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Abstract

We present an application of reduction and higher-order functions
in a recent computer-aided composition project. Our objective is
the generation of control data for the Chant sound synthesizer us-
ing OpenMusic (OM), a domain-specific visual programming envi-
ronment based on Common Lisp. The system we present allows to
compose sounds by combining synthesis events in sequences. Af-
ter the definition of the compositional primitives determining these
events, we handle their sequencing, transitions and possible over-
lapping/fusion using a special fold operator. The artistic context of
this project is the production of the opera Re Orso, premiered in
2012 at the Opera Comique, Paris.

Categories and Subject Descriptors 1.5 [Computer Applica-
tions]: Arts and Humanities—Performing arts; D.1.1 [Software]:
Programming Techniques—Applicative (Functional) Program-
ming; D.1.7 [Software]: Programming Techniques—Visual Pro-
gramming

Keywords Computer-aided composition; Sound synthesis; Visual
programming; Functional programming.

1. Introduction

Functional programming has had a strong influence in the devel-
opment of music technology and compositional systems, from pi-
oneering domain-specific languages such as Common Music [29],
Arctic [10]] or Haskore [13]], to more recent projects such as Faust
[20] or Euterpea [14]. Most current music programming environ-
ments today have a significant, more or less explicit functional ori-
entation. Visual programming is also a common practice in con-
temporary music creation, be it for real-time signal processing with
Max [21] or PureData [22], or in “symbolic” compositional con-
texts with Patchwork [[18] and its descendants OpenMusic [4] and
PWGL [19].

OpenMusic (OM) is a functional visual programming language
based on Common Lisp, used by musicians to experiment, process
and generate musical data [[7]]. This language has been used by con-
temporary music composers in the last fifteen years [1] and is to-
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day one of the main representatives of a branch in computer mu-
sic systems called “computer-aided composition” [3|]. Computer-
aided composition is concerned with the formal development of
abstract and complex compositional models embedding programs,
data structures, notation and graphical representation in the con-
ception of generative or transformational processes. This approach
further emphasizes a high-level functional orientation in the spec-
ification and processing of harmonic material, of time structures,
and more recently for the control of sound processing and spatial-
ization [6]).

OM connects with varied external sound synthesis and process-
ing software, generally via command line or client-server commu-
nication, for which formatted control files or commands are to be
generated from high-level compositional specifications [3]. In this
paper we present a recent project carried out with the control of the
Chant synthesizer [25]], which puts forward the use and relevance
of functional programming concepts.

Chant has been embedded in different musical software along
its history [16, 126, 27] and recently reintegrated in compositional
frameworks with OM-Chant [8], a library for the OpenMusic envi-
ronment. As we will show further on, this synthesizer presents an
original (pseudo-) continuous control paradigm, which highlighted
the idea of synthesis sound phrases in the compositional processes.
Our objective in this project was to extend the characteristics of
this paradigm in order to achieve a level of musical expressivity
required by composers working with this synthesizer. In particu-
lar, we developed a mechanism for sequence reduction allowing
to consider the synthesis event’s transitions as key elements in the
construction of the sound. Our system is inspired by standard fold
mechanisms and abstracts the handling of transitions from the main
procedure generating the primitive events.

The motivation and main artistic context of this project was the
production of the Opera Re Orsoﬂby Marco Stroppa, who used the
OM-Chant framework intensively in this work, and participated in
its conception and development.

After a presentation of the synthesizer and its control in OM
(Section 2), we will present strategies for dealing with transitions
between synthesis events (Section 3), and how these strategies can
be extended to the generation of phrases as higher-order functions
using the sequence reduction mechanism (Section 4).

2. The Control of the Chant Synthesizer

Chant is a reference implementation of the FOF synthesis technique
(fonctions d’ondes formatiques, or formant-wave functions [28]).
This technique was originally designed to synthesize realistic
singing voices, but is also used to generate varied other kinds of

! Re-Orso, by Marco Stroppa (musical assistant: Carlo Laurenzi), world
premiered at the Opéra Comique, Paris on May, 19th, 2012 [23].



sounds. It consists in generating periodic impulses made of pre-
cisely enveloped sine waves, which produce the equivalent of vocal
“formants” in the sound spectrum. The parameters of the formant-
wave functions control the characteristics of the formants (cen-
tral frequency, amplitude, band and skirt width) and the frequency
of the FOF generator’s impulses determines the fundamental fre-
quency of the synthesized sound.

2.1 Control Paradigm

A synthesis “patch” in Chant is a configuration of several sound
generation or processing units or “modules” (e.g. FOF generators,
filters, noise generator, file reader) defined prior to every run of the
synthesizer. The parameters controlling these units are all consid-
ered as functions f : Time — R from time to single values (ZTime
represents an interval on R™ defining the overall duration of the
synthesis process). We call the “state” of the synthesizer at time ¢
the set of parameter values f,(t) where f, is the function associ-
ated to parameter p.

This state of the synthesizer is not set for every point in time:
Chant performs an “off-line” rendering and systematically inter-
polates between successive user-specified values of f,, in order to
compute f(¢) for for each parameter p and for all ¢ € Time. A no-
table attribute of this synthesizer is therefore to enable the design of
sound synthesis processes involving smooth continuous variations
of its states and parameters.

From the composer point of view, this is a quite specific situ-
ation as compared to usual synthesis systems. As Risset pointed
out [24]], it corresponds to Laliberté’s “archetype of voice” [17]]
(continuous control, as in bowed or wind instruments), where the
performer is required to continuously attend to the note being pro-
duced, as opposed to the “archetype of percussion”, where the note
is specified only when striking it. The former allows for a greater
expressivity and subtler phrasing, but it is monophonic, while the
latter is polyphonic, since the performer’s attention at playing a
note can be immediately focused on the following ones. This con-
ceptual distinction can also be found in the interface of sound syn-
thesis systems: most of them are polyphonic “event-based” systems
(e.g. Csound or MIDI-based synthesizers), where every event is
independent and unconnected — or artificially connected — to the
other ones. On the other hand, fewer systems such as Chant provide
no means to express polyphony, but a better control on the overall
phrase defined as a succession of connected events (this feature is
extremely important when trying to synthesize vocal sounds).

2.2 OM-Chant and Synthesis Events

In a previous paper [9] we presented a framework for the struc-
tured control of Chant synthesis processes in OM, extending the
OM-Chant library with the notion of synthesis eventsE] Different
types of synthesis events are defined corresponding to the differ-
ent modules and controls of a Chant synthesis patch: FOF banks,
fundamental frequency, filter banks and noise generators. An event
can be either a matrix of parameters (e.g. for the FOF banks: the
different parameters of a number of parallel FOF generators) or a
scalar controller (e.g. for a fundamental frequency controller) ex-
tended with temporal information (onset, duration). It embeds a set
of timed values determining the evolution of one or several param-
eters during the event interval.

This framework allows the user to control sound synthesis pro-
cesses combining “continuous” specification features with musical
constructs defined as sequences of timed events, and draws an in-
termediate path where continuous control can be associated with
the expressive specification of time structures.

2 This idea and the concrete data structures used for the representation of
events were inspired by earlier works on the OMChroma system [2].

2.3 From Events to Control Points

A sequence of events is specified by the user as an input musical
structure. This sequence is then processed by OM-Chant to write a
control file containing timed values determining the different func-
tions f,,E]Each fp is described by a time-ordered sequences of val-
ues (which we will call “control points” from here on), interpolated
by the synthesizer to compute f,(t) for all ¢ € Time.

We consider two principal cases: (1) events that specify a con-
stant value for the parameter(s) and (2) events that represent vari-
able or “continuous” controllers. In case 1 (constant value) OM-
Chant duplicates the parameter value and generates control points
at the temporal bounds of the interval (see Figure[Ta). The param-
eter is therefore stable inside the event. In case 2 (continuous con-
troller) the values can change at any time (and at any rate or preci-
sion) between the beginning and the end of the event (Figure 2a).
The variations can come from specified modulations of an initial
value (e.g. a vibrato or jitter effect as available in the OM-Chant
library), or from other programmed or manually designed control.

Under-specification in the input sequence (intra- or inter-event)
is supported thanks to the synthesizer’s interpolations (see Fig-
ures and E] Over-specifications however (when several events
overlap or are superimposed — see Figures [Ib] and 2b) are not han-
dled by the system and are the main focus of the present work.

2.4 Overlapping Events as Over-Specification

Over-specifications in the control of the synthesizer (when several
events of a same kind overlap) could simply be detected as a mis-
take or contradiction in the parameters specification, and forbidden
or corrected by the system. Technically this task amounts to de-

3 Chant is then invoked by a command line call referring to this control file.

4 Fade-in/fade-out options allow to generate silence between successive
events: the activation of these attributes sets the amplitudes of the generators
or filters to zero at a determined interval, respectively before and after the
stated beginning/end times of the event — see [9].

eventl event2
L [ | L [
I 1 I 1
@ cvereinnnnaan (o :
O
S O cvrirniinaanns Py
. Interpolated
parameter values t
¥
(a)
eventl
L [
| | |
event2
L [ |
: T L
e Pe :
@ Control values o) 9---
" Interpolated
parameter values t
=
(b)

Figure 1: Events with constant values: control points and sam-
pled/interpolated synthesis parameter (a) without overlapping and
(b) with an overlapping interval.
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Figure 2: Events with continuous values: control points and sam-
ples synthesis parameter (a) without overlapping and (b) with an
overlapping interval.

termining rules to unambiguously define one or several function(s)
from a time interval to the type of control values required by a num-
ber of parameters, starting from a configuration of input synthesis
events.

In earlier work [9], a solution was proposed to handle the spe-
cific case of Figure [Tb] by interchanging the time of the control
points at the end of event 1 and at the beginning of event 2. Then,
the parameter values remain constant on the non-overlapping inter-
vals, and an interpolation is performed by the synthesizer during
the overlapping interval (an implementation for this mechanism is
proposed in Section[3.2). In the case of continuous controllers (Fig-
ure 2b), overlapping time intervals are more problematic. The in-
terpreter process (and the synthesizer) by default merge the two se-
quences of control points, and the resulting description of f, loses
continuity, or even becomes inconsistent if more than one value
are specified for f,(¢). To cope with this situation it is also pos-
sible for instance to play with the event’s time properties, to cut
or rescale the control-point sequences in order to make them fit
within the non-overlapping intervals, or to establish priorities be-
tween superimposed events. However, these solutions may have a
serious musical consequences, due to time distortions, poor transi-
tions computed by linear interpolations or abrupt discontinuities in
the parameters specification functions.

Numerous strategies can actually be envisaged to musically and
efficiently handle these situations, and each synthesis parameter
may require particular strategy and processing (we have shown in
[L1], for instance, how specific voice transitions — consonants —
could be simulated by carefully shaping the frequency and ampli-
tude evolutions of specific formants in the synthesis process). We
will discuss in Section 3 a number of such strategies.

2.5 Overlapping Events as Implicit Polyphony

Overlapping or superimposition are common and intuitive poly-
phonic constructs that are very important in musical structures.
From a compositional point of view, our issue is therefore not nec-

essarily a problem. On the contrary, it is an exciting opportunity to
explicitly control the intermediate states between successive events
structuring a continuous control stream, and to grasp the notions of
sequencing and transitions in the compositional processes.

It is important to realise how overlapping and polyphony are
connected in music, and why this requires that a general solution
be envisaged. Let us illustrate this with the case of the portamento
as a particular example. In a normal legato singing voice, even if
the notes written in score appear as separated events, the singer
connects them by performing a short portamento between them (a
portamento is a fast glissando, often with a half-sinusoidal shape).
Albeit not notated in the score, the portamento is an essential fea-
ture of expressive singing. Practically, this means that the steady
part of a note (which can be modulated with a vibrato or other kinds
of effects) is shortened to leave place for the portamento without af-
fecting the overall duration of the phrase. During this short phase
(in the order of a few hundred milliseconds), no vibrato or mod-
ulations are performed on the note. A much longer portamento is
called glissando and is usually notated in the score with a trait link-
ing the two notes. In this case, the singer leaves the steady state
earlier and ends the glissando at the beginning of the next note.
It is however critical to grasp, that the difference between a por-
tamento and a glissando is only a difference of time (where the
process starts) and, perhaps, of shape. By no means it is a structural
difference, even though the musical perception is dissimilar. Where
the portamento exactly starts (before or at the end of the previous
note) and ends (at or after the beginning of the following note) is
a question of musical interpretation, which lies outside the purpose
of this paper. Our goal here is to design a system that would allow
for all kinds of portamenti and glissandi (to follow up with this
particular example) to be implemented.

This point was an important part of the Re Orso project: the
composer wanted to create and precisely control hybrid musical
structures, made of a portamento lasting the whole duration of a
musical event event (sometimes several minutes long) and includ-
ing all sorts of modulations. One way to represent the exact place
where this state ought to be computed, is to “visually” organise
events during this phrasef] and focus on the transitory states to per-
form important modulations (see Section 5).

3. Programming Transition Processes in OM

In the OM-Chant library tutorial, a recurring example (reproduced
in Figure 3) presents a sequence of Chant events generated from a
score. In this example the duration of the notes in the score at the
top of the figure produce overlapping intervals.

For the sake of simplicity, we will consider here the events of
type ch-f0 in this sequence (the controller responsible for the fun-
damental frequency of the FOF synthesis process). A vibrato effect
is applied to each ch-f0 event in order to produce a more “realistic”
voice sound. The resulting specification for ffna.feq(t) merges con-
tradictory values on the overlapping intervals. This is not a good
musical interpretation of events overlapping, even though in this
example the undesired behaviour can be masked by adequate con-
trol of the FOF generators.

In this section we will discuss a number of ad-hoc possibilities
for controlling the transitions between two ch-f0 events using the
visual programming tools available in OM, with this example in
mind. Section 4 will then propose a generalization of these possi-
bilities and an application to longer event sequences.

5 This approach was already present in the design of the Diphone interface
to Chant [26], but transitions were limited to a linear interpolation between
steady states.
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Figure 3: Control of a Chant sound synthesis process from a se-
quence of events in OM-Chant. The sequence of events is derived
from the score at the top of the figure. The curve corresponding
to the mereged fundamental frequency controller is visible at the
bottom-left, and the editor window open at the center of the figure
displays a detail on this curve.

3.1 Visual Programming in OM: A Quick Introduction

An OM visual program is a directed acyclic graph made of boxes
and connections. Boxes represent function calls: they use upstream
connected values as arguments (inputs are always situated at the top
of a box) and yield computed values to their output connections
(outlets are at the bottom of the boxes). Arcs (or connections)
connect these boxes together and define the functional composition
of a visual program. The visual programs are evaluated on-demand
at specific downstream nodes of the graph, triggering a chain of
calls to upstream-connected boxes, and recursively set new values
to the evaluated boxes.

Some special boxes are class instance generators implementing
local state features and allowing to store, visualize and edit musical
objects and data. In Figure@for instance, we can see a score object
box at the top (input of the program), and two other objects at the
bottom (results): a BPF (for “break-point function”) containing the
sequence of fundamental frequency control points as computed by
OM-Chant, and a sound file (produced by the synthesis process).
The editor window corresponding to the BPF box is visible at the
middle of the figure.

The other boxes in the figure, e.g. flat (flattening of a parame-
ter list), ms—sec (time conversion from milliseconds to seconds),
synthesize (external call to the Chant synthesizer), sdif—bpf (con-
version of formatted synthesis parameters to the BPF object), are
simple functions used to process and transform data in the program.

3.2 Transition (a): Modification of the Time Intervals

A first possible solution to deal with overlapping events consists
in modifying the temporal intervals of the synthesis events. With
simple arithmetic operations and a little bit of logic, the onset
and duration of the events can be changed to fit within the non-
overlapping intervals (see Figure[d).
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Figure 4: Modification of the temporal attributes of the Chant
events. (a) Implementation in OM. (b) Representation of the time
intervals.

In the case of continuous values, the contents of the events
might need to be modified to fit within the new durations. Different
tools can be used for this purpose, such as bpf-scale (rescales a
curve to a specific duration) or bpf-extract (cuts a selected part
of a curve). In some cases these tools can be sufficient to design
the transition. In the previous example however (Figure [3), the
vibrato modulation applied to the fundamental frequencies would
be shrunk (and therefore accelerated) or abruptly cut to fit in the
new intervals, which is not an acceptable solutionﬂ

The main problem in this solution is actually that the synthe-
sis parameters remain explicitly controlled only during the non-
overlapping intervals. An alternative solution could be to modify
the duration of only one of the events, and to transform the values
in the other one so as to implement a particular transition process.
Other options are proposed below.

3.3 Transition (b): Instantiation of the Transition

In order to precisely control the behaviour of the synthesizer during
the transition, it is possible, as a complement to the time intervals
modification, to instantiate a third intermediate event localized
in this transition interval and implementing the evolution of the
different parameters. In our fundamental frequency example, this
event could implement a vibrato controller taking into account the
values of the two surrounding events (see Figure

6 The application of time modifications to a vibrato is a well-known issue
in computer music [12]]. A better solution to this particular case is to apply
the vibrato modulation at a later stage of the process, when issues of time
intervals are solved. This implies taking this constraint into account at the
time of creating the events and passing the vibrato parameters downstream.

7 Note that this solution still remains problematic in this specific example
for it separates the transition from the steady states and can generate phase
discontinuities at the limit of the corresponding intervals. Here also, when
the initial pitch values are constant, delaying the application of the vibrato
to a later stage in the process sensibly improves the results.
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Tools have been developed to help for an easier generation of
intermediate events, including in the case of more complex, matrix-
based synthesis events. The function gen-inter-event :

Event x Event X (R X R — Time — R)* — Event generates
a new event with adequate time properties from a pair of events of
a same type and an optional set of rules. By default, the generated
event parameters are linear interpolations from the end value(s) of
the first event to the start value(s) of the second one. Additional
rules can then be added for the setting of targeted parameters using
static or functional specifications (see Figure[G).
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Figure 6: Using gen-inter-event to compute an intermediate event
between two FOF events. Three rules are applied. (From right
to left:) the amplitude of the fifth formant (:amp 4) during the
transition is set to 0.1.; the transition for the frequency of the third
formant (:freq 2) follows a specific hand-drawn curve; and the other
frequency transitions (:freq) are defined in the “freqs-rule” box.

This example is a first demonstration of higher-order functions
in OM: the box labelled “freqs-rule” in Figure [f]is an abstraction
(it contains another visual program). Moreover, it is in a special
“state” denoted by a small X\ icon, which turns it into a lambda
expression in the evaluation of the main visual programﬂ This
box can therefore be interchanged with any other function of two
arguments (begin, end) defining the evolution of a parameter value.

Experiments have been carried out using this mechanism for
the setting of FOF parameters in the case of voice sound synthesis
and the simulation of consonants [[11]]. Specific data structures were
added to the OM-Chant objects library to substitute the set of
rules with more compact/graphical transition “profiles” applying
to the different parameters. A given transition profile can then
match any pair of successive events of a same kind and produce
the corresponding intermediate event(s). The creation of databases
with these objects allowed to define transition dictionaries (virtual
“singers”) reusable in different contexts.

3.4 Transition (c): Merging the Events

Another type of structural modification which can be chosen to
handle overlapping events and transitions is to merge the successive
events, and replace them with a single one where continuity is
easier to control and maintain. The OM function bpf-crossfade is
of a particular help in this kind of process: as shown in Figure [7]
two localized and modulated events can produce a new one with a
fairly good continuity.
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Figure 7: Crossfading synthesis events. (a) Implementation in OM.
(b) Representation of the time intervals.

Another example is proposed in [11] with the idea of “FOF
morphing”. In this case, two or three overlapping or superimposed
events, plus a 2- or 3-D morphing profile were combined to produce
a single hybrid structure on the total time interval.

8 OM fully supports higher-order functions and provides easy ways to turn
functional components or programs into lambda expressions (or anonymous
functions) to be used in other visual programs. See [7].



4. Generalization using Higher-Order Functions

The previous examples were provided as an attempt to illustrate
some possible directions for the implementation of a transition pro-
cess as a function of two successive events. In fact, there exist
numerous ways of dealing with overlapping and superimposition
of events, depending on particular situations, technical or musi-
cal requirements, underlying data and synthesis patches. As one
can imagine, the implementation of transitions can quickly turn
into complex problems, and be subject to a number of obstacles,
such as:

Scalability: if the transition programming strategy has to be ap-
plied to “real” (longer) sequences;

Modularity: since the (visual) code responsible for the transition
is currently interleaved with the event generation process.

4.1 General principles

In order to address the previous issues we use a system based on
the concept of sequence reduction (or fold). A fold operates on a
recursive data structure (e.g. a list or a tree), and builds up a return
value by combining the results of the recursive application of a
function onto the elements of this structure [[I3]]. In our case, the
folding function is combined with a concatenation. We defined an
operator called ch-transitions :

Event” x (Event x Event — Event™) — Event”, which performs
a left-fold process applying on a list of Chant events and producing
a new list of events. In this process a transition-control function
Event x Event — Event™ is applied to the successive elements
of the sequence, each time pairing the last element of the current
result and the next element of the processed list of events, in order
to substitute or append a new event (or set of events) at the end
of the result. This function can be any of the previous transition
strategies turned into a lambda expression, which transforms two
events into a new sequence of events (of a variable length). Applied
in the reduction process, this new sequence will iteratively replace
the current head in the result sequence.

Figure [8] shows the stepwise process operated by ch-transition
using the three types of transition control described in Sections[3:2]
B3] and 3-4] In the first case (a) the two events processed by the
transition function are converted into two new events with modified
time intervals. In (b) three events are generated for each transition
and replace the last element in the result sequence (note that only
the last of these three is used for the next transition). In (c) the
transition produces a single event: in the result sequence, one single
event is recursively used and extended to integrate the successive
events of the original sequence.

A simplified Common Lisp implementation of this mechanism
is listed belowEI

(defun ch-transitions (init-seq transition-function)
; the head of the result is initialised with
; the first element in <init-seg>
(let ((result (car init-seq)))
(mapcar
; for each successive element the transition-function
; ts applied and merged with the head of the result
> (lambda (event)
(setq result (append
(butlast result)
(funcall transition-function
(last result)
event))))
(cdr init-seq))
))

9 For simplicity and readability in the code listing, the bits of code handling
the input and return types of the transition function and their combination
with the result sequence have been omitted.

Initial sequence

v :
Intermediate result - H
STEP 1 - ! :
v v '
STEP 2 L :

v \
t

(@)

Initial sequence E:

STEP 1 ' :

STEP 2 0
i Y ;
H v v v
t
(b)

Initial sequence

STEP 1 L : :

: v =
STEP 2 L :
v
t
©

Figure 8: Illustration of the ch-transitions left-fold processing with
a sequence of 4 events using several transition-control strategies.
(a) Modification of the time intervals. (b) Instantiation of the tran-
sition. (c) Merging the events.

4.2 Application in OM-Chant Synthesis Processes

In Figure[J]the example from Figure[3]is now extended and includes
the ch-transitions processing between the list of events generated
out of the initial chord sequence, and the Chant synthesis process.
The transition-control function (labelled crossfade-transitions) is
an abstraction box in the “lambda’” mode. Its contents is visible in
the window at the right of the figure.
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Figure 9: Extending the Chant synthesis patch from Figurewith the transition-control mechanism.

We can note that crossfade-transitions has only one argument
(or input): in order to make explicit some of their relations and
context to the user, a structure called transition-info replaces the
two actual input events. The transition-info is instantiated using a
standard box in the transition-function visual program. It provides
a direct reading access to the main data related to a transition
(internal values, temporal information of the events) and its external
context; in particular:

- The (full) initial sequence;

- The two events in the current transition;

- The position of the transition in the original sequence (this is
a useful information allowing to implement dynamic transition
controllers varying along the processing of the sequence);

- The temporal information: onset and end times of the events,
duration of the non-overlapping / overlapping intervals.

In this example (Figure [J) the transition-control consists of a
cross-fade between the ch-fO events: one “merged” event is pro-
duced for each pair of events in the fold mechanism, which corre-
sponds to case (c) in Figure[§]

An inspector window can be displayed at calling ch-transitions
and allows to visualize and debug the sequence processing (see

Figure[T0).

0.6.0 ition-controller
STATE 0

==

2 3 4 5 5 7

STATE 1

STATE 2

Figure 10: Diplaying/debugging the ch-transitions process from
Figure [J] using the inspector window. In this example the funda-
mental frequency curves of the successive events are recursively
merged with the beginning, as in Figure 8] The vertical shifts in
the events display is for visibility and has no specific signification.



5. Application in Re Orso

Commissioned by Ircam, the Ensemble Intercontemporain, the
Opera Comique in Paris and La Monnaie in Brussels, Re Orso
(2012) is an opera merging acoustic instruments and electronics.
Voice and electronics are both key elements in the dramaturgy and
the composition of the work, and a major attention has been paid
to their expressive connection and integration.

OpenMusic, and OM-Chant in particular, played an important
role in this project, both for the composition of the score and
the generation of some synthetic sounds that the composer calls
“imaginary voices”.

One of the most spectacular usages of the OM-Chant controlled
transition process in this work is the “death of the king”. This pas-
sage, which lasts about 1’307, is a morphing between a synthetic
countertenor voice (imitating the dying king’s voice and surrepti-
tiously “sneaking” into the singer’s real voice) and the ominous
sound of a knell. FOF events are progressively transformed from
the 5 formants corresponding to a sequence of sung vowels to the
numerous and narrow harmonics (or “partials” in terms of spec-
tral analysis) of a bell. The fundamental frequency is a glissando
from the original sung pitch (D5) to sub-audio frequencies, which
are eventually perceived as a sequence of pulses exciting the bell
resonators. During this process, the bandwith of the formants gets
gradually narrower, which provokes an increasingly longer reso-
nance.

The precise tuning of the synthesis parameters and the joint con-
trolled transitions in this overall process, crucial to the generation
of a musical and captivating result, is performed in an OM patch
whose structure is similar to the one seen in the previous example

(see Figure m

6. Conclusion

We presented a system for the generalised control of transitions be-
tween synthesis events in the OM-Chant library, based on higher-
order functions and fold mechanisms. The proposed framework
provides a powerful and flexible way to deal with computer-
generated sequences of control events for the Chant synthesizer.
It allows to maintain both a high-level abstraction in the creation of
sequences and time structures, and a precise control of the contin-
uous aspects of the internal or inter-event parameter values.
This framework is available in OM-Chant 2.0@
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