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Abstract

Melody harmonisation is a centuries-old problem of long tradition,
and a core aspect of composition in Western tonal music. In this
work we describe FHARM, an automated system for melody har-
monisation based on a functional model of harmony. Our system
first generates multiple harmonically well-formed chord sequences
for a given melody. From the generated sequences, the best one is
chosen, by picking the one with the smallest deviation from the har-
mony model. Unlike all existing systems, FHARM guarantees that
the generated chord sequences follow the basic rules of tonal har-
mony. We carry out two experiments to evaluate the quality of our
harmonisations. In one experiment, a panel of harmony experts is
asked to give its professional opinion and rate the generated chord
sequences for selected melodies. In another experiment, we gen-
erate a chord sequence for a selected melody, and compare the
result to the original harmonisation given by a harmony scholar.
Our experiments confirm that FHARM generates realistic chords
for each melody note. However, we also conclude that harmonis-
ing a melody with individually well-formed chord sequences from
a harmony model does not guarantee a well-sounding coherence
between the chords and the melody. We reflect on the experience
gained with our experiment, and propose future improvements to
refine the quality of the harmonisation.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming; H.5.5 [Information Interfaces
and Presentation]: Sound and Music Computing

General Terms Languages, Human Factors

Keywords Harmony, Automatic harmonisation, Haskell, Haskore,
HarmTrace, FHarm

1. Introduction

Ever since the Middle Ages, when singers in monasteries began to
experiment with the addition of another voice to the chant, tentative
efforts were made to discover laws that could accurately describe
the way multiple voices should sound together. The sounding of
multiple notes at the same time is called harmony, and the aspiring
human mind brought forward theories to capture this phenomenon.
With time, these rules changed, subject to fashion, politics, and
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even ecclesiastical law. With every generation, new rules are cre-
ated, and some are rediscovered, rewritten, or forgotten.

Harmonisation is the process of finding a harmony for a given
melody. For a single melody, multiple harmonisations can be cre-
ated, but the number of possible harmonisations is constrained by
the rules of tonal harmony. Harmonisation is a natural extension
and application of harmonic analysis. Researching the steps in-
volved in the process of harmonisation and automating these is a
valuable contribution to the study of music, artificial intelligence,
and Music Information Retrieval (MIR).

The research presented in this paper builds upon HARMTRACE,
that formalises and implements the ideas of [Rohrmeier (2007,
2011). HARMTRACE automatically derives the harmonic function
of a chord in its tonal context given a sequence of symbolic chord
labels (De Haas et al.[2013;|Magalhaes and De Haas|2011). Among
other applications, these functional annotations can be used to im-
prove the estimation of harmonic similarity of two chord sequences
(De Haas et al.|2011)), and to improve chord recognition from audio
(De Haas et al.|2012).

This paper introduces FHARM, a system that uses HARM-
TRACE for complementing a melody with a chord sequence. After
generating multiple possible chords for the given melody notes, we
create a multitude of progressions. These progressions are subse-
quently fed into HARMTRACE to derive their functional harmony
structures. From these progressions, we pick the one that deviates
the least from the harmony model of HARMTRACE. This sequence
is then optimised by an algorithm that determines the least varying
chord inversions to diminish jumps in the harmony part. Finally,
the harmony is combined with the input melody to create an output
file.

We have chosen to implement FHARM in the Haskell program-
ming language (Peyton Jones|2003). Haskell is a statically typed,
lazy, purely functional programming language which allows for a
very elegant and concise programming style. Instead of describ-
ing a computation in terms of statements that change a program’s
state, a functional language treats computation as the evaluation of
mathematical functions, avoiding explicit state and mutable data.
We believe Haskell is a good choice to implement rule-based func-
tional harmonic analysis, in particular because of its support for al-
gebraic datatypes, which naturally mimic grammar-like structures.
The collection of datatypes in HARMTRACE can be viewed as a
Context Free Grammar (CFG). The language defined by this CFG
consists only of the combined values that match the structure of the
datatype. This grammar defines a language of well-formed chord
sequences, where the chord sequences are the values, and the types
represent the relations between the structural elements.

The contribution of this paper is threefold. First, we formalise
the problem of automatic harmonisation, and show how this prob-
lem can be approached in a functional and modular way. Second,
we show how a formal model of Western tonal harmony can be
used to help solve this problem. Last, we qualitatively evaluate the



FHARM system by reporting in-depth analyses of the automatic
harmonisations by three independent experts. In FHARM, our aim
is to produce an elegant melody harmonisation system that achieves
good results in a simple, beautiful, and functional way. The en-
tire code can be found at http://dreixel.net/research/code/
FHarm.tar.gz.

The remainder of this paper is structured as follows. We start
by covering some basic music theory needed to place the problem
of harmonisation into context in and we elaborate on
harmonisation in particular in[Section 3] Next, in we ex-

plain the four main modules of FHARM: generating ( ),
selecting (Section 4.2), parsing (Section 4.3), and post-processing
(Section 4.4)). In [Section 5| we evaluate the automatic harmonisa-
tions of FHARM qualitatively. We conclude the paper discussing
related work in[Section 6]and future improvements of the system in
[Section 71

2. About music theory

This section provides a brief introduction to music theory, needed
to understand FHARM. For a thorough understanding of music
theory, we refer the reader to a standard music theory textbook
(such as Kostka et al|2000). To ease the understanding of musical
concepts for programmers, we accompany our description with
illustrative code snippets of how to encode each musical concept
in Haskell.

Within Western tonal music, sounds with a fixed frequency are
commonly represented by a note. Notes have a name, which is usu-
ally denoted by one of the elements in the list [C, Ci~D,,D,Dy=~
E, E,F,F;~G,,G,Gy~A,,A,A;~B,,B]. We can encode this in
Haskell as follows:

data Note o = Note Accidental o
data Accidental =h[t|b

data DiatonicNatural=C |D|E|F |G |A | B
type NoteNatural = Note DiatonicNatural

The £ denotes raising a note by a semitone, and the b denotes
lowering a note by a semitone. A fj means a note that is not altered.
The semitone is the smallest interval used in Western music. In
general, raising a note with a § is enharmonic equivalent to that
note one DiatonicNatural higher lowered by a bE| For example,
Note D f and Note E b sound the same, but are “spelled” differently.
We abbreviate the syntax of notes by writing C; instead of Note t C,
for example, and C instead of Note fj C (naturals are the default
accidental). We denote enharmonic equivalence with Dy ~ E,, for
example. We make Note a parametrised datatype because we will
later have notes labelled with datatypes other than DiatonicNatural.

In musical set theory, pitch classes are defined by two equiva-
lence relations. Pitches belong to the same pitch class if they have
some relation of compositional or analytical interest, such as the
octave relation (Roeder|2013). The second relation is the enhar-
monic equivalence relation, which means that all the pitches played
on the same key of a regular piano keyboard are in the same set.
From these two equivalence relations there are just 12 pitch classes,
corresponding to the notes of the chromatic scale, often numbered
from O to 11. The choice of which pitch class to call 0 is a matter
of convention; we call C 0 (in which case Cy~D, is 1, D is 2, etc.).

The distance between two notes is called an interval. An inter-
val can be melodic or harmonic, in which the notes that make up
that interval sound either consecutively or together, respectively. In
Western tonal music, an interval is commonly classified as a com-
bination between its quality (major, minor, or perfect) and number
(unison, second, third, etc.). Common names for the intervals are

! This does not hold for all note combinations (in particular for B and C,
and E and F), but further detail is unnecessary here.

Semitone distance Name

minor sixth
major sixth
minor seventh
major seventh
octave

0 unison

1 minor second (semitone)
2 major second
3 minor third

4 major third

5 perfect fourth
6 diatonic tritone
7 perfect fifth
8

9

10

11

12

Table 1. A list of intervals and their names
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Figure 1. Intervals and their difference in staff positions.

shown in enharmonic equivalent names have been omit-
ted. A representation of intervals on a staft is shown in [Figure 1]

An interval is inverted by moving one of the two notes an octave
(or octaves) up or down so that they retain their pitch class. For
example, one inversion of the interval consisting of a C with an E
above it is an E with a C above it. To invert this interval, the C may
be moved up or the £ may be lowered. An interval together with
its inversion yields an octave. This is because within an octave, a
second inverts to a seventh, a third to a sixth, a fourth to a fifth, and
so forth.

A sequence of notes in a specific ascending or descending order
is called a scale. Scales are divided into categories based on the
intervals they contain, being major, minor, or other. The first note
of the scale is called the fonic, and the individual intervals between
the notes of the scale and the tonic are called scale degrees. These
scale degrees can be identified by Roman numerals (I, IL, III, IV, V,
VI, and VII). This scale degree representation can be implemented
in Haskell as a DiatonicDegree together with Note in the following
way:

data DiatonicDegree =1 | I | Il | IV |V | VI | VII
type NoteDegree = Note DiatonicDegree

Commonly, the notes of a scale belong to a certain key, and are
the notes that sound reasonably well together. The key is named
after the tonic, which is usually the focal point of a piece. A key is
defined by the number of accidentals on the scale; shows
which keys are associated with which specific accidentals.

The combination of three or more notes creates a chord. The
simplest chords are called triads, and are created by superposing
one interval of a third and one of a fifth on a common root note.
If this third is minor, the quality of the chord is called minor; in
the same way, if the third is major, the chord is called major. If
the third is minor and the fifth is lowered one semitone, we call
the chord diminished. The three notes of the chord are called root,
third, and fifth.

Chords can be labelled unambiguously (Harte et al.||2005) by
giving the following parts:

1. The chord root, which is either an absolute note like a C or a
scale degree;
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Figure 2. The circle of ﬁfthsE|

2. The quality of the chord, for example major or minor; and

3. Optional added or removed intervals, for example a seventh.
For simplicity we will not use added intervals in our implemen-
tation.

We can encode chords in Haskell as follows:

data Chord oo = Chord { chordRoot ::Note o
, chordShorthand :: Shorthand }

data Shorthand = Maj | Min | Dim

This datatype represents a chord built from a chordRoot, which can
be represented as a NoteNatural or a NoteDegree. This way we can
represent chords built from an absolute root note, as well as chords
built from scale degrees. Shorthand defines if the chord is major,
minor, or diminished. shows all the scale degrees and their
corresponding chords in major and minor keys. We use d:m as a
syntactic shorthand for Chord d m.

Functional harmony (Whittall 2013) is a theory of tonal har-
mony established by |Riemann)| (1893), who devised the term. This
theory describes the common harmony practice from the 18 un-
til the 20" century. The functional harmony theory states that
each chord within a key can be reduced to one of three harmonic
functions—tonic, dominant, or subdominant. The tonic affirms the
key, the subdominant builds tension, and the dominant builds max-
imum tension. These rules are expressed in the grammar of HARM-
TRACE, where it is defined that a subdominant is always followed
by a dominant. This is explained in more detail in[Section 4.3.1]

The circle of fifths is a geometrical representation of relation-
ships among the twelve pitch classes of the chromatic scale (Fig]
. It shows how many flats or sharps a key has, and what its rel-
ative key is (the key with the same number of accidentals, but in the
opposite mode). At the top of the circle is the C major key, which

2 Image taken from http://en.wikipedia.org/wiki/File:Circle_of_
fifths_deluxe_4.svgl
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has neither sharps nor flats. In a clockwise direction, the notes are
all a fifth apart (in an ascending perspective). Counter-clockwise,
a circle of fourths is represented, since the inversion of a fifth is a
fourth. This circle can be encoded in Haskell as follows:

circleOfFifths :: [NoteNatural|

circleOfFifths = [F,, C,,G,,D,,A,,E,,B,
F,C.,G,D A E B
7Fﬁ,Cﬁ,Gt7Dj,Aﬁ,Eﬁ,B:}

3. Harmonisation

Harmony is the study of simultaneous sounds (chords) and
of how they may be joined with respect to their architec-
tonic, melodic, and rhythmic values and their significance,
their weight relative to one another.

Arnold Schonberg - Theory of harmony (Schonberg|1978)

In music in general, the basic element is the note. In harmony, the
basic unit is the inferval. Harmonisation is not subject to univer-
sal laws, as all eras and even individual composers have developed
their own harmony practices. This section describes the harmoni-
sation rules that are generally applicable in Western tonal music, as
presented by [Piston and DeVoto| (1991} considered to be a classic
reference in the field).

Harmonising a melody is the process of complementing a given
melody with chords. Any melody can be harmonised in at least
one way. Hence, harmonisation can best be viewed as the creative
process of selecting the best matching chord for a melody segment.
This process consists roughly of three consecutive stages: melody
analysis, chord selection, and sequence selection.

Before chords can be considered, an analysis of the melody is
needed. Knowing the time signature and tonality of the melody is
of vital importance for creating a functional harmony. The time
signature is the conventional way in Western musical notation to
specify how many beats are in each bar and which note value
constitutes one beat. This can be implemented using a Rational
type, represented as a ratio of two Infeger values:

type TimeSig = Rational

For example, a time signature of i is encoded as 4 % 4, where the
numerator is the number of beats, and the denominator is the beat
note value.

The tonality of the melody tells us which chords can be used
with the individual notes, while the time signature tells us some-
thing about the occurrence of the chords, as the strong metrical
positions are treated with more importance with regards to chord
placement. Segmenting the melody in parts in concordance with
the time signature tells us where and how many chords can be used.
The structure of the melody is also a guide when choosing chords.
With large melodic skips ending on weak bar structures, it is pre-
ferred to use the same harmony for both notes. Likewise, if a note
is sustained, the chord is usually not changed.

After analysing the melody, chords should be selected in line
with the notes. Because a single note in the major or minor scale oc-
curs in three common triads of the scale, a melody of 7 notes can be
harmonised in 3" ways when using common key chords (i.e. chords
that contain the melody note). Quite a few of these sequences will
sound unnatural and break many common harmony theory rules,
but, for our purposes, we will consider them harmonisations of that
melody nonetheless.

The last phase is sequence selection. Constructing a sequence
out of the 3" possibilities involves selecting chords that follow a
logical, naturally sounding line. Several heuristics can be used for
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Scale degree 1 11 1
Major key I:Maj  1I:Min
Minor key I:Min  II:Dim

HI:Min
III: Maj

v Vv \%4 \2/4
IV:Maj  V:Maj  VI:Min  VII:Dim
IV:Min  V:Min  VI:Maj  VII:Dim

Table 2. Scale degrees and chords arising in major and minor keys.

this purpose. For example, a harmonisation should end in a ca-
dence: a harmonic progression of at least two chords that gives the
listener a sense of conclusion of a phrase. Common cadences are
the authentic and the half cadence. The authentic cadence is a pro-
gression of V-1, or IV-V—-I. This is considered a strong cadence, as
it affirms the tonic and gives the listener the feeling that the phrase
is complete. The half cadence is any cadence ending on V, preceded
by any chord. Because it sounds incomplete or “suspended”, the
half cadence is considered a weak cadence. A few more cadences
exist, but, for simplicity, we only consider these two types.

Cadences can be built from right to left. For example, in the
key of C, with a melody ending on the tonic, any of the chords
I:Maj, 1V:Maj, or VI: Min can be chosen to harmonise the last note,
because C appears in all of those chords. If ending on an authentic
or half cadence is the goal, only / and V are valid choices. In this
case, the cadence should be an authentic one, because / is available,
and V is not, eliminating /V and VI from the possible choices.
Knowing that the sequence will end on /, a perfect cadence can
be made by choosing V as the chord before the last. If the note
before the V allows for a IV chord, the IV can be chosen as well,
creating the long form of the authentic cadence.

A couple more examples of heuristics are: if notes in a bar share
the same chord, the first chord of the bar can be sustained. If a
melody begins on a strong bar part, a / is chosen as the first chord;
if it begins on a weak bar part, a V is chosen as the starting chord of
the sequence. These are just a few of the many of rules the can be
applied while selecting harmonic sequences from all possibilities.

4. FHARM

This section introduces FHARM, an extension of HARMTRACE
for harmonising melodies. It extends HARMTRACE by adding
a knowledge-based system that selects well-matching chord se-
quences according to predefined rules. Using HARMTRACE, given
a sequence of chord labels generated by FHARM, the harmonic
function of a chord in its tonal context is automatically derived.

The handling of the input MIDI file is done with HASKORE (Hu-
dak et al.||[1996) and the Sound.Midi libraries (Thielemann|2004).
HASKORE uses a simple algebraic approach to music description
and composition. In HASKORE, musical objects consist of prim-
itive notions such as notes and rests, and operations to transform
musical objects to create more complex ones, such as concurrent
and sequential compositions (chords and melodies, respectively).
The Sound.Midi library is used for reading and writing MIDI files,
so that the output of our algorithm can be heard.

FHARM is made up of four independent, composable steps:

1: Generating Analysing the melody and generating candidate
chords for each melody note;

2: Selecting Filtering the generated chord candidates through a
rule-based system to prevent unwanted and illogical sequences;

3: Parsing Determining the best harmonisation by feeding the
generated sequences to HARMTRACE, favouring analyses with
fewer errors;

4: Post-processing Processing the sequence to find the least vary-
ing chords inversions along a trend line, and combining these
with the input melody into an output MIDI file.

We describe each of these steps in the following subsections.

4.1 Generating

FHARM takes a single track, monophonic MIDI file as its input.
We use the Sound.Midi library to extract tonal and rhythmic infor-
mation. We then use HASKORE to represent the MIDI file contents
as datatypes encoding tonal information.

In this first phase, each note of the the melody is transformed
into a value of type MelodyNote, which represents each note as a
4-tuple containing a Root, Octave, Duration and ChordList:

type MelodyNote = (Root, Octave, Duration, ChordList)

type Root = NoteNatural
type Octave =Int
type Duration = Rational

type ChordList = [Chord NoteDegree)

Root represents the current melody note as an absolute root note
in terms of the NoteNatural definition that was given earlier
[ion 2). Octave is defined as an integer number which denotes the
octave the melody note is in. Duration represents the length of the
note as ratios of two Int values, which encodes the relative duration
of a note. ChordList is a list of candidate chords that can be used
to harmonise this note. In this initial phase, ChordList is an empty
list.

The entire melody represented as multiple MelodyNotes is en-
coded as a value of the Song datatype:

data Song = Song {key  ::Key
, timesig :: TimeSig
yleap i Leap
,melody::[(Bar,[MelodyNote])] }

type Bar = Rational
type Leap = Rational

In this encoding, only the properties of the input file necessary to
derive a harmonisation are represented. Key denotes the key of the
melody, and is passed as an argument to FHARM. It consists of
a Root, and a Mode, which denotes whether the Key is major or
minor:

data Key = Key {keyRoot ::Root
, keyMode :: Mode }

data Mode = Majyroqe | Minpoge

The time signature of the MIDI file can be derived by reading the
appropriate metadata fields. Leap represents the ratio of chords per
beat. A leap value of s tells us that every s beat should have a
chord. This notion is explained further in[Section 4.2.1} The melody
notes of the song are defined in terms of the Bar and MelodyNote
types. Bar represents the current bar, starting at (1,n) and ending
with (n,n), where n is the number of bars of the melody. This notion
is used to keep track of which notes occur in which bar. The second
element of the pair is a list of MelodyNotes as defined before.

4.1.1 Melody to pitch class

To select three possible chords for each melody note, the absolute
notes are first converted to absolute integer values. This represen-
tation uses no key information, but represents the note as absolute
integer values of the chromatic scale, being the position in the list
[C,Cy=D,,D,D;=E,,E,F,F;~G,,G,Gy~A,,A,A;y=B,,B]. We
implement this as follows:



diaNatToSemi :: Root — Int
diaNatToSemi (Note m n) =
[0,2,4,5,7,9,11] ! (fromJust $ elemIndex n [C..])
+ modToSemi m

modToSemi :: Accidental — Int
modToSemi = 0
modToSemi f = 1
modToSemibh = —1

Given a Root representation of a note, diaNatToSemi returns its
absolute integer value. Note that we’re making use of a (trivial)
instance of Enum for DiatonicNatural.

4.1.2 Chord candidate generation

To find candidate chords that contain a specific pitch class, we build
chord structures representing the notes that are associated with a
chord. All chords have a specific tonal content; for example, every
major chord consists of a major third and a perfect fifth on top of a
root note. We can thus represent chords as a binary list of occurring
notes; as an example, here is the representation of the C: Maj chord:

C7Db7D7Eb7E7F7Fﬁ7G7Ab7A>BbvB
[1,0 ,0,0,1,0,0 ,1,0,0,0,0]

To build a major chord on the root note D, for example, we
rotate the list two positions:

C7Db7D7Eb7E7F7Fﬁ7GvaaA7BbaB
(0,0, 1,0, 0,0,1,0,0 ,1,0 ,0]

By representing chords as a binary list we abstract from the
root note, which means we can analyse chord structures without
having to define all major, minor, and diminished chords of a key
individually:

shortHandToChordStructure :: Shorthand — [Integer]
shortHandToChordStructure sh =
case sh of
Maj — [1,0,0,0,1,0,0,1,0,0,0,0]
Min — [1,0,0,1,0,0,0,1,0,0,0,0]
Dim — [1,0,0,1,0,0,1,0,0,0,0,0]

We can now easily find candidate chords for each melody note.
Because a triad chord contains three notes of the scale (root, third,
and fifth), there are three possible chords for each note: one that
has the melody note as its root, one that has the melody note as its
third, and one that has the melody note as its fifth.

We list all the appropriate chords for a given key and mode,
and convert them to their corresponding binary representation. This
gives us a list of binary chord representations, each one rooted on
each scale note. To find the allowed chords for a note from this
list, a 1 must be present at position i of the binary representation
of that chord, where i is the chromatic integer representation of the
note. At this stage, we expand the ChordList in the Song datatype
with the three chords that are allowed for each note. For example,
for the melody note C in the key C, the ChordList is expanded to
[1:Maj,IV:Maj,VI: Min], as each of those chords contains C.

4.2 Selecting

After having generated candidate chords for each melody note, we
proceed to filter these sequences to avoid unusual chord progres-
sions.

4.2.1 Eliminate unwanted sequences

To reduce the search space, we enforce the notion of a cadence:
since a half cadence ends in V, and an authentic cadence ends in /,
the list of possible chords of the last melody note is reduced to these

cadence-only chords. Additionally, since it is uncommon to start a
chord sequence on a chord other than / or V, a similar filtering
method is used for the chords of the first melody note.

4.2.2 Removing leap chords

When harmonising a melody it is custom to not assign a chord to
every note. Doing so would distract from the rhythm of the melody
and make the musical piece sound mechanical. Usually, chords are
placed at strong metrical positions, which occur on the beat. The
third value of the Song datatype is leap, represented as a ratio.
This number defines how many notes per bar in the melody will be
harmonised with a chord. This leap value is passed as a parameter
to FHARM, and tells us that for a leap value / there should be a
chord at every I'* beat of a bar, and the other notes should have no
candidate chords.

To calculate which notes will be harmonised with a chord, we
simply iterate through the melody in each bar, and add up the du-
ration of the notes until we have reached the leap value. If the note
occurs on the I beat, its ChordList stays intact; otherwise it is re-
placed by an empty list. It might seem strange that we first generate
chords for every melody note, and then remove some, while we
could directly generate chords only for the notes we are interested
in. However, this is more modular; our current mechanism for re-
moving leap chords is rather simplistic, but a more advanced imple-
mentation could take into account the surrounding chords proposed
for melody notes that do not get their own chord, for example.

4.2.3 Chord probability assignment

Even though several chords might fit a given melody note, they
are not all equally well-suited. In FHARM, the notion of how
well a chord fits a melody note is defined using the distance of
that note to the root note of the chord in the circle of fifths. We
encode this notion by associating probabilities with each chord.
We use the circle of fifths because the tonal distances represented
there correspond better to human perception than a simple linear
distance.

For example, in the key of C, the E note has three possible
chords for harmonisation: C:Maj, E:Min, and A: Min. The root
notes of these chords are respectively C, E, and A. The distance
in the circle of fifths between these root notes and the melody tone
E are 4, 0, and 1. We calculate the likelihood for each chord by di-
viding these numbers by 10 and subtracting them individually from
1. The list of chords with their likelihood is obtained by converting
the chords to a Chord DiatonicDegree notation and creating list of
tuples containing both the chord and its likelihood. In our exam-
ple, this list is [(/:Maj,0.6), (1II:Min,1.0), (VI:Min,0.9)]. This is
a value of type ProbChordList:

type ProbChordList = [(Chord DiatonicDegree, Double)]

The values in ProbChordList are then normalised in the interval
[0..1] to obtain actual probabilities that are used in a random
selection mechanism. We now explain in detail how these lists are
calculated.

Converting melody notes To calculate the distance in the circle of
fifths, we need to be able to compare the melody note to the chord
root note. To do this, we need to first convert the /nteger number
representation of the melody note to a Note DiatonicNatural. This
is easily done by using the /nfeger number representation as an
index of the list of pitch classes.

Converting chord root notes The other note needed to calculate
the distance in the circle of fifths is the root note of the chord. This
is relatively easy, as the Chord NoteDegree (Roman numeral) repre-
sentation of the chord can be transformed into a Chord NoteNatural



(note name) representation. The Roman numeral of the scale de-
gree is changed into its Arabic numeral equivalent minus 1, which
is used as the position to lookup in a list of notes for the key. For
instance, the key of A consists of the notes [A,B,C,D,E,F,G]. The
chord with the Roman numeral /I has an Arabic equivalent of 3,
and at position 3 — 1 =2 of the list we find the note C.

Distance in the circle of fifths The function that calculates
the distance in the circle of fifths simply finds both notes in the
circleOfFifths list (of and returns the distance between
their positions. Now that the distance d between a melody note and
the root note of a possible chord can be calculated, we assign a
likelihood 1 —d / 10 to that chord. After calculating this likelihood
for each chord, the values are normalised to probabilities in the
interval [0..1].

For the note E in the key of C:Maj, for example, the follow-
ing list is created: [(I:Maj,0.6), (1II:Min,1.0),(VI:Min,0.9)]. To
give each chord a probability between 0 and 1, each of the like-
lihood values is divided by the sum of all the values (2.5). This
gives us the relative intervals of the probabilities of the chords,
which we then sort by lowest probability first, to obtain the list
[(I:Maj,0.24), (VI: Min,0.36), (III: Min, 0.4)].

4.2.4 Sequence generation

The calculated probabilities of the chords are used to create chord
sequences. A random selection algorithm decides which chord is
chosen for a melody note. We explain this continuing the exam-
ple given previously. We generate a uniformly distributed random
number between 0 and 1. If this number is < 0.24, chord I: Maj is
chosen. If the number is 0.24 <x < 0.24 4+ 0.36 = 0.6, then chord
VI: Min is chosen. Lastly, if the number is >0.6, chord /II: Min is
returned. We encode this in Haskell as follows:

sample ::[(Chord o, Double)| — 10 Int
sample | = do p < getStdRandom (randomR (0.0, 1.0))
return (pick p 1)
pick :: Double — [(Chord o.,Double)] — Int
pick p = fromJust o findIndex (>p) o tail
o scanl (Aab — a+snd b) 0

Repeating this process for each melody note, we generate a
sequence of chords that harmonises the melody. We then repeat this
process a fixed number of times over the entire melody, to generate
several lists of chords, each representing harmonisations over the
input melody. These harmonisations are then passed on to the next
stage.

4.3 Parsing

To ensure harmonic coherence in the generated chord sequences,
we parse each sequence using HARMTRACE. In this section we in-
troduce the harmony model of harmtrace, and how chord sequences
are parsed to fit this model. This is mostly restating previous work
(De Haas et al.[[2011} 2012} 2013} Magalhaes and De Haas|2011),
adapted to the purposes of FHARM.

4.3.1 Harmony model

HARMTRACE contains a harmony model that implements and ex-
tends the ideas of Rohrmeier| (2007, 2011)), who modelled the core
rules of Western tonal harmony as a (large) context-free grammar
(CFG). HARMTRACE models tonal harmony as a Haskell datatype.
Since this model affects the quality of our generated harmonisa-
tions, we explain it briefly in this section. For clarity, we chose a
syntax that closely resembles a CFG. A CFG defines a language:
it accepts only combinations of words that are valid sequences of
the language. A collection of Haskell datatypes can be viewed as
a CFG: the type-checker accepts a combination of values if their

structure matches the structure prescribed by the datatype, and re-
jects this combination if it does not. Within HARMTRACE, the
chords are the values, and the datatypes represent the relations be-
tween the structural elements in tonal harmony. We show some ex-
ample analyses produced by HARMTRACE in[Section 3]

We start by introducing a variable (denoted with Fraktur script)
for the mode of the key of the piece, which can be major or minor.
The mode variable is used to parametrise all the specifications of
our harmony model; some specifications hold for both modes (1),
while other specifications hold only for the major (Maj) or minor
mode (Min). The mode is displayed as a subscript, which we leave
out when it is clear from the context. In Haskell, these variables
are implemented as indices in a generalised algebraic datatype
(Schrijvers et al|[2009); a specification that constrains a variable
corresponds to a constructor that introduces an equality constraint
on the index, while a specification that does not constrain a variable
corresponds to a constructor with no constraints on the index.

Spec. [TH3] define that a valid chord sequence, Piecegy, consists
of at least one and possibly more functional categories. A func-
tional category classifies chords as being part of a tonic (Tongy),
dominant (Domygy; ), or subdominant (Subgy ) structure, where a sub-
dominant must always precede a dominant. These functions consti-
tute the top-level categories of the harmonic analysis and model the
global development of tonal tension: a subdominant builds up tonal
tension, the dominant exhibits maximum tension, and the tonic re-
leases tension. The order of the dominants and tonics is not con-
strained by the model, and they are not grouped into larger phrases:

1 Piecegy — [Funcen]

2 Funcgny — Tongy | Domgy M € {Maj,Min}

3 Domgy — Subgy Domgy

Spec. [@H8] translate dominants, tonics, and sub-dominants into
scale degrees (denoted with Roman numerals). A scale degree is
a datatype that is parametrised by a mode, a chord class, and the
interval between the chord root and the key. The chord class is used
to constrain the application of certain specifications, e.g. Spec.
and[T4] and can represent the class of major (no superscript), minor
(m), dominant seventh (7), and diminished seventh chords (0). A
tonic translates into a first degree in both major and minor mode,
albeit with a minor triad in the latter case, or it allows for initiation
of a plagal cadence. A dominant type is converted into the fifth
scale degree with a dominant or diminished class, respectively.
Similarly, a sub-dominant is converted into the fourth or second
degree:

4 Tonvig — Iyggg | vt TV Mo Iviag
5 Tonygin — Ilr\n/[in ‘ I]r\n/[in Ivﬁin IIT/Iin
6 Domgy = Vin | Von

7 Subytgg — Vi | I | .

8 Submin — IV, | gy | ---

Finally, scale degrees are translated into the actual surface
chords that are used as input for the model. The chord notation used
is that of [Harte et al.| (2005). The conversions are trivial and illus-
trated by a small number of specifications below. The model uses
a key-relative representation, and in Spec. [HI2] we used chords in
the key of C. Hence, a IMaj translates to the set of C chords with
a major triad, optionally augmented with additional chord notes
that do not make the chord minor or dominant. Similarly, VK,[aj
translates to all G chords with a major triad and a minor seventh,
etc.:

9 Iy — "C:maj”|"C:maj6” | "C:maj7" | ...



10 I, — "C:min” | "C:min7" | "C:min9" | ...
VL, =767 ["G:7(b9,13)" | "G (#11)" | ...
12 VI3, — "B:dim(bb7)"

Spec. [[3]accounts for the classical preparation of a scale degree
by its secondary dominant, stating that every scale degree, indepen-
dently of its mode, chord class, and root interval, can be preceded
by a chord of the dominant class, one fifth up. The function V/X
(implemented as a type family) transposes an arbitrary scale degree
X afifth up. Similarly, every scale degree of the dominant class can
be prepared with the minor chord one fifth above (Spec. [T4):

13 X§; = v/x], x§; ¢ € {@,m7,0}
14 XL, - v/xm X0, X e {LIb.II,...,VII}

The harmony model in HARMTRACE further allows various
scale degree transformations. Every dominant chord can be trans-
formed into its tritone substitution with Spec. [I3] This specifica-
tion uses another transposition function Vb / X which transposes a
scale degree X a diminished fifth (a tritone) up. Likewise, dimin-
ished seventh chords are treated as regular dominant seventh chords
without a root and with a b9 (Spec. . For instance, an Ab°, con-
sisting of Ab, B, D, and F, is viewed as a G7b9, which consists of
G, B, D, F, and AbY. An exceptional characteristic of diminished
seventh chords—consisting only of notes separated by minor third
intervals—is that they are completely symmetrical. Hence, a dimin-
ished seventh chord has four enharmonic equivalent chords that can
be reached by transposing the chord a minor third up with the trans-
position function 11Ib /X (Spec. [17):

15 Xl — Vb/X],
16 Xl — I/ X3y
17 Xy — 1/ X5,

We have presented a condensed view on the core specifications
of the model. Due to space constraints we had to omit some speci-
fications for diatonic chains of fifths, borrowings from the parallel
mode, and the Neapolitan chord. For the full specification of the
model, we refer the reader to|De Haas et al.| (2013).

4.3.2 From textual chord labels to structured harmony

Having a formal specification of the rules of tonal harmony as a
Haskell datatype, the next step is to use a parser to transform tex-
tual chord labels into values of this datatype. The HARMTRACE
parser makes use of datatype-generic programming techniques to
avoid writing most of the repetitive portions of the code. More-
over, not only the parser can be derived automatically, but also a
pretty-printer for displaying the harmony analysis in tree form, and
functions for comparing these analyses. For technical details of the
implementation and use of generic programming techniques, we
refer the reader to Magalhaes and De Haas| (2011).

Since HARMTRACE cannot account for all possible harmony
rules ever used, and also because it is designed to be robust against
noisy or incorrect chord sequences, it uses an error-correcting
parser (Swierstraj2009) that automatically adds and removes chords
from the sequence in order to create a well-typed value. We use the
number of errors during parsing as a way to sort the progressions.
For most progressions, parsing results in little or no errors. Pro-
gressions with many surprising or unexpected chords, however,
give rise to multiple error-correction steps. This strategy serves
to impose a form of “quality control” on our generated chord se-
quences. When multiple trees have the same minimum number of
errors, we pick the one with the simplest harmony analysis (the one
with fewest nodes).

4.4 Post-processing

The final step before creating a MIDI file with the melody and the
chord progression is to adapt the generated harmony by picking
chord inversions that minimise the distance between chord pitches.
For this we again use HASKORE (Hudak et al.|[1996). This step
helps keeping the overall pitch of the chords as close together
as possible, resulting in a smoother harmonisation. The algorithm
computes the centre of each chord, which is the average of all its
pitches. Using these centres, it then tries to keep the centre as close
as possible to an overall trend. The adapted chord progression is
then merged with the original melody, and output to a MIDI file.

5. Experiments and results

To measure the quality of our harmonisations, we have carried
out two experiments. In experiment one, we confronted three ex-
perts in harmony theory with harmonisations of melodies created
by FHARM. The experts were requested to give their professional
opinion on the technical and creative aspect of the horizontal and
vertical dimensions of the harmonisation. In the second experiment,
for a given melody, we compare a harmonisation created by a har-
mony expert with the outcome given by FHARM. Both experiments
use melodies given in exercises of |[Piston and DeVoto| (1991). The
inputs used to FHARM in this section and sample output harmon-
isations are available at http://dreixel.net/research/code/
faamh_examples.zipl

5.1 Experiment one

In this experiment, three experts were confronted with melodies
harmonised by FHARM. The harmonised melodies were presented
to them in score form as well as their corresponding audible MIDI
file. The melodies chosen for this survey are exercises b, c, and e
from Chapter 7 (Harmonisation of a given part) of Piston and De-
Voto| (1991). We will refer to these melodies as melody A, melody
B, and melody C, respectively. These melodies were chosen be-
cause of their difference in key, time signature, and overall struc-
ture.
The panel of experts consisted of:

Expert I an undergraduate student in musicology at Utrecht Uni-
versity;

Expert II a composer in pop-oriented music, who studied compo-
sition and sound design;

Expert III a music lecturer at the Utrecht School of the Arts,
faculty of art, media, and technology.

We have purposely included experts from different professional
musical areas to see if they would derive different conclusions
from listening to the same pieces. Although we can observe some
difference in the analyses, there is a general agreement in the broad
sense of the appreciation and technical aspects of the pieces.

5.1.1 Method

For this experiment, FHARM generated one harmonisation for each
melody (out of 1000 candidate harmonisation per melody), as de-
scribed in[Section 4

Three questions pertaining to the choice of the individual chords
per melody tone and their overall development over time were
given. The first question inquires about the technical aspect, or
correctness of the total progression, expressed in a number from
1to 5 (1 being very correct, and 5 being very incorrect). In addition
to this question, experts are asked to explain this rating in their own
words.

The second question inquires about the choice of the individual
chords in the harmonisation, asking experts to rate every chord on a


http://dreixel.net/research/code/faamh_examples.zip
http://dreixel.net/research/code/faamh_examples.zip

scale from 1 to 5 (1 being very correct, and 5 being very incorrect).
This rating represents whether that chord fits the melody segment
it belongs to. In addition to this rating, experts are asked what
chords they would replace, and in what way. The third question
is in open form, inquiring whether the expert has anything more to
say about the harmonisations in general. The question form used in

the experiment is transcribed in[Appendix A}
5.1.2 Melody A

Piece

v 1 I1v 1 V. VI I Overall
I 1 2 3 1 1 1 1 2
II 1 1 2 1 1 1 1 1
I 1 2 5 2 2 1 3
Average 1 1.7 33 13 13 13 1 2

Figure 4. Melody A: ratings of the experts of the individual chords
and overall progression on a scale from 1 to 5 (second and first
questions of the survey, respectively; lower scores are better).
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Figure 3. Melody A in F major with harmonisation (as generated
by FHARM) and its harmonic analysis (as generated by HARM-
TRACE).

Melody A and its generated harmonisation can be seen in [Fig-]
and the experts’ ratings in As can be seen from
the results, the progression of the second to third chord (I - IV) is
found to be troubling. In particular, the movement between the two
chords has too many voices moving in the same direction. When
moving from /I to IV in F major, the algorithm to determine the
shortest pitch distance (in terms of chord inversions) did a good
job, but in this case it leads to a bad choice. In classical harmoni-
sation, paralle]l movement (placing two chords in succession such
that every note moves with the same interval) is considered bad
practice. In this case every note in // is a third lower than the /V
chord after it. The inversion algorithm should make a different de-
cision here, or the choice of another chord should be made, to avoid
parallel movement of chords.

This harmonisation is found to be the best out of the three
melodies; it was rated by expert I as 2, II as 1, and IIT as 3,
and overall well sounding. Although not in accordance with the
classical rules, the progression is regarded as a functional one: one
that works.

5.1.3 Melody B

Melody B and its generated harmonisation can be seen in|[Figure 3]
and the experts’ ratings in This melody has the least
favoured harmonisation by the experts, and was criticised with
regard to the overall structure and progression.

According to the experts, this harmonisation seems to lack a
connection to the melody in certain places. Although they agreed
that individual chords fit the notes well, substitution of certain
chords would make the progression stronger. Interestingly, the
functional analysis of the progression as shown in the tree in
shows little inner structure. An explanation for the lack of
coherence in the progression could be attributed to the lack of
functional components that are built out of multiple chords, or
chord sequences. This way, the chords of the sequence have little
functional relationship with each other, except for their shared key.

Figure 5. Melody B in C major with harmonisation (as generated
by FHARM) and its harmonic analysis (as generated by HARM-
TRACE).

The experts found that a better choice could be made in the
second bar, where a /Il chord is found as a harmonisation of the
note E. The choice for a /Il chord can be attributed to the fact
that the chord generating algorithm takes only the current note into
account, and ignores the rest of the bar (the note C). The III chord
does not resolve the C, which in this case means using a chord
that has a C in it. The notion of resolution is important in classical
harmony theory, as it defines the passing of dissonant sounds into
consonant sounds during the course of changing harmony. In this
case, the note C creates a dissonance with the III chord}’| This is
because the /// chord contains a B, which together with C is a minor
second. A relatively easy way to improve FHARM would be to use
all notes in a bar for choosing a chord instead of just the current
one. This could create harmonisations that are less disjunct from
the melody.

Another remark is that the centre of gravity in the harmony is
not in the right place. This can be attributed to the fact that the chord
generation system does not take into account the overall arc of the
melody. As the algorithm focuses on the current note of the melody,
it is unaware of notions like the direction (up or down) in which the
melody is going, or more complex structures like a recurrent piece
of the melody (theme).

The HASKORE algorithm for calculating the least varying chord
inversions makes good choices as far as the shortest overall distance
between chords is considered, but is too strict in the sense of
classical harmonisation. When all notes between chords move in
the same direction with the same interval, like they do in bars 2-3,
it is better to pick a different inversion, even if that one is further
away.

Different inversions of the same chord have different functions.
The second inversion of a chord, in which the root note is moved

3 A dissonance is any interval other than unison, octave, perfect fourth or
fifth, and major or minor third and sixth.



I v v mr v Vv 1 I 1o VI I I Overall
I 1 3 1 4 1 1 1 4 2 2 2 2 4
II 1 3 5 3 3 1 2 3 2 1 1 1 3
I 3 3 3 5 5 5 32 3 2 5 5 4
Average 1.7 3 3 4 3 23 2 3 23 2 27 27 3.7

Figure 6. Melody B: ratings of the experts of the individual chords and overall progression on a scale from 1 to 5 (second and first questions

of the survey, respectively; lower scores are better).
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Figure 7. Melody C in E major with harmonisation (as generated
by FHARM) and its harmonic analysis (as generated by HARM-
TRACE).

upward one octave, is called an unstable chord. In classical har-
monisation it is preferred to start and end a harmonisation with a
chord that is not inverted. The piece begins and ends on an unstable
chord in second inversion, which again is correct when calculating
a sequence that has the shortest distance, but it is too strict in the
sense of classical harmonisation.

5.1.4 Melody C

Melody C and its generated harmonisation can be seen in[Figure 7}
and the experts’ ratings in This harmonisation was well
received by the experts.

The fourth bar sequence (/I - V) is regarded as pleasant. The
progression starting in bar 3 (I - VI - II - V - I) is considered to be
technically correct, in the classical sense. Chords that are criticised
and found not to fit the melody are the second chord of bar 2 (II1),
and the second chord of bar 3 (VI). Il often serves as a mid-way
point between / and V, something which is not happening here.
The VI chord in the third bar is problematic because the third note
in the bar, A, creates a dissonance with the chord, as explained in
Section 5.1.3

Expert III notes that the harmonies are not a part of a composi-
tional idea, but are, in a sense, a good estimation for the moment
they are used. This can again be attributed to the fact that FHARM
does not take into account properties of the overall melody.

Although perceived as a more pleasant progression than melody
B, problems with regard to the inversions of the chords are again
noted, with too many parallel movements in the notes of the chords.

5.1.5 Overall results

Overall, melody A is found to have the harmonisation that works
best. The harmonisation of melody C is also relatively appreciated
by the experts, while that of melody B is leaves plenty of room for
improvement.

It is interesting to look at the functional analysis trees of the
harmonisation. In particular, the harmony for melody B gives rise to
a simpler harmony tree than those for melodies A and C. However,
care should be taken when determining this factor as a cause of

the poor quality of the harmonisation, given the low number of
melodies used in this experiment.

As expert III noted, one of the major elements that is missing
from the harmonies is the presence of dissonant chords that are not
the result of melodic jumps inside of a bar. This follows from pick-
ing three chords for each melody note, where each chord contains
the melody note. This method will never yield dissonant chords
with regard to the melody, something which is needed to make
an “interesting” harmonisation, as consonances are regarded to be
points of arrival, rest, and resolution. Without the use of dissonance,
chord sequences can sound stale and mechanical.

5.2 Experiment two

In this experiment, a harmonisation example from |Piston and De-
Voto| (1991] example 117), shown in is chosen as a
ground-truth for FHARM. The manual harmonisation process of
this melody by Piston is extensively documented in his book. We
compare his choices to those made by FHARM.

5.2.1 Method

As before, FHARM generated one sequence for the melody (out
of 1000 candidate sequences), as described in The first
melody note from Piston’s melody was doubled as two half notes,
as FHARM cannot currently handle melodies that do not begin on
the first beat of the first bar.

5.2.2 Results

We now discuss the difference between the Piston’s harmonisation
and the one generated by FHARM. The first difference to notice is
the placement of the chords, which differ in two ways. First, Piston
used chords that are, in general, placed an octave higher. This way,
some chord notes overlap with the melody notes. FHARM uses
chords that are two octaves lower than the melody notes, preventing
clashing of melody notes with chord notes, and making it easier to
read and analyse the harmonisation. Even though it is harder to
read, the approach taken by Piston sounds like the harmony blends
in more with the melody, because the melody notes and chords are
placed closer together.

The second difference is the spacing of the chord notes. In Pis-
ton’s example, the first V chord shares the lowest note with the V
chord in the FHARM harmonisation, but differs in the higher notes.
Piston creates a converging sequence, by using a wide V chord at
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Figure 8. Melody C: ratings of the experts of the individual chords and overall progression on a scale from 1 to 5 (second and first questions

of the survey, respectively; lower scores are better).
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Figure 10. Melody of Walter Piston in C major with harmonisation
(as generated by FHARM) and its harmonic analysis (as generated
by HARMTRACE).

the start, and closing with a V whose notes are close together. Be-
tween those two chords, on average, the notes in the chords become
closer. The convergence of notes in Piston’s example creates the
sense of a closing structure.

Because Piston takes into account chord voicing and sequence
structure, his chord placement creates a harmony that sounds more
classical. However, we cannot expect FHARM to “compete” with
Piston in terms of voicing, as FHARM does not have such notion; it
simply generates chords for a melody. Piston’s harmonisation is en-
tirely polyphonic, where each voice is melodious and independent.
By contrast, FHARM generates a melody-dominated homophony,
where the melody is clearly distinct from the accompanying voices,
which support the harmony. Nevertheless, this changes little to the
functional analysis on the individual chords and sequence, which is
what we are really interested in comparing.

Both Piston and FHARM open the harmonisation on V. As there
is no note on the first beat in Piston’s example, it would be natural
to harmonise the bar with the note on the second beat. This note
is a G, which makes it a logical choice to select V for that bar, as
the root of V is a G. FHARM had the choice between two chords
on the first note G. This is because although G can be harmonised
with 7, 111, and V, FHARM does not allow to begin a harmonisation
with III, as explained in This means FHARM can
harmonise the note with a I or V. The choice for a V chord can be
explained by its higher probability.

Although a V chord is more probable, FHARM harmonises the
second G in the melody with a /I chord. This creates a sequence
with the following / chord in which all voices move a third down, in
parallel. A better choice could have been made here, first because
parallel movement is considered bad in classical harmony, and
second because the combination of these chords do not create a

functional entity, as can be seen from the lack of structure in the
functional analysis tree pictured above the harmonisation.

The third melody tone is harmonised by Piston and FHARM
with a [ chord. Piston chooses to sustain this chord during the
whole bar, whereas FHARM chooses a /I chord on the second note
(G) of the bar. Again, a V is more probable, but the probabilistic
mechanism chose a /II chord.

The A note on the third bar is harmonised by Piston with a IV
chord, and by FHARM with a /I chord. The choice of /I by FHARM
can be attributed to the probabilities of the possible chords, as the
chord that Piston used, /V, has the lowest probability for the note
A. The chord that is chosen, //, can be justified in a functional way,
as it is part of a subdominant structure.

Both Piston and FHARM harmonise the first note of the fourth
bar with a /Il chord. As can be seen from the structure of the
tree, this 7/ is part of a subdominant-dominant chain. A I is a
good choice here, as it fits in a structure that can be functionally
explained.

The last two chords, IV and V, are also identical in Piston’s
and FHARM’s harmonisations. Piston used this sequence to create
a semicadence, which is any cadence ending on V. It is called
semicadence because it sounds incomplete or suspended. FHARM’s
choice of these chords can be explained by the method used in
Section 4.2.1] which forces this cadence.

The algorithm for choosing chord inversions created subse-
quences containing parallel movement between the notes of the
chords. This can be seen in the sequence ///-/-III from bar 1 to bar
2, and IV-III-1V in bars 3 and 4. To prevent this, the / and /I chord
should be placed in different inversions. Despite this, the algorithm
created a sequence starting and ending on a stable inversion, which
is a good choice in the classical sense.

Overall, the generated sequence by FHARM bears a lot of sim-
ilarity with the one by Piston. Although chords are chosen proba-
bilistically, the choice of defining this probability in terms of dis-
tance in the circle of fifths, together with parsing of the harmonisa-
tion by HARMTRACE, results in a sequence that is similar to that
of Piston.

5.3 Reflection on the evaluation

From the experiments carried out in this section, we learned that
FHARM is capable of generating good harmonisations, but can be
improved in several ways. Instead of only using one melody note to
create a list of possible chords, the melody could be segmented into
sections that are governed by a chord. As a result, the probability
of choosing a chord could be described as a function from all the
melody notes in that segment and the way the melody is evolving
to the probability of a chord. To account for dissonant chords, the
chord generation process should be extended to include chords that
do not contain the current melody note.

Another improvement could be to take into account the phrase
structure of the melody. Probabilities of chords could be increased
or decreased depending on variation, strong or weak bar sections,
and overall melodic structure. It would be interesting to see if
we could analyse the melody first to derive information about
its inner structure, and to look for variation and repetition. This



information is highly valuable for harmonising a melody in an
interesting way, as variations and repetitions are usually reflected
in the harmonisation.

Another possible direction for future research would be to in-
vestigate if the selection process of FHARM could be more tightly
integrated with a HARMTRACE grammar. One way to achieve this
could be using the melody to constrain parsing. Melodic informa-
tion could be used in a similar way that key quality information
is currently used as a constraint in the grammar. As can be seen
from the production rules of a grammar in[Section 4.3.1] creating a
functional structure yields different results in a major or minor key.
A similar approach could be used for the melody, on a per-note or
per-phrase basis.

The current inversion process uses a trend line to choose the
closest inversion of a chord to create the least varying harmoni-
sation. Although this generally works well, and keeps the chords
close to each other, our experiments have shown that, in some cases,
the least varying inversion is not the best choice. To eliminate paral-
lel and equal voice movements, larger chord spans should be con-
sidered, extending the three possibilities of inversions with notes
that are close together. Using more information from the melody,
better inversion choices can be made. For example, starting and
ending on the unstable second inversion should not be allowed in
opening and cadences of a sequence, but could be used on weak bar
parts. Parallel octaves that are created between the upper voice of
the chord and the melody should be avoided by choosing an inver-
sion in which the upper note harmonises the melody note with an
interval less or greater than an octave.

The process of selecting the best harmonisation for a melody
uses a measure of fewest parser errors to determine the best chord
sequence. From the experiments, we have seen that the worst har-
monisation is the one with the least interesting functional tree. It
would be interesting to see if a different measure of determining
the best chord sequence could be derived from the inner structure
of the functional tree. Having fewer nodes on the first level of the
tree forces a more complex inner structure for the same number
of chords. This way, the functional complexity of the harmonisa-
tion would be a measure of quality, as the number of nodes on the
first level of its tree tells something about how chords can be ex-
plained with regard to their tonal context. As is shown from the
tree structure of melody C, almost none of the chords share a func-
tional identity with a neighbour. The only exception are chords that
are repeated, but these do not yield an interesting progression.

6. Related work

Quite a few automatic harmonisation systems have been brought
forward, with different approaches to the problem. In general, these
systems can be categorised as rule-based models, statistical models,
genetic models, and hybrid models. The last category includes
hybrid models that use concepts of more than one type of model. In
this section, we review a rule-based model, a statistical model, and
a hybrid approached, and compare them to FHARM.

Rule-based approach |Temperley|(2004)) proposed the knowledge-
driven system “The Harmonic Analyser” that applies a Harmonic
Preference Rule System to harmonise a melody. The model has
two basic tasks: it must divide the piece into chord spans, and it
must choose a root label for each chord span. After segmenting the
melody, each of the possible 12 roots are assigned to each segment,
which are given a score based on the weighted sum of the rules.
The four harmonic preference rules focus on preferring certain
tonal pitch-class root relations over others, preferring chord spans
that start on strong beats of the meter, preferring roots that are close
to the roots of nearby segments on the line of fifths, and preferring
ornamental dissonances that are both closely followed by an event

a step or half-step away in pitch height, and metrically weak. This
approach is similar to FHARM, in that melody sections are used to
select a chord. In FHARM, these sections are only one melody note
long, and notes that are not assigned a chord are simply ignored
in harmonisation. However, FHARM does not try to implement
chord relationships within its rules, with the exception of forcing
opening chords and cadence building. Instead, we solve this prob-
lem by processing the chord sequence through the HARMTRACE
model, which selects chord sequences based on how correct their
functional analysis is.

Quick and Hudak] (2013)) propose a grammar-based system for
automated music composition. Like FHARM, their system is im-
plemented in Haskell, but it generates both a melody and accom-
pannying harmony. They solve the problem of voice leading using
chord spaces (Quick and Hudak|2012), which would be interesting
to apply to FHARM too.

Statistical approach A data-driven, statistical model that uses
multiple hidden Markov models was introduced by |Allan and
Williams| (2005). The authors describe how a dataset of chorale
harmonisations by Johann Sebastian Bach can be used to train
hidden Markov models. A probabilistic framework allows to cre-
ate a harmonisation system which learns from examples, and can
then compose new harmonisations. The framework of probabilis-
tic influence allows performing efficient inference to generate new
chorale harmonisations, avoiding the computational scaling prob-
lems suffered by constraint-based harmonisation systems.

Hybrid approach 1In a hybrid approach, |Chuan and Chew|(2007)
proposed an Automatic Style Specific Accompaniment (ASSA)
system, which, given only a few training examples, generates ac-
companiments in a particular style to a melody. This system uses
statistical learning on top of a music-theoretic framework, therefore
taking a hybrid approach. The relation between melodic notes and
chord harmonies is modelled as a determination of a chord note.
Notes are labelled as chord notes if they are part of a the chord
structure, otherwise it is labelled a non-chord note. Each melody
note is represented by 73 attributes, like pitch, duration, etc. With
these attributes, the functional role of a melody tone can be de-
scribed. Just as in /Allan and Williams| (2005)), chord preference is
learned from training examples. The resulting classifier is therefore
determined by the style of the music in the training set.

In both of these approaches, all the harmonic rules are learned
from training data presented to the models. In FHARM we use
rules that are explicitly defined in a formal model. By changing this
model, we can harmonise melodies in different styles, and even new
styles that cannot be learned from any training set. Although build-
ing a new model in HARMTRACE can take some time, it allows for
greater flexibility and precision with regard to the harmonisation
rules.

7. Discussion and conclusion

We have presented FHARM, a chord generation and selection
mechanism that uses the HARMTRACE model to automatically
generate chords for a given melody. Our system begins by generat-
ing multiple candidate chord sequences based on the melody, and
uses HARMTRACE to pick a sequence that best matches a harmony
model. Unlike existing systems, FHARM creates chord sequences
whose constituents are automatically functionally explained with
regard to their tonal context.

FHARM should be seen as a first step towards an automatic,
functional system for melody harmonisation. Its main contribution
is the simplicity of the approach, and how it is built out of simple
composition of individual components. Although the generated
harmonisations leave room for improvement, we have seen that
they are often good.



FHARM is a composition of four steps, as described in
generating chord sequences, selecting appropriate se-
quences, parsing to choose the best sequence, and post-processing.
Improvements to FHARM could touch each of these components
separately, without affecting the others. We could, for example,
generate more chord sequences to begin with. We could also use
different models in HARMTRACE while parsing, therefore prefer-
ring different styles of harmonisations. As for post-processing, we
could use a different algorithm for picking chord inversions. All
these improvements are specific to one component only, and re-
quire no changes to the remainder of FHARM.

Furthermore, FHARM relies on a number of key concepts cen-
tral to functional programming: algebraic data structures for ex-
pressive data representation, parsing and pretty-printing, genericity
and abstraction (in the use of HARMTRACE models), and func-
tional composition. It is an example of how we can easily com-
bine existing libraries (in our case HARMTRACE and HASKORE)
together, while adding extra functionality on top. We hope FHARM
can serve as an exploration tool for automatic harmonisation in
Haskell, or as an inspiration for the development of other appli-
cations of functional modelling of harmony.
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A. Questions posed to the experts

1. Please rate the technical aspect of the total progression with a
number from 1 to 5, where the rating indicates whether the se-
quence progresses according to the general rules of harmony
theory, where:

1: very correct; 2: moderately correct; 3: not correct nor incor-
rect; 4: incorrect; 5: very incorrect.

a Could you explain this rating?

b Please tell something about the creative aspect of the total
progression. (Is it surprising, boring, mechanical, etc.)

d Do you have any other remarks about the progression?

2. Please rate every chord and its melody segment individually
with a number between 1 and 5, where the chord fits the notes:
1: very well; 2: ok; 3: mediocre; 4: bad; 5: incomprehensible.

a Could you clarify these ratings?
b Which chords would you replace, and by what chords?

3. Do you have any other remarks about the harmonisation?
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