
Channel Reservation Protocol for Over-Subscribed
Channels and Destinations

George Michelogiannakis
Stanford University / Lawrence
Berkeley National Laboratory
mihelog@stanford.edu

Nan Jiang
Stanford University

njiang37@stanford.edu

Daniel Becker
Stanford University

dub@stanford.edu

William J. Dally
Stanford University / NVIDIA

Research
dally@stanford.edu

ABSTRACT
Channels in system-wide networks tend to be over-subscribed
due to the cost of bandwidth and increasing traffic demands.
To make matters worse, workloads can overstress specific
destinations, creating hotspots. Lossless networks offer at-
tractive advantages compared to lossy networks but suffer
from tree saturation. This led to the development of ex-
plicit congestion notification (ECN). However, ECN is very
sensitive to its configuration parameters and acts only after
congestion forms. We propose channel reservation proto-
col (CRP) to enable sources to reserve bandwidth in multiple
resources in advance of packet transmission and with a sin-
gle request, but without idling resources like circuit switch-
ing. CRP prevents congestion from ever occurring and thus
reacts instantly to traffic changes, whereas ECN requires
300,000 cycles to stabilize in our experiments. Furthermore,
ECN may not prevent congestion formed by short-lived flows
generated by a large combination of source–destination pairs.

General Terms
Congestion control, congestion notification, large-scale net-
works, tree saturation, reservation protocol

1. INTRODUCTION
Due to the ever-increasing storage and computation de-

mands, today’s high performance computing (HPC) and
datacenter networks are often composed of tens of thou-
sands of computation units [44, 31, 17]. This has led ma-
jor companies to operate more than one datacenter or HPC
network clusters, scattered around the world as in cloud
networks [23], or co-located in large datacenters [7]. Each
cluster may require very high bandwidth communication to
other clusters [32], stressing the costly inter-cluster links.

In such large scales, the primary constraint for application
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Figure 1: Points A and H can be over-subscribed and cause
tree saturation. Flow Y is affected by Z’s tree saturation.

performance can easily become network bandwidth because
of the cost of high-radix routers as well as optical and electri-
cal channels [3]. This problem is made worse by application
behavior which often results in ill-behaved traffic patterns
that over-subscribe parts of the network or certain destina-
tions. For example, MapReduce [12] performs considerable
data shuffling before advancing to the reduce phase after
the map phase. In addition, web search utilizes many leaf
nodes to perform lookups on part of the search index. After
performing their lookup, all leaf nodes then all report their
results to the same front end node [33].

In such networks, flow control is a major topic of re-
search. Lossless flow control benefits performance, quality
of service (QoS), and predictability over lossy (dropping)
flow control networks, such as with Ethernet and TCP [24].
Lossy networks also typically have no router-to-router feed-
back mechanisms, which limits their adaptive routing capa-
bility [20, 24, 4]. Despite these benefits, lossless flow control
suffers from congestion which can form multi-hop paths of
blocked packets affecting benign flows, known as tree satu-
ration [30, 40]. In contrast, lossy networks do not experience
tree saturation because packets are dropped and admission
is controlled by mechanisms such as datacenter TCP [5].

Figure 1 illustrates an example network with two clus-
ters. Each cluster offers full bisection bandwidth internally
such that adaptive routing or flow scheduling algorithms can
evenly distribute traffic load [20, 4]. However, due to cost
and technology constraints, inter-cluster channels are often
under-provisioned [32]. In this figure, flow Z consists of sev-



eral sources in cluster 0 transmitting at full rate to hotspot
destination H. Flow Z will create tree saturation at point A
if the inter-cluster channels do not have the bandwidth to
support flow Z’s traffic, and at hotspot destination H if H
cannot eject traffic at the same rate as it arrives. Because
of tree saturation starting from point A, flow Z affects a
benign flow Y which remains internal to cluster 0. Flow Z
also affects flows internal to cluster 1 due to tree saturation
originating from destination H. This is true even if the be-
nign flows do not use sources and destinations participating
in flow Z, because tree saturation can be widespread. Even
though other flows contending for bandwidth with flow Z
at points A or H inevitably have their performance reduced
because the network cannot satisfy the demand, congestion
control should leave independent benign flows unaffected by
ill-behaved flows.

Research has proposed numerous congestion control and
prevention mechanisms [8, 46]. The most popular of these
mechanisms is explicit congestion notification (ECN) [25].
ECN detects congestion at the root of the congestion tree
and signals to the contributing sources to throttle down via
a control packet or by piggybacking onto acknowledgment
packets. While ECN can be effective [37, 21], it is also
considerably sensitive to its configuration parameters which
depend on numerous and sometimes unpredictable factors,
including the traffic pattern [37]. Past work has also high-
lighted ECN’s slow adaptation to changes in the traffic pat-
tern [15, 28]. This is based on ECN’s reactive nature, since
ECN acts only after congestion forms, which is also true for
TCP.

To mitigate ECN’s limitations, researchers have proposed
speculative reservation protocol (SRP) [28]. SRP reserves
bandwidth in destinations in advance of the payload of long
flows. This prevents destinations from becoming hotspots,
even momentarily. To mitigate the round-trip latency over-
head of reservations, flows transmit packets speculatively
with low priority and without waiting for a grant. Even
though SRP prevents tree saturation due to hotspot destina-
tions, it does not prevent congestion due to over-subscribed
network channels. Therefore, in Figure 1, SRP would be
ineffective against tree saturation at point A.

In this paper, we propose channel reservation protocol
(CRP). CRP extends SRP to eliminate tree saturation in
lossless networks by enabling flows to reserve multiple re-
sources with a single request. CRP makes lossless networks
more attractive in the datacenter or HPC environment be-
cause tree saturation is a significant drawback of lossless flow
control [24, 17]. CRP can be applied in numerous settings,
such as networks with more intra-rack bandwidth than inter-
rack bandwidth [2]. However, we focus on multiple network
clusters where each cluster offers full bisection bandwidth in-
ternally, but inter-cluster channels are over-subscribed. This
setting represents datacenters in different geographical loca-
tions, or network clusters of the same datacenter [32, 7, 23].
In this setting, resources that require a reservation are des-
tinations (to prevent hotspots) and inter-cluster channels.
CRP differs with circuit switching [46] because it avoids
idling resources due to the round-trip delay between circuit
set up and data traversal [29].

Due to its proactive nature, CRP reacts instantaneously
to congestion whereas ECN requires 300,000 cycles to restore
throughput and latency after a change in traffic in our exper-
iments. Furthermore, ECN may not address congestion due

Source Dest.Bottleneck channel

Request packet
A

C
Grant or retry packet

B

A: Records in the request's reservation vector what cells the channel has 
no availability for.
B: Selects a cell that is available in its own and the request's reservation 
vector and issues a grant. Otherwise it issues a retry.
C: If the response is a grant, marks the allocated bandwidth as 
unavailable to other flows.

Figure 2: An overview of CRP.
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Figure 3: Each cell corresponds to a specific future time slot
and records the available bandwidth in cycles.

to many short flows that share a bottleneck channel, such
as occurs with small flows of uniform random (UR) traffic.
In that case, each individual flow terminates before ECN
takes effect, but the aggravated affect of multiple flows still
causes congestion. In such cases, with CRP sources sustain
5× higher accepted traffic in our experiments. Finally, our
results show that CRP is reasonably insensitive to network
configuration and traffic pattern, whereas ECN’s configura-
tion depends considerably on those parameters. However,
CRP can cause a significant bandwidth overhead for control
packets under some traffic patterns, compared to ECN.

2. CHANNEL RESERVATION PROTOCOL
With CRP, each over-subscribed channel and destination

maintains a reservation table. Each cell in the table repre-
sents a future time slot and records the available bandwidth
in clock cycle (flit) granularity. Sources send requests which
record the availability of participating resources. Destina-
tions then calculate the earliest common availability that
satisfies the request size, and respond with a grant. Grants
then finalize the reservations in participating resources while
in transit back to the source, as shown in Figure 2.

2.1 Reservation Tables
We associate a reservation table with each resource. Each

cell of a table corresponds to one time slot and the value
in that cell represents the number of cycles of bandwidth
available in the corresponding time slot. A sample config-
uration of 32 table cells (Vcells), each accounting for 512
cycles (Cmax), is illustrated in Figure 3. In this example,
resources can be reserved up to 16384 cycles into the future.
In the figure, cell A corresponds to the time slot comprising
cycles 0-511, cell B represents time slot of cycles 512-1023,
and so on. As shown, time slot (cell) A has 512 available
cycles while time slot B has only 10.

A resource can accommodate a request of size x during
time slot i if t[i] > 0 and t[i] + t[i+ 1] ≥ x. That is, the cor-
responding table cell must have at least one free clock cycle
and the sum of that table cell and the next cell must be at
least the request size. This allows requests to straddle two
adjacent cells, reducing the adversary effects of fragmenta-
tion.

2



Reservation table for a bottleneck channel

…        512 10 100 0 10

A B C D ECell labels

Cell values

Reservation vector of a request packet for 80 cycles

…        T T T T TCell values

Resulting reservation vector of the request packet

…        T T T F FCell values

F

60

Figure 4: Elements in the request’s bit vector get deasserted
in any channel that cannot accommodate the requested size.

Reservation tables are logically shifted by one cell when
time advances by Cmax cycles. In the above example, when
system time becomes 512, cell A is deleted and the table is
shifted left by one. A new cell with value Cmax is inserted at
the right. To maintain synchronization, all resources must
be synchronized to a global time base with an accuracy of
at least ±Cmax cycles using a technique such as [9].

Reservation tables are maintained for each critical resource.
Each destination’s network interface card (NIC) contains
a table for that destination’s egress channel. Each router
maintains a table for each output port that drives a poten-
tial bottleneck channel, e.g., an inter-cluster channel.

2.2 Reservation Handling in Channels
Reservation requests carry a bit vector of length Vcells

where each bit signals the availability of a time slot. Request
vectors are initialized to all true. Each time a request vector
passes a resource, that resource resets any bits of the vector
that correspond to time slots for which the resource does
not have the requested bandwidth. In effect, each resource
ANDs its availability into the request vector as it passes.
When the request vector reaches the destination, it indicates
the time slots for which all required critical resources had
sufficient bandwidth to handle the request at the time the
request passed the resource.

Reservation vectors are shifted left by one bit at the same
time as reservation tables. When reservation vectors are
shifted, a true bit is inserted at the right end because re-
sources are initially available during a new time slot. Reser-
vation vector shifting is performed by routers.

Consider Figure 4. In this example, cells A and C remain
true because the table can accommodate the request of 80
cycles in those time slots. Cell D sets its bit to false because
it has no bandwidth remaining, and cell E sets its bit to
false because the sum of cells E and F is insufficient for the
request. Finally, cell B remains true because 80 cycles can
be accommodated by the sum of cells B and C.

2.3 Reservation Handling in Destinations
Destinations compare the reservation vectors of arriving

requests against their own tables and compute the earliest
time slot that all participating resources on the request’s
path, including the destination, can accommodate. Simi-
lar to vector handling in channels, a time slot is considered
available at the destination if it has an available cycle and
the sum of its and the next cell’s available bandwidth sat-
isfies the incoming request. After ANDing their availability

Reservation table for the destination

…        30 40 100 512 100

A B C D ECell labels

Cell values

Reservation vector of a request packet for 80 cycles

…        T T T F FCell values

Resulting table for the destination

…        30 0 60 512 100Cell values

Cell B. Timestamp = 512 + 512 – 40 = 984

Resulting timestamp for the grant packet

Timestamp

Final vector after ANDing with destination availability

…        F T T F FCell values

Figure 5: Destinations compare their availability against re-
quest vectors and produce mutually-acceptable timestamps.

into the request vector, destinations generate a grant re-
sponse that carries a timestamp corresponding to the left-
most true bit of the final vector. This is the earliest time
that all required resources are available.

This operation is illustrated in Figure 5. In this example,
cell A cannot accommodate the request at the destination
because the sum of cells A and B in the destination’s reser-
vation table is less than the requested 80 cycles. However,
cell B can accommodate the request because cells B and C
combined have 140 free cycles. Cell C is also able to accom-
modate the request. We choose cell B as the earliest possible
that can handle the request and decrement the table entries
for cells B and C to reserve the 80 cycles (40 from each cell).
The actual reserved period straddles the two slots compris-
ing the last 40 cycles of slot B and the first 40 cycles of slot
C. The timestamp is computed to be 984 which corresponds
to the first cycle of the last 40 cycles of slot B.

2.4 Grant and Retry Operation
As grant packets travel back to the source, they decre-

ment the appropriate cells of each reservation table along
their route to mark the allocated bandwidth as unavailable
to other flows (point C of Figure 2). If at that time the
cell corresponding to the timestamp does not have enough
cycles to satisfy the request, any remaining slots are decre-
mented from the next cell. In the example of Figure 5, the
destination produced a grant timestamp for cycle 984 for a
reservation size of 80 cycles. When that grant reaches the
channel that has the reservation table shown in Figure 4, cell
B corresponds to cycle 984 and thus will be decremented by
10 and set to 0, whereas cell C will be decremented by the
remaining 70 cycles and thus be set to 30.

If the two table cells no longer have sufficient cycles to sat-
isfy the request, the grant is converted to a retry response.
This can occur if the bandwidth was reserved by another
flow during the time it took for the reservation request to
reach its destination, generate a grant, and return to the
participating channel (from point A until point C in Figure
2). A retry is also issued by a destination if the reservation
request’s final vector has no true bits or a common availabil-
ity does not exist. A retry instructs the source to retransmit
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its request after a short delay (Rcycles). The only exception
to this is when a retry is issued because a destination’s reser-
vation table has no availability for the specified reservation
size in any time slot and regardless of the reservation re-
quest’s vector. In that case, the retry instructs the source
to retransmit its request after Vcells × Cmax cycles, minus
the round-trip delay.

When a grant is converted to a retry at a channel, reser-
vations in the destination and channels the response has
already traversed are not cancelled. That bandwidth is effi-
ciently taken advantage of by speculative packets (explained
below) and control packets, which is confirmed by our ex-
periments. Having heavily oversubscribed resources closer
to traffic sources increases the probability that bandwidth
will be unnecessarily allocated in this manner in downstream
resources.

To prevent retries due to multiple flows attempting to
reserve the same time slot, reservation requests have the op-
tion of eagerly reserving the earliest time slot when they
traverse a participating channel (point A of Figure 2). Des-
tinations will preferentially grant this pre-reserved time slot
if available. Reservation grants release any ungranted eager
reservations for the grant’s flow. This requires tag matching
since eager reservations are associated with flow identifiers.
Eagerly reserving more than one time slots (Rres) for a sin-
gle request increases the probability that destinations will
grant a pre-reserved slot, but also increases the probability
of idling bandwidth even though there are eligible requests.

Grants and retries are forced to return using the reverse
of the request path so they can manipulate the correct chan-
nel reservation tables. The reverse path is identified either
by having request packets record their path, or by simple
calculations in the case of deterministic routing.

2.5 Protocol Considerations
The size of a reservation (x) is constrained to be in the

range x ∈ [Nmin, Nmax]. Also, because reservation requests
consider availabilities in only up to two adjacent cells, Nmax

must be no greater than 2Cmax. The minimum reserva-
tion size (Nmin) is chosen large enough to amortize the la-
tency and bandwidth overheads of request and grant pack-
ets. Flows smaller than Nmin do not use CRP. The maxi-
mum reservation size (Nmax) is chosen small enough so that
maximum-sized reservations do not create fairness or star-
vation issues. Flows larger than Nmax are divided into seg-
ments of Nmax in length. Each segment of a large flow
participates in CRP independently.

Even though small flows do not participate in CRP, they
consume bandwidth and thus must be taken into account.
Otherwise, tree saturation can form due to the combined
load of participating and non-participating flows. To mit-
igate this, each resource decrements the number of cycles
in its earliest non-zero reservation cell by the size of each
non-participating data packet that traverses the resource.
This approach removes bandwidth used by non-participating
packets from the reservation pool—albeit with a slight de-
lay. CRP also accounts for the bandwidth consumed by
control packets by reserving ε additional bandwidth for each
request. For example, if we assume a 5% control bandwidth
overhead for each flow, we set ε to 5% such that CRP treats
reservation requests as if they were 5% larger.

Systems with predominantly flows smaller than Nmin will
render CRP ineffective. In that case, CRP can be applied to

a collection of flows to a common destination or to a group of
destinations. For example, CRP can be applied to all flows
from the same source destined to the same network cluster
because those flows will content for the same over-subscribed
inter-cluster channels.

Parameters Vcells and Cmax determine the size of our
reservation window and the granularity of allocation. Reser-
vation tables must be large enough such that issuing a retry
due to a full reservation schedule at a destination is rare, un-
less the corresponding resource is over-subscribed in which
case its reservation table will become and remain full regard-
less of its size. Vector sizing should also reduce the prob-
lem of fragmentation, where a resource is unable to produce
a grant because the available bandwidth is scattered along
multiple non-adjacent time slots. The choice of Cmax also
needs to consider Nmin and Nmax so that each table cell is
able to service at least one request in full and so that leaving
counts smaller than Nmin is unlikely. For example, with an
anticipated request size of 256 cycles (flits), a viable choice
for Cmax is 256 × (1 + ε) which enables each cell to service
one full request with overhead.

In addition, parameter Cmax must be small enough to
bound the timing uncertainty of each reservation. The fact
that a grant may use cycles from two adjacent table cells
adds an uncertainty of Cmax between the timestamp and
the actual reserved cycle. Providing an upper bound for this
uncertainty is the reason we restrict reservations to using cy-
cles between adjacent slots only. Furthermore, a destination
may generate a grant for the first cycle of the chosen time
slot even though a participating channel may have used its
last remaining cycles in that time slot. Reservation bit vec-
tors do not record this information to avoid the associated
overhead. This adds further uncertainty of Cmax, for a total
uncertainty of 2Cmax.

An excessively large Cmax reduces performance if the tim-
ing uncertainty of each reservation becomes comparable to
the available buffering in each router, in which case tree sat-
uration may form from granted flows. Finally, the number of
bits reservation requests carry (Vcells × Cmax) should allow
reservation requests to remain single-flit packets.

CRP uses speculative packets to mitigate the request–
grant round-trip latency under low and medium loads, as
proposed by SRP [28]. Each flow initiates packet transmis-
sion speculatively without a grant. Speculative packets have
a limited time to wait (TTW) and are dropped at routers
if their cumulative buffering time in the network becomes
larger. The effect of TTW in the speculative packet drop
probability has been studied in [28]. Dropped packets cause
negative acknowledgment (NACK) packets. NACKs cause
the source to stop the speculative transmission, transmit a
reservation request, and retransmit the dropped packets as
normal packets upon receiving a grant. A speculative packet
that successfully reaches its destination creates an acknowl-
edgment (ACK) packet. In CRP, speculative packets pro-
vide the added benefit that bandwidth left unreserved due
to limitations such as fragmentation is productively used by
speculative packets.

CRP uses four virtual channels (VCs) [11]. The first VC
is for reservation requests. The second VC is for response
control packets (grants, retries, ACKs and NACKs). The
third VC is for speculative packets, and the fourth VC for
packets from granted flows or small flows not participating
in CRP. The VCs for control packets have the highest pri-
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ority, while the VC for speculative packets has the lowest
priority. Control VCs have a reduced implementation cost
compared to data VCs due to their typically low utilization
factor and small packet size. Note that packet types can
share VCs. However, we use four VCs to optimize perfor-
mance. In networks that require multiple VCs per traffic
class for performance or to prevent deadlocks, the control
and speculative VCs can be shared by all data VCs.

2.6 Starvation and Traffic Classes
To avoid starvation where one flow constantly receives

retry responses, we can randomize the time that sources
wait for until they resubmit their requests after a reply, as
well as increase the number of slots flows eagerly reserve ac-
cording to age. For example, flows can eagerly reserve one
more slot in every resource for each retry response beyond
a predefined number. Eventually, a request will eagerly re-
serve the maximum amount of slots in each resource. While
this dramatically increases the probability for a grant, it
does not guarantee that slots will be available in every re-
source. To mitigate this, flows can be given the option of
moving other reservations to another free slot, or preempt-
ing other reservations. In addition, fairness and QoS can be
implemented by dividing reservation vectors among traffic
classes, to guarantee bandwidth per traffic class.

3. EVALUATION METHODOLOGY
We modified Booksim [27] to compare a baseline network

with VC [11] cut-through flow control without congestion
control, a network with Infiniband-style ECN [37, 39, 25],
and a network with CRP. We compare against ECN be-
cause it is a primary congestion control technique for lossless
networks and has been applied to lossy networks [5, 38]. We
do not show results for SRP because SRP does not prevent
in-network congestion and thus is comparable to the base-
line network in our experiments. We also do not compare
against lossy networks because fairly comparing lossy and
lossless flow control is outside the scope of this paper.

In the baseline network, a single VC carries all traffic.
ECN uses an additional control VC for congestion notifica-
tion packets. CRP uses four VCs as described in Section 2.5.
In all networks, the VC for normal (non-speculative) pack-
ets uses virtual output queueing (VOQ) to eliminate head-
of-line blocking (HOL). In large-radix routers, VOQ can be
implemented cost-effectively with roughly the same through-
put [34]. All other VCs use FIFO input buffers. Each input
buffer has a capacity of 4KB statically assigned to each VC.
The router crossbar has a 2× speedup over channels. Out-
puts have buffers of 512B per VC. Switches use separable
input-first allocation with priority arbiters.

We model clusters of networks with oversubscribed inter-
channel channels [32]. Each network cluster consists of a
144-node Fat Tree [36] topology with two levels. The first
level consists of 12 routers. Each router has 12 down and
12 up channels. The second level consists of another 12
routers with 12 down channels each. Routing follows near-
est common ancestor with a random choice of channels when
traversing up the tree. We use two network clusters intercon-
nected by four channels in each direction. When traversing
to a different cluster, packets cross a dateline and thus use
a different set of VCs. Only destinations and inter-cluster
channels participate in CRP. Inter-cluster channels are con-
nected to leaf routers. Routers with an inter-cluster channel

have 13 down and 13 up channels, instead of 12. All channels
in the network have a capacity of 10Gb/s and a latency of
32ns, except for channels between clusters which have a la-
tency of 64ns. Routers operate at 1GHz; thus, the zero-load
latency through each router is 26ns [1].

Packet size is set to 256B, divided into 32 8B flits. Control
packets consist of one 8B flit. Sources generate traffic in
units of messages (flows). By default, message size is set to
8 packets (2KB). To mitigate HOL blocking between flows
to different destinations, sources create an independent flow
queue for each destination, similar to Infiniband [25]. Flow
queues arbitrate for injection in a round-robin fashion. CRP
does not depend on a specific number of flow queues.

To clearly illustrate the presence or absence of tree satu-
ration and because CRP can hide the request–grant latency
with speculative packets under low to medium loads (re-
sulting in low injection latencies), we focus on in-network
latency. In addition, due to the over-subscription ratio,
even low injection rates exceed available network bandwidth.
Therefore, injection queues constantly grow and therefore
total packet latency (including injection) constantly increases.
For injection rates lower than that, CRP has similar average
injection latency with a properly-configured ECN under sta-
ble traffic. Our results show offered traffic per source (injec-
tion rate) versus minimum or average accepted data traffic
among all sources that participate in the traffic pattern.

We simulate realistic traffic observed in HPC systems and
datacenters [13, 33] with our combined traffic pattern which
uses background hotspot traffic where half of the sources
in each cluster transmit at full rate to a hotspot in each
network cluster (each source transmits to all hotspots). In
this traffic pattern we collect statistics for benign foreground
intra-cluster UR traffic where every source (including the
ones participating in the hotspot pattern) transmits at a
variable rate only to destinations in the same cluster. The
hotspot traffic represents the small number of nodes that
communicate with most of the machines in the system (and
across clusters), because they are running the task scheduler,
aggregators or monitoring systems [13]. The background
hotspot traffic can also represent the collection of interme-
diate web search results using parts of the search index, per-
formed by numerous leaf nodes and sent to few front end web
server nodes, or reduction operations with constructs such
as MPI [33]. The benign foreground intra-cluster UR pat-
tern represents multi-purpose traffic that is confined within
the same or consecutive clusters or racks [13]. It is this traf-
fic that should remain unaffected by the ill-behaved hotspot
traffic.

The default ECN and CRP configuration parameters are
shown in Table 1. These parameters were chosen after ex-
periments in order to optimize throughput for the combined
traffic pattern for each network and according to the sug-
gestions in [37]. Vcells was set to 32 in order to keep reserva-
tion requests single-flit packets. Furthermore, Cmax is large
enough to reduce fragmentation by being able to accommo-
date a single 256B message in each cell, including ε.

4. EVALUATION

4.1 Single Traffic Class
For our initial evaluations, we use traffic patterns simpler

than the combined traffic pattern explained in Section 3.
Specifically, we conduct experiments using either global UR
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Table 1: Default configuration parameters for ECN and CRP networks.

Protocol Parameter Description Value

CRP

ε Reservation overhead adjustment 5%
TTW Speculative packet time to wait 200 cycles
Nmax Maximum reservation size 16 packets
Nmin Minimum reservation size 4 packets
Vcells Reservation table and vector cells 32
Cmax Reservation counter maximum value 269 cycles

Rres
How many request sizes reservation

1
requests eagerly reserve

Rcycles Cycles to wait after a retry 30

ECN

IPD+ Inter-packet delay increment 9600ns
IPD− Inter-packet delay decrement 100ns
T− Inter-packet delay decrement timer 4µs

Cthres Congestion threshold 95% input buffer capacity

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Offered traffic (flits/cycle per node)

A
ve

ra
ge

 a
cc

ep
te

d 
tr

af
fic

 (
fli

ts
/c

yc
le

 p
er

 n
od

e)

2 clusters. 4 inter−cluster channels. UR traffic

 

 

Baseline
CRP
ECN

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Offered traffic (flits/cycle per node)

A
ve

ra
ge

 p
ac

ke
t n

et
w

or
k 

la
te

nc
y 

(c
yc

le
s)

2 clusters. 4 inter−cluster channels. UR traffic

 

 

Baseline
CRP
ECN

Figure 6: Performance under global uniform random traffic.

traffic or the hotspot pattern which is part of our combined
traffic pattern. In all our evaluation results in this paper,
SRP is comparable to the baseline network and is thus not
shown, because SRP only prevents congestion due to desti-
nation hotspots, not inter-cluster channels [28]. In this sec-
tion, simulation cycles were reduced to keep simulation time
constant as injection rate increases, which causes a slight ar-
tificial drop in reported average latency and retry probability
for higher injection rates.

With hotspot traffic, all three networks have an equal av-
erage accepted rate of 0.01 flits per cycle per node. This
is simply the available bandwidth of the bottleneck links.
CRP has very little variation in sender throughput with a
standard deviation 2.5× smaller than that of ECN and 14×
smaller than that of baseline. CRP increases fairness in
cases where there are at least two resources to reserve, such
as our experiments. This is because even though a node may
be close to one resource, it will not be close to the second
resource, compared to other nodes. That second resource
will keep the node from dominating the first resource, since
reservations are for the same time slot in both resources.

Figure 6 presents evaluation results for global UR traffic
where each source selects among destinations across clusters
with equal probability. This pattern represents traffic from
load-balanced applications which have to be mapped to a
system that does not provide sufficient bandwidth between
all source–destination pairs. As shown, ECN and baseline
have very high network latency, indicative of tree saturation.
At 95% flit injection rate per node, CRP sources have a 5×
larger average accepted rate than ECN. Even with CRP,
flows that need to traverse an inter-cluster channel are re-

stricted to 0.05 flits per node per cycle because of the 18:1
over-subscription ratio of inter-cluster channels; this reduces
the reported accepted rate of global UR traffic even though
intra-cluster flows are unaffected by inter-cluster flows. Put
differently, because each source also transmits to destina-
tions in the same cluster and CRP eliminates tree satura-
tion, the average and minimum accepted rates per source are
higher than 0.05 for CRP. In contrast, ECN and baseline
do not exceed 0.05 due to widespread tree saturation. CRP
has a standard deviation of 6.5% of its average accepted rate.
This is because flows traversing inter-cluster channels need
to reserve two resources and thus have a higher probabil-
ity to receive a retry response. ECN has a larger standard
deviation of 12% of its average accepted rate.

In this testcase, ECN is ineffective because when ECN sig-
nals congestion, it throttles down the flow that receives the
congestion notification. However, by the time the conges-
tion notification arrives, the offending flow has already com-
pleted because it is short-lived. The congestion information
remains in the source, but since a flow is defined as a source–
destination pair, this information does not affect packets to
other destinations (even if its stressing the same inter-cluster
channels) from the same source. ECN does maintain state
at every source for each destination, but in this experiment,
by the time a source selects the same destination, the ECN
timers have reset and therefore the source is allowed to trans-
mit at full rate again. In our experiments, sources received
only 3 congestion notifications per destination in 150,000 cy-
cles. Therefore, ECN does not prevent congestion due to a
combination of short-lived flows to different destinations.

While the above behavior for ECN is based on the par-
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Figure 7: The average probability that any reservation re-
quest will result in a retry response.

ticular implementation and its use of timers, the same flaw
can exist in improved ECN schemes as well as TCP due to
the lack of feedback from the network and the minimum
window size. In addition, schemes which initiate a new con-
nection (flow) with default parameters irrespective of past
statistics, will also show this weakness with starting values
of more than 0.05 flits per cycle per node in our experi-
ments. Even a minimum window size of a single packet is
enough to overwhelm the inter-cluster channels in these ex-
periments, because at any one time 72 sources will be send-
ing a single packet through the inter-cluster channels. Ran-
domized backoff times will also not resolve this issue unless
they are exceptionally large, because by the time sources
generate a new flow to the same destination, a significant
amount of time has passed. Even if a flow halts transmis-
sion, sources have other flows for the same cluster waiting
for injection and by the time the round-robin selector revis-
its the halted flow, a significant amount of time has passed
and the randomized backoff has expired. The key weakness
of such schemes is that state is maintained per destination,
and not per network cluster or group of destinations sharing
an over-subscribed resource. Therefore, multiple short-lived
flows do not share congestion information. CRP solves this
problem without grouping destinations, because doing so in-
troduces non-trivial dependencies between groups, because
groups may share any number of over-subscribed resources.

CRP’s throughput under global UR traffic is limited by
the high number of retry responses. Specifically, reserva-
tion requests (not necessarily initial requests) have a 95%
probability of resulting in a retry response under a 95% flit
injection rate per node. This means that on average a reser-
vation request will have to be sent 18 times before generating
a grant response. The probability across injection rates is
shown in Figure 7. Retry probabilities do not vary signifi-
cantly with the injection rate because inter-cluster channels
are over-subscribed for injection rates more than 0.1 flits
per node per cycle. These probabilities are averaged across
inter-cluster and intra-cluster flows.

Retry responses occupy bandwidth. Under a 95% flit in-
jection rate per node, the bandwidth overhead of control
packets is 14% for CRP. Since an inter-cluster flow can
send to any destination in the other cluster, there is a sig-
nificant probability that two flows will get granted the same
time slot from different destinations; one of those grants will
be converted to a reply in the inter-cluster channel the two

flows share. The control packet overhead for ECN is 1%.
Under hotspot and a 95% flit injection rate per node, CRP

has a 75% probability that a request will result in a retry,
a 4% bandwidth overhead. However, this doesn’t penalize
CRP’s performance because retries under hotspot are due to
full destination reservation tables instead of failing to find
a common availability. This is unavoidable due to the over-
subscription ratio, regardless of the reservation table size.

The high control bandwidth overhead for CRP illustrates
the adversary effects of making allocation decisions without
global knowledge. This way, flows which need to reserve
multiple resources are more likely to receive a retry response,
due to flows reserving the same time slot. Increasing Rres

may reduce the number of retries. In contrast, flows to the
same cluster will never receive a retry response unless their
destination’s reservation table is full.

4.2 Hotspot Traffic Affecting Benign Traffic
Figure 8 shows the performance of the foreground intra-

cluster UR traffic in our combined pattern. This experi-
ment shows how benign intra-cluster traffic is affected by
adversarial traffic overstressing resources. ECN and CRP
can accept all offered foreground traffic, on average. CRP
offers a 3.5% lower minimum throughput due to the extra
bandwidth overhead for its control messages compared to
ECN. ECN achieves high performance because inter-cluster
channels are stressed by steady-state long flows from a few
sources to only a single hotspot destination per cluster, in
contrast with Figure 6. The baseline and SRP networks per-
form similarly to the baseline in Figure 6 and are thus not
shown.

The retry probability for CRP is only 1.3% at a 95% flit
injection rate per node because inter-cluster requests are
destined to the same hotspot destination. Therefore, the
only case that a retry is produced, except for reservation
tables having no vacancy, is if a flow eagerly reserves a time
slot in an inter-cluster channel that another flow gets granted
from the destination. That grant then gets converted to
a retry when it traverses the inter-cluster channel back to
the requesting node. The retry probability increases with
the number of hotspot nodes in each cluster, because then
different destinations can grant flows for the same time slot.

Moreover, ECN has a 15% higher packet network latency
by average for injection rates larger than 10%. Also, ECN’s
maximum latency is 4391 cycles at a 95% flit injection rate
per node, while CRP’s is 4913 cycles. The minimum latency
for both networks is 39 cycles. CRP has a higher maxi-
mum latency due to rare occurrences where short-lived con-
tention forms due to the timing uncertainty of reservations,
discussed in Section 2.5. This, however, does not degrade
throughput because the buffers absorb the contention. In
contrast, ECN relies on congestion momentarily forming to
generate congestion notifications to throttle down sources.
Therefore, congestion is much more frequent with ECN be-
cause it is part of ECN’s normal operation, which leads to
its 71% higher average network latency.

Another factor for ECN’s higher average latency is that in
our traffic pattern the two contention points are inter-cluster
channels and hotspot destinations, which are oversubscribed
by different ratios; hotspot destinations are oversubscribed
by 18:1, while inter-cluster channels by 4.5:1. This cre-
ates a challenge for ECN since the optimal configuration
also depends on the over-subscription ratio and the num-
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Figure 8: Foreground intra-cluster UR traffic performance with our combined traffic pattern.

ber of senders to a congestion point. In our simulations, we
chose to configure ECN to perform optimally for the inter-
cluster channels, which makes ECN too aggressive towards
the hotspot destinations because it is not throttling down
sources for long enough after each congestion notification.
This contention does not penalize throughput in our exper-
iments because the buffers are large enough to absorb the
contention, but it does penalize latency. If we had config-
ured ECN to perform optimally for hotspot destinations,
throughput would had been penalized instead because ECN
would had been too conservative towards inter-cluster chan-
nels. This illustrates a key limitation of ECN.

4.3 Transient Traffic
While ECN can be effective at handling congestion under

steady-state traffic, realistic traffic in system-wide networks
is often dynamic and unpredictable. Therefore, speedy adap-
tation to changes in the traffic pattern is critical. To illus-
trate the inherent reactive property of ECN, we conduct
experiments using a step-function traffic pattern. This pat-
tern first warms up the network for 50,000 cycles with 40%
of intra-cluster UR traffic at each source and then switches
to our combined traffic pattern. Throughput and latency
for the intra-cluster UR foreground traffic from shortly be-
fore the onset of the hotspot until ECN’s performance sta-
bilizes are illustrated in Figure 9. The baseline network is
not shown because it never recovers.

ECN’s throughput and latency are adversarially affected
for 300,000 cycles. ECN is unaware of the hotspot from
the moment the hotspot is activated until sources are throt-
tled down because of congestion notifications. This causes a
number of packets to be injected that cannot be ejected at
the pre-hotspot rate, due to tree saturation from the hotspot
traffic. Those packets are destined to further increase con-
gestion in the network. After 300,000 cycles, those pack-
ets are drained and ECN’s performance is restored to pre-
hotspot levels. Near the end of the recovery period, the
throughput curve spikes to compensate for the initial post-
transition throughput deficiency. ECN’s maximum average
network latency during the transition is 37,000 cycles; that
number becomes 120 cycles after ECN stabilizes. ECN’s re-
action time also depends on the over-subscription ratio of
the hotspot because a node can only generate one conges-
tion notification per packet. There is no way to encode the
severity of the congestion. While ECN can be configured to
detect congestion faster, doing so will negatively affect its
performance in other traffic patterns, such as benign traf-

fic where lower congestion detection thresholds will produce
more false positives. This poor adaptation behavior to tran-
sient traffic extends to other reactive schemes as well, such
as TCP.

In contrast, CRP is unaffected by the step-function ad-
versarial traffic. This highlights the key property of CRP
of preventing congestion from ever occurring, and there-
fore avoids even momentary interference with benign flows.
While congestion may form in speculative VCs, that does
not reduce performance because speculative packets never
deprive granted packets of bandwidth. Furthermore, al-
though temporary congestion may form in control VCs, that
congestion quickly dissipates since the traffic pattern neces-
sary to form the congestion cannot be sustained [28].

4.4 Sensitivity to Message Size
Figure 10 illustrates results for our combined traffic pat-

tern where each message’s size is randomly chosen between
1 and 14 packets. This stresses CRP’s handling of small
flows. Compared to the results of Figure 8, ECN has a 2%
lower average throughput, 4.5% lower minimum through-
put, and comparable network latency under a 94% injection
rate. However, CRP is more negatively affected with 3%
lower average throughput, 9% lower minimum throughput
and approximately twice the network latency under a 94%
injection rate. This is because CRP’s handling of flows too
small to participate in CRP is based on the expectation that
current traffic behavior is a good indicator for the future, as
discussed in Section 2.5, which is less true with randomly-
chosen message sizes. Furthermore, CRP does not throttle
small flows and therefore does not prevent congestion formed
solely by small flows, which occurs under high loads in our
experiment. If numerous small flows are expected, reduc-
ing Nmin may be beneficial. However, this will increase
CRP’s overhead relative to the data payload due to con-
trol messages. Alternatively, many small flows to the same
destination, or perhaps simply traversing a common set of
inter-cluster channels, can be grouped into one CRP request
larger than Nmin. ECN is unaffected by message size since
flows are throttled regardless of message size.

Even though CRP’s performance degrades in this case
chosen specifically as adversarial to CRP, in experiments
with better-behaved traffic where small flows have a fixed
size and do not cause congestion by themselves, CRP’s per-
formance is hardly affected because short packets are recorded
in the reservation tables as discussed in Section 2.5. In con-
trast, SRP completely disregards short packets [28].
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Figure 9: ECN is adversarially affected and recovers 300,000 cycles after the onset of a hotspot. CRP is unaffected.
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Figure 10: Foreground intra-cluster UR traffic performance with our combined pattern and randomly-chosen message sizes of
1 to 14 packets.

4.5 Sensitivity to the Network Configuration
To test CRP’s sensitivity to the network configuration,

we experiment with two network clusters interconnected by
one or two channels instead of the default four. CRP’s per-
formance is unaffected compared to Figure 8. ECN suffers
a marginal 2% reduction in minimum throughput for two
inter-cluster channels, and 1% for one inter-cluster channel.

We also conduct experiments for three and four clusters
interconnected in a bidirectional ring fashion, using our com-
bined traffic pattern. Flows choose the shortest route to
their destination cluster. Therefore, with three clusters flows
still traverse one inter-cluster channel whereas with four
clusters flows traverse one or two inter-cluster channels. As
Figure 11 shows, ECN needs to be re-configured for each of
the two cases, especially for the four network clusters where
it offers 38% lower throughput, whereas CRP’s performance
is unaffected and is comparable to that of Figure 8.

Finally, we modify the hotspot background traffic to have
all sources transmit to the hotspots, instead of only half
the sources per cluster. With ECN, the foreground traffic
achieves only 62% average accepted rate and 53% minimum
under 95% flit injection rate per node. This shows that ECN
cannot achieve optimal throughput in this different traffic
pattern without new configuration parameters. In contrast,
CRP’s performance is comparable to Figure 8.

4.6 Sensitivity to Configuration Parameters
With our default configuration and the combined traffic

pattern, using a larger Cmax of 534 decreases throughput by
5% due to the increased inaccuracy in generated timestamps,
as discussed in Section 2.5. A drop in throughput is also re-
alized by setting Cmax to a lower value than 269, because a
single request may no longer fit into a single cell, which ex-

acerbates the fragmentation problem. Furthermore, CRP’s
performance is comparable for Rcycles set to 0, 30 and 60
cycles for our combined traffic pattern. The same is true for
Rres set to 0, 1 and 2, except that excessively large values for
this parameter cause underutilization of bandwidth. Finally,
the expected message size affects Cmax, Nmax and Nmin, as
discussed in Section 2.5. However, if message sizes cannot
be predicted, CRP can segment or merge messages to the
same destination such that the amount of packets per reser-
vation remains reasonable. Except for the expected message
size, CRP’s configuration parameters are not affected by the
traffic pattern and network configuration.

5. DISCUSSION
Our experiments identify two limitations of CRP. Firstly,

as the number of flows requesting a resource increases as well
as the number of resources flows require, so does the control
overhead from retry responses. To mitigate this, destina-
tions can choose an available time slot at random instead
of the earliest one. While this has the potential to increase
reservation time even without congestion, speculative pack-
ets mitigate latency under low loads. The number of retries
can also be reduced by adjusting Rres and Rcycles.

The second limitation of CRP is the fact that different
flows may need to reserve different numbers of resources.
Flows that do not traverse inter-cluster channels will not re-
ceive a retry response unless their destination’s reservation
table is full. However, flows that do traverse inter-cluster
channels may receive a retry response because a common
availability was not found. This can cause unfair bandwidth
allocation based on the number of participating resources
flows traverse. To mitigate this, we can vary the number of
time slots a request can eagerly reserve (Rres) depending on
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Figure 11: ECN needs to be re-optimized for three or four network clusters. CRP’s performance is unaffected.

the number of resources it needs to allocate. This problem
is caused by the lack of global knowledge when making al-
location decisions locally. It can also appear in ECN since
flows may traverse a different number of congestion points.
To prevent this issue and the bandwidth overhead for re-
tries from affecting CRP’s scalability, fairness policies may
be necessary, as discussed in Section 2.6.

Implementing CRP requires the simple modifications to
routers and NICs that are required for SRP [28] for spec-
ulative and control packets, with the addition of retry re-
sponses and reservation tables. Similarly to SRP, NIC in-
jection buffers should be large enough to allow packets to
remain stored for a duration at least equal to the round-trip
delay without stalling the source even in the presence of
bursts. The round-trip delay is the minimum time packets
have to be stored for until an ACK can arrive. In addition
to SRP, CRP requires reservation tables at NICs, as well
as tables at any router output transmitting to a channel
participating in CRP. These tables and the corresponding
handling logic are a minor cost increase for the large-radix
and complex system-wide network routers. For example, a
reservation table with Cmax set to 269 and Vcells set to 32
requires 288 register cells, less than a 0.1% increase in the
number of register cells of a YARC router [41]. This cost will
increase for larger-scale networks with more over-subscribed
resources that need larger Cmax or Vcells, but still remains
a small fraction of router cost.

Furthermore, CRP incurs a negligible latency overhead
due to the speculative packets. Moreover, the bandwidth
overhead of control packets other than retries is a function
of the message size, Nmax and Nmin, but remains low be-
cause control packets are much smaller than data packets.
Speculative packets do consume bandwidth but have the
lowest priority and are dropped under congestion such that
they never deprive other packets of bandwidth.

Even though CRP creates reservations, it is simply a sta-
tistical scheme to prevent resource over-subscription. There-
fore, in case of improper synchronization, a clock drift, or
transient error that causes a flow’s granted timestamp to be
altered, the overall bandwidth demand on resources will still
not exceed their capabilities. In addition, a retry response
erroneously converted to a grant due to a transient error will
only cause one flow more than what resources can handle to
be transmitted; this is easily absorbed by buffers. Finally,
routers can detect malicious requests from sources in terms

of size or number of requests, and impose quotas per source.
An alternative method for tackling the problem of multi-

ple network clusters interconnected with under-provisioned
channels is to have packets use SRP [28] to each partici-
pating resource in sequence. While this method simplifies
the reservation logic and eliminates retry responses, each re-
source requires excessive buffering because it needs to hold
all packets waiting to be granted by the next resource.

In addition, CRP can be used in networks without over-
subscribed inter-cluster channels. In this case, CRP behaves
like SRP [28]. CRP can also be applied to dropping flow con-
trol in order to reduce the probability of dropping packets.
Finally, CRP applies to heterogeneous networks after ad-
justing the reservation tables in each part of the network to
match available bandwidth.

6. RELATED WORK
ECN has been widely implemented in Infiniband-style net-

works [39, 25], such as the InfiniScale IV router [21]. Several
studies have noted its good performance characteristics [37,
21, 45]. Further studies have proposed improvements to
ECN by improving when routers detect congestion and how
traffic sources react [39, 15, 45]. However, numerous studies
have also pointed out ECN’s shortcomings. The study of [37]
points out that ECN provides good congestion control for
long-lived flows, but risks causing network instability if its
configuration parameters are not matched to the traffic pat-
tern. This can be a challenging task given ECN’s sensitivity
to its configuration parameters as well the unpredictability
of the traffic pattern. Finally, all ECN methods have been
reported to have an adversary effect on latency at the onset
of a hotspot at the edge of or inside the network [15, 28].

Many alternatives to ECN have been proposed [8]. Cir-
cuit switching also creates end-to-end reservations which in-
clude channels [46]. However, circuit switching does not
allow other flows to use a reserved resource—even if no data
is flowing in it—from the time a circuit is established un-
til teardown. This imposes many idle cycles because of
the latency from setting up a circuit until data transmis-
sion, which can seriously degrade network throughput [29].
In contrast, CRP creates fine-grain future reservations and
thus time slots adjacent to a reservation are available to
other flows. CRP is simply a statistical scheme to allocate
bandwidth; it does not enforce strict reservation because flits
may arrive at different times than their reservations. In that
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case, bandwidth is used by speculative and control packets.
SRP [28] and alternative end-to-end congestion prevention

techniques [10] prevent congestion due to hotspot destina-
tions but do not detect or resolve in-network congestion.
Such techniques are ineffective for the testcases we evaluate.

In other congestion control techniques, networks priori-
tize packets causing congestion to speed up resolution [42].
This is based on the expectation that congestion is transient.
EyeQ moves congestion and QoS handling from the network
to the endpoints by speeding up the network fabric com-
pared to the edge links [26]. Furthermore, global network
knowledge can be used—when feasible—to perform admis-
sion control [43]. Other techniques do not prevent conges-
tion but instead try to reduce its adversary effects by plac-
ing congested packets in different lanes or VCs [22, 14, 19].
For instance, RECN places congested packets in separate
queues to avoid interference with benign traffic [18]. How-
ever, RECN requires large and costly CAMs, and is limited
in the number of saturation trees it can handle by the size of
the queues. Also, with flit-reservation in on-chip networks,
packets make reservations at each hop and only for the next
router, instead of end-to-end like CRP [35]. Therefore, tree
saturation can still form.

In the past, lossy networks have used random early de-
tection (RED) to probabilistically drop packets even with-
out a full buffer, in order to indirectly signal congestion to
TCP flows [16]. More recently, TCP in datacenter networks
has been modified to reduce packet dropping due to over-
subscription [6], such as implementing ECN with TCP [38]
or modifying TCP [5]. Even though tree saturation does not
form in lossy networks, packet drops and congestion control
directly affect throughput. CRP is applicable to dropping
networks to reduce the dropping probability and offer advan-
tages such as with transient traffic. Reducing packet drops
reduces the bandwidth demand for retransmitting packets.

Adaptive routing and flow scheduling techniques aim to
distribute load evenly [20, 4], but do not protect from tree
saturation when traffic exceeds available bandwidth.

7. CONCLUSION
This paper proposes CRP, a reservation protocol that pre-

vents congestion at both over-subscribed channels and des-
tinations by reserving multiple resources with a single re-
quest, and without idling resources from reservation until
data traversal like circuit switching. Reservation requests
record the available time slots for participating resources
en route to their destination. Destinations then generate a
grant with a timestamp for which all required resources are
available. By reserving resources in advance of packet trans-
mission, congestion is prevented from ever occurring. In con-
trast, reactive methods such as ECN allow tree saturation
to form before acting. As we show, CRP reacts instantly to
the onset of a hotspot. In contrast, ECN requires 300,000
cycles to stabilize in our experiments. Furthermore, ECN
may not react to congestion in network channels formed by
short-lived flows generated by a large combination of source–
destination pairs. CRP is also reasonably insensitive to the
network configuration and traffic pattern, whereas ECN’s
optimal configuration is sensitive to numerous and often un-
predictable factors, making ECN a challenge to configure.
However, CRP has a higher control bandwidth overhead
than ECN. CRP is an effective technique to make lossless
flow control more attractive by eliminating tree saturation.
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