
Consolidated Review of
Appraising the Delay Accuracy in Browser-based Network

Measurement

1. Strengths:
I found this paper to be very interesting. This paper sheds light on
the inaccuracy of round-trip time measurement of ten HTTP-
based and TCP socket-based tools. The paper does a systematic
and extensive study of a large set of methods, browsers, and
operating systems and explores several different combinations to
characterize the overall delay. It finds that several existing
methods can give varying delay measurements depending on the
OS+browser combination. I especially found it interesting that
two back-to-back measurements can be negatively correlated. It
does make sense because of the complexity of browser
implementation/DATE implementation etc.

2. Weaknesses
This paper does not include experiments on Mac systems and
mobile Internet devices. Many methods have recently been
developed to use browsers on mobile devices to measure round-
trip time.
Not sure how novel this finding is, because there seems to be
related work on this topic, but it is definitely comprehensive.
Qualitative results are already known in previous work (e.g.,
[9,11]).

It does not address the problem of precision in the results and
provides limited discussion of what it means to be "accurate".
Some measurements and conclusions appear dubious. In addition
to visual graphs, are there statistical test to indicate WebSocket is
superior across all methods?
The writing can be significantly improved

3. Comments
This paper performs a thorough study on the accuracy of round-
trip delay measurements by a variety of browser-based network
measurement tools. I especially like that the paper
comprehensively presents taxonomy of existing systems and
compares the results across many different systems and browsers.
As many end-uses rely on such tools to estimate network
performance of broadband or wireless connections, it is important
to gain an in-depth understanding of the accuracy of such
measurements. This paper could consider including another
major operating system: Mac OS in the experiments. In addition,
this paper could expand the study with mobile Internet devices
such as smart phones and tablets, for which several browser-based
measurement tools are available today to measure round-trip time.

I am not sure what you mean by delay overhead? How do you
measure this? Is it simply the additional overhead on top of the
50ms RTT (assuming the two servers are close enough that they
should barely add any additional RTT)? It isn't clear from the
presentation. You claim that the Java Applet will underestimate
the RTT. How? If anything RTT can be inflated due to overheads.
As a ground truth, it would have been useful to compare this with
a non-browser socket based rtt measurement (or a ping). It will
also be useful to understand how these delays add up. If I send
multiple packets to measure throughput, are these delays going to

add up. If so, by how much? (Again use a non-browser based
measurement for ground truth.) Have you considered the
interaction between the computational unit and the load unit in the
overhead? Is there a computational overhead because of the
execution of Javascript, for example, or thread scheduling?

The authors need to deal with precision and accuracy
systematically. The paper does not discuss the ranges seen in the
box and whisker plots and the possible system conditions that lead
to them. The correlation discussion concludes that compile time
optimizations may lead to reordering of the measurements in their
data. Hence while the result indicates how such measurement
methodologies need to be carefully designed otherwise they could
provide misleading results. It does not provide any additional
insight into true and accurate delay experienced by browsers.
The paper does not include any OS or process scheduling
information (/proc on Linux), which would provide a more
holistic picture about the total delay experienced by the browsers
and the interaction between the various processes and threads. Do
the network measurements from pcap have low variance across
experiments?

I have concerns about the validity of some of the results. First, Fig
2(h-j) show that many of the windows browser results have
negative overheads. This doesn't make sense unless the
timestamps within the browser are not accurate (as the browser's
timestamps should occur strictly before and strictly after the
timestamps recorded by the network stack in the pcap trace). I
suspect that in those scenarios the granularity of the Java applet
timestamps may be 10ms rather than 1ms. Second, the authors
conjecture that the reason behind the negative correlation between
the two measurements is due to potential instruction reordering in
the java measurements. However, I find this unlikely as the
timestamp and send/receive operations both invoke system calls
and it is unlikely that the JVM would reorder system calls since
they can have side effects. Isn't it more likely that this is due to a
time resolution issue? I would check your timestamp resolution in
the java measurements. After discussion with other reviewers, I
feel that these explanatory problems can be fixed with (at least)
more discussion of the hypothesis or (in the best case) additional
validation experiments. I would very much appreciate it if the
authors could verify that the negative results they observed are not
solely due to timestamp granularity (or if so, discuss the
implications of that and whether it was just an artifact of their
experimental setup). Note that there has also been some passive
measurement work comparing socket and HTTP based RTT
measurement methods that have found similar variability in HTTP
methods even when no RTT variability exists: Can you GET me
now?: estimating the time-to-first-byte of HTTP transactions with
passive measurements. IMC 2012.

The graphs are extremely hard to read. The y-axis ranges in
Figure 2 vary significantly and hence do not allow the reader to
visually compare two graph results directly. Figure 2 presents a
number of box plots to show the delay overheads incurred by

different browsers/OSes for each method. It is also interesting if
the paper shows the results by browser types (draw one plot for
every browser) and compares the delay overheads of different
methods on the same type of browsers. Also, Figure 3, the CDF
plots overlay. The plots in Figure 4 are hard to read. The authors
could possibly reduce the number of results plotted on the same
graphs to make the plots clearer.

4. Summary from PC Discussion
We like the fact that the study was comprehensive and was a well-
done comparison of techniques. The paper could be improved two
ways: First, the authors should clarify what is meant to be
"accurate." Second, they should look into or discuss alternative
explanations for their counter-intuitive findings (see the reviews).

5. Authors’ Response
In our camera-ready version, we clarify the meaning of
"accuracy" and "delay overhead." We follow the ISO 5725
standard and define the accuracy of a network measurement as
how the measurement results deviate from the real network
performance. There are two meanings for accuracy: trueness and
precision. The former refers to how close the measurement result
is compared with the actual value. The latter is related to the
repeatability of the measurement, that is, whether the
measurement can get a consistent result when being repeated. A
network measurement is considered more accurate if its produced
results are closer to the actual values (trueness) and are more
consistent (precision or repeatability). Generally, network
measurement accuracy depends on a number of factors, including
the correctness of adopted methodology, time resolution, system
load, and so on.

We also clarify the definition of "delay overhead" in the
Introduction section. It is the difference between the measured
value and the actual value. For browser-based measurement, the
effect of the overhead on the client depends on how the rendering
engine (e.g., JavaScript engine) interprets the measurement code
and invokes system function calls. In our experiments, we use
equation (1) to estimate the delay overhead Δd:

∆𝑑 = 𝑡!! − 𝑡!! − (𝑡!! − 𝑡!!),
where 𝑡!! and 𝑡!! are the timestamps recorded by browser, and 𝑡!!
and 𝑡!! by tcpdump/Windump. During the measurement, we also
made sure that there were no cross traffic, packet loss, and
retransmissions. Although the web server could bias the RTT, the
subtraction of 𝑡!! − 𝑡!! and 𝑡!! − 𝑡!! in the same measurement
round can mitigate the bias, if any.
For the counter-intuitive findings of the Java applet cases, we
performed a new set of experiments to identify the root causes.

We first used appletviewer provided by Java Development Kit
(JDK) to load the applets directly, instead of running them within
the browsers. This setup can eliminate the influence of browsers
and their corresponding Java Plug-ins on the measurement results.
Similar under-estimation and discrete levels of values can still be
observed in this set of experiments. Hence, we can conclude that
the source for the counter-intuitive findings comes from the Java
applet, instead of the browser. We then tested the real granularity
of the timing function (Date.getTime()) with a piece of
simple loop code. The results show that the granularity is not a
constant value. It can be 1 ms or ~15 ms. Each possible value will
last for a period of time (several minutes) and then change to other
values. Both 32-bit JRE and 64-bit JRE exhibit the same behavior.
To further validate our findings, we analyzed the data of the delay
overhead experiments. The time resolution obtained from our
analysis concurs with the timestamp granularity obtained from the
test codes. As a last step, we replaced the timing function with
System.nanoTime(). The under-estimation and variation of
RTT disappeared after the replacement. Therefore, we conclude
that the bizarre delay overheads in Windows are caused only by
the timestamp granularity of the Date.getTime() function.
Our inspection of some implementations shows that many of Java
applet tools, for example, Netalyzr, NDT, AuditMyPc, and so on,
are still using the function Date.getTime() or
System.currentTimeMillis(). Switching to the more
precise function System.nanoTime() can greatly improve
their accuracy in Windows.

Another issue is what could have led to the variation in the
measurements, given that system conditions were tightly
controlled. Although we did not record the system load, we made
sure that all the necessary processes (e.g., explorer.exe in
Windows, init in Linux, and so on) were running in the
background. However, there were still some other programs, such
as packet capturing program and automation scripts, need to be
dynamically invoked during the measurement procedure.
Moreover, the browsers themselves need to consume resources to
render the measurement objects. As a result, the delay overheads
may still vary, depending on how sensitive the measurement
methods are to the system load.

Due to the page limit, we cannot expand our work further. But we
totally agree that expanding the work to include mobile devices is
very interesting and including Mac OS can make this paper more
comprehensive. We will study them in our future work.

