λ-bialgebra homomorphism.

F A F (N B)

A B

F h

a b

f

⇐⇒

F A F (N B)

A N B

N A N (N B)

F h

a bbc

h
c δ B

N h

(15)

For the proof of this fact we refer to [7]. Now, if a is in, the action
of the initial algebra, the homomorphism h is uniquely defined, and
hence f , as well.

Histomorphisms revisited To show that the original formulation
of histomorphisms is an instance of this scheme, we must show that
in and in◦ form a λ-bialgebra, where λ : F◦F∞ →̇F∞ ◦F. To this
end we make use of the following 1-1 correspondence between id-
bialgebras and λ-bialgebras, which is a consequence of the fact that

F-Coalg(C)∼= CN.

F X

F (F X)

X

F (F X)

F X

a

F c

id X

c

F a

⇐⇒

F X

F (F∞ X)

X

F∞ (F X)

F∞ X

a

F c

λ X

c

F∞ a

(16)

Note that for id-bialgebras there is no coherence requirement on
the F-coalgebra as F is just a functor. Furthermore, recall that c
is always a coalgebra for the comonad F∞ and that each respectful
F∞-coalgebra is of this form.

The proof obligation that (in,µF, in◦) is a λ-bialgebra is now
easy to discharge.

in◦ · in = F∞ in · λ (µF) · F in◦

⇐⇒ { (16) }
in◦ · in = F in · id (µF) · F in◦ .

The latter equation holds trivially.

Efficiency improvements We have noted before that (4) is merely
a specification of a histomorphism. Even though it is executable,
it is not fit for public consumption as it implements the naive
recursive definition, which often leads to an exponential running
time. In a sense, the original definitions of knapsack and friends
suffer from two problems: First, it is not clear that the recursion
equations have a solution—framing the algorithm as an instance
of (4) solves this problem; and second, as a program the recursion
equations are horribly inefficient—this problem is what we tackle
next.

Because of the 1-1 correspondence (14) we can implement
f : µF→ B in terms of h : µF→ F∞ B, which constructs an entire
table of answers: f = dhe = head∞ B · h = head∞ B · bbc . So it
remains to derive an efficient implementation of bbc. To this end
observe that (bbc,F∞ B,δ B) forms a λ-bialgebra, which is also
related to an id-bialgebra.

F (F∞ B)

F (F (F∞ B))

F∞ B

F (F (F∞ B))

F (F∞ B)

bbc

F (tail∞ B)

id (F∞ B)

tail∞ B

F bbc

⇐⇒

F (F∞ B)

F (F∞ (F∞ B))

F∞ B

F∞ (F (F∞ B))

F∞ (F∞ B)

bbc

F tail∞ B

λ (F∞ B)

tail∞ B

F∞ bbc

The diagram on the left identifies bbc as an F-coalgebra homo-
morphism: tail∞ B · bbc = F bbc · F (tail∞ B). Since furthermore
head∞ B · bbc = b using (9), we can invoke the universal property
of cofree coalgebras (3) and conclude

bbc= F∞ b · F (tail∞ B) .

Consequently, the histomorphism f is given by

f = head∞ B · F∞ b · F (tail∞ B) .

Loosely speaking, we have managed to turn the exponential speci-
fication into an implementation with a quadratic running-time. The
fold makes a single sweep through the input structure; for each level
the context-sensitive algebra b is mapped over the table to create a
table for the next level of recursion. (Of course, all of this depends
on the particulars of F and b, which is why we said “loosely”.)

7 2013/7/12

Ideally, we would like b to be invoked only once per level.
Interestingly, we can achieve this goal if we make use of the
fact that that h is a λ-bialgebra homomorphism, a blend of an F-
algebra and an F∞-coalgebra homomorphism. Furthermore recall
that F-coalgebra homomorphisms are in 1-1 correspondence to F∞-
coalgebra homomorphisms (10).

F (µF) F (F∞ B)

µF F∞ B

F (µF) F (F∞ B)

F h

in bbc

h

in◦ tail∞ B

F h

⇐⇒

F (µF) F (F∞ B)

µF F∞ B

F∞ (µF) F∞ (F∞ B)

F h

in bbc

h

in◦ tail∞ B

F∞ h

Now we use the fact that h is both an F-algebra and an F-coalgebra
homomorphism.

h · in = bbc · F h ∧ F h · in◦ = tail∞ B · h
=⇒ { Leibniz }

head∞ B · h · in = head∞ B · bbc · F h ∧ tail∞ B · h = F h · in◦

⇐⇒ { head∞ B · bbc= b (9) and in isomorphism }
head∞ B · h · in = b · F h ∧ tail∞ B · h · in = F h

⇐⇒ { products }
head∞ B · h · inM tail∞ B · h · in = b · F hMF h

⇐⇒ { fusion }
(head∞ BM tail∞ B) · h · in = (bM id) · F h

⇐⇒ { head∞ BM tail∞ B isomorphism }
h · in = cons∞ · (bM id) · F h

Thus, h = cons∞ · (bM id) and consequently

f = head∞ B · cons∞ · (bM id) .

Finally, we have arrived at an efficient formulation of histomor-
phisms, which is in fact equivalent to the definition of histomor-
phisms in [13], though a much shorter proof. This final solution
folds over the input in a single sweep with h, which returns the en-
tire history in a context. Once this is done, the head of this context
is extracted. Note that this definition does not depend on lazyness.

Histomorphisms in Haskell revisited The implementation of
more efficient histomorphisms in Haskell translates easily from
the categorical notation.

histo2 :: (Inductive F)⇒ (F (F∞ b)→ b)→ (µF→ b)
histo2 b = head∞ · cons∞ · (bM id)

This works by ensuring that the input value has an inductive type,
and folds this value in a single sweep into a structure of type F∞ b,
where the head contains the final solution.

5.3 Examples
Let us now apply the framework of histomorphisms to the exam-
ples presented in Section 2. As we have seen, histomorphisms are
defined to work on input types that are initial algebras. This is cer-
tainly the case for knapsack1 and catalan1, since the initial alge-
bra in question is simply the natural numbers. On the other hand,
bitonic1 and chain1 cannot be expressed as histomorphisms, since
the input to these functions, (N,N), is not an initial algebra.

As we shall see, there is one important modification that needs
to be made when translating the specifications to this version of
the algorithms: indices in both the specifications and the tabular
versions are absolute in the sense that they are indexed from some

fixed origin that is taken as a reference point. With histomorphisms,
the reference point is the ‘current’ point of call in the recursion, and
so indices that refer to subsolutions are relative.

Knapsack problem To express the knapsack problem as a histo-
morphism, we will need to consider the input parameter as an initial
algebra. This is more easily seen when we specialize the recursive
specification to expose the structure of natural numbers in c:

knapsack3 ::N→ Double
knapsack3 0 = 0
knapsack3 (c+1) = maximum0

[v+ knapsack3 (c−w) | (w+1,v)← wvs,w 6 c]

Just as in the array-based version of knapsack2, we will create an
algebra that replaces the recursive call in the body of the algorithm
with a lookup. This time, however, we will be looking up values in
the cofree structure of the naturals, Nat∞ v, rather than an array.

To turn this into a histomorphism, we provide a context-
sensitive algebra knapsack that uses the results of previous sub-
solutions found in the Nat∞ v structure and returns the solution.
This solution is then used by histo2 which embeds this value at the
top of the context that is used in the next round of the recursion.

knapsack4 ::N→ Double
knapsack4 = histo2 knapsack where

knapsack ::Nat (Nat∞ Double)→ Double
knapsack (Zero) = 0
knapsack (Succ table) = maximum0

[v+u | (w+1,v)← wvs,Just u← [lookup∞ table w]]

When knapsack is called for the first time, the lookup table is Zero,
and contains no elements, and the result is simply 0. For each
successive call, knapsack has access to previous computed values in
table, one for each smaller knapsack capacity than the one currently
in consideration.

Note that we have adjusted the indices of the lookup: in the
original version, the recursive call is performed with knapsack (c−
w), which is the absolute position of the knapsack capacity minus
the weight of a given item. In the histomorphism version, we
replace the lookup with the value u, which is the result of a relative
indexing, where lookup∞ t (c− (c−w)) = lookup∞ t w. This works
out nicely because the ‘current’ capacity c is not available. Another
difference is that the out of bounds guard w 6 c has been replaced
by Just u← [. . .]. The maximum is then calculated just as in the
recursive version.

In order to find values in the Nat∞ v structure, we introduce
function lookup∞, which provides access to the results stored in the
head:

lookup∞ ::Nat∞ a→ N→Maybe a
lookup∞ (Cons∞ a) 0 = Just a
lookup∞ (Cons∞ a (Zero)) (n+1) = Nothing
lookup∞ (Cons∞ a (Succ as)) (n+1) = lookup∞ as n

The effect of lookup∞ table n is to return the result that was com-
puted n ‘steps’ before the current point of call, since more recent
values are found at the head of a Cons∞ constructor.

Catalan numbers The generation of Catalan numbers proves to
be an instructive example, since it is not expressible as a histo-
morphism. First notice that there is a slight twist, where each suc-
cessive value makes use of all of the subsolutions: this can be
seen in the definition of catalan2, where computing the value of
catalan2 (n+ 1) must access all of the values with indices in the
range [0 . .n]. It may then be tempting to admit the following bogus
definition as a histomorphism, where a Catalan number is simply
the result of the convolution, that is, summing the multiplication of

8 2013/7/12

a list of prior elements with its reversal.

catalan3 ::N→ N -- WRONG
catalan3 = histo2 catalan where

catalan ::Nat (Nat∞ N)→ N
catalan Zero = 1
catalan (Succ table) = sum (zipWith (∗) xs (reverse xs))

where xs = elems∞ table

At each step of the histomorphism the table in scope contains only
the solutions to subproblems, so instead of pulling out values from
the table using an index, we can instead select all of the elements at
once, returning a list of all the previously computed solutions. So,
why is this function bnot well-defined?

The function at fault is elems∞, that extracts all of the values:

elems∞ ::Nat∞ v→ [v] -- WRONG
elems∞ (Cons∞ a (Zero)) = [a]
elems∞ (Cons∞ a (Succ as)) = a : elems∞ as

This definition is bogus because we are converting the coinductive
Nat∞ v to a simple inductive list. Of course, this does not work in
general. We shall revisit the Catalan numbers later, and show how
they can be expressed as a dynamorphism.

6. Dynamorphisms
Histomorphisms insist that the input is an element of some initial
algebra. Looking back at Section 2 we note that this is the case
for some but not all of the examples: chain1 and bitonic2, for
instance, take a pair of natural numbers as input. For these examples
dynamorphisms come to the rescue. The basic idea is simple, but
far reaching:

When we implemented histomorphisms

x · in◦ = a · F (F∞ x · in◦) ,

we made most of the fact that in has an inverse, turning the algebra
on the left into a coalgebra on the right:

x = a · F (F∞ x · in◦) · in◦ .

The idea of dynamorphisms is to replace in◦ by a so-called recur-
sive coalgebra c.

x = a · F (F∞ x · c) · c . (17)

Loosely speaking, recursiveness guarantees that the equation still
has a unique solution. We shall say more about recursive coalgebras
in Section 7.1.
Remark. Dynamorphisms were originally introduced in the setting
of partial orders and continuous functions with no restriction on the
coalgebra c [9]. Under these assumptions (17) has only a canonical
solution, not a unique solution. We do not wish to go down this
route.

As with histomorphisms, it is useful to abstract away from the
cofree comonad F∞ and develop the recursion scheme in a more
general setting. Before we do so, we record an implementation of
this (inefficient) version of dynamorphisms in Haskell.

Dynamorphisms in Haskell The implementation is

dyna1 :: (Functor F)⇒ (F (F∞ a)→ a)→ (c→ F c)→ (c→ a)
dyna1 a c = x where x = a · fmap (fmap x · c) · c .

As with the definition of histo1, this is not efficient, since the
intermediary structure is built in exponential time.

7. Recursion Schemes From Recursive Coalgebras
Histomorphisms combine an algebra and a coalgebra. For dy-
namorphisms we have transmogrified the algebra into a coalgebra.

Thus, dynamorphisms combine two coalgebras, of which one is a
coalgebra for a comonad. As before, the two ingredients are related
by the distributive law λ : F◦F∞ →̇F∞ ◦F.

F C

F (F∞ C)

C

F∞ (F C)

F∞ C

F c

λ C

c

c

F∞ c

This is essentially the same diagram as in (5), only that the arrows
previously labelled with in and F∞ in have been flipped. There is no
established name for the resulting structure. Capretta et al. [2] have
coined the combination of two coalgebras a λ-dicoalgebra. We
adopt the terminology, even though this is likely to cause confusion
(there are also dialgebras, which are entirely different beasts).

As usual, we postpone a formal introduction of the scheme after
we have provided the necessary background.

7.1 Background
Hylomorphisms and recursive coalgebras A hylomorphism (or
algebra-from-coalgebra homomorphism) is a recursion scheme that
captures the essence of divide-and-conquer algorithms. Such al-
gorithms have three phases: first, a problem is broken into sub-
problems by a coalgebra c : C → F C; second, sub-problems are
recursively turned into sub-solutions; and finally, sub-solutions are
combined by an algebra a : F A→ A to form a solution. An arrow
h : C→ A is a hylomorphism, h : (C,c)→ (a,A), if it satisfies

h = a · F h · c . (18)

A coalgebra (C,c) is recursive (or algebra-initial) if for every
algebra (a,A) there is a unique hylomorphism (C,c)→ (a,A) sat-
isfying (18). An important recursive coalgebra is (µF, in◦), which
is also the final recursive coalgebra. Thus, using recursive coalge-
bras allows us to generalize the development of histomorphisms,
which are a special case of dynamorphisms where the coalgebra is
in◦.

Dicoalgebras Let λ : F ◦ N →̇ N ◦ F be a distributive law for
the endofunctor F over the comonad N. A λ-dicoalgebra (X,c,d)
consists of an F-coalgebra c and a coalgebra d for the comonad N
such that the pentagonal law holds:

N c · d = λ X · F d · c . (19)

The pentagonal law (19) also has an asymmetric rendering, which
identifies the coalgebra c as an N-coalgebra homomorphisms.

F X

F (N X)

X

N (F X)

N X

F d

λ X

c

d

N c

X F X

N X N (F X)

d

c

λ X·F d

N c

(20)

7.2 Recursion Schemes From Recursive Coalgebras
Let λ : F ◦N →̇N ◦ F be a distributive law, and let (C,c,d) be a
λ-dicoalgebra where c : C → F C is recursive. For any (F ◦N)-
algebra (a,A) there is a unique arrow f : C→ A such that

f = a · F (N f · d) · c . (21)

9 2013/7/12

Quite amazingly, everything we said about histomorphisms and
recursion schemes from comonads generalizes to this more expres-
sive setting. In particular, there is a 1-1 correspondence between
two kinds of hylomorphisms:

f = a · F h · c ⇐⇒ h = bac · F h · c ,

where h = bf c=N f · d is the transpose of f . Since the coalgebra c
is recursive, the equation on the right has a unique solution and
hence the original equation (21), as shown by [2].

Dynamorphisms revisited To show that dynamorphisms are an
instance of this scheme, we have to prove that c and c form a λ-
dicoalgebra, where λ : F◦F∞ →̇F∞ ◦F. Like for bialgebras, there is
a 1-1 correspondence between id-dicoalgebras and λ-dicoalgebras.

F X

F (F X)

X

F (F X)

F X

F g

id X

f

g

F f

⇐⇒

F X

F (F∞ X)

X

F∞ (F X)

F∞ X

F g

λ X

f

g

F∞ f

(22)

Using this property, the proof that (C,c, c) forms a λ-dicoalgebra
is a one-liner.

F∞ c · c = λ X · F c · c
⇐⇒ { (22) }

F c · c = id X · F c · c

Thus dynamorphisms are indeed an instance of the scheme above.
In addition, histomorphisms are also an instance, since they are
simply the case where we specialize further and instantiate C :=µF
and c := in◦.

Efficiency improvements First of all, note that (bac,F∞ A,δ A)
still forms a λ-bialgebra and that h can be seen as an arrow from a
λ-dicoalgebra to a λ-bialgebra, see the diagram on the right below.

F C F (F∞ A)

C F∞ A

F C F (F∞ A)

F h

bac

h

c

c

tail∞ A

F h

⇐⇒

F C F (F∞ A)

C F∞ A

F∞ C F∞ (F∞ A)

F h

bac

h

c

c

tail∞ A

F∞ h

Again, we leverage on the fact that F-coalgebra homomorphisms
are in 1-1 correspondence to F∞-coalgebra homomorphisms (10).
The derivation of an efficient implementation of h follows the
template laid out in Section 5.2—the proof below is even somewhat

simpler, even though it establishes a more general result.

h = bac · F h · c ∧ tail∞ · h = F h · c
=⇒ { Leibniz }

head∞ · h = head∞ · bac · F h · c ∧ tail∞ · h = F h · c
⇐⇒ { head∞ · bac= a (9) }

head∞ · h = a · F h · c ∧ tail∞ · h = F h · c
⇐⇒ { products }

head∞ · hM tail∞ · h = a · F h · cMF h · c
⇐⇒ { fusion }

(head∞ M tail∞) · h = (aM id) · F h · c
⇐⇒ { head∞ M tail∞ isomorphism }

h = cons∞ · (aM id) · F h · c
Since c is a recursive coalgebra, the last equation has a unique
solution.

Dynamorphisms in Haskell revisited The translation of this cat-
egorical machinery into Haskell is entirely straightforward:

dyna2 :: (Functor F)⇒ (F (F∞ a)→ a)→ (c→ F c)→ (c→ a)
dyna2 a c = head∞ · h where h = cons∞ · (aM id) · fmap h · c .

7.3 Examples
Dynamorphisms work by constructing an intermediate structure
with a coalgebra that stores the history of all subresults. One way to
interpret this is that the intermediate structure holds a call stack of
previous values that can be referenced. While more elaborate func-
tors are supported by the scheme, using a linear structure—such as
lists—is a particularly versatile option since we can flatten more
complex structures by providing a specific traversal. Using such a
traversal ensures that there is sharing between subproblems. The
base functor for polymorphic nonempty lists has two constructors:
one for when there is a single element, and the other to add ele-
ments to the list.

data List v x = Some v | Cons v x
instance Functor (List v) where

fmap f (Some v) = Some v
fmap f (Cons v x) = Cons v (f x)

To query values from this structure, we develop a number of oper-
ations. First, we provide an indexing operator that takes a natural
number and returns the corresponding value, working back through
the hierarchy the given number of times. The interface is very sim-
ilar to the indexing operator for standard lists.

(!!∞) :: (Show a,Show v)⇒ (List v)∞ a→ N→ a
(Cons∞ a) !!∞ 0 = a
(Cons∞ a (Cons v as)) !!∞ (n+1) = as !!∞ n

Of course we could have defined this to be a total function, return-
ing a value of type Maybe a in case the indexing is out of bounds.
For our purposes, we use this operator since it reduces clutter in the
code that follows.

When more than one value is required at once, and assuming
they appear in a contiguous section, it is convenient to make use
of the function take∞ n, which takes n consecutive values from the
hierarchy.

take∞ ::N→ (List v)∞ a→ [a]
take∞ 0 = []
take∞ (n+1) (Cons∞ a (Some v)) = [a]
take∞ (n+1) (Cons∞ a (Cons v as)) = a : take∞ n as

Note that it might be tempting to define a related operator, drop∞ ::
N → (List v)∞ a → [a], which drops a given number of values

10 2013/7/12

from the hierarchy before returning the values that remain. How-
ever, such a definition would be bogus, since we cannot validly use
induction over values of type (List v)∞ v. The definition of take∞,
however, is perfectly valid, since are using induction over the natu-
ral numbers.

With these basic ingredients in place, we are now ready to define
some dynamorphisms.

Catalan numbers revisited We now revisit the Catalan numbers,
and show how they can be defined in terms of a dynamorphism.
The problem we had previously was that there was no means of
knowing where in the recursion a call was being made. To store
this information, we can define the coalgebra natural as follows:

natural ::N→ (List N N)
natural 0 = Some 0
natural (n+1) = Cons (n+1) n

To validly apply this in a dynamorphism, we must argue that it is
a recursive coalgebra. This amounts to showing that when applied
recursively this has the halting property [1]. In this case we observe
that in the recursive case, the value n+ 1 is reduced by 1 at each
step.

Using this coalgebra, we can form the following definition:

catalan4 ::N→ N
catalan4 = dyna2 catalan natural where

catalan ::List N ((List N)∞ N)→ N
catalan (Some 0) = 1
catalan (Cons n table) = sum (zipWith (∗) xs (reverse xs))

where xs = take∞ n table

The key here is that the algebra catalan knows about the current
depth of its application, which is held in n. Thus, the appropriate
number of values can be extracted from the table of previous values,
and convoluted just as in previous definitions.

The bitonic travelling-salesman problem We now solve the
bitonic travelling-salesman problem using a dynamorphism, and
aim for a solution that reflects the algorithm described by bitonic2.
First we must consider which coalgebra and algebra should be
used. The carrier for both of these is already determined by the
type of the recursion, and must be (N,N). What remains to be de-
cided is the base functor for this computation. A crucial part of the
solution involves looking up distances between points, and so it is
important to keep track of the current point that is being processed
during the recursion steps. Therefore, to store these values, we use
a base functor of type List (N,N).

Let us consider the coalgebra that constructs the lookup struc-
ture. One of the conditions we can impose is that i 6 j, since this
formed part of our invariant. With this in consideration, it makes
sense that only a triangle of values needs to be computed.

triangle1 :: (N,N)→ List (N,N) (N,N)
triangle1 (0,0) = Some (0,0)
triangle1 (0,1) = Some (0,1)
triangle1 (0, j) = Cons (0, j) (j−1, j−1)
triangle1 (i, j) = Cons (i, j) (i−1, j)

To argue that this coalgebra is recursive, we observe that the reverse
lexicographic ordering of the pair (i, j) always decreases, where the
relationship with a new pair (i′, j′) is given by (i, j)> (i′, j′)⇐⇒
j> j′ ∨ (j j′ ∧ i> i′). This strategy of building a triangle stores
the coordinates in scope as it goes, since this information becomes
vital when applying the algebra. Note that here we have included
two base cases, both of which follow from the recursive definition

of the algorithm.

bitonic4 :: (N,N)→ Double
bitonic4 = dyna2 bitonic triangle1 where

bitonic ::List (N,N) ((List (N,N))∞ Double)→ Double
bitonic (Some (0,0)) = 0
bitonic (Some (0,1)) = x0 x1
bitonic (Cons (i, j) table)
| i < j−1 = table !!∞ (j−1)+ xj−1 xj
| i j−1 = minimum
[table !!∞ (k+ j)+ xi−k−1 xj | k← [0 . . i−1]]
| i j = minimum
[table !!∞ k+ xi−k−1 xj | k← [0 . . i−1]]

While this definition has some similarities to the tabular definition
in bitonic3, the indices are clearly quite different. As with histo-
morphisms, this is because in this definition we no longer have the
ability to make references to previously computed values by using
absolute indices: all the indexing into the t structure is relative to
the point of call. This is why the ‘otherwise’ clause from the recur-
sive definition has been split into two different cases.

Chain matrix multiplication The chain matrix multiplication
problem also involves computing a triangle of values, since in the
definition of chain1 i j we have the invariant that i 6 j. However,
the order in which this triangle is built is different to the definition
of triangle1. For one, we must ensure that i > 1, and furthermore,
the access pattern for values in the triangle is somewhat different,
since values are instead built from the diagonal to an edge.

triangle2 :: (N,N)→ List (N,N) (N,N)
triangle2 (1,1) = Some (1,1)
triangle2 (i, j)
| i j = Cons (i, j) (1, j−1)
| otherwise = Cons (i, j) (i+1, j)

Again, we must argue that this coalgebra is recursive, which is only
true when i 6 j. If i< j then i is increased until i j. When this is
the case, i is set to 1 and j is decreased by 1. Thus at any point in
the recursion, over the course of at most j steps the value will be
reduced to (1, j−1), and eventually this terminates.

The definition of the algebra of chain3 requires particular atten-
tion to the relative indices: the base case is straight-forward, but
when i< j we must calculate the offset carefully.

chain3 :: (N,N)→ N
chain3 = dyna2 chain triangle2 where

chain ::List (N,N) ((List (N,N))∞ N)→ N
chain (Some) = 0
chain (Cons (i, j) table)
| i j = 0
| i < j = minimum (zipWith (+) [ai−1 ∗ak ∗aj +

table !!∞ offset k | k← [i . . j−1]] (take∞ (j− i) table))
where offset k = ((j∗ (j+1)− k ∗ (k+1)) ‘div‘ 2)−1

To understand this definition, we first note that a cell with index
(i, j) is dependent on the cells that are directly ‘below’ and to the
‘left’, relative to the ordering imposed in triangle2. We consider
the cells that immediately precede (i, j) to be below, and those that
are found at a particular offset to be to the left. At first glance
the definition of offset k may well be mysterious: it arises as a
consequence of the triangle numbers T (n) = ∑

n
i=1 i = n(n+ 1)/2,

where we subtract one triangle number from the other: T (j−1)−
T (k). This is justified since values to the ‘left’ are offset by linearly
decreasing indices.

8. Related Work
Histo- and dynamorphisms The work we have presented builds
on the foundations that were set out in the original paper on his-

11 2013/7/12

tomorphisms [13], where course-of-value iteration was captured as
a categorically-inspired recursion scheme. This work was later ex-
tended to include dynamorphisms in [9], with the specific goal of
extending the reach of histomorphisms to cover dynamic program-
ming algorithms. The authors there also present a number of classic
dynamic programming algorithms are given in terms of this frame-
work, and the derivation of efficient dynamorphisms rests on the
connection with hylomorphisms. The constructions presented there
differ in that they are all within CPO, where initial algebras and fi-
nal coalgebras coincide.

Recursion schemes from comonads The construction of recur-
sion schemes from comonads was first presented in [14], where
the relationship with histomorphisms is explored in detail. That pa-
per also provides an implementation of various recursion schemes
in Haskell although it does not make use of type class synonyms,
since it predates that work. The correspondence between histomor-
phisms and recursion schemes from comonads is a direct appli-
cation of the work in [7], which further explores the relationship
between recursion schemes from comonads and the adjoint folds
that were developed in [5].

Recursion schemes from recursive coalgebras The notion of ob-
taining uniqueness properties through recursive coalgebras comes
directly from the seminal paper on the topic [2], and a more gentle
introduction to recursive coalgebras can be found in [6].

9. Conclusion
In this paper we have demonstrated the use of histomorphisms and
dynamorphisms through a number of examples, and have shown
how these categorically-inspired recursion schemes can be imple-
mented efficiently. The derivation of the efficient versions of histo-
morphisms relies on their formulation as recursion schemes from
comonads and a correspondence between certain bialgebras. Simi-
larly, the derivation of efficient dynamorphisms relies on their for-
mulation as recursion schemes from recursive coalgebras and a cor-
respondence between certain dicoalgebras. These correspondences
witness the uniqueness of the constructions through the Eilenberg-
Moore adjunction.

Future work There are a number of avenues for future work.
One aspect of dynamorphisms which we have not discussed is the
choice of base functor. In this paper, we linearized all structures,
and this has required us to pay particular attention to the relative
indexing schemes. Another option worth exploring are using a
more direct approach such as arrays with a focus. A more structured
approach would be to change the base functor to one that both deals
with sharing, and that also maintains the structure of the recursion.

Recursive coalgebras are modular in the sense that they can be
combined to form even more expressive schemes. For example, it
will be convenient to also avail the algebra to the original argument
of the function: this arises from considering parametrically recur-
sive coalgebras, which we do not explore here.

References
[1] J. Adámek, D. Lücke, and S. Milius. Recursive coalgebras of finitary

functors. Theoret. Informatics Appl., 41(4):447–462, 2007. doi: 10.
1051/ita:2007028. URL http://dx.doi.org/10.1051/ita:
2007028.

[2] V. Capretta, T. Uustalu, and V. Vene. Recursive coalgebras from
comonads. Information and Computation, 204(4):437–468, 2006. doi:
10.1016/j.ic.2005.08.005.

[3] M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated type
synonyms. In Proceedings of the tenth ACM SIGPLAN international
conference on Functional programming, ICFP ’05, pages 241–253,
New York, NY, USA, 2005. ACM. ISBN 1-59593-064-7. doi:

10.1145/1086365.1086397. URL http://doi.acm.org/10.
1145/1086365.1086397.

[4] S. Eilenberg and J. C. Moore. Adjoint functors and triples. Illinois J.
Math, 9(3):381–398, 1965.

[5] R. Hinze. Adjoint folds and unfolds—an extended study. Science of
Computer Programming, August 2012. doi: 10.1016/j.scico.2012.07.
011. In press.

[6] R. Hinze, D. W. James, and T. Harper. Theory and practice of fu-
sion. In J. Hage and M. Morazán, editors, Proceedings of the 22nd
Symposium on the Implementation and Application of Functional Lan-
guages (IFL ’10), volume 6647 of Lecture Notes in Computer Sci-
ence, pages 19–37. Springer Berlin / Heidelberg, September 2011. doi:
10.1007/978-3-642-24276-2 2.

[7] R. Hinze, N. Wu, and J. Gibbons. Unifying structured recur-
sion schemes. In International Conference on Functional Pro-
gramming, March 2013. URL http://www.cs.ox.ac.uk/
people/jeremy.gibbons/publications/urs.pdf. Ac-
cepted for publication.

[8] P. J. Huber. Homotopy theory in general categories. Mathematische
Annalen, 144:361–385, 1961. URL http://dx.doi.org/10.
1007/BF01396534. 10.1007/BF01396534.

[9] J. Kabanov and V. Vene. Recursion schemes for dynamic program-
ming. In Mathematics of Program Construction, 8th International
Conference, MPC 2006, pages 235–252. Springer, 2006.

[10] H. Kleisli. Every standard construction is induced by a pair of adjoint
functors. Proceedings of the American Mathematical Society, 16(3):
544–546, June 1965. URL http://www.jstor.org/stable/
2034693.

[11] J. Lambek. A fixpoint theorem for complete categories. Math.
Zeitschr., 103:151–161, 1968.

[12] S. Peyton Jones. Haskell 98 Language and Libraries. Cambridge
University Press, 2003.

[13] T. Uustalu and V. Vene. Primitive (co)recursion and course-of-value
(co)iteration, categorically. Informatica, Lith. Acad. Sci., 10(1):5–26,
1999.

[14] T. Uustalu, V. Vene, and A. Pardo. Recursion schemes from comonads.
Nordic J. of Computing, 8:366–390, September 2001.

12 2013/7/12

http://dx.doi.org/10.1051/ita:2007028
http://dx.doi.org/10.1051/ita:2007028
http://doi.acm.org/10.1145/1086365.1086397
http://doi.acm.org/10.1145/1086365.1086397
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/urs.pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/urs.pdf
http://dx.doi.org/10.1007/BF01396534
http://dx.doi.org/10.1007/BF01396534
http://www.jstor.org/stable/2034693
http://www.jstor.org/stable/2034693

	Introduction
	Dynamic Programming
	Background
	Histomorphisms
	Recursion Schemes From Comonads
	Background
	Recursion Schemes from Comonads
	Examples

	Dynamorphisms
	toRecursion Schemes From Recursive Coalgebras
	Background
	Recursion Schemes From Recursive Coalgebras
	Examples

	Related Work
	Conclusion

