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Abstract

In many applications in social network analysis, it is important to model the interactions and infer

the influence between pairs of actors, leading to the problem of dyadic event modeling which has

attracted increasing interests recently. In this paper we focus on the problem of dyadic event

attribution, an important missing data problem in dyadic event modeling where one needs to infer

the missing actor-pairs of a subset of dyadic events based on their observed timestamps. Existing

works either use fixed model parameters and heuristic rules for event attribution, or assume the

dyadic events across actor-pairs are independent. To address those shortcomings we propose a

probabilistic model based on mixtures of Hawkes processes that simultaneously tackles event

attribution and network parameter inference, taking into consideration the dependency among

dyadic events that share at least one actor. We also investigate using additive models to

incorporate regularization to avoid overfitting. Our experiments on both synthetic and real-world

data sets on international armed conflicts suggest that the proposed new method is capable of

significantly improve accuracy when compared with the state-of-the-art for dyadic event

attribution.
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1. Introduction

Analyzing dyadic event data using temporal point processes has attracted much of recent

research interests in the context of information diffusion and prediction for social networks

[6, 17]. Dyadic events refer to the timestamped interactions involving pairs of actors, e.g.,

one user sending an email message to another, one user retweeting a post of a particular

celebrity, or the Taliban force attacking civilian. Dyadic event data arise in a wide range of

social network applications, such as communication studies, social media, crime prevention,

and health care. The analysis of dyadic events is generally much more complicated than the

analysis of events with single actors [9]: particular consideration needs to be given to the

interdependency among events and to the relationship among actor-pairs [10]. For instance,

an attack on the Afghanistan army by the Taliban may incur counter-attacks from

Afghanistan army's allies, resulting in conflicts between U.S. army and Taliban or those

between British army and Taliban. Such interdependency resulting from the underlying

reciprocity or mutuality makes dyadic event data modeling particularly useful and

challenging.

The focus of this paper is an important missing data problem in dyadic event data modeling:

Because of the difficulty and uncertainty in data collection, the dyadic data collected are

usually incomplete, and it is generally the case that we have the timestamps of the events but

we do not observe the actors of the events [16]. For example, we may observed an event

with civilian casualty but we did not observe who carried out the act. Given a set of dyadic

events with some of the events missing one or two actors, we call the inference problem of

estimating the missing actors the dyadic event attribution problem (DEAP). In this paper, we

will develop temporal point process models to tackle DEAP and the key to its solution is the

exploration of the clustering and self- and mutual-excitation properties of the events. The

solution of DEAP will enhance our understanding of dyadic event dynamics and it is also

useful for down-stream applications such as dyadic event classification and visualization.

Before we proceed to technical discussions, we use a real-world application, the Armed

Conflict Location and Event Data (ACLED), to illustrate DEAP. ACLED is a very

comprehensive public collection of political violence data for developing countries [1,15].

ACLED contains several data sets categorized by geographic regions, such as Africa and

several Asian states. In the Afghanistan data set, for example, 36.3% of the events are

without the actor-pair information which will be called unidentified events, while for the

African dateset, unidentified events account for 16.9%. DEAP is then a problem of

attributing the actor-pairs to those unidentified events (Figure 1), i.e., inferring the actor-

pairs of those unidentified events based on their timestamps as well as the timestamps and

actor-pairs of those identified events.

Next we show that the clustering and self- and mutual-excitation properties of the events can

play a key role for solving DEAP. Figure 2(a) shows the sequence of 149 dyadic events of

conflicts between Taliban and civilians during the years 2007-2011. In this sequence, 70%

conflicts happened within 5 days of the previous conflict, i.e., the sequence shows chain

reactions where the occurrence of one conflict tends to increase the probability of conflicts

in the near future. For instance, Taliban's attack against civilians can result in civilians'
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protest against Taliban. We also find that one conflict not only will trigger future conflicts

happen between the same actor-pair, but also future conflicts that share at least one actor.

For instance, in a large-scale terrorist attack, Taliban may attack U.S army, Afghanistan

army, and civilians in sequence. Taliban's attack against civilians may cause Afghanistan

army to revenge. Figure 2(b) shows the sequence of conflicts happen between Taliban &

civilians, Taliban & Afghan Government, Taliban & Police Force. We find that over 93%

conflicts between Taliban and civilians happened within 5 days of the previous conflicts that

Taliban involved in, i.e. any conflicts Taliban participated in probably caused conflicts

between Taliban and civilians in the near future.

Our main contribution is to propose principled probabilistic models based on mixtures of

Hawkes processes that simultaneously addresses DEAP and network parameter inference

underlying the probabilistic models. We model the interactions between each actor-pair

using a Hawkes process. These Hawkes processes mutually affect each other as we consider

the interdependency among the dyadic events shared by at least one actor. In addition, we

discuss an additive model to incorporate regularization considerations on model parameters

to avoid overfitting.

We conduct experiments on both synthetic and the ACLED data set to evaluate the

performance of our proposed methods, and compare them with the state-of-the-art methods.

We find that the proposed methods are capable of significantly improve accuracy in DEAP.

Results on ACLED provide us a clear view of the trigger and influence of conflict events

under different factors like time, regions, and actors.

2. Related Work

Recent works usually modeled social networks that vary with time by self-exciting point

processes. One important self-exciting process is the Hawkes process, which was first used

to analyze earthquakes [13], and later applied to a wide range of tasks such as market

modeling [5, 2], crime modeling [16], terrorist [14], conflict [18], and viral videos on the

Web [4]. An EM framework was proposed to estimate the maximum likelihood of Hawkes

processes [11]. However, most existing works focused on modeling the behaviors of a single

user.

Our research is inspired by a recent work on DEAP targeting Los Angeles gang network.

Gang activities are successfully modeled using Hawkes processes [16, 8]. However, these

existing works employed substantial approximation schemes and failed to optimize the data

likelihood. Another recent work on DEAP proposed a spatial-temporal latent point process

that independently modeled a number of distinct event-cascades [3], which ignored the

influence among dyadic events that share at least one actor.

3. Hawkes Processes

Before proposing our model for DEAP, we briefly describe a powerful statistical tool,

Hawkes processes, for modeling and analyzing event sequence data. A univariate Hawkes

process {Nt} is defined by
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where μ : ℝ → ℝ+ is a deterministic base intensity (i.e. how likely an event will occur when

no other event triggers it), κ : ℝ+ → ℝ+ is a kernel function expressing the postive influence

of past events on the current value of the intensity process [7]. The process is well known

for its self-exciting property, which refers to a common social phenomenon that the

occurrence of one event increases the probability of related events (events of the same type

or share at least one actor) in the near future.

The multivariate Hawkes process {Nm(t)|m = 1, …, M}, a multi-dimensional extension to the

univariate case, describes the occurrences of M coupling point series [7, 12]. The intensity

function  is defined by

where κm′m is a triggering kernel between a pair of dimensions m′ and m. This process is

also known as linear mutually exciting process since the occurrence of an event in one

dimension increases the likelihood of future events in all dimensions. Hence the Hawkes

process is suitable for DEAP as it ties unidentified events and identified events together

through multiple dependencies.

4. Mixtures of Hawkes Processes

This section introduces a novel probabilistic model based on mixtures of Hawkes processes

(MHP) that simultaneously addresses DEAP and network parameter inference. DEAP can

be formulated as follows: our observation is a sequence of N dyadic events, tn, n = 1, …, N,

where tn is the time-stamp of the n-th event. These N dyadic events belong to M actor-pairs,

for each n, we associate a M-dimensional binary vector Zn = [Zn,1, …, Zn, M]T, and Zn, m = 1

if and only if the n-th event happens on actor-pair m. Here only part of actor-pair Zn's are

observed, while other Zn's are unknown. Based on tn's and observed Zn's, DEAP predicts

unknown Zn's, in order to maximize the likelihood on the complete data

.

We predict unknown Zn's of dyadic events based on their interactions with related events

that share at least one actor with them. And we take such interactions as exciting processes

where each event will raise the probability of all the related events in the near future. We

turn to the Hawkes process to model such interactions.

We model the interactions between the two actors in each actor-pair as a Hawkes process.

That is to say, for each m, m = 1, …, M, the intensity of the model on actor-pair m is defined

as:
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Where Sm is the set of actor-pairs that share at least one actor with actor-pair m. The above

definition illustrates that the probability of a dyadic event at timestamp t is influenced by all

dyadic events that share at least one actor with it1. Figure 3 compares the dependency

among dyadic events modeled in our work with that modeled in state-of-the-art methods.

In DEAP for conflict data, the baseline intensity μm(t) captures how often actor-pair m starts

a conflict spontaneously (i.e., not triggered by any other conflicts). For simplicity, we

assume this cascade-birth process is a homogeneous Possion process with μm(t) = μm. Kernel

κm′m(t−tl) captures the influence between sequential conflicts. We propose to decompose

this pairwise triggering kernel into

here for simplicity, we assume the degrees of influence from all historical events to the

current event from actor-pair m are similar and enforce that ∀m′, α̂
m′m = αm. Thus αm

models the degree of influence from any historical event to the current event from actor-pair

m. And κ(t−tl)2 captures the time-decay effect only.

Suppose we have observations  over the observation window [0, T], the

likelihood for the complete data is

5. Variational Inference

In this section, we derive a mean-field variational Bayesian inference algorithm for our

proposed MHP model.

For the likelihood L(Z, t) discussed above, the latent variables Z's are inter-dependent, i.e.,

the actor assignment at current step Zn depends on all the past actor assignments {Z1, …,

Zn−1}. as well as all the future ones {Zn+1, …}. Marginalizing over such inter-connected

series is intractable. We use mean-field variational inference by assuming a fully-

factorizable variational distribution q for Z's, which is parametrized by free variables ϕ's as

1For each event that shares at least one actor with actor-pair m, obviously we have Σm′∈Sm Zl, m′ = 1.
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With the help of q, we lower-bound the log-likelihood:

(1)

Where ℒ(Z, t) = log(L(Z, t)), and ε[q] denotes the Shannon entropy of Z's under q.  denotes

the right-hand side of Eqn (1), known as the evidence lower-bound (ELBO), which is the

alternative of the true log-likelihood we are to optimize. We have

where the second term reduces to

Where .

To break down the log-sum in q[log(λm(tn))], we again apply Jensen's inequality

where we introduce a set of branching variables . Each η(m) is a N × N lower-

triangular matrix with n-th row  satisfying two set of constraints list

in the following:

(2)

Figure 4 concludes the graphical model representation of our MHP model and the

variational distribution used to approximate the data likelihood.

Optimizing the Lagrangian of ′, we have the following inference rule for ϕ's:
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Notice that the above inference rule only applies to those ϕnm's whose corresponding Zn, m's

are unknown. For those ϕnm's whose corresponding Zn, m's are already known, we just set

ϕnm = Zn, m. In a similar way, we obtain the following update rules for η:

Next we derive maximum likelihood estimation of our proposed MHP model. This model

involves two parameters, i.e., the self-instantaneous rate  and the infectivity vector

, where ℝ+ denotes the nonnegative real domain. Setting the derivative of ′ with

respect to αm and μm to zero, we can obtain:

Based on above discussions, we obtain a mean-field variation inference algorithm, named

MHP, iteratively updates ϕ's, and η's to attribute unidenfied dyadic events, and updates μ's

and α's,to infer the network diffusion. The computation complexity of MHP is O(M*N̂2)

where N̂ is the average number of events one actor involved in. Thus MHP is particularly

efficient if all events happen between limited actor-pairs.

6. Additive Model

This section describes an additive model that regularizes model parameter μ sand α to avoid

overfitting. Instead of modeling each actor-pair m with parameters μm and αm, we model

each actor i with parameters  and . These new parameters , i = 1, …, I (I is the

number of actors) replace μm's and αm's through the following rules:

(3)
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Where m1 and m2 are the two actors in the actor-pair m. Eqn (3) emphasizes that 1) each

actor has his/her own behavior pattern  in conflicts; 2) the behavior pattern of one

actor-pair (μm, αm) depends on the behavior patterns of both actors. We named the new

algorithm solving this additive model Additive Mixture Hawkes Process (AMHP) algorithm.

7. Experiments

We conducted experiments on synthetic and real-world data sets, and compared the

performance of our MHP/AMHP algorithm with state-of-the-art DEAP methods including:

Parameter-Fixed Hawkes Process (PFHP) proposed in [16], Estimate & Score Algorithm

(ESA) proposed in [8] and Latent Point Process Model (LPPM) proposed in [3].

7.1 Data set

We also test our methods on Synthetic data and its variations listed as bellow:

Synthetic data: Under a setting (n, N, I, M, μ̂;, α̂) the synthetic data is generated by

Hawkes processes using a group of fixed parameters {μm} and {αm}, where each μm

and αm are randomly generated in [0.5μ̂, 1.5μ̂] and [0.5α̂, 1.5α̂] respectively before

simulations. Notice that for different compared approaches, the intensity function

employed for simulation can be different from each other, which depends on each

approach's assumption on the dependency among dyadic events from different actor-

pairs. Among the generated sequence of events, we randomly select some events for

prediction, i.e. the corresponding Zn's are unknown. Here n refers to the number of

events with actors unknown.

Structured data: To test the effectiveness of AMHP, we simulate with a group of

μm's and αm's that satisfy the regularization considerations defined in Eqn (3).

Event Noisy: We generate additional 10% * N dyadic events randomly in the time

window [0, T], and add them to the original event sequence. These events are assigned

to all actor-pairs with equal probability.

Intensity Noisy: Instead of using λ* (t)to simulate the dyadic event generation at

time t, we use a noisy value λ′ (t) which is obtained by adding a Guassian noise on λ*

(t):

(4)

The default value of σ is set to be 1.

Our experiments also used two real-world data sets both coming from the ACLED data set

[1]: Afghanistan Conflict, which contains N = 3,384 dyadic events and 68 actors. M =

1,010 actor-pairs are involved in these events; Africa Conflict, which contains N =

52,605 dyadic events and 3,537 actors. M = 1,007 actor-pairs are involved in these events.

We randomly select 10% events from each data set as unidentified events, and make

prediction using our proposed methods.
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7.2 Performance on synthetic data

This series of experiments is to test the accuracy of DEAP for unidentified dyadic events on

synthetic data. Table 1 shows our test on a relatively small system with N = 120 n = 8, I = 4,

M = 6, μ̂ = 0.01, α̂ = 0.5, where simulations were run 10,000 times using the pre-generated

parameters {μm}, {αm}. Table 2 shows results on a larger system with N = 10000 n = 1000, I

= 50, M = 200, μ̂ = 0.01, α̂ = 0.5, where simulations were run 20 times. The accuracy of

DEAP is measured by the percentage of unknown events whose ground-truth actor-pairs

appear in the predicted top k most likely actor-pairs. Results in Table 1 and 2 show that

LPPM, MHP and AMHP are much more accurate than PFHP and ESA in DEAP on both

data sets, which demonstates the importance of using dynamic Hawkes parameters in

modeling diffusion processes of dyadic events, and reasonably optimizing the data

likelihood. Our proposed MHP and AMHP are more accurate than LPPM, which shows the

importance of modeling dependency between dyadic events from different actor-pairs. At

last, AMHP performs better than MHP, which indicates that appropriate constraints on

Hawkes paramters can benefit DEAP. On Structured data, the advantage of AMHP

over other methods becomes greater, which demonstrates the effectiveness of AMHP on

dyadic data where the dependency network of actor-pairs has special structures like low-

rank or sparsity. On both noisy data sets, the performance of all four compared methods

become worse. However, the degradations of the performance of PFHP and ESA are greater

than those of LPPM, MHP and AMHP, which shows the robustness of our proposed

methods facing noise.

The following series of experiments study how parameter variation affects the accuracy of

DEAR In experiments, we varies the parameter chosen to test, with all other experiment

settings fixed. Figure 5(a) shows how the precision of Top 1 inference varies with respect to

the increase of the number of actor-pairs M. We can find that all compared methods

experience significant decreases when the number of actor-pairs M increases. The

degradations of MHP and AMHP are smaller than other methods, which shows that

appropriately modeling the dependency among actor-pairs becomes more important as the

number of actor-pairs increases. Figure 5(b) shows that the accuracy of Top 1 inference

decreases wrt. the increase of standard variance σ in Eqn (4). The degradations of LPPM,

MHP, and AMHP are smaller than PFHP and ESA, which from another prospect

demonstrates the robustness of our methods facing noise.

7.3 Performance on real-world data

Next we apply the proposed model to two real-world data sets as shown in Table 3. On both

real-world data sets, our proposed MHP and AMHP again perform better than LPPM, PFHP

and ESA. We also find that AMHP outperforms MHP, which illustrates that the underlying

dependency network of actor-pairs in real-world data has some special structures.

Figure 6 shows a relational graph among actors in Afghanistan Conflict data based on

learned αm's A large αm indicates that one conflict between actor-pair m is quite likely to be

triggered by another conflict sharing at least one actor with m in the recent past. Most areas

in the figure are blank, which illustrates that most sequential conflicts in Afghanistan

happened between limited actor-pairs. Analyzing shades of color in each grid, we can find
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out unique behavior patterns of different actor-pairs. For example, comparing αm of pair

Taliban–U.S. Army and that of pair Taliban–Afghan Government, we can tell that one

conflict event involving Taliban or U.S. army will quickly cause a chain reaction between

the Taliban–U.S. Army pair, while it takes much longer time for a conflict involving

Taliban or Afghan government to trigger consequential conflicts. In other words, when

suffering an attack or protest, Taliban's favorite retaliation target is U.S. Army rather than

Afghan government.

Next we study how well our MHP model fits conflict data. On a certain actor-pair m in

Afghanistan Conflict, Figure 7(a) compares the number of conflict events at each

timestamp with the curve of λm (t) using learned μm and αm while Figure 7(b) shows the Q-

Q plot of the real conflict sequence versus the sample event sequence simulated by λm (t)

We can find that although the μm and αm are inferred with part of Zn's unknown, they fit

both identified conflicts and unidentified conflicts very well.

8. Conclusion and Future Work

This paper proposed a novel mixture Hawkes model for tackling DEAP and network

inference simultaneously. This mixture Hawkes model captures the dependency among

dyadic events from actor-pairs that share at least one actor. Our fast inference algorithm

based on mean-field methods iteratively predicts actor-pairs and infers network diffusion.

Experiments on both synthetic and real-world data sets on international armed conflicts

demonstrated the effectiveness of the proposed methods.

In the future, we will look for alternative solutions that capture the dependency among

dyadic events from different actor-pairs, and propose novel mixture Hawkes models. Instead

of using a human-defined regularization for model parameters, we will explore how to infer

structures, such as low-rank or sparsity, from data. We will also study more efficient

algorithms that optimize our proposed likelihood.
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Figure 1. Illustration of the Dyadic Event Attribution Problem
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Figure 2. Sequence of dyadic events recoding conflicts during the period 2007-2011: Blue line
denotes the conflicts between Tibalan and civilians, and red line denotes other conflicts Tibalan
involved in
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Figure 3.
Illustration of the dependency among dyadic event in our mixture model. Existing works

only model the dependency shown by red line, while our work models the dependency

shown by both red and blue line. A-B, A-C, C-D are actor-pairs.
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Figure 4. Graphical model representation of MHP and the variational distribution that
approximates the likelihood
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Figure 5. Parameter Variation
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Figure 6.
Relational Graph among Actors in Afghanistan Conflict Based on Learned αm's.

Indice of important actors: 2-U.S. Amry, 4-Civilans, 6-Taliban, 7-Afghanistan Army, 9-

Britain Army, 11-Afghan Government, 16-Police Force, 19-ISAF, 21-Private Security.
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Figure 7.
How Well Our MHP Model Fits Conflict Data. Blue dot denotes the number of identified

events at each timestamp, red star denotes the number of unidentified event. Both the

number of events and the value of λm (t) are scaled to [0, 1].
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