
Combining One-Class Classifiers Using Meta Learning

Eitan Menahem
Deutsche Telekom

Laboratories
Department of Information

Engineering
Ben-Gurion University of the

Negev
Be’er Sheva, 84105, Israel

eitanme@post.bgu.ac.il

Lior Rokach
Deutsche Telekom

Laboratories
Department of Information

Engineering
Ben-Gurion University of the

Negev
Be’er Sheva, 84105, Israel

liorr@post.bgu.ac.il

Yuval Elovici
Deutsche Telekom

Laboratories
Department of Information

Engineering
Ben-Gurion University of the

Negev
Be’er Sheva, 84105, Israel
elovici@post.bgu.ac.il

ABSTRACT
Selecting the best classifier among the available ones is a dif-
ficult task, especially when only instances of one class exist.
In this work we examine the notion of combining one-class
classifiers as an alternative for selecting the best classifier.
In particular, we propose two new one-class classification
performance measures to weigh classifiers and show that a
simple ensemble that implements these measures can outper-
form the most popular one-class ensembles. Furthermore,
we propose a new one-class ensemble scheme, TUPSO, which
uses meta-learning to combine one-class classifiers. Our ex-
periments demonstrate the superiority of TUPSO over all
other tested ensembles and show that the TUPSO perfor-
mance is statistically indistinguishable from that of the hy-
pothetical best classifier.

1. INTRODUCTION AND BACKGROUND
In regular classification tasks we aim to classify an unknown
instance into one class from a predefined set of classes. One-
class classification aims to differentiate between instances of
class of interest and all other instances. The one-class clas-
sification task is of particular importance to information re-
trieval tasks [17]. Consider, for example, trying to identify

documents of âĂIJinterestâĂİ to a user, where the only in-
formation available is the previous documents that this user
has read (i.e. positive examples), yet another example is ci-
tation recommendation, in which the system helps authors
in selecting the most relevant papers to cite, from a poten-
tially overwhelming number of references [1]. Again, one can
obtain representative positive examples by simply going over
the references, however it would be hard to identify typical
negative examples (the fact that a certain paper is not cited
by another paper does not necessarily indicate it is irrel-
evant). Many one-class classification algorithms have been
investigated [2, 25, 14]. While there are plenty of learning al-

gorithms to choose from, identifying the one that performs
best in relation to the problem at hand is difficult. This
is because evaluating a one-class classifier’s performance is
problematic. By definition, the data collections only con-
tain one-class examples and thus, performance metrics, such
as false-positive (FP), and true negative (TN), cannot be
computed. In the absence of FP and TN , derived per-
formance metrics, such as classification accuracy, precision,
among others, cannot be computed. Moreover, prior knowl-
edge concerning the classification performance on some pre-
vious tasks may not be very useful for a new classification
task because classifiers can excel in one dataset and fail in
another, i.e., there is no consistent winning algorithm.

This difficulty can be addressed in two ways. The first op-
tion is to select the classifier assumed to perform best ac-
cording to some heuristic estimate based on the available
positive examples (i.e., TP and FN). The second option is
to train an ensemble from the available classifiers. To the
best of our knowledge, no previous work on selecting the
best classifier in the one-class domain has been published
and the only available one-class ensemble technique for di-
verse learning algorithms is the fixed-rule ensemble, which
in many cases, as we later show, makes more classification
errors when compared to a random-selected classifier.

In this paper we search for a new method for combining
one-class classifiers. We begin by presenting two heuris-
tic methods to evaluate the classification performance of
one-class classifiers. We then introduce a simple heuris-
tic ensemble that uses these heuristic methods to select a
single base-classifier. Later, we present TUPSO, a general
meta-learning based ensemble, roughly based on the Stack-
ing technique [29] and incorporates the two classification
performance evaluators. We then experiment with the dis-
cussed ensemble techniques on forty different datasets. The
experiments show that TUPSO is by far the best option to
use when multiple one-class classifiers exist. Furthermore,
we show that TUPSO’s classification performance is strongly
correlated with that of the actual best ensemble-member.

1.1 One-Class Ensemble
The main motivation behind the ensemble methodology is to
weigh several individual classifiers and combine them to ob-
tain a classifier that outperforms them all. Indeed, previous

ar
X

iv
:1

11
2.

52
46

v3
 [

cs
.L

G
]

 2
1

Ju
l 2

01
3

Domain Works
Theory and methods [28], [12], [27] and [26]
Information security [23], [4] and [10]
Remote sensing [20]
Image retrieval [30]
Image segmentation [6]
Signature verification [21]
Fingerprint matching [22]

Table 1: Research in one-class ensemble

work in supervised ensemble learning shows that combining
classification models produce a better classifier in terms of
prediction accuracy [18].

Compared to supervised ensemble learning, progress in the
one-class ensemble research field is limited [10]. Specifically,
the Fix-rule technique was the only method which was con-
sidered for combining one-class classifiers [28, 12, 26]. In this
method, the combiner regards each participating classifier’s
output as a single vote upon which it applies an aggregation
function (a combining rule), to produce a final classifica-
tion. In the following few years, further research was car-
ried out and presently there are several applications reaching
domains, such as information security (intrusion detection),
remote sensing, image retrieval, image segmentation, on-line
signature verification, and fingerprint matching. Table 1
summarizes the relevant work.

In the context of the one-class ensemble the majority vot-
ing technique is used by Perdisci et al. [23] and by Wu and
Chung [30]. Perdisci et al. shows that a classifier ensem-
ble makes their network-based intrusion detection system
(NIDS) more secure against adversary attacks, as it is more
difficult for the attacker to evade all of the base-classifiers
(e.g., by mimicry attacks), at the same time. Wu and Chung
use the ensemble of one-class classifiers for image retrieval;
they split the images into multiple instances, on which a set
of weak classifiers (1-SVM) are trained separately by using
different sub-features extracted from the instances. They
conclude that one-class ensembles can boost the image re-
trievalâĂŹs accuracy and improve its generalization perfor-
mance.

In addition to majority voting, other combining rules, such
as max-rule, average-rule and product-rule, are seen in the
literature. These, unlike majority voting, output a contin-
uous numeric value, denoted as y(x), which can be viewed
as an analogue to the classification confidence score. Five
similar rules are proposed by Tax [28] : mean-votes, mean
weighted vote, product of the weighted votes, mean proba-
bilities and product combination of the estimated probabil-
ities. These rules can be divided into two groups: aggre-
gates on discrete votes and aggregates on confidence scores
(sometimes implemented as posterior probabilities). The
first group uses the indicator function over thresholded esti-
mated probabilities, whereas the computation in the second
group of rules is performed directly on the estimated prob-
abilities.

The mean-votes rule computes the average positive votes.
This rule is used by Giacinto et al. [10] for service-specific in-

trusion detection in computer networks. The proposed IDS
learns multiple one-class traffic models (one model per net-
work service group), to model the normal traffic of specific
network service groups, such as web services, mail services,
etc. Later, in order to combine the multiple traffic models,
they use the mean-votes rule.

The max rule was used for on-line signature verification [21],
in which the author proposed to induce k different one-class
classifiers on k modified train sets and then combine the
classifiers via the max-rule; each modified train set contains
a random subset of the original features, as suggested in
[11]. The proposed method was shown to outperform state-
of-the-art work for both random and skilled signature forg-
eries. The same combining rule was also used for fingerprint
matching by Nany and Lumini in [22]. The authors ap-
ply the Random Bands technique on the fingerprint images
dataset to derive k new train-sets, upon which k one-class
classifiers are trained and then combined.

The exclusive-voting rule was applied for cluster images [6].
This rule determines that the ensemble classifies positive
only if a single member of the ensemble classifies positive,
as part of their technique for image segmentation (a tech-
nique in compute vision). The author clusters the input im-
ages into k groups upon which they later train k one-class
classifiers, referred to as expert 1-SVMs (one-class SVM). In
the classification phase, the expert 1-SVMs classify an input
image as ’positive’ or as ’negative’. Finally, the ensemble
outputs positive only if exactly one expert OC-SVMs votes
positive.

While the fix-rule ensemble techniques are very popular they
have a tendency of generating non-optimal ensembles, be-
cause the combining rules are assigned statically and inde-
pendently of the training data. As a consequence, as we will
show later, the fix-rule ensembles produce an inferior classi-
fication performance in comparison to the best classifier in
the ensemble.

In the following lines we use the notation Pk(x|ωTc) as the
estimated probability of instance x given the target class
ωTc, fr(T,k) as the fraction of the target class, which should
be accepted for classifier k = 1 . . . R, N as number of fea-
tures, and θk notates the classification threshold for classifier
k. A list of fixed combining rules is presented in Table 2.

Combining
Rule

Combination Rule Formula

Majority
voting

y(x) = I≥k/2
(∑

k I (Pk (x|ωTc) ≥ θk)
)

Mean
vote

y(x) = 1
R

∑R
k=1 I (Pk (x|ωTc) ≥ θk)

Weighted
mean vote

y(x) = 1
R

∑R
k=1 [fT,kI (Pk (x|ωTc) ≥ θk) + (1− fT,k)I (Pk (x|ωTc) ≥ θk)]

Average
rule

y(x) = 1
R

∑R
k=1 Pk (x|ωTc)

Max
rule

y(x) = argmaxk[Pk (x|ωTc)]

Product
rule

y(x) =
∏R
k=1[Pk (x|ωTc)]

Exclusive
voting

y(x) = I1
(∑

k I (Pk (x|ωTc) ≥ θk)
)

Weighted
vote product

y(x) =
∏R

k=1[fr(T,k)I(Pk(x|ωTc)≥θk)]∏R
k=1

[fT,kI(Pk(x|ωTc)≥θk)]+
∏R

k=1
[(1−fT,k)I(Pk(x|ωTc)<θk)]

Table 2: Fix combining rules

Instead of using the fix-rule (e.g., weighting methods), tech-

nique to combine one-class classifiers, the meta-learning ap-
proach can be used.

1.2 Meta Learning
Meta-learning is the process of learning from basic classi-
fiers (ensemble members); the inputs of the meta-learner
are the outputs of the ensemble-member classifiers. The
goal of meta-learning ensembles is to train a meta-model
(meta-classifier), which will combine the ensemble members’
predictions into a single prediction. To create such an en-
semble, both the ensemble members and the meta-classifier
need to be trained. Since the meta-classifier training re-
quires already trained ensemble members, these must be
trained first. The ensemble members are then used to pro-
duce outputs (classifications), from which the meta-level
dataset (meta-dataset) is created. The basic building blocks
of meta-learning are the meta-features, which are measured
properties of the ensemble members output, e.g., the ensem-
ble members’ predictions. A vector of meta-features and a
classification k comprise a meta-instance, i.e., meta-instance
≡< fmeta1 , . . . , fmetak , y >, where y is the real classification
of the meta-instance that is identical to the class of the in-
stance used to produce the ensemble members’ predictions.
A collection of meta-instances comprises the meta-dataset
upon which the meta-classifier is trained.

1.3 Estimating The Classification Quality
Traditional classifier evaluation metrics, such as true nega-
tive and false positive, cannot be computed in the one-class
setup, since only positive examples exist. Consequently,
measures, such as a classifier’s accuracy, precision, AUC,
F-score, and MatthewâĂŹs correlation coefficient (MCC),
cannot be computed, since accuracy = (TP + TN)/(TP +
TN + FP + FN), Precision = TP/(TP + FP) and F -
score = 2 ∗ P ∗ R/(P + R), where P is precision and R is
recall. Instead of computing the aforementioned metrics, Liu
et al. [16] and Lee and Liu [15], proposed heuristic methods
for estimating, rather than actually measuring, the classi-
fier’s accuracy and F-score, respectively. Next, we describe
the two performance estimators.

One-Class Accuracy
Liu et al. demonstrated in [16] that by rewriting the error
probability, one can estimate the classification error-rate, in
the one-class paradigm, given a prior on the target-class:

Pr[f(x) 6= y] = Pr[f(x) = 1]− Pr[Y = 1] + 2Pr[f(x) = 0|Y = 1]Pr[Y = 1]

where f(x) is the classifier’s classification result for the ex-
amined example x, Pr[f(x) = 1] is the probability that the
examined classifier will classify Positive, Pr[f(x) = 0|Y = 1]
is the probability that the classifier will classify Negative
when given a Positive example, and lastly, Pr[Y = 1] is the
prior on the target-class probability.

Naturally, we define the one-class accuracy (OCA), estima-
tor as follows: OCA = 1 − Pr[f(x) 6= y]. Note that the
probabilities Pr[f(x) = 1] and [f(x) = 0|Y = 1] can be es-
timated for any one-class problem at hand using a standard
cross-validating procedure.

One-Class F-Measure

An additional performance criteria, r2

Pr[f(x)=1]
, denoted as

One-Class F-score (OCF), is given by Lee and Liu in [15].
Using this criteria, one can estimate the classifier’s F-score in
the semi-supervise paradigm. However, when only positive-
labeled instances exist, the recall, r = Pr[f(x) = 1|y = 1],
equals to Pr[f(x) = 1] (because Pr[y = 1] = 1), which
only measures the fraction of correct classifications on posi-
tive test examples, i.e., true-positive rate (TPR). Using the
TPR to measure the classification performance makes sense,
because the TPR is strongly correlated with the classifica-
tion accuracy when negative examples are very rare, such as
in the case of most one-class problems.

The contributions of this work are four fold: (1) our work
introduces a new meta-learning-based one-class ensemble,
TUPSO, which generally outperforms both fix-rule ensem-
bles and performs on par with the best ensemble-member,
(2) it presents a comprehensive comparison between mul-
tiple one-class ensembles (some are presented for the first
time in the context of one-class), on 40 cross-domains data
collections, (3) we adapt two unsupervised learning algo-
rithms, namely Peer Group Analysis [9] and Global Density
Estimation [13], into one-class algorithms, and (4) we in-
vestigate two metrics presented by Lee and Liu [15] for es-

timating the one-class classifierâĂŹs performance and show
their usefulness for choosing the best available classifier, and
for improving the one-class ensembles accuracy, with both
meta-learning and weighting methods.

The rest of the paper is organized as follows. In Section
âĂŐ2 we present two novel one-class ensembles schemes:
Best classifier By Estimation, a simple heuristic based en-
semble, and TUPSO, a Stacking-like meta-learning based
one-class ensemble scheme. In Section âĂŐ3.2 we describe
the methods and conditions in which the experiments were
conducted. Later, in Section âĂŐ4 the experimental result
are presented and discussed. Lastly, our conclusions and
future work are presented in Section âĂŐ5.

2. NEW ENSEMBLES SCHEMES
In this section we introduce two novel one-class ensemble
schemes: Best-Classifier by Estimation and TUPSO.

2.1 Best-Classifier By Estimation
Using the discussed classification performance estimators,
we define a new and very simple ensemble: Estimated Best-
Classifier Ensemble (ESBE). This ensemble is comprised of
an arbitrary number of one-class ensemble-members (clas-
sifiers). During the prediction phase, the ensemble’s out-
put is determined by a single ensemble-member, denoted as
the dominant classifier. The ensemble’s dominant member
is selected during the training phase. This is achieved by
evaluating the performance of the participating ensemble-
members using a 5x2 cross-validation procedure, as described
in [8]. During this procedure only the training-set’s in-
stances are used, and the metric used to measure the ensemble-
members‘ performance is either OCA or OCF.

2.2 TUPSO
In this section, we introduce the TUPSO ensemble scheme.
The main principle of TUPSO is combining multiple and
possibly diverse one-class classifiers using the meta-learning

Instance

Classifiers’ Estimated Performance

Ensemble Members

Classifier1 Classifier2 Classifierk

Predictions

Meta Classifier

Meta-Features

Extractor

Meta-Features

Predictions
Posterior Probabilities

(Posterior Probabilities)

Prediction

Performance

Evaluator

Figure 1: The TUPSO ensemble scheme.

technique. TUPSO is roughly based on the Stacking tech-
nique, and as so, it uses a single meta-classifier to combine
the ensembles‘ members. As opposed to Stacking, however,
where the meta-classifier trains directly from the ensemble-
members‘ outputs, TUPSO’s meta-classifier trains on a se-
ries of aggregations from the ensemble-members‘ outputs.
To elevate the effectiveness of some of the aggregations used
by TUPSO, and with that improve the ensemble’s over-
all performance, during the training phase, the ensemble-
members are evaluated using the aforementioned one-class
performance evaluators. The performance estimates are then
translated into static weights, which the meta-learning algo-
rithm uses during the training of the meta-classifier, and
during the prediction phases.

The TUPSO ensemble, as shown in Figure 1, is made up of
four major components: (1) Ensemble-members, (2) Perfor-
mance evaluator, (3) Meta-features extractor, and (4) Meta-
classifier. Next, we describe each component.

Ensemble Members
In TUPSO, the ensemble members are one-class, machine-
learning-based, classifiers. TUPSO regards its ensemble mem-
bers as black boxes, in order to avoid any assumption regard-
ing their inducing algorithm, data structures or methods for
handling missing values and categorical features. During
the ensemble’s training phase, the ensemble-members are
trained several times, as part of a cross-validation process,
which is required for generating the meta-classifier’s dataset.
This process is described later in Section 3.2.

Performance Evaluator
The Performance Evaluator estimates the ensemble mem-
bers’ classification performance during the ensemble’s train-
ing phase. To fulfill its task, the Performance Evaluator
uses one of the available classification performance estima-
tors, i.e., OCA or OCF.

Meta-Features Extractor
The meta-features are measured properties of one or more
ensemble-members’ output. A collection of meta features
for a single instance makes a meta-instance. A collection of

Meta-Feature Name Aggregation Function

Sum-Votes f1 (Pm) =
∑k
i=1 1{pmi

≥0.5} (Pmi)

Sum-Predictions f2 (Pm) =
∑k
i=1 Pmi

Sum-Weighted-Predictions f3 (Pm) =
∑k
i=1 αi ∗ Pmi

Sum-Power-Weighted-Predictions f4 (Pm) =
∑k
i=1 αi ∗ (Pmi)

2

Sum-Log-weighted-Predictions f5 (Pm) =
∑k
i=1 αi ∗ log(Pmi)

Var-Votes f6 (Pm) = V ar(1{pmi
≥0.5} (Pmi))

Var-Predictions f7 (Pm) = V ar (Pm)

Var-Weighted-Predictions f8 (Pm) = V ar (α ∗ Pm)

Table 3: Aggregate functions which generate
TUPSO’s meta features.

meta-instances is called a meta-dataset. The meta-dataset
is used to train the meta-classifier. The Meta Features Ex-
tractor computes the meta-features by using multiple ag-
gregations of the ensemble-members‘ output. Let Pm =<
p(m1), . . . , p(mk) > be the vector containing the ensemble-
members‘ outputs p(m1), . . . , p(mk), where k is the number
of members in the ensemble. A set of aggregate features
is computed for each instance in the training set. A single
set makes a single meta-instance, which will later be used
either as a training instance for the meta-learner or as a test
meta-instance.

Table 3 defines eight experimental aggregate meta-features.
The aggregate functions f2 . . . f5 and f6 . . . f8 are based on
the first and second moments, respectively. The first mo-
ment computes the“average”ensemble-members‘ prediction,
whereas the second moment computes the variability among
the ensemble-members‘ predictions. The first moment based
aggregation, a subtle version of the mean voting rule, is mo-
tivated by Condorcet’s Jury Theorem, and is used in several
supervised-learning ensembles, e.g., Distribution-Summation
[5]. Furthermore, the second moment based aggregation
is motivated by the knowledge it elicits over the first mo-
ment, i.e., the level of consent among the ensemble-members.
From this information, unique high-level patterns of ensem-
ble members’ predictions can be learned by the meta-learner,
and thereafter be at the disposal of the meta-classifier. Ta-
ble 4 shows the resulted structure of TUPSO’s meta-dataset.

Instance f1 (Pm) f2 (Pm) f3 (Pm) ... f7 (Pm) f8 (Pm)
1 ma1,1 ma1,2 ma1,3 ... ma1,7 ma1,8
2 ma2,1 ma2,2 ma2,3 ... ma2,7 ma2,8
...

Table 4: The training-set of the meta-classifier.
Each column represents an aggregate feature over
the ensemble members’ predictions, and mai,j de-
notes the value of meta-feature j for meta-instance
i

Meta-Classifier
The meta-classifier is the ensemble’s combiner, thus, it is
responsible for producing the ensemble’s prediction. Simi-
lar to the ensemble-members, the meta-classifier is a one-
class classifier; it learns a classification model from meta-

instances, which consist of meta-features. Practically, the
meta-features used in training the meta-classifier can be ei-
ther aggregate features, raw ensemble-members‘ predictions
or their combination.

However, experiments, which were unable to be included in
this paper1, showed that training the meta-classifier using
the raw ensemble-members‘ predictions alone or alongside
the aggregate meta-features yielded less accurate ensembles.

2.2.1 Training Process
The training process of TUPSO begins with training the
ensemble-members, followed by training the meta-classifier.
The ensemble-members and the meta-classifier are trained
using an inner k-fold cross-validation training process. First,
the training-set is partitioned into k splits. Then, in each
fold, the ensemble-members are trained on k-1 splits. After-
wards, the trained ensemble-members classify the remaining
split to produce meta-instances. The meta-instances in each
fold are added to a meta-dataset. After k iterations, the
meta-dataset will contain the same amount of instances as
the original dataset. Lastly, the ensemble-members are re-
trained using the entire training-set and the meta-classifier
is trained using the meta-dataset.

2.2.2 Weighting the Ensemble Members
In order to calculate certain meta-features, e.g., f3, the
ensemble-members‘ predictions have to be weighed. To do
so, a set of weights, one per ensemble-member, are learned
as part of the ensemble training process. During the meta-
classifier training, the ensemble-members predict the class of
the evaluated instances. The predictions are fed to the Per-
formance Evaluator, which calculates either OCA or OCF
estimations for each of the ensemble-members, Perfvect =<
Perf1, . . . , P erfm >, where Perfi is the estimated per-
formance of ensemble-memberi. Finally, a set of weights,
α1, α2, · · · , αm, is computed as follows:

αi =
Perfi

Σmj=1Perfj
,∀i = 1 . . .m

3. METHODS
We now specify the methods and conditions in which we
investigated the presented ensemble schemes. First, we in-
dicate the ensemble-members that participate in the ensem-
bles. Next, we discuss the evaluated ensemble schemes.

3.1 One-Class Learning Algorithms
For evaluation purposes, we made use of four, one-class al-
gorithms: OC-GDE, OC-PGA, OC-SVM, [24], and ADIFA
[19]. We selected these ensemble-members because they rep-
resent the prominent families of one-class classifiers, i.e.,
nearest-neighbor (OC-GDE, OC-PGA), density (ADIFA),
and boundary (OC-SVM). The first two algorithms are our
adaptations of two well-known supervised algorithms to one
class learning.

Peer Group Analysis (PGA), is an unsupervised anomaly
detection method proposed by Eskin et al. [9], that identifies
the low density regions using the nearest neighbors. An
anomaly score is computed at point x as a function of the

1see: http://www.filedropper.com/tupso

distances from x to its k nearest neighbors. Although the
PGA is actually a ranking technique applied to clustering
problems, we implemented it as a one-class classifier with
knn = 1. Given the training sample S, a test point x is
classified as follows. For each xi ∈ S, we pre-compute the
distance to xi’s nearest neighbor in S, given by di = d(xi, S\
{xi}). To classify x, the distance to the nearest neighbor of x
in S, dx = d(x, S), is computed. The test point x is classified
as an anomaly if dx = d(x, S) appears in a percentile pα or
higher among the {di}; otherwise, it is classified as normal.
We set the parameter pα to 0.01.

Global Density Estimation (GDE), proposed by [13],
is also an unsupervised density-estimation technique using
nearest neighbors. Given a training sample S and a real
value r, one computes the anomaly score of a test point x
by comparing the number of training points falling within
the r-ball Br(x) about x to the average of |Br(xi) ∩ S|
over every xi ∈ S. We set r to be twice the sample av-
erage of d(xi, S \ {xi}) to ensure that the average number
of neighbors is at least one. To convert GDE into a clas-
sifier, we need a heuristic for thresholding anomaly scores.
We chose the following one, as it seemed to achieve a low
classification error on the data: x is classified as normal
if exp(−((Nr(x) − N̄r)/σr) > 1/2, where Nr is the num-
ber of r-neighbors of x in S, N̄r is the average number of
r-neighbors over the training points and σr is the sample
standard deviation of the number of r-neighbors.

We used a static pool of six ensemble-members for all the
evaluated ensembles: (i) ADIFAHM , (ii) ADIFAGM , (iii)
OC-GDE, (iv) OC-PGA, OC-SVM1, and (vi) OC-SVM2.
The ensemble-members properties, illustrated in Table 5,
were left unchanged during the entire evaluation.

Base Classifier Algorithm Parameters

ADIFAHM ADIFA Ψ = HarmonicMean, s = 2%
ADIFAGM ADIFA Ψ = GeometricMean, s = 1%
OC-GDE OC-GDE n/a
OC-PGA OC-PGA k = 3, pα = 0.01
OC-SVM1 OC-SVM k = linear, ν = 0.05
OC-SVM2 OC-SVM k = polynomial, ν = 0.05

Table 5: ensemble-members setup parameters. The
non-default parameters are illustrated.

3.2 Ensemble Combining Methods
The following evaluation includes several ensemble combin-
ing methods from three groups of algorithms: Heuristic-
Ensemble: estimated best-classifier ensemble (ESBE); Fixed-
rules: majority voting, mean-voting, max-rule and product-
rule; and Meta-learning-based: TUPSO. The learning algo-
rithm used for inducing the meta-classifier in TUPSO was
ADIFA, as it outperformed the other three mentioned learn-
ing algorithms on the evaluation set.

3.3 Datasets
During the evaluation we used a total of 40 distinct datasets
from two different collections, UCI and KDD-CUP99. All
datasets are fully labeled and binary-class.

We selected 34 datasets from the widely used UCI dataset

http://www.filedropper.com/tupso

repository [3]. The datasets vary across dimensions, number
of target classes, instances, input features, and feature type
(nominal or numeric). So as to have only two classes in the
UCI datasets, a pre-process was completed where only the
instances of the two most prominent classes were selected.
The other instances were filtered out.

The KDD CUP 1999 dataset contains a set of instances
that represent connections to a military computer network.
The dataset contains 41 attributes, 34 of which are numer-
ical and 7 of which are categorical. The original dataset
contained 4,898,431 multi-class data instances. In order to
divide the dataset into multiple binary-class sets, we fol-
lowed the method performed in [31]. Compared with the
UCI datasets, the KDD99-CUP are much more natural one-
class datasets, as they are highly imbalanced (instances of
the network’s normal state make the lion’s share of the de-
rived binary datasets).

3.4 Measured Metrics
We used the area under the ROC curve (AUC) metric to
measure the classification performance of the individual clas-
sifiers and ensemble methods. The ROC (Receiver Operat-
ing Characteristic) curve is a graph produced by plotting
the TPR versus the fraction of false positives (FPR) for a
binary classifier as its discrimination threshold varies. The
AUC value of the best possible classifier will be equal to 1,
indicating that we can find a discrimination threshold under
which the classifier will obtain 0% false positives and 100%
true positives.

3.5 Evaluation Methodology
During the training phase, only the examples of one-class
were available to the learning algorithms and to the classi-
fication performance estimators. During the testing phase,
however, both positive and negative examples were avail-
able, to evaluate the classifiers in real-life conditions. The
generalized classification accuracy was measured by perform-
ing a 5x2 cross-validation procedure [8]. In each of the cross-
validation iterations, the dataset was randomly partitioned
into two disjoint instance subsets. In the first fold, the first
subset was utilized as the training set, while the second sub-
set was utilized as the testing set. In the second fold, the
role of the two subsets was switched. This process was re-
peated five times. The same cross-validation folds were im-
plemented for all algorithms.

To conclude which ensemble performs best over multiple
datasets, we followed the procedure proposed by Demšar
in [7]. In the case of multiple ensembles of classifiers or fea-
tures, we first used the adjusted Friedman test so as to reject
the null hypothesis, followed by the Bonferroni-Dunn test to
examine whether a specific ensemble or feature produces sig-
nificantly better AUC results than the reference method.

4. EXPERIMENTAL RESULTS
In this section we examine the performance of the discussed
ensembles. Our ultimate goal is to learn which ensemble,
if any, can make the task of selecting the best classifier re-
dundant. Since some of the examined ensembles are based
on heuristics, i.e., ESBE and TROIKA, we first measure
the correlation between these heuristics and their parallel

two-class metrics, i.e. OCA vs. Accuracy, and OCF vs.
F-Measure. If the heuristic and their parallel two-class met-
rics are strongly correlated, then the heuristics performance
measurements can be effectively used as a substitute for
the unavailable two-class performance measurements. In the
second experiment, we examine our one-class classifiers, to
ensure that not a single classifier classifies significantly bet-
ter than the rest of the classifiers. In other words, we want
to show that selecting the best one-class classifiers in not a
trivial task. Next, in the third experiment we compare the
classification performance of the existing (i.e. fix-rule), one-
class ensembles with the new one-class ensembles proposed
in this work. Lastly, we determine whether an ensemble
of classifiers performs as good as the actual best ensemble-
member classifier.

Note the difference between the actual, best ensemble mem-
ber and the estimated, best ensemble member. The first is
determined during the evaluation phase, where both positive
and negative instances exist, whereas the second is computed
during the training phase, where only positive instances ex-
ist, and therefore, we should expect it to be inferior to the
actual, best ensemble-member.

In the statistical analysis tables further ahead, we use the
following notations; the ‘+’ (‘-’) symbol indicates that the
average AUC value of the ensemble, indicated at the row’s
beginning, is significantly higher (lower), compared to the

ensemble indicated in the tableâĂŹs header with a confi-
dence level of 95%.

4.1 One-Class and Two-Class Performance
Metrics Are Correlated

To investigate the relationship between the two associated
performance evaluators in question, i.e., Accuracy vs. OCA
and F-Score vs. OCF, we trained six one-class classifiers,
as described in Table 5, on the UCI collection datasets.
Next, the classifiers were evaluated and the relevant per-
formance metrics (OCA, OCF, TPR, F-measure, and Accu-
racy), were measured. To measure the first three measures,

only the test-setâĂŹs positive examples were used, whereas
to compute the last two metrics, both positive and negative
examples were used. With these performance measures a
correlation matrix was calculated, presented in Table 6. In
addition, Figures 2 and 3 show two correlation plots; the
first plots the F-measure versus the OCF graph, whereas
the second plots the Accuracy versus the OCA graph.

F-measure OCF Accuracy OCA TPR
F-measure 1 - - - -
OCF 0.87 1 - - -
Accuracy 0.92 0.78 1 - -
OCA 0.61 0.58 0.81 1 -
TPR 0.38 0.24 0.16 -0.27 1

Table 6: Correlation Between one and two-class per-
formance metrics

Table 6 shows a sturdy positive correlation between OCA
and Accuracy (0.81) and even a slightly greater correlation
between OCF and F-measure (0.87). Interestingly, OCF
and Accuracy are also highly correlated, which might be at-
tributed to the inherent high correlation between F-Measure
and Accuracy measures.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
S
c
o
r
e

OCF

Figure 2: F-Measure vs. OCF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u
r
a
c
y

OCA

Figure 3: Accuracy vs. OCA

4.2 No Clear Winner Base-Classifier
The goal of the next experiment is to verify that picking
up the best-classifier is not a trivial task. In other words,
we need to ensure that there is no constant or very prob-
able winner classifier. Otherwise, an ensemble of classifiers
cannot be justified, since picking the best classifier could be
simply done via a cross-validation procedure.

We calculate the entropy, an uncertainty measure, of the
classifiers average ranking over a series of dataset to exam-
ine how predictable the best-classifier is. When there is a
very probable winner classifier, the calculated entropy is very
small (in particular, zero for a constant winner classifier). In
the opposing case, where all classifiers have the same average
rank, the calculated entropy will be at its maximal peak.

The participating classifiers were executed on the UCI and
KDD-CAP datasets. The classification results, and their
classifiers relative ranks are presented in Table 7. Table
8 summarizes the classifiers ranking and presents the per-
classifier entropy and the per-rank entropy statistics.

The results in Tables 7 and 8, present an interesting picture.
It seems that some classifiers perform better than others,
but there is no constant winner. The entropy-per-classifier
statistic, of all six classifiers, is very high, and in fact is only
slightly smaller than the maximal possible entropy value 2.
These results imply that the rank of a classifier is very un-
predictable, hence, given the six classifiers; it will be very
difficult to correctly guess their ranking, given a new dataset.
Do we have, at least, a good chance of successfully predicting
the best classifier? The very high per-rank-entropy (2.161),
reflects the high uncertainty in the identity of the best clas-
sifier, and therefore, the answer is no.

4.3 One-Class Ensembles Performance
In the following experiment we examine the classification
performance of the above-mentioned one-class ensembles.
The ensembles‘ classification performance results are pre-
sented in Table 9. Table 10 presents the statistical signif-
icance of the ranking difference between the examined en-
sembles and the actual best-classifier. Lastly, the statistical
significance of the ranking difference between ensembles and
ensemble-members are presented in Table 11.

2the maximal possible entropy is obtained when all the out-
comes of a random variable have the same probability, i.e.,
in our case entropymax = −6 ∗ (1

6
)L̇og2(1

6
) = 2.585

The results in Table 9, show that the ensemble with the
highest average rank is the meta-learning based, TUPSO.
The next best ensemble, by a large margin, is the product-
rule, which was the only fixed-rule that was ranked higher
than the random-classifier scheme. This is an indication for
the high independence among the ensemble participants, in-
duced by the heterogeneous learning algorithms. Indeed,
[28] showed that the product-rule is motivated by indepen-
dence of the combined models. In that work, however, the
authors applied feature-set partitioning to decrease the de-
pendency among the combined models. The heuristic en-
semble, ESBE, was ranked, on average, higher than the ran-
dom classifier, showing, along with TUPSO, the benefits
of using classification performance estimation. This simple
ensemble was also ranked higher than the majority-voting,
max-rule, and the mean-voting.

ADIFAGM ADIFAHM GDE PGA OC-SVM1 OC-SVM2

U
C

I
R

ep
o
si

to
ry

Anneal 0.543 (4) 0.600 (3) 0.865 (2) 0.905 (1) 0.489 (5) 0.486 (6)
Audiology 0.860 (3) 0.881 (2) 0.887 (1) 0.659 (5) 0.611 (6) 0.691 (4)
Balance-scale 0.819 (2) 0.733 (3) 0.989 (1) 0.683 (4) 0.523 (5) 0.523 (6)
Breast-cancer 0.491 (5) 0.503 (3) 0.409 (6) 0.500 (4) 0.528 (2) 0.543 (1)
C-Heart-disease 0.554 (3) 0.487 (6) 0.704 (1) 0.640 (2) 0.488 (4) 0.488 (4)
Credit-rating 0.689 (3) 0.712 (2) 0.790 (1) 0.639 (4) 0.501 (5) 0.497 (6)
E-coli 0.928 (4) 0.931 (3) 0.920 (5) 0.850 (6) 0.936 (1) 0.936 (1)
Heart-Statlog 0.546 (3) 0.497 (6) 0.733 (1) 0.643 (2) 0.497 (4) 0.497 (4)
Hepatitis 0.624 (4) 0.686 (2) 0.784 (1) 0.639 (3) 0.476 (6) 0.480 (5)
Horse-Colic 0.561 (2) 0.608 (1) 0.553 (3) 0.544 (4) 0.516 (6) 0.522 (5)
Heart-Disease 0.650 (3) 0.540 (4) 0.813 (1) 0.704 (2) 0.505 (5) 0.504 (6)
Hypothyroid 0.493 (2) 0.632 (1) 0.467 (6) 0.476 (5) 0.485 (4) 0.489 (3)
Ionosphere 0.789 (6) 0.796 (5) 0.909 (1) 0.906 (2) 0.847 (3) 0.830 (4)
Iris 0.935 (5) 0.915 (6) 0.970 (1) 0.970 (1) 0.950 (3) 0.950 (3)
Chess 0.52 (4) 0.669 (2) 0.867 (1) 0.641 (3) 0.501 (6) 0.503 (5)
Letter 0.825 (4) 0.880 (3) 0.954 (1) 0.949 (2) 0.482 (6) 0.482 (5)
MFeature 0.986 (1) 0.943 (2) 0.707 (5) 0.630 (6) 0.775 (4) 0.851 (3)
Mushroom 0.606 (4) 0.722 (3) 1.000 (1) 0.744 (2) 0.486 (5) 0.484 (6)
Opt-Digits 0.877 (4) 0.941 (2) 0.993 (1) 0.936 (3) 0.648 (6) 0.655 (5)
Page-Blocks 0.759 (4) 0.861 (2) 0.889 (1) 0.843 (3) 0.628 (5) 0.627 (6)
Pen Digits 0.984 (1) 0.954 (3) 0.977 (2) 0.954 (4) 0.875 (5) 0.874 (6)
Diabetes 0.497 (3) 0.493 (4) 0.439 (6) 0.488 (5) 0.619 (2) 0.627 (1)
P-Tumor 0.995 (1) 0.983 (2) 0.936 (5) 0.922 (6) 0.975 (3) 0.972 (4)
Segment 0.581 (4) 0.702 (1) 0.697 (2) 0.661 (3) 0.527 (5) 0.525 (6)
Sonar 0.459 (5) 0.458 (6) 0.537 (4) 0.550 (3) 0.556 (2) 0.572 (1)
Soybean 0.544 (3) 0.530 (4) 0.859 (1) 0.680 (2) 0.465 (5) 0.457 (6)
SPAM-Base 0.616 (3) 0.500 (4) 0.743 (1) 0.691 (2) 0.477 (5) 0.476 (6)
Splice 0.985 (2) 0.954 (3) 0.989 (1) 0.553 (4) 0.474 (5) 0.474 (5)
Vehicle 0.538 (4) 0.614 (3) 0.811 (1) 0.731 (2) 0.477 (5) 0.477 (5)
Vote 0.896 (2) 0.924 (1) 0.790 (3) 0.451 (6) 0.699 (5) 0.715 (4)
Vowel 0.606 (4) 0.658 (3) 0.923 (2) 0.931 (1) 0.456 (5) 0.456 (5)
Waveform 0.748 (4) 0.755 (3) 0.661 (6) 0.747 (5) 0.852 (1) 0.850 (2)
W.B. Cancer 0.976 (1) 0.919 (2) 0.904 (3) 0.886 (4) 0.467 (5) 0.455 (6)
Zoo 0.910 (3) 0.928 (2) 0.988 (1) 0.556 (4) 0.519 (5) 0.494 (6)

K
D

D
C

A
P

9
9 AUTH 0.985 (1) 0.950 (2) 0.919 (4) 0.928 (3) 0.849 (5) 0.849 (5)

FTP 0.552 (4) 0.720 (3) 0.932 (1) 0.925 (2) 0.487 (5) 0.487 (5)
FTP-DATA 0.663 (3) 0.861 (1) 0.773 (2) 0.654 (4) 0.489 (6) 0.489 (5)
OTHER 0.991 (1) 0.955 (2) 0.930 (3) 0.928 (4) 0.575 (5) 0.575 (5)
POP3 0.993 (1) 0.951 (2) 0.925 (4) 0.934 (3) 0.721 (5) 0.721 (5)
SMTP 0.740 (4) 0.898 (2) 0.863 (3) 0.922 (1) 0.729 (5) 0.729 (5)

Average Rank 3.1 (3) 2.85 (2) 2.4 (1) 3.3 (4) 4.5 (5) 4.53 (6)

Table 7: Ensemble-members performance results.
Inside the parenthesis is the classifiers’ AUC rank.

Rank Classifier
1st 2nd 3rd 4th 5th 6th entropy

ADIFAGM 7 5 10 14 3 1 2.258
ADIFAHM 5 14 12 4 1 4 2.224
GDE 20 5 5 3 3 4 2.143
PGA 4 10 8 10 4 4 2.461
OC-SVM1 2 3 3 4 21 7 2.037
OC-SVM2 4 1 3 6 14 12 2.207
Rank entropy 2.161 2.235 2.398 2.363 1.979 2.292

Table 8: Classifiers rank statistics

Random
Classifier ESBE

Majority
Voting

Max
Mean
Voting

Product TUPSO

U
C

I
R

ep
o
si

to
ry

Anneal 0.648 (4) 0.624 (5) 0.505 (6) 0.500 (7) 0.871 (2) 0.874 (1) 0.869 (3)
Audiology 0.765 (5) 0.857 (2) 0.825 (3) 0.532 (7) 0.737 (6) 0.798 (4) 0.888 (1)
Balance-scale 0.712 (5) 0.783 (2) 0.719 (3) 0.517 (7) 0.705 (6) 0.716 (4) 0.934 (1)
Breast-cancer 0.495 (5) 0.506 (1) 0.499 (4) 0.500 (3) 0.469 (7) 0.476 (6) 0.504 (2)
C.H. disease 0.560 (4) 0.490 (7) 0.512 (5) 0.500 (6) 0.646 (3) 0.685 (1) 0.654 (2)
Credit-rating 0.638 (5) 0.691 (4) 0.598 (6) 0.502 (7) 0.721 (3) 0.770 (2) 0.788 (1)
E-coli 0.917 (4) 0.934 (2) 0.932 (3) 0.884 (6) 0.819 (7) 0.913 (5) 0.963 (1)
H. Statlog 0.569 (4) 0.500 (6) 0.520 (5) 0.500 (7) 0.640 (3) 0.705 (1) 0.692 (2)
Hepatitis 0.615 (5) 0.669 (4) 0.579 (6) 0.500 (7) 0.684 (3) 0.777 (1) 0.745 (2)
Horse-Colic 0.551 (5) 0.552 (4) 0.529 (6) 0.502 (7) 0.620 (3) 0.622 (2) 0.635 (1)
H. Disease 0.619 (4) 0.543 (6) 0.573 (5) 0.505 (7) 0.749 (3) 0.754 (2) 0.791 (1)
Hypothyroid 0.507 (5) 0.607 (1) 0.490 (7) 0.496 (6) 0.590 (3) 0.593 (2) 0.568 (4)
Ionosphere 0.846 (4) 0.884 (3) 0.898 (2) 0.756 (6) 0.682 (7) 0.787 (5) 0.964 (1)
Iris 0.948 (4) 0.904 (5) 0.965 (3) 0.975 (2) 0.850 (7) 0.895 (6) 0.995 (1)
Chess 0.622 (5) 0.666 (4) 0.529 (6) 0.506 (7) 0.773 (3) 0.819 (1) 0.812 (2)
Letter 0.762 (5) 0.876 (3) 0.830 (4) 0.502 (7) 0.752 (6) 0.906 (2) 0.958 (1)
MFeature 0.815 (6) 0.924 (2) 0.830 (5) 0.608 (7) 0.871 (4) 0.873 (3) 0.972 (1)
Mushroom 0.674 (4) 0.718 (3) 0.574 (6) 0.507 (7) 0.645 (5) 0.808 (2) 0.881 (1)
Opt-Digits 0.842 (5) 0.927 (2) 0.871 (4) 0.658 (7) 0.768 (6) 0.897 (3) 0.979 (1)
Page-Blocks 0.768 (5) 0.858 (3) 0.848 (4) 0.528 (7) 0.752 (6) 0.863 (2) 0.944 (1)
Pen Digits 0.936 (4) 0.976 (3) 0.985 (2) 0.898 (6) 0.834 (7) 0.906 (5) 0.997 (1)
Diabetes 0.527 (4) 0.493 (7) 0.507 (5) 0.505 (6) 0.544 (3) 0.552 (2) 0.555 (1)
P-Tumor 0.964 (5) 0.975 (4) 0.983 (3) 1.000 (1) 0.876 (7) 0.905 (6) 1.000 (1)
Segment 0.615 (5) 0.662 (4) 0.568 (6) 0.534 (7) 0.685 (3) 0.704 (2) 0.717 (1)
Sonar 0.522 (4) 0.473 (7) 0.508 (5) 0.495 (6) 0.553 (3) 0.583 (1) 0.575 (2)
Soybean 0.589 (4) 0.524 (5) 0.509 (6) 0.503 (7) 0.798 (2) 0.784 (3) 0.801 (1)
SPAM-Base 0.584 (4) 0.676 (1) 0.598 (3) 0.500 (5) 0.500 (5) 0.500 (5) 0.630 (2)
Splice 0.738 (5) 0.976 (2) 0.624 (6) 0.500 (7) 0.769 (4) 0.862 (3) 0.989 (1)
Vehicle 0.608 (4) 0.595 (5) 0.525 (6) 0.497 (7) 0.731 (3) 0.793 (1) 0.787 (2)
Vote 0.746 (4) 0.923 (2) 0.744 (5) 0.504 (7) 0.690 (6) 0.830 (3) 0.937 (1)
Vowel 0.671 (4) 0.651 (5) 0.494 (7) 0.500 (6) 0.797 (3) 0.813 (2) 0.849 (1)
Waveform 0.769 (4) 0.752 (6) 0.758 (5) 0.661 (7) 0.812 (3) 0.814 (2) 0.865 (1)
WB-Cancer 0.768 (5) 0.967 (2) 0.953 (3) 0.500 (7) 0.725 (6) 0.826 (4) 0.979 (1)
Zoo 0.732 (5) 0.879 (2) 0.656 (6) 0.5 (7) 0.756 (4) 0.828 (3) 0.943 (1)

K
D

D
C

A
P

9
9 AUTH 0.913 (3) 0.784 (7) 0.978 (2) 0.869 (5) 0.861 (6) 0.907 (4) 0.989 (1)

FTP 0.684 (5) 0.730 (4) 0.549 (6) 0.509 (7) 0.801 (3) 0.883 (2) 0.903 (1)
FTP-DATA 0.655 (5) 0.781 (2) 0.602 (6) 0.506 (7) 0.713 (4) 0.794 (1) 0.775 (3)
OTHER 0.825 (5) 0.967 (2) 0.748 (6) 0.600 (7) 0.895 (4) 0.897 (3) 0.995 (1)
POP3 0.874 (5) 0.964 (3) 0.983 (2) 0.750 (7) 0.788 (6) 0.909 (4) 0.983 (1)
SMTP 0.813 (4) 0.970 (1) 0.737 (7) 0.749 (5) 0.748 (6) 0.869 (3) 0.931 (2)

Average Rank 4.5 (5) 3.6 (3) 4.8 (6) 6.3 (7) 4.5 (5) 2.9 (2) 1.4 (1)

Table 9: Ensembles classification result table. In-
side the parenthesis is the AUC rank of the tested
classifier.

The statistical tests in Table 10 reveal four clusters of clas-
sifiers, each comprised of statistically comparable ensembles
or classifiers. TUPSO and the best-base classifier populate
the cluster that represents the top-tier classification per-
formance. ESBE and product-rule ensembles comprise the
cluster that represents the above-average classification per-
formance. The majority-voting, mean voting and randomly
selected classifier make the below-average performance clus-
ter, and finally, the cluster that represents the lowest classi-
fication performance is comprised of the max-rule ensemble.

Table 11 indicates that the average AUC of TUPSO was
significantly higher than that of all the ensemble-members.
In addition, the table shows that the base-classifier with the
highest average AUC measure, i.e., GDE, achieved a sig-
nificantly lower AUC than the actual best classifier. This
fact further supports our claim regarding the inefficiency of
choosing the best classifier by solely relying on its classifica-
tion performance on previous classification tasks.

Figures 4 presents the AUC performance of different ensem-
bles relative to the AUC of the most popular one-class com-

AUTH

FTP

FTP-DATA

OTHER

POP3

SMTP

Best Classifier

TUPSO (OCA)

TUPSO (OCF)

ESBE (OCA)

ESBE (OCF)

Mean Voting

Random Classifier

Max

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n

s
e

m
b

le
 P

e
r
fo

r
m

a
n

c
e

Best Base-Classificer Performance

Random Classifier

ESBE

Max Rule

Majority Voting

TUPSO

Mean Voting

Figure 4: Comparing the ensembles‘ performance.
The majority-voting is the reference ensemble.

bining method, i.e., Majority voting, on the KDD-CUP-99
datasets. The figure shows that relatively to TUPSO, the
ESBE ensemble is affected much more by the type of per-
formance estimator. This may indicate that the TUPSO’s
meta-features are only mildly influenced by the performance
estimator.

4.4 Classifying Like the Best-Classifier?
We continue further with our experiment to find out which
of the ensembles can be used as an alternative for the best
base-classifier. Assuming that the users require a one-class
classifier for a single classification task (i.e., a single dataset),
they will be more concerned by how well their classifier will
perform on their classification task, rather than how it will
perform on average (i.e., on many different datasets). In
our case, the best performer, .i.e, TUPSO, is on average as
good as the best base-classifier and therefore is the natural
choice of ensemble. However, it might be the case that on
several datasets TUPSO significantly outperforms the best
base-classifier, while on other datasets, it significantly falls
behind the best base-classifier. If this is the case, one might
want to use another ensemble that has a greater chance of
classifying like the best base-classifier.

Figure 5 graphically shows the link between the AUC per-
formance of the best base-classifier and that of the ensem-
bles. Each dataset is represented by a single data point. To
find out which of the ensembles‘ AUC performance is most
tightly linked with the best base-classifier, we computed a
correlation matrix using the Pearson Correlation routine.
The results in Table 12 show that the TUPSO ensemble has
the most correlated AUC performance with the best base-

Majority Max Mean Product
ESBE

Random Best
Voting Rule Voting Rule Classifier Classifier

TUPSO + (≈ 0) + (≈ 0) + (≈ 0) + (< 0.01) + (< 0.01) + (≈ 0) (0.243)
Best Classifier + (≈ 0) + (≈ 0) + (≈ 0) + (< 0.01) + (≈ 0) + (≈ 0)

Rand Classifier (0.786) + (< 0.01) (0.964) − (< 0.01) (0.099)

ESBE + (0.057) + (≈ 0) (0.108) (0.152)

Table 10: The statistical significance of the differ-
ence in the AUC measure of the examined ensem-
bles. The p-value of the test statistic is inside the
brackets.

Base Classifiers (ensemble members)
ADIFAGM ADIFAHM GDE PGA OC-SVM1 OC-SVM2

TUPSO + (< 0.01) + (< 0.01) + (0.043) + (≈ 0) + (≈ 0) + (≈ 0)
ESBE (0.681) (0.719) (0.148) (0.344) + (< 0.01) + (< 0.01)
Maj. Voting (0.203) (0.129) − (0.011) (0.590) + (< 0.01) + (< 0.01)
Mean Vote (0.489) (0.141) − (< 0.01) (0.797) + (< 0.01) + (< 0.01)
Product (0.555) (0.918) (0.170) (0.284) + (< 0.01) + (< 0.01)
Best Clas. + (≈ 0) + (≈ 0) + (< 0.01) + (≈ 0) + (≈ 0) + (≈ 0)

Table 11: The statistical significance of the differ-
ence in the AUC measure between the examined
ensembles and their ensemble-members.

AUTH

FTP

FTP-DATA

OTHER

POP3

SMTP

Best Classifier

TUPSO (OCA)

TUPSO (OCF)

ESBE (OCA)

ESBE (OCF)

Mean Voting

Random Classifier

Max

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n

s
e

m
b

le
 P

e
r
fo

r
m

a
n

c
e

Best Base-Classificer Performance

Random Classifier

ESBE

Max Rule

Majority Voting

TUPSO

Mean Voting

Figure 5: Classification performance: ensembles vs.
actual best classifier.

classifier.

Random
Classifier

Majority
Voting

Max Mean
Voting

Product ESBE TUPSO

Pearson
Correlation

0.815 0.661 0.439 0.788 0.883 0.812 0.962

Table 12: Pearson Correlation.

4.5 One-Class Performance Estimation
& Meta-Learning

In this last experiment we examine the contribution of the
performance evaluators, OCA and OCF, to the classification
performance of the meta-learning based ensemble, TUPSO.
To do so, we experimented with TUPSO on two different
Meta features types separately, i.e., the summation-based
Meta features (f2 and f3) and the variance-based Meta fea-
tures (f7 and f8). For each meta-features type, three TUPSO
executions were made ; The first, without any weighting, for
the second and third executions, OCA and OCF were respec-
tively applied in order to calculate the ensemble’s member-
sâĂŹ performance. Mind that in each experiment, only a
single meta-feature was used. In this experiment we execute
TUPSO on 40 UCI datasets and use the OC-SVM learning
algorithm for training the meta-classifier. The experimental
results are presented in Table 13.

As can be seen in Table 13, the AUC performance for two
feature groups is improved by the weighting methods. It
is also visible that the OCF performance measure produces
better AUC values compared to the OCA by a noticeable
margin. Next, we check whether the difference in the AUC
is significant statistically. Table 14 shows that when the
ensemble-members’ predictions are weighted by the OCF,

Meta feature type: Sum of Predictions Variance of Predictions
Meta Feature: f2 f3 f7 f8

Dataset Perf. Measure: none OCA OCF none OCA OCF
Anneal 0.5 (3) 0.537 (2) 0.61 (1) 0.52 (3) 0.534 (2) 0.538 (1)
Arrhythmia 0.488 (1) 0.474 (3) 0.474 (2) 0.527 (1) 0.479 (3) 0.484 (2)
Audiology 0.644 (1) 0.633 (2.5) 0.633 (2.5) 0.508 (3) 0.57 (1) 0.539 (2)
Balance-scale 0.542 (3) 0.73 (1) 0.724 (2) 0.65 (3) 0.797 (2) 0.802 (1)
Breast-cancer 0.509 (3) 0.514 (1) 0.51 (2) 0.514 (1) 0.503 (3) 0.512 (2)
Heart-Disease 0.5 (3) 0.535 (1) 0.512 (2) 0.496 (3) 0.506 (2) 0.531 (1)
Credit Rating 0.556 (3) 0.613 (2) 0.666 (1) 0.518 (3) 0.527 (2) 0.583 (1)
E-Coli 0.882 (3) 0.905 (2) 0.905 (1) 0.466 (3) 0.483 (1) 0.473 (2)
Glass 0.515 (2) 0.515 (2) 0.515 (2) 0.512 (1) 0.508 (2.5) 0.508 (2.5)
Heart Statlog 0.5 (3) 0.531 (2) 0.536 (1) 0.501 (3) 0.528 (2) 0.546 (1)
Hepatitis 0.55 (3) 0.563 (2) 0.565 (1) 0.547 (3) 0.575 (2) 0.583 (1)
Horse Colic 0.529 (3) 0.532 (2) 0.538 (1) 0.513 (1) 0.505 (3) 0.509 (2)
Heart-Disease-(H) 0.52 (3) 0.622 (1) 0.604 (2) 0.56 (2) 0.558 (3) 0.595 (1)
Thyroid Disease 0.497 (1) 0.485 (3) 0.485 (2) 0.509 (2) 0.499 (3) 0.51 (1)
Ionosphere 0.885 (3) 0.892 (2) 0.893 (1) 0.522 (1) 0.51 (2) 0.509 (3)
Iris 0.965 (1) 0.96 (2.5) 0.96 (2.5) 0.48 (3) 0.5 (1) 0.495 (2)
Chess 0.591 (1.5) 0.516 (3) 0.591 (1.5) 0.595 (1) 0.574 (3) 0.594 (2)
Labor 0.506 (3) 0.556 (2) 0.563 (1) 0.535 (3) 0.59 (1) 0.582 (2)
Letter 0.5 (3) 0.822 (1) 0.82 (2) 0.516 (3) 0.587 (2) 0.75 (1)
Lymphography 0.528 (3) 0.538 (1) 0.532 (2) 0.525 (1) 0.52 (2) 0.515 (3)
M-Features-Pixel 0.724 (3) 0.883 (2) 0.884 (1) 0.59 (1) 0.566 (3) 0.585 (2)
Mushroom 0.6 (2) 0.561 (3) 0.685 (1) 0.615 (3) 0.672 (2) 0.759 (1)
Opt Digits 0.897 (1) 0.864 (3) 0.867 (2) 0.576 (3) 0.58 (1) 0.578 (2)
Page-Blocks 0.599 (3) 0.618 (1.5) 0.618 (1.5) 0.505 (3) 0.547 (1) 0.547 (2)
Pen Digits 0.982 (1) 0.98 (2) 0.979 (3) 0.48 (3) 0.492 (2) 0.506 (1)
Pima Diabetes 0.502 (3) 0.531 (1) 0.511 (2) 0.572 (1) 0.492 (3) 0.518 (2)
Primary Tumor 0.517 (3) 0.521 (1.5) 0.521 (1.5) 0.502 (1) 0.495 (3) 0.5 (2)
Segment 0.923 (3) 0.98 (2) 0.981 (1) 0.482 (2) 0.492 (1) 0.48 (3)
Thyroid Disease II 0.582 (1) 0.565 (3) 0.574 (2) 0.514 (3) 0.524 (2) 0.524 (1)
Sonar 0.514 (3) 0.517 (1.5) 0.517 (1.5) 0.478 (3) 0.478 (2) 0.484 (1)
Soybean 0.498 (2) 0.498 (3) 0.508 (1) 0.516 (2) 0.628 (1) 0.5 (3)
Spambase 0.594 (1) 0.584 (3) 0.591 (2) 0.486 (3) 0.5 (1.5) 0.5 (1.5)
Splice 0.69 (2) 0.605 (3) 0.967 (1) 0.929 (3) 0.955 (1) 0.949 (2)
Tic-Tac-Toe 0.473 (1) 0.469 (3) 0.472 (2) 0.502 (3) 0.548 (2) 0.554 (1)
Vehicle 0.565 (2) 0.579 (1) 0.56 (3) 0.636 (3) 0.662 (1) 0.65 (2)
Vote 0.703 (3) 0.74 (2) 0.758 (1) 0.611 (1) 0.592 (3) 0.605 (2)
Vowel 0.517 (3) 0.625 (2) 0.65 (1) 0.489 (1) 0.472 (3) 0.486 (2)
Waveform 0.536 (3) 0.809 (2) 0.813 (1) 0.526 (3) 0.551 (2) 0.563 (1)
W-Breast-Cancer 0.63 (3) 0.897 (2) 0.954 (1) 0.504 (2) 0.498 (3) 0.825 (1)
Zoo 0.55 (3) 0.563 (2) 0.588 (1) 0.69 (3) 0.721 (2) 0.74 (1)
Average AUC: 0.61 (2.39) 0.65 (2.04) 0.67 (1.58) 0.54 (2.28) 0.56 (2.05) 0.58 (1.68)

Table 13: The contribution of the ensemble-
member‘s performance estimation. Inside the
parenthesis is the AUC rank of the tested method
with respect to the tested feature.

the AUC results are significantly higher compared to when
the predictions are not weighted.

Weighted Feature: Sum-Predictions Var-Predictions
Non-weighted Feature: Perf. Measure: OCA OCF OCA OCF
Variance-Predictions n/a n/a (0.3143) + (0.007)
Sum-Predictions (0.1175) + (0.0003)

Table 14: The significance of the difference between
weighted features and their non-weighted matched
using the AUC metric. The p-value of the test statis-
tic is inside the brackets.

5. CONCLUSIONS
Thus far, the only combining scheme used for diverse learn-
ing algorithms in the context of one-class learning is the
Fix-rule. Judging by publication quantity, schemes, such as
majority voting, mean-voting, and max-rule are the most
popular. However, in this study we hypothesized the ex-
istence of an innate limitation with such combining meth-
ods, as they do not take into account the properties of the
ensemble-members they combine. Further along, we empir-
ically demonstrated this limitation. The fixed-rule schemes
indeed produced a lower classification accuracy when com-
pared to the best base classifier.

In this paper we searched for an improved method for com-
bining one-class classifiers. We implemented two one-class
classification performance evaluators, OCA and OCF, which
evaluated ensemble-members using the available positive la-
beled instances only. We then introduced ESBE, a simple
ensemble that uses OCA or OCF to select a single classifier
from the classifiers pool. Our experiment showed that while
this method is inferior to the best ensemble-member, it still

outperforms the Majority voting.

Lastly, we introduced a meta-learning based ensemble, TU-
PSO, which learns a combining function upon aggregates
of the ensemble-members’ predictions. Thus, in contrast
to the fix-rule scheme, TUPSO depends on the classifica-
tion properties of the ensemble-members. Our experiments
demonstrated the superiority of TUPSO over all other tested
ensembles, both in terms of classification performance and
in correlation to the best ensemble-member. Furthermore,
TUPSO was found to be statistically indistinguishable from
the best ensemble-member, thus, it completely removes the
necessity of choosing the best ensemble-member.

6. REFERENCES
[1] S. Bethard and D. Jurafsky. Who should i cite:

learning literature search models from citation
behavior. In Proceedings of the 19th ACM
international conference on Information and
knowledge management, pages 609–618. ACM, 2010.

[2] C. M. Bishop. Novelty detection and neural network
validation, 1994.

[3] C. Blake and C. Merz. UCI repository of machine
learning databases. 1998.

[4] J. B. D. Cabrera, C. Gutiérrez, and R. K. Mehra.
Ensemble methods for anomaly detection and
distributed intrusion detection in mobile ad-hoc
networks. Information Fusion, 9(1):96–119, 2008.

[5] P. Clark and R. Boswell. Rule induction with cn2:
Some recent improvements. In Machine
learningâĂŤEWSL-91, pages 151–163. Springer, 1991.

[6] B. Cyganek. Image segmentation with a hybrid
ensemble of one-class support vector machines. In
HAIS (1), pages 254–261, 2010.

[7] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[8] T. G. Dietterich. Approximate statistical test for
comparing supervised classification learning
algorithms. Neural Computation, 10(7):1895–1923,
1998.

[9] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and
S. Stolfo. A geometric framework for unsupervised
anomaly detection: Detecting intrusions in unlabeled
data. In Applications of Data Mining in Computer
Security. Kluwer, 2002.

[10] G. Giacinto, R. Perdisci, M. D. Rio, and F. Roli.
Intrusion detection in computer networks by a
modular ensemble of one-class classifiers. Information
Fusion, 9(1):69–82, 2008.

[11] T. K. Ho. The random subspace method for
constructing decision forests. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
20(8):832–844, 1998.

[12] P. Juszczak and R. P. W. Duin. Combining one-class
classifiers to classify missing data. In Multiple
Classifier Systems, pages 92–101, 2004.

[13] E. M. Knorr and R. T. Ng. A unified notion of
outliers: Properties and computation. In KDD, pages
219–222, 1997.

[14] A. Kontorovich, D. Hendler, and E. Menahem. Metric
anomaly detection via asymmetric risk minimization.

In SIMBAD, pages 17–30, 2011.

[15] W. S. Lee and B. Liu. Learning with positive and
unlabeled examples using weighted logistic regression.
In ICML, pages 448–455, 2003.

[16] B. Liu, W. S. Lee, P. S. Yu, and X. Li. Partially
supervised classification of text documents. In ICML,
pages 387–394, 2002.

[17] L. M. Manevitz and M. Yousef. One-class svms for
document classification. The Journal of Machine
Learning Research, 2:139–154, 2002.

[18] E. Menahem, L. Rokach, and Y. Elovici. Troika - an
improved stacking schema for classification tasks. Inf.
Sci., 179(24):4097–4122, 2009.

[19] E. Menahem, L. Rokach, Y. Elovici, and A. Schclar.
Securing your transactions: Detecting anomalous
patterns in xml files. CoRR, abs/1209.1797, 2012.

[20] J. Muñoz-Maŕı, G. Camps-Valls, L. Gómez-Chova,
and J. Calpe-Maravilla. Combination of one-class
remote sensing image classifiers. In IGARSS, pages
1509–1512, 2007.

[21] L. Nanni. Experimental comparison of one-class
classifiers for online signature verification.
Neurocomputing, 69(7-9):869–873, 2006.

[22] L. Nanni and A. Lumini. Random bands: A novel
ensemble for fingerprint matching. Neurocomputing,
69(13-15):1702–1705, 2006.

[23] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of
one-class SVM classifiers to harden payload-based
anomaly detection systems. In ICDM, pages 488–498,
2006.

[24] B. Schlkopf, J. C. Platt, J. Shawe-taylor, A. J. Smola,
and R. C. Williamson. Estimating the support of a
high-dimensional distribution, 1999.

[25] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J.
Smola, and R. C. Williamson. Estimating the support
of a high-dimensional distribution. Neural
computation, 13(7):1443–1471, 2001.

[26] S. Segúı, L. Igual, and J. Vitrià. Weighted bagging for
graph based one-class classifiers. In MCS, pages 1–10,
2010.

[27] A. D. Shieh and D. F. Kamm. Ensembles of one class
support vector machines. In MCS, pages 181–190,
2009.

[28] D. M. Tax and R. P. Duin. Combining one-class
classifiers. In Proc. Multiple Classifier Systems, 2001,
pages 299–308. Springer Verlag, 2001.

[29] D. H. Wolpert. Stacked generalization. Neural
Networks, 5(2):241–259, 1992.

[30] R.-S. Wu and W.-H. Chung. Ensemble one-class
support vector machines for content-based image
retrieval. Expert Syst. Appl., 36(3):4451–4459, 2009.

[31] K. Yamanishi, J. ichi Takeuchi, G. J. Williams, and
P. Milne. On-line unsupervised outlier detection using
finite mixtures with discounting learning algorithms.
In KDD, pages 320–324, 2000.

	1 Introduction and Background
	1.1 One-Class Ensemble
	1.2 Meta Learning
	1.3 Estimating The Classification Quality

	2 New Ensembles Schemes
	2.1 Best-Classifier By Estimation
	2.2 TUPSO
	2.2.1 Training Process
	2.2.2 Weighting the Ensemble Members

	3 Methods
	3.1 One-Class Learning Algorithms
	3.2 Ensemble Combining Methods
	3.3 Datasets
	3.4 Measured Metrics
	3.5 Evaluation Methodology

	4 Experimental Results
	4.1 One-Class and Two-Class Performance Metrics Are Correlated
	4.2 No Clear Winner Base-Classifier
	4.3 One-Class Ensembles Performance
	4.4 Classifying Like the Best-Classifier?
	4.5 One-Class Performance Estimation & Meta-Learning

	5 Conclusions
	6 References

