
HAL Id: hal-01146393
https://inria.hal.science/hal-01146393

Submitted on 13 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

25 Years of Formal Proof Cultures: Some Problems,
Some Philosophy, Bright Future

Furio Honsell

To cite this version:
Furio Honsell. 25 Years of Formal Proof Cultures: Some Problems, Some Philosophy, Bright Future.
LFMTP 2013, Sep 2013, Boston, United States. pp.37-42, �10.1145/2503887.2503896�. �hal-01146393�

https://inria.hal.science/hal-01146393
https://hal.archives-ouvertes.fr

Extended Abstract: 25 Years of Formal Proof Cultures
some problems, some philosophy, bright future

Furio Honsell
Università di Udine, Italy
{surname.name}@uniud.it

Abstract
Throughout the history of Mathematics, several different proof cul-
tures have co-existed, and still do co-exist. After 25 years of Logi-
cal Frameworks, we can say that even as far as proof metalanguages
go, a definitive system is utopian and that we are witnessing the
continuous development of a diversity of formal proof cultures, see
e.g. [10–12, 17, 19, 21, 23, 24, 28]. In this paper, we propose a
contribution towards the clarification of some controversial issues
that have arisen in the theory and practice of Logical Frameworks,
and have possibly motivated such a manifold speciation. Using as
a running example the encoding of the critical features of Non-
Commutative Linear Logic (NCLL) [26] in the Logical Framework
LFP [20], we discuss the notions of adequacy of an encoding, lo-
cality of a side-condition, deep and shallow encodings, and how
to embed heterogenous justifications or external evidence in LF.
This discussion naturally leads to the question of how to express
formally the expressive power of a Logical Framework, a minimal
requirement being that of encoding itself within itself. We focus on
LFP and we discuss its relations to the original LF [17], and briefly
to the Conditional LF [21], and the Pattern LF [19] previously in-
troduced by the authors. We conclude the paper by briefly compar-
ing LFP to λΠ-calculus modulo [12], the Linear LF [9], and the
Concurrent LF[28].

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Theory, Verification

Keywords Type Theory, Logical Frameworks

1. Introduction
Logical Frameworks (LFs) first came into being in 1987 [17], as
an attempt to harness the multifarious variety of existing logics
and formal proof cultures, with the aim of factoring out the com-
plexities of implementing proof assistants for such systems, espe-
cially program logics. LFs are meta-languages for specifying the
assertive and deductive machinery of logical systems and, most no-
tably, what should count as formal justifications, evidence or proofs,
in deductive systems.

However, the very concept of proof, let alone that of formal
proof, has remained quite elusive throughout the history of Mathe-

[Copyright notice will appear here once ’preprint’ option is removed.]

matics. In ancient Egyptian, Mesopotamic, and Indian Mathemat-
ics justification often reduced just to demonstrations or diagrams.
Euclid, in hellenistic times, was the first to set a standard for an ap-
parently precise notion of formal proof, but he himself was rather
easy in the Elements in using diagrams (e.g. continuity) and prov-
ing universal statements only for specific instances (e.g. the ex-
istence of infinitely many primes). Archimedes often used physi-
cal analogies. And even nowadays, many working mathematicians
have an ambivalent attitude towards formal proof, considering them
a pedantry, while complaining if computers provide formal depend-
ability. And even today, when it is acknowledged that FOL pro-
vides, in principle, the ultimate logical answer, the multitude of
irreducible logics is increasing.

As there was no hope for an ultimate logical system, 25 years
ago a utopia was envisaged where at least an ultimate meta-
language for logics could exist. Today, we think that even this
very modest universality is probably unattainable. A number of
Logical Frameworks has been put forward in recent decades
[11, 12, 17, 19, 21, 23, 24, 28] each convincingly motivating the
peculiar features of the formal proof culture it supports. Albeit,
in principle, they are not incommensurable, this is not the case
pragmatically.

The main problem in devising a Logical Framework is that of
deciding “which features of the object systems should be delegated
in a transparent way to the metalanguage”. The difficulty is that
usually many pragmatical features of object systems, including
psychological ones, are not invariant under encodings.

After 25 years, we think that a minimal answer is provided
by Logical Frameworks, inspired by LF, based on Intuitionistic
Dependent Type Theories. These rely upon the methodology of
Higher Order Abstract Syntax (HOAS), for encoding logical lan-
guages, and the paradigms of theorems-as-types, proofs-as-terms,
and rules-as-functions. Variables, rule instantiations, substitution,
assumptions, as well as their management according to a stack-
discipline, are taken care of straightforwardly by the framework.
Often, however, this approach does not encompass all side condi-
tions, thus leading to rather deep encodings and the introduction of
a huge spectrum of extra judgements which obscure the very point
for having introduced the object system in the first place.

In our view, there are two main issues, which are nonetheless
somehow related. The first is: should we enrich the LF with more
specific structural operations as in e.g. CLF [28] which can enforce
linearity and can deal directly with patterns? The second issue
is: how should we combine deduction with heterogenous sources
of justification, e.g. computation as in [10] and in λΠ-calculus
modulo. The first issue has a bearing on the depth of the encoding.
The more shallow the encoding, the more transparent the Logical
Framework will be for the user. The second issue has a bearing on
the reliability and efficiency of the proof checker, i.e. the so-called
de Bruijn criterion [14].

1 2015/4/28

Σ ∈ Signatures Σ ::= ∅ | Σ, a:K | Σ, c:σ
Γ ∈ Contexts Γ ::= ∅ | Γ, x:σ

K ∈ Kinds K ::= Type | Πx:σ.K

σ, τ, ρ ∈ Families (Types) σ ::= a | Πx:σ.τ | σN | LPN,σ [ρ]

M,N ∈ Objects M ::= c | x | λx:σ.M |M N |
LPN,σ [M] | UPN,σ [M]

Figure 1. The pseudo-syntax of LFP

In recent years, the authors have been pursuing a Logical Frame-
work that would provide a setting where these issues could at least
be openly expressed. First, we introduced the Schematic Logical
Framework [19], and discussed the Pattern Logical Framework
PLF as an instance. Then we reduced this generality by introducing
first the Conditional Logical Framework [21], and finally LFP [20],
which is an Open Logical Framework. We think that this latter
framework is potentially very expressive, though retaining mod-
esty, whereby other frameworks can be compared.

In this paper, we offer a contribution towards the clarification of
some controversial issues that have arisen in the past 25 years of
theory and practice of Logical Frameworks and have possibly mo-
tivated their manifold speciation. Using as a running example the
encoding of the critical features of Non-Commutative Linear Logic
(NCLL) [26] in the Logical Framework LFP [20], we discuss the
notions of adequacy of an encoding, locality of a side-condition,
deep and shallow encodings, and how to embed heterogenous jus-
tifications in LF. This discussion naturally takes us to the ques-
tion of how to discuss formally the expressive power of a Logical
Framework, a minimal standard being that of encoding itself within
itself. We focus on LFP and we discuss its relations to the original
LF [17], and briefly to the Conditional LF [21] and the Pattern LF
[19]. We conclude the paper by briefly extending the comparison to
the λΠ-calculus modulo [12], LLF [9], and CLF [28].

2. LFP
The system LFP [20] is a decidable conservative extension of
LF. It was introduced to neatly factor out computations whose
justifications could be delegated to an external oracle. In our view,
this allows us to recover within the Logical Framework many
different proof cultures that could previously be embedded only
very deeply and axiomatically. Recourse in formal proofs to diverse
non-apodictic sources of justifications and external evidence, such
as diagrams, physical analogies, explicit computation according to
the Poincaré Principle [3], external proof search tools, can thus
be explicitly recorded in a LF type-theoretic framework. This is
not too superficial, since the execution of just about any proof
procedure requires some irreducible assumption, as illustrated by
the Münchausen trilemma or the story of Achilles and the tortoise
as narrated by Lewis Carroll [8].

In this section, we briefly recall the syntax and the basic notions
underpinning LFP : In Figure 1, we give the syntactic categories of
LFP , namely signatures, contexts, kinds, families (i.e., types) and
objects (i.e., terms).

The novelties of LFP w.r.t. classic LF are the lock (L) and
unlock (U) operators. Indeed, LFP is an extension of LF with
external predicates and, precisely in this sense it is an Open Logical
Framework. The lock type constructors act as logical filters and
introduce a sort of �2-modality constructors for building types of
the shape LPN,σ[ρ], where P is a predicate on typed judgements.

Following the standard specification paradigm in Constructive
Type Theory, we define lock-types using introduction, elimina-
tion, and equality rules. Namely, we introduce a lock-constructor

for building objects LPN,σ[M] of type LPN,σ[ρ], via the introduc-
tion rule (O·Lock). Correspondingly, we introduce an unlock-
destructor, UPN,σ[M], and an elimination rule (O·Unlock), which
allows for the elimination of the lock-type constructor, under the
condition that a specific predicateP is verified, possibly externally,
on an appropriate correct, i.e. derivable, judgement.

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ [M] : LPN,σ [ρ]
(O·Lock)

Γ `Σ M : LPN,σ [ρ] Γ `Σ N : σ P(Γ `Σ N : σ)

Γ `Σ UPN,σ [M] : ρ
(O·Unlock)

The equality rule for lock-types amounts to a lock-reduction (L-
reduction), UPN,σ[LPN,σ[M]] →L M , which allows for the elim-
ination of a lock, in the presence of an unlock. The L-reduction
combines with standard β-reduction into βL-reduction. But, since
external predicates affect reductions in LFP , they must be well be-
haved in order to maintain Subject Reduction, and hence decidabil-
ity as all LF must do.

DEFINITION 1 (Well-behaved predicates). A finite set of predicates {Pi}i∈I
is well-behaved if each P in the set satisfies the following conditions:

• Closure under signature and context weakening and permutation:
1. If Σ and Ω are valid signatures such that Σ ⊆ Ω, and P(Γ `Σ α)

holds, then P(Γ `Ω α) also holds.
2. If Γ and ∆ are valid contexts such that Γ ⊆ ∆, and P(Γ `Σ α)

holds, then P(∆ `Σ α) also holds.
• Closure under substitution:

If P(Γ, x:σ′,Γ′ `Σ N : σ) holds, and Γ `Σ N ′ : σ′, then
P(Γ,Γ′[N ′/x] `Σ N [N ′/x] : σ[N ′/x]) also holds.
• Closure under reduction:

1. If P(Γ `Σ N : σ) holds, and N →βL N ′ holds, then
P(Γ `Σ N ′ : σ) also holds.

2. If P(Γ `Σ N : σ) holds, and σ →βL σ′ holds, then
P(Γ `Σ N : σ′) also holds.

In the following subsection we use the notions of adequacy and
depth of an encoding, which will be discussed in Section 4.

2.1 LFP in LFP

A minimal expressivity requirement for a Logical Framework is to
be able to represent itself, see e.g. [1, 5].

In encoding LFP within LFP we start by introducing four types
to represent kinds, types, terms, kinds, and formulæ:

kind: Type, tp:Type, term: Type, o:Type

Then, we introduce term and type constructors1:

type : kind
prodk: (term -> kind) -> kind

prodt: (term -> tp) -> tp
tp_app: tp -> term -> tp
tp_Lock:(term -> o) -> tp -> term -> tp -> tp

app: term -> term -> term
abs: (term -> term) -> term
Lock: (term -> o) -> term -> term -> tp -> term
Unlock: (term -> o) -> term -> term -> tp -> term

The adequacy of the signature given so far (and denoted by Σ) is
straightforward.

Capitalizing on the multiple uses of metavariables, we do not
need to represent explicitly typing environments and signatures.
It is sufficient to “record” the typings by means of a bookkeeping
judgment:

1 Following the spirit of the Edinburgh LF, we identify the variables of the
object language with metavariables of the suitable type.

2 2015/4/28

tp_typing: tp -> kind -> Type
typing : term -> tp -> Type

We give the encodings of only two typing rules, namely,
(O·Lock) and (O·Unlock) and of the Lock-reduction rule:

OLock: ΠM,N:term. Πrho,sigma:tp. ΠP:term -> o.
(typing M rho) -> (typing N sigma) ->
(typing (Lock P M N sigma) (tp_Lock P rho N sigma))

OUnlock: ΠM,N:term. Πrho,sigma:tp. ΠP:term -> o.
(typing M (tp_Lock P rho N sigma)) -> (typing N sigma) ->
LisTrue〈P,N〉 [(typing (Unlock P M N sigma) rho)]

UL: ΠM,N:term. ΠP:term -> o. Πsigma:tp.
LisTrue〈P,N〉 [(red (Unlock P (Lock P M N sigma) N sigma) M)]

where red: term -> term -> Type denotes the βL-reduction
judgment on terms and the external predicate isTrue holds on the
pair 〈P, N〉 iff predicate P holds on N.

The encoding of the typing judgment on terms and types,
namely typing, is adequate in the usual sense given by the follow-
ing theorem, where εX stands for the encoding function mapping
terms and types of LFP with free variables in X into the corre-
sponding canonical forms of type term and tp, respectively:

THEOREM 1 (Adequacy of typing). Given X = {x1, . . . , xn}
be the set of free variables occurring in M and σ and Γ =
[x1:σ1, . . . , xn:σn], then there is a bijection between deriva-
tions of the judgment Γ ` M : σ in LFP and proof terms h,
such that Γ′ `Σ h : (typing εX (M) εX (σ)) is in canonical
form (where Γ′ = {x1 : term, . . . , xn : term, h1 : (typing x1
εX (σ1)), . . . , hn : (typing xn εX (σn))}). �

Similar statements can be proved for judgments red and tp typing.

2.2 Comparing LFP and LF

We have the following result:

THEOREM 2. LFP is a conservative extension of LF. �

Proof (sketch): consider a derivation in LFP and drop all occur-
rences of locks and unlocks (that is, release the terms and types
originally locked). So doing, we obtain a legal derivation in stan-
dard LF, since the terms and types encapsulated by the L and U-
constructors are “fully compatible” with the typing system of LF.

Notice that LFP is a conservative extension of LF indepen-
dently of the particular nature and properties of the external ora-
cles we may invoke during the proof development (in LFP), e.g.
decidability or polynomial complexity of P . But, if we consider
well-behaved recursively enumerable predicates, then these are de-
finable in LF by Church’s thesis. Thus, we can envisage a deep
embedding of LFP into LF, in the style of Section 2.1, which in-
ternalizes also the external predicates and the decision procedures
related to the lock/unlock mechanism and L-reduction as follows:

OUnlock: ΠM,N:term. Πrho,sigma:tp. ΠP:term -> o.
(typing M (tp_Lock P rho N sigma)) -> (typing N sigma) ->
(isTrue P N) -> (typing (Unlock P M N sigma) rho)

UL: ΠM,N:term. ΠP:term -> o. Πsigma:tp.
(isTrue P N) ->
(red (Unlock P (Lock P M N sigma) N sigma) M)

where isTrue: (term -> o) -> term -> Type is the encoding in
pure LF of the decision procedure checking if the predicate repre-
sented by P holds on the argument represented by N. The rest of the
encoding presented in Section 2.1 remains unchanged.

3. Non-Commutative Linear Logic
In substructural logics, some rules are subject to side conditions
and structural constraints on the shape of assumptions or premises.
In this section, we outline an encoding in LFP of a particular
substructural logic, namely Non-Commutative Linear Logic [26].
We briefly recall the syntax and the rules of NCLL, before engaging
the task of encoding it in LFP (see Section 3.1).

First we introduce the ordered fragment of NCLL2. For con-
ciseness, but not for political inclinations, we discuss only right-
ordered implication→→ whose introduction/elimination rules are:

Γ; ·; z:A ` z : A
(ovar)

Γ; ∆; (z:A,Ω) `M : B

Γ; ∆; Ω ` λ>z:A.M : A→→B
(→→ I)

Γ; ∆1; Ω1 `M : A→→B Γ; ∆2; Ω2 ` N : A

Γ; (∆1 1 ∆2); (Ω1,Ω2) `M>N : B
(→→ E)

The gist of these rules is that “ordered assumptions occur exactly
once and in the order they were made”. The linear fragment of
NCLL amounts to the following rules :

Γ; y:A; · ` y : A
(lvar)

Γ; (∆, y:A); Ω `M : B

Γ; ∆; Ω ` λ̂y:A.M : A(B
((I)

Γ; ∆1; Ω `M : A(B Γ; ∆2; · ` N : A

Γ; (∆1 1 ∆2); Ω `MˆN : B
((E)

Finally, the intuitionistic fragment of NCLL is given by:

(Γ1, x:A,Γ2); ·; · ` x : A
(ivar)

(Γ, x:A); ∆; Ω `M : B

Γ; ∆; Ω ` λx:A.M : A→ B
(→ I)

Γ; ∆; Ω `M : A→ B Γ; ·; · ` N : A

Γ; ∆; Ω `MN : B
(→ E)

In order to illustrate how to deal with further complexities, we
introduce also ordered conjunction:

Γ; ∆1; Ω1 `M : A Γ; ∆2; Ω2 ` N : B

Γ; (∆1 1 ∆2); (Ω1,Ω2) `M •N : A •B

Γ; ∆2; Ω2 `M : A •B Γ; ∆1; (Ω1, z:A, z′:B,Ω3) ` N : C

Γ; (∆1 1 ∆2); (Ω1,Ω2,Ω3) ` let z • z′ = M in N : C

3.1 NCLL in LFP

The main reason for the choice of this case study is that NCLL is
particularly problematic to encode naı̈vely in a type theory-based
LF, due to the fact that it effectively needs to access the derivation
context, which, clearly, is not available at the object level (for a
more detailed discussion see, e.g., [13]).

Our encoding is a shallow one in the sense that we do not encode
explicitly the proof terms of the original system but represent only
types as formulæ. The idea of our encoding is not to make any a
priori distinction between intuitionistic, linear, and order variables.
It will be the order, linear, and intuitionistic introduction rules
which will canonize them in those roles, if the constraints enforced
by the appropriate P’s in the locks will filter them out as suitable.
We start by encoding right-ordered implication, see Section 3. The
information necessary to check the condition on the occurrence of
z, as the last variable in the ordered context, can be extracted by
local inspection of the proof term. As it is the case in any LF-
based logical framework the proof term fully records all previous
derivation steps. Hence, we can introduce in LFP suitable well-
behaved predicates in order to filter out proof terms satisfying such
constraints. The encodings of rules (→→ I) and (→→ E) are:

2 Notice that in this logic the derivation context is split into three distinct
parts, namely, the intuitionistic context Γ, the linear context ∆ and the
ordered context Ω.

3 2015/4/28

impRightIntro: ΠA,B:o. ΠM:(True A) -> (True B).

LRightmost
M,(True A)−>(True B)

[True(impRight A B)]

impRightElim : ΠA,B:o.
(True(impRight A B)) -> (True A) -> (True B)

where impRight:o->o->o represents the →→ constructor of right-
ordered implications, and Rightmost(Γ`Σ M:(True A) -> (True

B)) checks that:

1. M is an abstraction (i.e., M ≡ λz:(True A).M’);

2. all free variables in M occur in subterms whose type is either o
or (True A) for some A:o;

3. the bound variable z occurs only once and never to the right of
a variable bound by an abstraction which is the third argument
of impRightIntro in the normal form of M’;

4. the bound variable z does not occur in the normal form of M’,
in the fourth argument of the impElim and impLinearElim
constructors.

The second check is necessary for the predicate to well-behaved,
namely closed under substitution. The reference to the normal
form could be dropped if we utilize LFP in canonical form [20].
The third check ensures linearity and the right ordering of the
ordered variables, which in our setting are those bound by a λ>.
The last constraint is due to the presence of the intuitionistic and
linear fragments of NCLL. In order to avoid the failure of the
normalization step in the logic, the rule (→→ E) requires that the
linear and ordered parts of the derivation context be empty in the
second assumption

Linear implication is treated similarly by introducing a suitable
predicate “ensuring” the correct introduction of the(constructor.
Hence, the encodings of the rules ((I) and ((E) are as follows:

impLinearIntro: ΠA,B:o. ΠM:(True A) -> (True B).
LLinear
M,(True A)−>(True B)

[True(impLinear A B)]

impLinearElim : ΠA,B:o.
(True (impLinear A B)) -> (True A) -> (True B)

where impLinear:o->o->o represents the(constructor of linear
implications and Linear(Γ `Σ M:(True A)->(True B)) holds if:

1. M is an abstraction (i.e., M ≡ λz:(True A).M’);

2. all free variables in M occur in subterms whose type is either o
or (True A) for some A:o;

3. the bound variable z occurs only once in the normal form of M’;

4. the bound variable z does not occur in the NF of M’ in a subterm
which is the fourth argument of the impElim constructor.

The encodings of the introduction/elimination rules for the intu-
itionistic implication are as usual:

impIntro: ΠA,B:o. ΠM:(True A) -> (True B).(True (imp A B))
impElim : ΠA,B:o. (True(imp A B)) -> (True A) -> (True B)

Notice that in the encodings of rules (→→ E) and ((E) we have
not enforced any conditions on the free variables occurring in
terms, Indeed, the obvious requirements surface in the adequacy
theorem which will be discussed in Section 4.

Ordered conjunction can be encoded with the same philosophy,
but for the remark that in this case it is the elimination rule that acts
at abstraction-time and hence needs a lock mechanism to filter out
bad pattern matching constructions in the let operator. On the other
hand the introduction rule can be encoded straightforwardly:

ordConjIntro: ΠA,B:o.
(True A) -> (True B) -> (True (ord_conj A B))

ordConjElim:
ΠA,B,C:o.
ΠM :(True (ord_conj A B)).
ΠN :(True A) -> (True B) -> (True C).
Πh :(True A).
Πh’:(True B).L PM

[M,N,h,h′][(True C)]

where the predicate PM (Pattern Matching) checks that:

1. all free variables in M and N occur in a subterm whose type is
either o or (True A) for some A:o;

2. M≡(ordConjIntro A B h h’);

3. N≡ λz:(True A).λz’:(True B).N’;

4. z and z’ occur once and in that order in the NF of N’, and
do not occur within fourth arguments of the impElim and
impLinearElim constructors.

As far as we know, this is the first example of an encoding of
non-commutative linear logic in an LF-like framework. External
predicates could be simplified if we utilize LFP in canonical form.

4. The adequacy of the adequacy
Is the classical notion of adequacy adequate? According to the
seminal work [17], the notion of adequacy formally amounts to
a compositional bijection between some tokens of the object sys-
tem, usually including the language of theorems, and the notion of
proof, and the canonical forms of some suitable types of the Logi-
cal Framework. The very notion of canonical form has triggered a
whole new and insightful style of presentation of Logical Frame-
works [18, 28].

However, there are cases where the formulation of the compo-
sitionality requirement is problematic, see e.g. [13, 20], because
of the ambiguous use of the metalanguage free variables, i.e. as ob-
ject level free variables, as well as schematic metavariables, and as-
sumption witnesses. We think that a very simple amendment to the
standard definition can overcome some controversies which arise in
the exact formulation of the adequacy statement as far as assump-
tions. Our proposal is that not merely canonical forms should be
the target of the encoding but canonical forms which express mor-
phisms, in the style of categorical semantics, i.e. the functional clo-
sures of the canonical forms in some appropriate sense. Thus, ob-
ject level hypothetical judgements would have an explicit formula-
tion in the adequacy theorem as metalanguage morphisms, and the
use of the term “compositionality”, which pertains to morphisms,
would be substantiated.

The adequacy for the encoding of NCLL in LFP in Section 3.1
provides a case-in-point. By the definition stipulated above, we can
enforce on all assumptions the required constraints.

THEOREM 3 (Adequacy for NCLL in LFP). Let X = {P1, . . . ,
Pn} be a set of atomic formulæ occurring in formulæ A1, . . . ,
Ak, A. Then, there exists a bijection between derivations of the
judgment (A1, . . . , Ai−1); (Ai, . . . , Aj−1); (Aj , . . . , Ak) ` A in
non-commutative linear logic, and proof terms h in η-long normal
form such that we can derive the judgment in Figure 2, where the
variables hi, . . . , hj−1 occur in h only once, hj, . . . , hk occur in
h only once and, precisely, in this order, and ΓX is the context
P1:o,...,Pn:o representing the object-language propositional
formulæ P1, . . . , Pn. �

The above statement of adequacy can look complicated and the
typing judgment in Figure 2 might look scaring. However, if we
allow to introduce in the metalanguage suitable linear and ordered
λ- and Π-binders, we obtain the following rephrasing which should
clarify the meaning of functional closures of the canonical forms:

4 2015/4/28

ΓX ` λh1:(True εX (A1)).λhi−1:(True εX (Ai−1)).
(impLinearIntro εX (Ai) (. . .) λhi:(True εX (Ai)). . . .
. . . (impLinearIntro εX (Aj−1) (. . .) λhj−1:(True εX (Aj−1)).
(impRightIntro εX (Aj) (. . .) λhj:(True εX (Aj)). . . .
. . . (impRightIntro εX (Ak) εX (A) λhk:(True εX (Ak)).h) . . .)) . . .) :
Πh1:(True εX (A1)).Πhi−1:(True εX (Ai−1)).
(True (impLinear εX (Ai) . . . (impLinear εX (Aj−1)
(impRight εX (Aj) . . . (impRight εX (Ak) εX (A)) . . .)) . . .))

Figure 2. The adequacy judgment

ΓX ` λh1:(True εX (A1)).λhi−1:(True εX (Ai−1)).

λ̂hi:(True εX (Ai)).λ̂hj−1:(True εX (Aj−1)).
λ>hj:(True εX (Aj)).λ

>hk:(True εX (Ak)).h) :
Πh1:(True εX (A1)).Πhi−1:(True εX (Ai−1)).

Π̂hi:(True εX (Ai)).Π̂hj−1:(True εX (Aj−1)).
Π>hj:(True εX (Aj)).Π

>hk:(True εX (Ak)).(True εX (A))

The moral of these encodings is that, in accordance to the purest
LF philosophy, we need to check even unorthodox side-conditions
only when we abstract variables from the context, i.e. when we
eliminate assumptions, be it the case of introduction rules, as for
non-commutative implication, or in elimination rules as for the
ordered conjunction. The fact that this abstraction-time protocol
is enough, supports the general tenet underpinning LF - that side-
conditions are ultimately local properties of proofs.

4.1 The depth of shallowness
In the quest for the most suitable adequate encoding, where suitable
may stand for effective, elegant, efficient etc., we are usually faced
with a large number of options. These have been often classified,
generically and arbitrarily, as deep and shallow encodings. The
terminology goes back to [7], where a deep encoding was defined
as “representing syntax as a type within a mechanized logic”.

Today, we express the difference between various representa-
tions of the same object language according to the amount of ma-
chinery delegated to the metalanguage, i.e., how close (how shal-
low), or how far (how deep) the encoding is w.r.t. the logical frame-
work taken into consideration. A “shallow encoding” aims at del-
egating to the logical framework as much as possible the notions
and mechanisms (e.g., α-conversion, capture-avoiding substitution,
logical consequence relations etc.) of the object language. This ap-
proach is valuable from the practical point of view because it yields
more concise and transparent encodings which do not impose on
the user extra burdens, at the risk of losing the advantages of the ob-
ject systems. Furthermore, and somewhat paradoxically, a shallow
encoding often offers a deeper insight on the object system itself,
because it poses standardization questions. The use of HOAS is a
case-in-point of a shallow encoding of a language with binders.

However, when proving metatheoretic properties of the object
language, shallow encodings capitalizing on HOAS are pushed to
their limits and one needs to introduce appropriate axioms for reify-
ing the properties of the metalanguage itself, see e.g. the case of
the π-calculus [22, 27]. See also [15], on how to prove properties
involving free variables when using HOAS. Therefore, deeper en-
codings of α-conversion are used in most metatheoretic treatments
[16].

We suggest that LFP can be useful in addressing the issue of
deep and shallow encodings of a given object system. Considering
shallow the encodings carried out in LFP and deep the correspond-
ing representations in traditional LF we can try to express results of
the form:

PARADIGM 1. Given an LFP signature Σ, where P1, . . . ,Pn is
the list of the external predicates occurring in it, if the latter are

LF-encoded by LF (Pi) respectively, calling Σ′ the LF-signature
and Γ′ the typing context obtained by

• adding to Σ LF (P1), . . . , LF (Pn);
• substituting occurrences of LPN,σ[τ] by (LF (P) N σ)→ τ ;

then we have that for each LFP -derivation Γ `Σ M : σ where
there are no locks neither in M nor in σ, there is a corresponding
LF-derivation Γ′ `Σ′ M ′ : σ′.

This correspondence relies on the possibility of representing3 in
LF the external predicates used in LFP . Notice that also M and
σ, above, may undergo some changes in the “translation” carried
out in LF. This is why we speak of the existence of a “correspond-
ing” LF-derivation and use M ′ and σ′ as the new subject and ob-
ject, respectively, of the LF-typing judgment. The reason is that to
“implement” in LF the lock-predicates in LFP , which check con-
straints on variables and terms, we might need a deeper representa-
tion of the logic. Often we need to view the logic as a generalized
type-assignment system and hence use as basic judgement “typing”
rather than “truth”, and introduce in the signature as explicit syn-
tactic categories e.g. object logic proof-terms and variables. In LFP
these are delegated to the metalanguage, or “swept under the rug”
and dispatched to external oracles.

As an example of paradigm correspondence, consider the fol-
lowing two representations of the intuitionistic and linear frag-
ments of NCLL. The “shallow” one is the encoding in Section 3.1.
The “deep” one is obtained by viewing NCLL as a type assign-
ment system and by implementing the external predicates over the
reification at object level of the proof terms which were left to
the metalanguage in LFP . This encoding is essentially the one
of [13] for linear logic. Notice, for instance, that the judgment
linear:(term->term)->Type is morally the reification of our
external predicate Linear used in the previous section. We conjec-
ture that the same can be done also for the ordered fragment.

But this is not the end of the story. Even the LF encodings
above may be considered shallow w.r.t. one based on e.g., de Bruijn
indices, first-order syntax, etc. Much more work needs to be done in
order to make correspondences between different encodings more
precise, which really means more compositional.

5. Comparing LFP with other systems
LFP is sufficiently inconspicuous to allow for neat highlighting of
the peculiarities of other Logical Frameworks, underpinning alter-
nate formal proof cultures, which have emerged in recent years.

5.1 LFP vis-à-vis λΠ-calculus modulo
The expressive power of λΠ-calculus modulo [12] is unlimited,
given strong enough rewrite rules, in that it can radically change
types in a derivation. For this reason, decidability and subject re-
duction cannot be proven in general for λΠ-calculus modulo. For
instance, putting σ ≡ σ → σ one can type all terms of λ-calculus.
In this sense, it is very close to an intersection types discipline. Ac-
tually, if the modulo relation is not taken to be symmetric, it can
offer a very intriguing version à la Church of λ∩ [4] , which is usu-
ally presented only à la Curry. In [12], an encoding of the classical
PTSs of the λ-cube, and in particular of the Calculus of Construc-
tions, is given, which can be extended to all GTS’s [2].

LFP , on the other hand, can only freeze types, possibly releasing
them syntactically unchanged, under suitable circumstances.

In order to encode LFP in λΠ-calculus modulo we can reify the
semantics of the lock-operator at the level of types by introducing
in the signature a type Pred and suitable constants of that type to

3 This brings about yet another kind of adequacy that is formally irreducible
in the sense of the Münchausen’s Trilemma.

5 2015/4/28

represent the external predicate, and a type constructor

lockT : ΠP :Pred.Πσ:Type.ΠN :σ.Πτ :Type.Type

subject to the rewriting rule:

(lockT P σ N τ) −→Γ,Type τ

To represent the locking and unlocking of terms we need a deeper
encoding since the conversion rules of λΠ-calculus modulo only
appear at the level of types and kinds. In order to represent the λΠ-
calculus modulo in LFP , we need a deep, albeit straightforward
encoding:

raw_term : Type
type,kind : raw_term
pi,lam : raw_term -> (raw_term -> raw_term) -> raw_term
app : raw_term -> raw_term -> raw_term
typing : raw_term -> raw_term -> Type

All typing rules of λΠ-calculus modulo can then be represented as
suitable axioms involving the typing judgment. The conversion
rule (Conversion A ≡βR B) of [12] is rendered as:

conv: ΠA,B,t:raw_term.
(typing A type) -> (typing B type) -> (typing t A) ->

L≡βR
〈A,B〉 [(typing t B)]

where the external predicate ≡βR checks if A and B represent the
encodings of two types A and B such that A ≡βR B holds, ac-
cording to the rewriting rules. The modularity of LFP reflects ex-
actly the modularity of λΠ-calculus modulo; our external predicate
mechanism allows to plug-in the formal counterpart of the rewrit-
ing rules which, in turn, have been specified and plugged-in in the
general framework of λΠ-calculus modulo.

5.2 LFP vis-à-vis Conditional LF
LFP is a direct descendant of the Conditional LF [21]. In the lat-
ter, the mechanism of freezing a type was achieved by not allow-
ing immediate substitution in the application rule. The idea of uti-
lizing external predicates to activate substitutions is already there,
but the freezing mechanism does not have corresponding term con-
structors. Thus, the proof terms of Conditional LF do not record
all the history of the derivation, while LFP does indeed record the
recourse to the external oracle in the proof terms. Apart from this,
the two systems are essentially inter-encodable in a shallow way.

5.3 LFP vis-à-vis Pattern LF

The Pattern LF [19] is related both to GLF [19] as well as the rewrit-
ing calculi of the ρ-cube [6, 10]. It supports pattern-matching ap-
plication. Thus, it allows both for some freezing of types, as LFP ,
and to shortcut the proofs of correctness of computations, in line
with Poincaré’s Principle [3] and rewrite-based Logical Frame-
works [12]. As usual, a deep encoding in LFP of the Pattern LF
can be given by viewing it as a typing system. A shallow encoding
is problematic, given the lack of a pattern-matching mechanism in
LFP . It would be intriguing to pursue a comparison between the
pattern matching mechanisms of typed rewriting calculi [12], such
as the Pattern LF and the Concurrent LF [28].

5.4 LFP vis-à-vis Linear LF and Concurrent LF
More work needs to be carried out in order to assess encodings
of LLF [9] and CLF [28] in LFP . These will be satisfactory to
the amount by which we will understand whether what needs to
be checked, be it linearity, order, can be effectively achieved at
abstraction time, namely - is it ultimately a local property?

References
[1] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed

lambda calculus to implement formal systems on a machine. Journal of
Automated Reasoning, 9:309–354, 1992.

[2] H. Barendregt. Lambda Calculi with Types. In Handbook of Logic in
Computer Science, vol. II, pp 118–310. Oxford UP, 1992.

[3] H.P. Barendregt and E. Barendsen. Autarkic computations in formal
proofs. Journal of Automated Reasoning, 28:321–336, 2002.

[4] H. Barendregt, W. Dekkers, R. Statman. Perspectives in Logic: Lambda
Calculus with Types. Cambridge UP, ISBN-13: 9780521766142, 2013

[5] B. Barras. Coq en Coq. RR-3026, INRIA, 1996, Projet COQ.
[6] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Pattern Type

Systems. In POPL’03, pp 250–261. The ACM Press, 2003.
[7] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van

Tassel. Experience with embedding hardware description languages in
HOL. See Stavridou, Melham, and Boute (1992), pp 129–156.

[8] L. Carroll. What the Tortoise Said to Achilles. Mind, 4:278–280, 1895.
[9] I. Cervesato, and F. Pfenning. A linear logical framework. Logic in

Computer Science, 1996. In Proc. of LICS’96.
[10] H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. In

FOSSACS’01, vol. 2030 of LNCS, pp 166–180, 2001.
[11] T. Coquand, and G. Huet. The calculus of constructions. (1986).
[12] D. Cousineau and G. Dowek. Embedding pure type systems in the

lambda-pi-calculus modulo. In Proc. of TLCA, vol. 4583 of LNCS, pp
102–117. Springer Berlin Heidelberg, 2007.

[13] K. Crary. Higher-order representation of substructural logics. In ICFP
’10, pp 131–142. ACM, 2010.

[14] N. de Bruijn. Automath, a language for mathematics. In Automation
and Reasoning, vol. 2, Classical papers on computational logic 1967-
1970, pp 159–200. Springer Verlag, 1968.

[15] J. Despeyroux, A. Felty, and A. Hirschowitz Higher-order abstract
syntax in Coq, In TLCA’95, vol. 902 of LNCS, 1995

[16] A.D. Gordon, and T. Melham. Five Axioms of Alpha-Conversion.
Theorem proving in higher order logics. Springer Berlin Heidelberg,
1996. 173-190.

[17] R. Harper, F. Honsell, and G. Plotkin. A framework for defining
logics. Journal of the ACM, 40:143–184, January 1993.

[18] R. Harper and D. Licata. Mechanizing metatheory in a logical
framework. J. Funct. Program., 17:613–673, 2007.

[19] F. Honsell, M. Lenisa, and L. Liquori. A Framework for Defining
Logical Frameworks. Vol. in Honor of G. Plotkin, ENTCS, 172:399–
436, 2007.

[20] F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, and I. Scagnetto.
LFP – a logical framework with external predicates. In Proc. of LFMTP
2012. ACM Digital Library.

[21] F. Honsell, M. Lenisa, L. Liquori, and I. Scagnetto. A conditional
logical framework. In LPAR’08, vol. 5330 of LNCS, pp 143–157, 2008.

[22] A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, and I. Scagnetto.
Consistency of the theory of contexts. Journal of Functional Program-
ming, Vol. 16, Issue 03, May 2006, pp 327-395.

[23] F. Pfenning, and C. Schuermann. Twelf user’s guide, version 1.2.
Tech. Rep. CMU-CS-98-173, Carnegie Mellon University, 1998.

[24] B. Pientka and J. Dunfield. Beluga: A framework for programming
and reasoning with deductive systems (system description). In
Automated Reasoning, vol. 6173 of LNCS, pp 15–21, 2010.

[25] H. Poincaré. La Science et l’Hypothèse. Flammarion, Paris, 1902.
[26] J. Polakow, F. Pfenning. Natural deduction for intuitionistic non-

commutative linear logic. TLCA’99, 1581, LNCS, pp 644–644, 1999.
[27] C. Röckl, D. Hirschkoff, and S. Berghofer. HOAS with induction in

Isabelle/HOL: Formalizing the π-calculus and mechanizing the theory
of contexts. In FoSSaCS, p.364-378, vol. 2030 of LNCS 2001.

[28] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent
Logical Framework I: Judgments and Properties. Tech. Rep. CMU-CS-
02-101, 2002.

6 2015/4/28

