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ABSTRACT

We propose a novel network-based approach for location es-
timation in social media that integrates evidence of the social
tie strength between users for improved location estimation.
Concretely, we propose a location estimator — FriendlyLoca-
tion — that leverages the relationship between the strength
of the tie between a pair of users, and the distance between
the pair. Based on an examination of over 100 million geo-
encoded tweets and 73 million Twitter user profiles, we iden-
tify several factors such as the number of followers and how
the users interact that can strongly reveal the distance be-
tween a pair of users. We use these factors to train a decision
tree to distinguish between pairs of users who are likely to
live nearby and pairs of users who are likely to live in dif-
ferent areas. We use the results of this decision tree as the
input to a maximum likelihood estimator to predict a user’s
location. We find that this proposed method significantly im-
proves the results of location estimation relative to a state-
of-the-art technique. Our system reduces the average error
distance for 80% of Twitter users from 40 miles to 21 miles
using only information from the user’s friends and friends-
of-friends, which has great significance for augmenting tra-
ditional social media and enriching location-based services
with more refined and accurate location estimates.

Categories and Subject Descriptors
H.2.8 [Database Applications|: Data Mining
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1. INTRODUCTION

Location-based social media is widespread, with the adop-
tion of voluntary user-based location sharing via “check-in”
services like Foursquare, geo-tagged posts on Twitter, and
photos shared on Flickr and Instagram. These services allow
users to annotate their activities with a location field, rang-
ing from a broad descriptor like “New York” or “USA” to an
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extremely granular latitude/longitude pair derived from the
GPS capabilities of modern smartphones. Millions of users
have already adopted these location sharing services, provid-
ing an unprecedented geographical perspective on the trails
and connections among millions of social media users.

By investigating the interplay between geography and so-
cial media, both researchers and practitioners are enabling
new applications that leverage location. Location informa-
tion is increasingly incorporated into social media for provid-
ing localized content, location-aware recommendations, and
other geo-spatial enabled services. For example, researchers
have begun investigating techniques to cluster users based
on their revealed geographic patterns [15], automatically de-
riving location-based social networks, and improving friend
suggestion based on geographic proximity [4], [17], [3]. Local-
ized social media activity — like Twitter discussions about a
recent city council vote — can be automatically detected and
directed to interested parties. Crowds of co-located people
can be identified and related support services can be directed
toward them — in the case of a fire or emergency, resources
may be more smartly targeted to the affected regions.

Tempering this excitement, however is a key challenge:
how to derive high-quality location estimates for users in
social media. Many users choose not to reveal their loca-
tion, while others may reveal their location only using noisy
or overly general descriptors (e.g., “ New York”). To tackle
this challenge, one of the most popular location estimation
methods is network-based estimation, in which a user’s loca-
tion is derived from the known location properties of other
users nearby in the social network (e.g,. if most of my di-
rect friends are in San Francisco, then perhaps I am as well)
[5], [11]. One of the best known network-based approaches
was introduced by Facebook researchers Backstrom et al. [1]
in a comprehensive study over 2.9 million Facebook users.
This Facebook study analyzed users who had posted a home
street address and found that as distance increases, the prob-
ability of friendship decreases. Building on this observational
study of Facebook users, they showed how the street ad-
dresses of a user’s friends could be used to predict a user’s
location within 25 miles 57% of the time.

While an encouraging first step, this Facebook approach
may encounter difficulties in location estimation when ap-
plied more broadly to other social media services:

o Multiple (often imprecise) location granularities. First,
many users in social media reveal broad, imprecise loca-
tions (e.g., at the city or state level), while others provide
fine-grained latitude-longitude information. In particu-
lar, users are less likely to post precise locations such as
street addresses on public websites such as Twitter. How



can these multiple location granularities be integrated to
account for uncertainty at different levels?

e Varying social ties. Second, not all relationships in social
media are the same. Some ties are stronger than others,
and presumably some ties are more revealing of a user’s
location. How does this variable tie strength nature im-
pact location estimation?

e Conflicting purposes. Finally, many social systems serve
different purposes. Twitter, for example, is both a so-
cial network connecting friends (which may tend to be
local) as well as a news media (supporting global dissem-
ination) [10]. What is the appropriate balance between
these conflicting purposes for location estimation?

To address these challenges, we propose a novel network-
based approach for location estimation that integrates evi-
dence of the social tie strength between users for improved
location estimation, naturally incorporates uncertainty across
multiple location granularities, and can distinguish between
users of the system that operate at cross-purposes. We in-
vestigate this approach through an examination of over 100
million geo-encoded tweets and 73 million user profiles col-
lected from Twitter. Concretely, we propose a location esti-
mator — FriendlyLocation — and investigate the relationship
between the strength of the tie between a pair of users and
the distance between the pair. Based on this investigation,
we identify several factors such as number of followers and
how the users interact that can strongly reveal the distance
between a pair of users, and use these factors to train a tree
classifier to predict the distance between a pair of connected
users. We use the results of this classifier as the input to a
maximum likelihood estimator to predict a user’s location.
We find that this proposed method significantly improves
the results of location estimation relative to the Facebook
technique. FriendlyLocation improves the average error dis-
tance for 80% of Twitter users from 41 miles to 21 miles
which has great significance for augmenting traditional so-
cial media and enriching location-based services with more
refined and accurate location estimates.

2. RELATED WORK

The study of geographical properties of online social media
users has drawn intensive attention in recent years. Charac-
terizing network properties in relation to local geography has
been studied in [18]. Lindqgvist [12] analyzed how and why
people use location sharing services, and discussed the pri-
vacy issues related to location sharing services. User behav-
ior with regard to the location field in Twitter user profiles
has been studied in [9)].

Scellato et al. [16] used data from three location based
social networks to investigate the relationship between dis-
tance and location, and they showed that connections are
not purely caused by geographical or social factors. They
investigated two random models where they shuffle the user
locations and another where they shuffled the social connec-
tions and investigated what happened to the user location.
They showed that if a user has more connections, then their
friends tend to be further away. They also found that longer
connections are equally likely to be part of a social triangle
as shorter connections.

Several researchers in recent years have looked into pre-
dicting user locations in a social network based on the social
graph. In the largest-to-date study on this subject, Facebook
researchers analyzed the physical distance between Face-

book users’ social relations and utilized the locations of a
user’s friends’ to predict the user’s geographical location [1].
Davis et al. [5] investigated a system that predicted location
by taking a vote among the locations of the user’s friends
and picking the most popular location.

An alternative to network-based approaches is content-
based, in which a the content associated with a user either
explicitly reveals location information (e.g,. mentioning a lo-
cal attraction like Disneyland) or implicitly does so (e.g., by
inferring subtle local linguistic cues to estimate a user’s lo-
cation). Cheng et al. [2] proposed a content-based system for
locating users on T'witter. They found words that are highly
concentrated in specific regions and built a model to calcu-
late the probability that a user lives at a location. Eisenstein
et al. [6] proposed a functionally similar system based on a
latent variable model that predicted a user’s location based
on the words in their tweets. Recently, Li et al. [11] proposed
a system to integrate both network and content-based esti-
mation via a unified discriminative influence model which
combined locations that a Twitter user mentioned with the
locations of the user’s followers.

In recent work [14], the authors look at users who post
at least 100 geo-located tweets a month in NYC and LA.
They reconstruct the social graph from co-occurring geo-
located tweets and used dynamic Bayesian networks to pre-
dict where a user was at a particular moment in time.

Finally, Cranshaw et al. [4] tackled the inverse of the prob-
lem we are investigating: they predicted the existence of a
social network tie given precise location information from
laptops and cell phones. They used a collection of features
of when users are co-located. Together, these efforts have
begun to lay a foundation for the study geo-social media.

3. LOCATION ESTIMATION INCORPORAT-

ING TIE STRENGTH

In this section, we build a model for the probability that
a user, who we refer to as the target user, lives at a spe-
cific location given the approximate location of his friends
and followers. Every user on Twitter has a set of people
that they interact with, which we refer to as their contacts.
This includes the user’s friends, followers, and people they
mention in tweets (i.e., people the user speaks to). Many
of these contacts share their locations. We define L to be
the set of known locations of the contacts of a user. Given
a target user, our goal is to estimate the location [ of the
user provided only with some imperfect information about
the location of that user’s social network, L¢. We first de-
scribe the baseline Facebook model for location estimation,
identify several limitations of applying it more widely, and
then describe the proposed FriendlyLocation approach that
integrates tie strength for augmented location estimation.

3.1 Baseline: The Facebook Model

The Facebook model developed by Backstrom et al. [1]
begins with a striking observation: that the probability of
friendship is roughly inversely proportional to distance. Specif-
ically, by examining the ratio of actual edges in the social
graph at a particular distance to the total number of possi-
ble edges at that distance (i.e., the probability of friendship),
they find a curve of the form a(b+ z)~°, with an exponent
close to c = —1.

With the empirically observed probability of friendship,
they can estimate the likelihood that a user lives at a loca-
tion [ using both L€, the set of locations of the user’s friends



with known locations, and L?, all 2.9 million known locations
of Facebook users. Then, the Facebook model estimates the
likelihood of location [ as:
Facebook(l, L) = H _p(=t) H 1—p(l =)
AL ey L

where p is the probability of friendship given an input dis-
tance (which again, can be derived empirically). The first
product in the formula combines the probabilities from a
user’s friends. Locations near a user’s friends will have a
higher probability because p is roughly inversely propor-
tional to distance. The last product in the likelihood for-
mula is only a function of the location I{ and the locations
of the strangers; it does not depend on any other informa-
tion about the target user’s contacts. For convenience, we
refer to this as pStgrs:

pStgrs(l) = H L—p(|l =)

1seLs

As suggested in [1], this can be pre-computed for every lo-
cation. Major cities have the lowest probability for pStgrs,
and remote areas have the highest probability. It may seem
counter-intuitive that areas with low population density have
a higher probability, but consider this example: if someone
has ten friends in New York City and ten friends in a small
town in upstate New York, they are more likely to live in
the small town, and just happen to know people in the big
city.

The Facebook model naturally aggregates the locations of
a user’s friends, and gives the probability that a user lives
at a given location. They then calculate this probability at
each of the locations of the user’s friends. The location with
the highest probability is often the center of the cluster of
the user’s friends. However, directly applying this approach
to other non-Facebook domains may encounter difficulties.
First, the Facebook empirical study focused only on the con-
tinental US, meaning that distances between contacts were
naturally limited to around 1,000 miles. When investigating
global friendships (as on Twitter or on the rest of Facebook),
there is considerable noise introduced in the 1,000-10,000
mile range due to the distribution of land and oceans on
the surface of the earth. Second, the Facebook dataset had
street addresses for approximately 2.9 million Americans,
and they used the friendships between users with street ad-
dresses to do the calculation. Since information on Facebook
is usually only shared with a user’s friends, people are more
willing to divulge their home addresses. On most other social
media websites, the location is publicly shared. In practice,
many users in social media reveal broad, imprecise locations
(e.g., at the city or state level), while others provide fine-
grained latitude-longitude information. Third, the strength
of connection between users necessarily varies, so capturing
this variation is important. Encouragingly, Gilbert [7] have
shown how the strength of a tie can be predicted by inter-
action patterns. Finally, many social systems serve different
purposes. Twitter, for example, is both a social network con-
necting friends (which may tend to be local) as well as a news
media (supporting global dissemination) [10].

3.2 FriendlyLocation: Incorporating Tie Strength

A common theme of these challenges is that the quality
of the geographic information conveyed by a relationship in
social media varies. Some edges may convey strong evidence
of the location of a user. For example, intuitively the many
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Figure 1: After splitting edges into quantiles based
on their predicted distance, each quantile was fit to
a curve. Here are four of the ten curves and their
curves of best fit. The other six curves of best fit are
shown as faint dotted lines.

edges between a user with an unknown location and his co-
workers (for whom we know their location) should contribute
strongly to the likelihood that the user is nearby those co-
workers. In contrast, links between a user with an unknown
location and with a news service (e.g., CNN) should con-
tribute little discriminating power to estimating the location
of the user.

The challenge here is to separate the best contacts, who
are likely to be nearby, from bad contacts who are likely to be
far away. Simply encoding our intuitions about who should
make a good contact is a starting point, but could miss many
non-obvious relationships: for example, there may exist a
pair of users who are good friends, communicate with each
other, have many friends in common, and yet still live on
opposite sides of the globe.

Hence, we propose to assess the relative quality of each
edge from a target user to his contacts, so that edges con-
veying strong location information are weighed more than
others. This could be looked at as a classification problem
where we want to classify edges as local or non-local, but the
problem is there is a smooth continuum from local to non-
local, and semi-local friends can be useful for location pre-
diction. As a result, we model this as a regression problem,
and we propose improving the Facebook system by adding
in information from a decision tree. Concretely, suppose we
have a single edge from a user to one of his contacts. We
propose to assign this edge to a quantile based on its esti-
mated “goodness” as determined by the decision tree. The
tree regressor will sort out the best contacts and the worst
contacts for location prediction.

Before going into the details of using the tree regressor,
we introduce some notation:

o L' denotes the locations of every target user
e L denotes the locations of every contact

e D% is the set of actual distances from target users to
contacts

e DP is the set of goodness values returned by the decision
tree

n = |D%| = |DP| is the number of edges

m is the number of quantiles



Label Size Description

Data obtained

Target Users 249,584
located tweets

Geocoded Users 894,617

Users who posted at least 3 geo- Location from GPS coordinates, user ids of

friends and followers, and text of tweets.

Users who posted at least 3 geo- Location from GPS coordinates and geocoded lo-

located tweets and had a location  cation from user profile
the geocoder could parse, but not

selected as target users
10 million 25 contacts of target users with  Geocoded location from profile, user ids of friends
locations, randomly selected
100 contacts of target users, ran-  user profile (some of these users have a geocoded

Located Contacts

Leafs 71 million
domly selected

and followers, and text of tweets

profile)

Table 1: Four different sets of users and the data we obtained about them

Our crawler discovered millions of edges between target
users and their contacts. We ran the decision tree regressor
on these edges to create a set of tuples (df,d?) for df € D*
and df € DP where df is the actual distance from target to
contact, and d? is the value predicted by the decision tree.
Although the values returned by the regression tree are also
distances, we only use them as a measurement of quality.

Suppose we construct a set of m quantiles, representing
edges with different predicted goodness. Let the boundaries
for these quantiles be {qo,...,qm}, where:!

Dp jn y? .7 <m
q].:{ a+iizy
o J=m

The quantile for a specific distance d? can be found by com-
paring it to the boundaries:
antl(d) = max {j:d? <q;}
7€{0,...,m}
We use this to find actEdges, which is the number of edges

that belong to quantile j and have a distance of d miles from
the target to the contact:

actEdges(j,d) = [{i € {1,...,n} :d =di A j = qntl(d})}|

We will compare this to the number of edges that could have
possibly existed by looking at the Cartesian product of all
the target users (L) and all of the contacts (L*). We define
stgrEdges to be the number of edges that could have existed
at a distance d:

stgrEdges(d) = |[{(I*,1°) : 1" € L' Al € L¥ Ad = |l — 15|}

Just like they did in the Facebook paper, we can compare
actEdges (the number of edges that actually existed in a
specific quantile) with stgrEdges (the number of edges that
might have existed) to find the probability that a contact in
a quantile j lives d miles from the target user:

actEdges(7, d)

P (5, d) = stgrEdges(d)

For each of the quantiles, we can fit this probability to the
curve from [1]:

P (j,d) = a;(bj +d)~

We can combine this improved model into the existing
estimator by replacing the probability of being a contact
based purely on distance (p) to the probability based on the
regression tree (p*). We now have a formula for predicting

!The notation used for order statistic may need some expla-
nation. X, is the n'" element in the set X when sorted in

increasing order, so X () means the second smallest element
in X.

the best location given L, the set of locations of the contacts,
and P, the set of predicted distances to the same contacts:

11 p* (aqutl(pe), |1 — I5])

FL(,L,P) = (1= p(ll - G]))

pStgrs(l)
ZZEL,pkEP

We choose to split into ten quantiles, which gave us ten
different curves for the probability that a certain type of
contact exists between a pair of users. Four of the ten curves
from one of the folds from the five-fold evaluation and their
lines of best fit are shown in Figure 1. The best contacts
are orders of magnitude more likely to live near a target
user than the worst contacts. If the predictions from the
tree regressor were ignored, and users were placed into one
group instead of ten equal groups, this would reduce to the
model for friendship and distance presented in [1]. We choose
ten because it was large enough to distinguish between the
curves. Larger numbers of quantiles give no benefit since the
curves we are fitting are so noisy as can be seen in Figure 1.

4. FACTORS IMPACTING THE DISTANCE
TO A CONTACT

In the previous section, we formalized the location esti-
mation problem incorporating evidence of tie strength. But
what factors actually impact the distance to a contact? In
this section, we empirically examine a large sample from
Twitter, totaling 100 million geo-encoded tweets and 73 mil-
lion user profiles. Based on this sample, we examine the fol-
lowing properties to study how various types of edges corre-
lated with proximity, including (i) friendship relationships,
(ii) friend and follower counts, (iii) conversations between
users, (iv) if the account is public or private, (v) edges in so-
cial triangles, (vi) distances from a contact to their contacts,
and (vii) granularity of locations.

4.1 Data Collection from Twitter

To investigate how social relation and geographical dis-
tance between the relations correlate, we sample a dataset
from Twitter. Our analysis and prediction is based on data
collected from Twitter during May, June, and July of 2012.

We built a crawler to find these contacts for users who
used Twitter’s Location Feature to disclose their location.
The crawler sampled over one hundred million geo-coded
tweets by monitoring Twitter’s public streaming API for
all of May 2012. We kept the tweets from the users who
posted at least three tweets, which left us with 1,758,101
Twitter users. For each of these users with geo-coded tweets,
we used the median latitude and median longitude of the
locations of the user’s tweets as an approximation of her
home location. Some Twitter accounts, such as accounts that
posted jobs, would move around faster than a human could
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Figure 2: CDF of distance from target users to users
they have some contact with. Reciprocal friends
tend to be closer than other types of friendships.

possibly move. To account for this, the crawler calculated the
distance between each tweet and the user’s home location.
The crawler ignored users if the median distance from their
tweets to their home location was greater than 50 miles.
This only removed 3.4% of the geo-located users. We also
removed an additional 2.9% of the geo-located users who
did not have any contacts with locations we could decode,
which left us with 1.6 million Twitter users with a known
location. We randomly selected 249,584 of these users for
analysis and experimentation. > We refer to these users as
the target users. Almost all of the experiments in this paper
are based on these target users.

Users who post geo-located tweets are not entirely repre-
sentative of the average Twitter user. In particular, they are
less concerned about their privacy and have a precise loca-
tion. We only use information obtained from the contacts,
and not the geo-located users themselves in our prediction.
There are some Twitter accounts, such as large organiza-
tions, who do not have a single location. In practice, a loca-
tion prediction system would need to identify users who do
not have a location.

For all of the target users, our crawler used Twitter’s API
to download the users’ 100 most recent tweets, a list of friend
ids, and a list of follower ids. We also collected the user
profiles for a sample of users who were two steps away from
the target users on Twitter’s social graph. In the end, we
collected just over 73 million Twitter user profiles. Table 1
shows a summary of the data obtained from Twitter. This
data was used to do the analysis in the rest of this section.

4.2 Factor 1: What type of contact is closest?

We first consider the type of contact and its impact on
distance by dividing all contacts into one of four disjoint
sets:

Reciprocal Friend: The target user follows this user and
is followed back.

Just Friend: The target user follows this user and is not
followed back.

Just Follower: The target user is followed by this user, but
does not follow them.

Just Mentioned: The users do not follow each other, but
the target user mentioned the other user in a tweet.

2We originally selected 250,000 users, but had to remove 416
of them. These users had contacts with locations, but none
of their contacts had meaningful locations.

3000f,
[ recip friends (236009)

length of edge in miles

Figure 3: Histogram of distance to reciprocal friends.

Figure 2 shows the cumulative distribution function(CDF)
of the distance between a target user and several types of
contacts. Distance is plotted on a logarithmic scale to show
both local and global effects. On a logarithmic scale, the
contacts are fairly evenly distributed from being nearby to
being on the opposite side of the world.

In general, we observe that reciprocal friends are the clos-

est, followed by followers, friends, and finally users who are
just mentioned. 38% of reciprocal friends live within 25 miles
while only 18% of users who are just mentioned live within
that radius. While it may seem that since being followed
by someone and following someone should be identical, they
are not. Celebrity and news accounts on Twitter often have
large numbers of followers, but they normally do not follow
a large number of users. Since the target user is selected ran-
domly, they are usually an average user and not a celebrity.
If they follow someone, it might be a celebrity; however, if
someone follows them, it is probably someone who knows
them.
What is the distribution of contacts? To further an-
alyze the distribution of contacts, we show in Figure 3 a
logarithmically-scaled histogram of the distances between
various types of contacts. All four types of contacts follow
roughly the same distribution: one peak around 10 miles
from people who live nearby, and several other peaks be-
tween 100 and 10,000 miles. Since the contacts often list the
name of their town, there is a small distance between the
geocoded location of the town and the location of the tar-
get user’s tweets. There aren’t as many contacts in the 30
to 150 mile range, but then after 150 miles, peaks start ap-
pearing for major cities. One reasonable explanation for this
is that Twitter is not just a social network; it is also a news
distribution network as described in [10]. This distribution
suggests that users have two types of contacts: people who
they met in real life, and people who they met online or
know about via mainstream media.

Most previous location prediction work has focused on do-
ing predicting locations in the continental U.S. In the first
figure from [13], McGee et al. observe a bimodal distribution
in distances between American Twitter users with strong
peaks at 10 miles and 2500 miles. When looking at this sim-
ilar set of data on a global scale, we find more chaos in the
distribution of contacts at distances greater than 200 miles.

4.3 Factor 2: Does the number of friends and
followers a person have affect how close
they are?

The second factor we consider is the number of friends
and followers of a contact. We took each of the reciprocal
friendships that we looked at in Figure 2 and put them into
five log-scaled bins based on the number of friends or follow-
ers that the contact had. Figure 4 shows the result of this
procedure.
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Figure 4: A comparison between number of followers

lowers tend to be further away.

In general, people who are more promiscuous followers
and friends are less likely to live nearby. This makes sense
because it is easy to meet 15 Twitter users in real life, but
very few people know 1000 Twitter users who live in the
same town. Contacts with 10-99 followers were within 25
miles of their geo-located friend 45% of the time while con-
tacts with 1000-9999 followers were nearby only 26% of the
time. There was a similar result in the number of friends: the
proportion of local contacts went from 46% down to 23%.

Mainstream media and celebrity accounts such as the New
York Times and Lady Gaga have millions of followers while
normal users rarely have more than a few hundred. Follower
count and friend count are good ways to distinguish celebrity
and news accounts which are useless for location prediction.

4.4 Factor 3: Are users closer to people they
communicate with?

We look at the 100 most recent tweets for the targets and
one of their contacts for each type of their contacts. The
edges are divided into groups based on whether the target
user mentioned the contact and whether the contact men-
tioned the target user. For each of the groups, we calcu-
late the percentage of contacts who live within 25 miles of
the targets and the number of edges in that group. This is
shown in Table 2. Since contacts who were just mentioned
were mentioned by the target user by definition, the contact
mentions and both ignore table cells are empty.

In almost every case, increased communication increases
the probability that two users live near each other. There is
one exception: when an average user mentions someone they
follow who does not follow them back, it has no effect—in
both cases the contact is local 25% of the time. In other
words, if a random user mentions a celebrity who does not
bother to reply, they probably do not live in the same area.
On the other hand, in the rare event that someone who is
just a friend replies to their follower, then the probability
that they live near each other is much higher—it goes from
21% to 42%.

The weakest type of contact is users who were just men-
tioned, but never replied to. If the person is mentioned, then
36% of users with no friend/follow relationship who have
a conversation live within 25 miles. This is approximately
equal to the 35% of reciprocal friends who ignore each other
and live within 25 miles. Unsurprisingly, the strongest type
of connection is reciprocal friends who communicate. One
challenge to using communication patterns as a source of

10°
length of edge in miles

10"

and proximity—people who have more friends or fol-

Public Private
local count | local count
Recip Friend 37% 211136 | 41% 24873
Just Follower 25% 204417 | 31% 21168
Just Friend 21% 233849 | 39% 5228
Just Mentioned | 18% 183368 | 35% 4331

Table 3: Comparison between public accounts and
private accounts on Twitter. Private accounts tend
to be closer.

information for location prediction is that the communica-
tion patterns that are correlated with proximity are rare.

4.5 Factor 4: Are users closer to private ac-
counts?

Like many social networks, Twitter allows users to con-
trol the privacy settings on their account. The specifics dif-
fer from network to network, but in Twitter’s case a user
can make their account private which means followers have
to get permission to follow the account. There are demo-
graphic differences between public and protected accounts.
For example, Gilbert [8] demonstrates that rural users are
more likely to make their accounts private than public ac-
counts. In the case of protected accounts on Twitter, basic
information about their profile such as their location and the
number of friends and followers is public, but their friends
list, followers list, and the text of their tweets is private, and
not available for analysis.

As seen in Table 3, the most dramatic difference between
private and public occurs if a user follows a protected ac-
count. Since users generally only allow people they know to
follow a protected account, this brings the users almost as
close together as if they were reciprocal friends. On the other
hand, if a protected account follows the target user, they are
only slightly more likely to be nearby.

4.6 Factor 5: If two of your friends live near
each other, does that increase the chance
they live near you?

We now turn our attention to triangles of users. Finding
useful relationships between the edges of a social triangle
is tricky because the three distances depend on each other.
Unfortunately, it is fairly simple to show using the triangle
inequality theorem that if two users are 1000 miles apart,
then the third member of the triangle has to be at least 500



both mention target mentions | contact mentions both ignore overall

Tocal count | local count | local count | local count | local count
recip friend 42% 28067 50% 17903 | 45% 21066 35% 168973 38% 236009
just follower 40% 2001 47% 792 40% 5958 25% 216834 25% 225585
just friend 21% 23314 | 40% 910 | 42% 1884 21% 212969 21% 239007
just mentioned 18% 182978 36% 4721 0 0 18% 187699

Table 2: If target users interact with their contacts, then they are more likely to live nearby.

number of users
°

°
b

1 my 0-10 (61678)
1 my 10-100 (18128)
=1 my 100-1000 (38197)
3 my 1000+ (29666)
[ our 0-10 (56410)
3 our 10-100 (23746)
[ our 100-1000 (40830)
3 our 1000+ (26683)

10° 101 107 10° 10°
distance between edges in miles

Figure 5: Comparison between distance to a mutual
friend, labeled “our”, and someone who is not a mu-
tual friend, labeled “my”. If two contacts are mutual
friends and live near each other, a target user is more
likely to live near them than two contacts who live
nearby but are not mutual friends.

miles from one of the other two. Since this isn’t a useful
result, we designed a more complex experiment to analyze
the relationship between the sides of the triangle. A script
searched for a specific pattern in the social network of the
target user’s reciprocal friends: two people who were friends
with each other and a third person who had no connection
with the other two:

Cour>
e

To help label the four users, we describe this social graph
from the perspective of the target user:

¢

e “me” is the target user

e “you” is the contact who is reciprocal friends with “me”

e “my” has no relationship with “you” and is reciprocal

friends with “me”
e “our” is reciprocal friends with both “me” and “you”

We found this pattern for 147,669 of the target users. If a
user had multiple instances of this pattern, it picked one of
them randomly so that particular users would not bias the
results. Figure 5 shows a comparison between distances to
the “my” users and the “our” users. For each of the “my” users
and the “our” users, we put them into one of four logarith-
mically scaled bins based on their distance from the “you”
user. Then we plot the CDF for the distance from the target
to the “my” and “our” users. This allows us to investigate
the effect of mutual friendship on distance. We report one
very simple result: if two of your friends are close (within 10
miles), then whether they know each other or not strongly
affects how close you are to them. If they are farther apart,
it doesn’t matter.

fraction of edges

.0<=lcr<.25 (112207)
25<=lcr<.5 (42939)
5<=lcr<.75 (34302)
75<=lcr<=1 (17511)
o leafs (29050)
2 ler==.25 (11454)

10° 10° 10"
length of edge in miles

Figure 6: The colored lines show the distance to con-
tacts split into groups based on the proportion of the
contact’s friends and followers who live near the con-
tact. The dotted line shows the distance to contacts
who have no locatable contacts. Contacts who have a
high proportion of nearby leafs are much more likely
to live near the target user.

4.7 Factor 6: Are some users closer to all of
their friends and followers?

In the previous sections we only looked at the contacts
of the target users. In this section we will go two steps out
on the social graph and investigate the friends-of-friends. We
want to know if some users are more localized than others, so
we compare contacts with lots of local contacts to contacts
with mostly distant contacts. Local Contact Ratio(LCR)
is the fraction of a user’s contacts who live near the user. For
a contact at location [¢ and a set of their contacts’ locations
L, we formally define LCR as follows:

e L:l—1°] <25}
|L|

LCR(I°, L)

We picked a cutoff distance of 25 miles to distinguish be-
tween local and non-local contacts. 25 miles is about the dis-
tance where the bulk of local users ends as seen in Figure 4.
The distance cutoff is somewhat arbitrary, but it doesn’t
seem to matter much in practice since we are really trying
to distinguish between contacts who are hundreds of miles
away and contacts who live in the same town. Around one in
ten contacts did not have any contacts with a location from
the contacts we looked at—they were treated as a separate
group.

In [11], the authors model the probability distribution of
user’s followers using a Gaussian distribution, and use this
to build a location prediction system. There are many other
ways to analyze the leafs: average distance to the leafs, me-
dian distance to the leafs, fitting the distances to a curve
such as a Gaussian. We are looking at location prediction
anywhere in the world, which means contacts may be 10,000
miles away, and a location 10,000 miles away is nearly as bad
as a location 1000 miles away, so average is obviously not
useful. The disadvantage to using the median is more sub-
tle. As seen in Figure 2, the median distance to a contact
is often in the 100-1000 mile range, and only about a third



of contacts are actually local. This means that median dis-
tance to leafs does a reasonable job of separating the worst
contacts from the average contacts, but local contact ratio
does a better job of identifying the very best contacts.

Figure 6 is a graph of the distance to reciprocal friends
split into bins based on the local contact ratio of the con-
tact. The figure shows that some users are much more lo-
cal than other users. For example, a local newspaper may
have thousands of followers and few friends, but the people
who follow a newspaper are generally local. According to the
other factors we looked at, the newspaper is a bad predictor
of location, but in reality it is a great predictor.

Of the factors we have investigated, this is the one that
is most strongly correlated with distance—in the next sec-
tion we will see that local contact ratio ends up at the top
of a decision tree to separate local contacts from non-local
contacts. One problem with this technique is that it is some-
what expensive to deal with the large number of profiles two
steps out on the social graph. Our crawler originally looked
at 100 leafs per contact because Twitter’s API will return
up to 100 profiles at a time, but fetching and saving all those
profiles is slow. The percentage of contacts within 25 miles
with a good LCR based on 10 leafs, 20 leafs, and 100 leafs
was 53%, 55%, and 58%, respectively. All of these are notice-
ably closer than reciprocal friends who are within 25 miles
38% of the time, but it wasn’t worth the expense of obtain-
ing 100 leafs for each contact. We used LCR based on only
10 friends when evaluating the FriendlyLocation system.

4.8 Factor 7: Are some locations better than
others?

The location field on a user’s profile is just a text field that
asks the user to respond to “Where in the world are you?”.
Responses include neighborhood names, state names, coun-
try names, and even jokes and nonsense. We use Gisgraphy
to geocode this free-form text to a location using the GeoN-
ames database.

Since some locations are significantly more useful than
others, we needed a way to evaluate the quality of a loca-
tion. The geocoding users are the 894,617 users who posted
geo-located tweets, were not selected as target users, and
also filled in the the free-response location field with some-
thing that the geocoder is able to decode. We can compare
the results of the geocoder to the location of the geo-located
tweets for these users to quantify how accurate the geocoder
is for certain types of locations. We define the location er-
ror to be the great circle distance between a user’s home
location (from their tweets) and the location returned from
the geocoder. The location error for a user can vary from
less than a mile to over ten thousand miles. We calculated
the location error for each of geocoding users, and grouped
the users by their location. For the 17,370 locations that had
at least three geocoding users, we calculated the median lo-
cation error (MLE) for that location. All the users who were
at locations with only one or two users were grouped ac-
cording to the type of location returned by the geocoder.
We calculated the median error for each location type. The
median is more appropriate than the average or standard de-
viation because those metrics are strongly affected by large
outliers. This gives us a method to estimate the quality of a
coordinate returned by Gisgraphy.

Figure 7 shows the distance from target users to their
reciprocal friends after being divided into three groups based
on MLE. Contacts with a low MLE provide relatively high-

o
£

0.4

fraction of edges

[ 0<=MLE<10 (151962)
1 10<=MLE<100 (44814)
£ 100<=MLE<1000 (39233)

10° 10! 10 10° 10
length of edge in miles

Figure 7: Reciprocal friends divided into groups
based on the median location error(MLE) of their
location. Contacts who report a location with a low
MLE usually live near their contact, while contacts
with a high MLE generally live in the same region.

quality location information—50% of reciprocal friends with
a MLE less than 10 live within 25 miles of the target user.
Contacts with locations with a MLE greater than 1000 were
ignored for all of the experiments in this paper, since these
locations were almost always nonsense values that happen
to decode to an actual location.

4.9 Summary

Based on this large-scale analysis of Twitter, we conclude
the following:

e Reciprocal friendships tend to be physically closer than
contacts with less strong relationships such as someone
who is just a follower.

e Contacts who mention or are mentioned by the target
user on Twitter tend to be located nearby.

e Protected accounts tend to be closer, but we provide less
additional information for assessing their relative quality.

o Contacts with lots of friends and followers tend to be
further away (since, in many cases these contacts corre-
spond to celebrities or news organizations).

e Some accounts, such as a local newspaper, may have lots
of users from the same area. These accounts can be iden-
tified by looking at a small number of their contacts.

e Contacts with more precise locations are more useful for
location prediction.

5. BUILDING AND EVALUATING FRIEND-
LYLOCATION

In this section, we integrate the observations from our
study of the factors that impact distance into the Friendly-
Location location estimator. While there are many options
for mapping from input factors to tie strength, we adopt a
decision tree regressor based on the CART algorithm (clas-
sification and regression trees) to distinguish the best edges
from the worst.> A decision tree regressor works similar to
the well-known decision tree classifier, except that it pro-
duces real numbers as output instead of discrete classes.
During training, the training data is recursively split based

3Since most of the input features are correlated and either
binary or non-linear, linear regression is unlikely to work
well. In addition, the data is dense and low-dimensional, so
support vector machines do not work well.
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Figure 8: The top three levels of the decision tree.
Samples is the number of edges used to train that
node of the tree, and value is the geometric average
distance from a target to a contact for that node.
This tree will predict a distance of 839 miles for
a contact with a local contact ratio of .2 and 2800
friends. It will predict a much-closer distance of 43.7
miles for a user with a local contact ratio of .5 and
a median location error of 10 miles.

on the input variable with the most predictive power to build
a binary tree. Each of the internal nodes of this tree have a
cutoff for one of the input variables, and the leaves of the
tree have a predicted value.

Setup. Since the distances between users varied by several
orders of magnitude, we trained the regressor to predict the
log of the distance. The tree regressor was configured to not
split leafs with fewer than 1000 data points to prevent over-
fitting. The top three levels of a decision tree are shown in
Figure 8. The predictor does not do a great job of predicting
the actual distance to a contact; there’s simply too much
noise. However, it does do an excellent job of separating the
closest pairs of users from the most distant pairs as we will
show in the next section.

We evaluate the system against a baseline implementa-
tion, and we investigate several modifications to the system.
We use five-fold cross validation on the target users to eval-
uate the system. We evaluated the FriendlyLocation system
against the 249,584 target users.

For each of the folds, we ran the tree classifier and gen-

erated a new set of curves for p* from the training data.
We did not recalculate pStgrs or the probability as a func-
tion of distance used for the baseline, since these are fairly
independent of the selected set of users.
Metrics. We evaluate the system against the metrics used
in previous works: accuracy at 25 miles (ACC) which was
used in [1] and average error distance (AED) proposed in [2]
and extended in [11]. Following the notational conventions
from [11], we define ACC and AED for a set of users u € U
with Err(u) as the distance between a target user’s home
location and the predicted location.

Accuracy is the fraction of users who live within 25 miles
of their predicted location:

_ {u € U : Err(u) < 25}|
U]

Average error distance (reported as AED@100%) is as fol-
lows:

ACC(U)

> wev Err(u)
U]

Since AED may be affected by outliers, we also report the
AED at other percentiles, following [11].

AED(U) =

} Backstrom Baseline (249584)
FriendlyLocation Basic (249584)
Z2 Nearest Predicted Contact (249584)

107
error in prediction (miles)

10°

10*

Figure 9: FriendlyLocation against several baseline

systems.
Model aed@60 aed@80 aed@100 acc@25
Baseline 8.41+.038 40.84+.20  426+3.9 55.7%+.09%
Nearest 7.73+.117  50.3+.39  594+9.3  56.5%+.22%
FriendLoc—Strangers  5.79+£.028 25.24+.18 377+4.3 62.4%+.09%
FriendLoc—Leafs 5.36+.011 22.1+.12  367+4.0 63.6%+.12%
FriendLoc Basic 5.35+.008 21.4+.12  364+3.2 63.9%+.05%

Table 4: Results of our location prediction system
when compared to a baseline. The value after the
=+ is the standard deviation from the five-fold cross-
validation.

5.1 Evaluating FriendlyLocation

We investigate several implementations of the Friendly-
Location system along with two baseline systems, which we
will discuss in upcoming sections:

Baseline This is based on the maximum likelihood estima-
tor presented in [1]. Some changes to the system had to
be made to make it work on Twitter’s directed graph.
(Facebook friendships are always reciprocal.)

Nearest Contact This predictor chooses the location of
the contact that the tree regressor picks as the closest
contact.

FriendlyLocation Basic This is the system described in
the previous section with only information from the
locations of contacts.

FriendlyLocation - Strangers This is the system described
in the previous section without pStgrs.

FriendlyLocation - Leafs This is the system described in
the previous section without the locations of the leafs
and tweets from the contacts.

Table 4 shows our system compared to a baseline imple-
mentation. As seen in the table our basic FriendlyLocation
system predicts the location within 25 miles 63.9% of the
time. Our basic system preforms significantly better than
the baseline implementations. The results are more impres-
sive when you look at it in terms of average error distance.
The baseline system has an average error distance of 40.8
for the best 80% of predictions, and our basic system has an
average error distance of 21.4. This means that our system
is better at making good estimates better than it is at mak-
ing bad estimates good. Unfortunately, when the predictor
is wrong, it can be very wrong. As seen in Figure 9, around
a tenth of the predictions are worse than 1000 miles for all
of the predictors. Some of this inaccuracy may be caused by
inaccurate training data, but there is no real way to know.



5.2 Ignoring Strangers

Calculating pStgrs is very expensive. It only has to be
computed once, but if you wanted to do location prediction
on a different social network, it would need to be recom-
puted. We investigate the FriendlyLocation system without
this information, by running prediction without multiplying
by pStgrs when calculating the overall probability for each
location:

I[I »(anti(pe), 1 -5

liEL,pkEP

As seen in Table 4, removing this information results in a
slightly worse prediction. There is a trade-off to be made
here, and it may not be worth the time it takes to calculate
pStgrs.

5.3 Prediction Using Only Contacts

Local Contact Ratio was the top node in the tree classifier
for all 5 decision trees, which means it was the most impor-
tant feature for classification. However, getting information
about the leafs is by far the most expensive part of the crawl-
ing and predicting process. If we don’t crawl the leafs, we
also do not need to download the friends and followers of the
contacts to find the leafs, which makes the process well over
an order of magnitude faster. We re-ran the tree regressor,
curve fitting, and prediction using only information from the
target users friends, followers, and tweets and the profiles of
the contacts. The accuracy for FriendLoc—Leafs at 25 miles
was 63.6% which is not quite as good as the basic version of
FriendLoc at 63.9% accuracy, but they are still very close.
Prediction using only contacts takes only four calls to Twit-
ter’s API instead of the approximately 80 API calls it takes
to do the basic version of FriendlyLocation.

6. CONCLUSION

In this paper, we have demonstrated that some features
of relationships are correlated with physical proximity. For
example, users with lots of followers tend to be distant, while
users who mention each other tend to be closer. In general,
users with stronger ties tend to be local. We used this to
accurately predict the locations of users on a social media
website.

There are two general directions that the future work on
this research could go: improving the results of the predic-
tion and using the predicted locations to build systems. One
way to improve this predictor is to combine tie strength and
the social graph with other factors such as the words users
choose to use as described by Cheng et al.[2]. It could be
useful for the predictor to return not just a location, but
an estimate of the quality of the prediction. The system
described in this thesis only considered users who have a
well-defined location. FriendlyLocation could be modified to
identify users who do not have meaningful locations such
as people who constantly travel and accounts that represent
large organizations.

Finally, high-quality geographic information opens up new
avenues for research and software engineering. Location pre-
diction will allow websites to provide hyper-local content and
services. For example, the distance between a pair of users
could be considered when suggesting new friends on a so-
cial network and websites will be able to give users more
accurate, localized search results.

The idea that started our research into location prediction
was community crowd detection. With geographic location

of users, we can cluster users and find local conversations.
These conversations can be analyzed to understand local
political and social events. Location prediction will allow
us to create a more clear picture of the conversations in a
community.
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