
Local clustering in provenance graphs

Citation
Macko, Peter, Daniel Margo, and Margo Seltzer. 2013. “Local Clustering in Provenance Graphs.”
In Proceedings of the 22nd ACM International Conference on Conference on Information &
Knowledge Management - CIKM ’13, October 27 - November 01, 2013, San Francisco, CA,
835-840. doi:10.1145/2505515.2505624.

Published Version
doi:10.1145/2505515.2505624

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33921644

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33921644
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Local%20clustering%20in%20provenance%20graphs&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=c798688ae22f02d27e5c854d24119916&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Local Clustering in Provenance Graphs

Peter Macko
Harvard University
33 Oxford Street

Cambridge, MA, USA
pmacko@eecs.harvard.edu

Daniel Margo
Harvard University
33 Oxford Street

Cambridge, MA, USA
dmargo@eecs.harvard.edu

Margo Seltzer
Harvard University
33 Oxford Street

Cambridge, MA, USA
margo@eecs.harvard.edu

ABSTRACT
Systems that capture and store data provenance, the record
of how an object has arrived at its current state, accumulate
historical metadata over time, forming a large graph. Lo-
cal clustering in these graphs, in which we start with a seed
vertex and grow a cluster around it, is of paramount impor-
tance because it supports critical provenance applications
such as identifying semantically meaningful tasks in an ob-
ject’s history. However, generic graph clustering algorithms
are not effective at these tasks. We identify three key prop-
erties of provenance graphs and exploit them to justify two
new centrality metrics we developed for use in performing
local clustering on provenance graphs.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
D.2.8 [Software Engineering]: Metrics—Complexity Mea-
sures

Keywords
Provenance; Local Clustering; Centrality; Lineage Query

1. INTRODUCTION
Provenance is metadata that describes the history of dig-

ital objects: where they came from, how they came to be in
their present state, who or what acted upon them, etc. The
study of provenance is an emerging research field with appli-
cations in diverse areas ranging from computational science
to trustworthiness. Provenance increases the value of the
objects it describes; for example, the results of an experi-
ment are more valuable if their provenance shows how they
were obtained.

Despite this interest there is still much work that needs
to be done to make provenance practical. For example, it
is surprisingly difficult to obtain a meaningful answer to the
query, “How was this object produced?” Since provenance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505624.

accumulates over time, after a few weeks or months of re-
peated experimentation, the ancestry of an object (which is
the answer to this query) can become long and complicated.
Existing solutions return either only the immediate ances-
tors, which frequently lacks complete context, or the entire
history, which can be so long as to be overwhelming. We
address this issue using local clustering, identifying cluster
boundaries to produce results that map to conceptual tasks.

Provenance forms a directed acyclic graph in which the
nodes are entities and processes that act on these entities,
and edges are historical relationships. The edges are usu-
ally directed from outputs to inputs [14]. For example, if
a user read data.in to produce graph.eps using gnuplot,
the provenance would contain an edge from graph.eps to
gnuplot and another edge from gnuplot to data.in (see
Figure 1), signifying that the resulting file was written by
the gnuplot process, which in turn read data.in.

We call the query that asks how an object was produced
a lineage query. Such queries are evaluated by starting at a
query node (e.g., graph.eps) and returning the subgraph
containing all the ancestors of the query node. Existing
provenance systems usually return either only the immediate
ancestors or the entire ancestry, but returning a semantically
meaningful cluster of nodes is vastly preferable.

Clustering is one of the most well-studied problems in
data mining, but there is little work directed at cluster-
ing in provenance graphs, and many existing techniques
do not work well. For example, we had little luck with
Markov Chain Clustering [21], algorithms that optimize con-
ductance [9], and algorithms that primarily take advantage
of a node degree, such as optimizing the Cheeger ratio [4].

We addressed this problem by studying large provenance
graphs, identifying their properties, and developing new cen-
trality metrics specifically for provenance. Leveraging these
metrics, we use local clustering to answer lineage queries by
starting with a query node and growing a cluster around
it until a “stopping” condition is met. We focus on local
clustering, rather than on general clustering, due to its re-
lationship to lineage queries and the fact that provenance
graphs can be large – even orders of magnitude larger than
the data being described.

We explore two kinds of local clustering methods: offline
metrics that require precomputation and real-time metrics
that do not. The former is feasible for static graphs that fit
in main memory and/or are easily parallelizable, while the
latter is useful for large or dynamic graphs. We acknowledge
that our set of clustering algorithms is not exhaustive, but

data.in gnuplot graph.eps

Figure 1: Example of a Provenance Graph. The nodes
represent objects and processes; edges represent dependency
relationships (opposite of the data flow).

instead representative of methods that show promise and
current limitations that might inform future work.

The rest of this paper is organized as follows. After dis-
cussing applications of local clustering in provenance, we
identify key properties of provenance graphs in Section 2.
We describe our approach to clustering in Section 3, our
metrics for the use with clustering in Section 4, and an al-
gorithm for detecting good cluster boundaries in Section 5.
We evaluate our approach in Section 6, discuss related work
in Section 7, and conclude in Section 8.

1.1 Applications
Local clustering in provenance graphs has two important

applications, both of which are related to lineage queries:

Task identification.
Users frequently want to identify the (semantically mean-

ingful) tasks that occur over time. For example, executing
the First Provenance Challenge [13] workflow involves sev-
eral subtasks: the installation of some tools, compilation
of others, and running a few instances of an fMRI image
processing analysis. While each subtask has many steps, it
is useful to provide users with an intuitive overview of the
ancestry in terms of these high-level tasks, presenting the
workflow in terms of clusters of steps.

Constraining underspecified queries.
A related challenge occurs when users issue lineage queries.

Continuing the example from above, one of the queries in the
First Provenance Challenge asked for the ancestry of a par-
ticular image file produced by the fMRI analysis. This is an
example of an underspecified query – does the user want to
know the immediate ancestor, the last task, or the history
from the beginning of time? A good solution to task identi-
fication is likely to be useful in addressing this challenge as
well.

2. PROVENANCE GRAPH PROPERTIES
There are three properties of provenance graphs that dis-

tinguish them from other natural graphs for which generic
graph clustering techniques were developed.

The ubiquity of a node is a function of a node’s descen-
dants, not its ancestors.

The history of a node can be arbitrarily long, depending
on when it was created relative to when provenance collec-
tion began – which is itself quite arbitrary. In contrast, the
ubiquity or importance of a node is defined by its influence
on other nodes. A node that has many descendants is thus
important, regardless of when it was created, while a leaf
node (with no descendants) has minimal influence, even if it
was created when the system was first initialized.

Variations in granularity.
There is no agreed-upon granularity in which provenance

should be captured, and different components of a system
may capture provenance at different granularities. For ex-
ample, the operating system might record provenance on
files. In contrast, a database system operates on tuples
or records and should record provenance for tuples. Al-
ternately, a build system might represent the compilation
of a simple program as a relationship between a source file
(myprog.c), a compiler (gcc), and an executable (myprog.out).
However, the operating system views this compilation as in-
volving many source files including header files and libraries,
multiple programs such as a compiler, assembler, and linker,
and a single output file. The number of edges between two
nodes that are related by ancestry, or any such measure, is
thus quite arbitrary.

The Temporal Nature of Provenance.
Provenance also has a temporal component, and this tem-

poral component is related to the relationships expressed –
an object cannot depend on an object that has yet to be
created. In related work, we found that users find tem-
poral clustering intuitively appealing [3], but temporal ap-
proaches alone frequently fail to separate semantically mean-
ingful tasks that occur at approximately the same time.

2.1 Implications for Clustering
Nodes that are at the start and/or the end of a semanti-

cally meaningful task tend to be “relatively more influential”
than the intermediate nodes within the task. For example,
consider the central workflow from a brain imaging work-
load [13]. The first stage of the workflow takes four scans of
a brain and aligns them to a canonical reference image. The
reference image is relatively important, because every result
from every such workflow depends on it. In comparison, an
individual brain scan influences only its own workflow.

Now consider the provenance of the individual scans: They
had to come from somewhere. We observed that data files
frequently arrive in bulk, so the download, copy, or extract-
from-archive process is also important, because many data
files depend on it. This transfer process is the last active
node in the “data copy” task.

This suggests that if we start at a seed (query) node S
and follow its outgoing edges (i.e., towards the ancestors),
we expect a large jump in node importance on either side of
a task boundary.

3. LOCAL CLUSTERING
In the context of lineage queries, we wish to construct

ancestry clusters starting from some seed vertex, S. We call
such clustering local clustering and define it is as follows.

1. Create a cluster that contains only S.
2. Compute the“importance”of S using a centrality met-

ric function f(·).
3. Expand the cluster by adding all immediate ancestors

of S where f(v)− f(S) ≤ δ, where δ is a threshold.
4. Repeat step 3 recursively for each added node.

The result is a cluster that contains the lineage of S trun-
cated just before reaching the important nodes. Alternately,
if we want to truncate immediately after important nodes,
we can add one final step.

5. Add all immediate ancestors of each node in the cluster
to the cluster.

Step 5 might introduce a few extraneous nodes. The decision
of whether to add step 5 is an explicit trade-off between
precision and recall. We will perform this extra step unless
stated otherwise, favoring recall over precision.

Intuitively, this approach (including the optional step at
the end) corresponds to the scenario in which a user explores
the lineage of a query node one neighborhood at a time for
each node with which she is not familiar – assuming that
she is more likely to be familiar with nodes that are more
influential.

Next, we examine a range of centrality metrics and a sim-
ple but effective method for threshold selection.

4. MODELS OF NODE INFLUENCE
Our ability to automatically identify influential nodes is

crucial for both applications of clustering described in Sec-
tion 1.1. We categorize metrics in two ways, first, whether
they can be computed efficiently in real-time or require of-
fline precomputation and second, the feature on which the
metric is based (e.g., node-degree, closeness, etc.). For each
feature, we select representatives, either a commonly-used
metric or a custom metric developed specifically for prove-
nance graphs.

Category Presented Best Metric and Type
Degree In-Degree Centrality (Real-Time)
Betweenness Ancestor Centrality (Offline)
Closeness Opsahl’s Closeness Centrality (Offline)
Eigenvector Provenance Eigenvector Centrality (Offline)

To this collection of structure-based metrics, we add the sin-
gle semantic metric that captures the temporal relationship
in provenance graphs, age.

4.1 Real-Time Metrics
Although our results show that real-time metrics do not

perform as well as offline ones, they are nonetheless impor-
tant when precomputation is either too time consuming or
impractical (e.g., the data changes frequently).

In-Degree Centrality.
Degree centrality is perhaps the simplest centrality metric.

However, recall that the ubiquity of a node in a provenance
graph depends on its descendants, not its ancestors (see Sec-
tion 2), so we should use in-degree rather than total node
degree. This is a measure of node’s local importance, and it
corresponds to the number of times a node was directly used
by other nodes. For example, in the context of file system
provenance, in-degree corresponds to the number of times a
file was used as input to a process. In a citation network, it
represents the number of times a paper is cited.

Although we usually apply a threshold to the difference
between centrality metrics of two neighbors, we use the in-
degree value itself; thus treaingt it as a global metric rather
than a local one:

Include node v in cluster C(S) if InDegree(v) ≤ δ

Age.
In prior work [3], we observed that users found tempo-

ral clustering useful in understanding large provenance data

sets. Although, timestamps do not directly correlate to
influence, a node’s age is more likely to, because it is a
proxy for the length of time during which descendants could
be produced. Since age can be expressed as the differ-
ence between a node’s timestamp and the timestamp of the
youngest node in the graph, it satisfies the properties iden-
tified in Section 2 that we want for a metric.

When we consider timestamps intuitively, large “jumps”
in timestamps or ages correspond to breaks between tasks.
This metric produces many false positives when multiple
diverse tasks are run in a short succession, especially when
executed by a script.

4.2 Offline Metrics

Ancestor Centrality.
Ancestor centrality of a node v is the total number of

v’s descendants, or the size of a subgraph “below” v. In
provenance terms, ancestor centrality is equal to the number
of objects on whose lineage v appears.

Let Iij be the boolean value indicating the existence of a
(directed) path from i to j (including the case i = j). We
assign Iij 1 if the path exists and 0 if it does not. Then,

AC(v) =
∑
x∈V

Ixv

We can normalize this quantity by the number of nodes |V |,
so that the normalized ancestor centrality corresponds to
the fraction of nodes that are descendants of v.

Ancestor centrality is related to betweenness centrality [7],
which is a measure of the number of all shortest paths that
pass through a given vertex. While betweenness centrality
considers all shortest paths through a given vertex, ancestor
centrality considers only directed paths from leaf towards
root.

Opsahl’s Closeness Centrality.
The standard definition of closeness centrality [6] is unde-

fined for graphs with disconnected components. Opsahl [16]
proposed the following variant:

CC(v) =
∑

x∈V \v

d−1
xv

where dij is the distance between nodes i and j, which is
∞ when i and j are not connected. To apply it to prove-
nance graphs, we modify its distance metric dij to follow
only outgoing edges. We refer to this modification as d′ij .
Hence,

CC′(v) =
∑

x∈V \v

(d′xv)−1

This metric is also related to ancestor centrality, which
uses Ixv instead of (d′xv)−1. Therefore, it still accounts for
the number of edges between v and its descendants, but it
is not strongly weighted, as in, for example, Dangalchev’s
closeness centrality [5], which we have found to work poorly
on provenance graphs.

Provenance Eigenvector Centrality.
Another approach to modeling a node’s influence is by

simulating the process of a lineage query.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.002 0.004 0.006 0.008 0.01

N
u

m
b

e
r

o
f

N
o

d
e

s

Normalized Ancestor Centrality

Figure 2: Threshold vs. number of nodes. The num-
ber of nodes in the cluster of atlas-x.gif from the chall-

mar29-2 dataset for the given threshold using normalized
ancestor centrality.

Define the following transition matrix:

Mij =

1 if there is an edge i→ j

1/|V | if there is no outgoing edge from i

0 otherwise

Intuitively, this is a model of a linage query: When you are
at node i, follow all of its outgoing edges; if there are no
more edges to follow, start another query from a random
node.

Provenance eigenvector centrality (PEC) is the dominant
left eigenvector of this matrix. We approximate it using
power iteration.

5. CHOOSING THE THRESHOLDS
Given a set of centrality metrics our final task is to se-

lect appropriate thresholds. If we plot the number of nodes
in a cluster as a function of a centrality metric, we find
that a number of plateaus emerge. For example, Figure 2
demonstrates this phenomenon using ancestor centrality on
a provenance challenge provenance graph. The plateaus in-
dicate “jumps” in node importance that likely correspond to
moving from one semantically meaningful task to another,
but they can also include false positives.

The existence of multiple plateaus thus often suggests the
existence of multiple task boundaries. We find that choos-
ing the first or the second plateau usually produces the best
results for task identification, depending on the metric and
on the data set. One could imagine using this local clus-
tering technique as the front-end to a provenance database
or a visualization system. Users could use “next” and “pre-
vious” buttons to visualize larger and smaller clusters that
correspond to the detected plateaus.

Automatically detecting the beginning/end of plateaus is
tricky. Discontinuities in the metric can vary in size by or-
ders of magnitude depending on their location in the graph.
We developed the following threshold detection algorithm,
which works well in practice. Let f(·) be the metric function
and S the seed vertex. Define mf,S(v) to be the minimum
value of the given metric that causes vertex v to be included
in the cluster. Then:

Algorithm 1: Computing mf,S(v)

Data: S = the seed vertex, f(·) = the metric
Result: mf,S(v) = the minimum value of the metric

for vertex v to appear in the cluster C(S)

Q← new PriorityQueue;
Q.enqueue(S, priority=f(S));
mf,S(v)← f(S);

while Q is not empty do
// Get element with the smallest priority

v ← Q.dequeue();
foreach e in outgoing edges from v do

u← the other endpoint of e;
m← max{mf,S(v), f(u)};
if mf,S(u) is undefined then

mf,S(u)← m;
Q.enqueue(u, priority=mf,S(u));

1. Compute mf,S(v) for every node in the ancestry of
S, optionally constraining it by a maximum depth of
traversal. See Algorithm 1 for details.

2. Sort the computed values. When plotted against 1 +
their index in this list, this produces a plot like Fig-
ure 2.

3. Set the minimum jump threshold to the average dif-
ference between two consecutive elements in the sorted
list, times a parameter α.

The value α is relatively insensitive to the provenance graph
and the choice of a metric; we usually use α = 1 for every-
thing except age. We currently select the parameter αage

manually; automatically selecting a good parameter is left
as future work.

6. EMPIRICAL EVALUATION
We evaluate the use of thresholding and centrality met-

rics in local clustering to support applications such as task
identification and query truncation. We base our experi-
ments on multiple provenance graphs, including the Third
Provenance Challenge [19] data from the Provenance Aware
Storage System (PASS) [15] and the ProtoProv system [20].
We evaluate our clustering results on a combined task identi-
fication and lineage query truncation scenario, which starts
with a seed node S and builds a cluster C(S) that contains
just the nodes from S’s ancestry that correspond to the most
recent semantically meaningful task that produced S.

We consider a result successful if a cluster yields high pre-
cision and recall using the first or second detected threshold.
For each metric and tested scenario, we report the thresh-
old that produced the best accuracy, the number of correct
nodes in the cluster, the number of extraneous nodes that
should be excluded, and the precision. We do not report re-
call, because it was 100% in all cases. (As we mentioned in
Section 3, we configured the clustering algorithm to prefer
recall over precision.)

6.1 Provenance Datasets and Seed Nodes
We present results from the following four traces. We

specify the seed node for the cluster separately for each trace
together with a high-level description of a“good cluster”that

Algorithm
Thres- Correct Extra

Precision
hold Nodes Nodes

Grnd. Truth – 99 – –
AC 2 99 1 99%
CC’ 7 99 1 99%
PEC 3 99 1 99%
In-Degree 2 99 1 99%
Age 2 99 0 100%

(a) am-utils: Compilation of wire-test.

Algorithm
Thres- Correct Extra

Precision
hold Nodes Nodes

Grnd. Truth – 38 – –
AC 4 38 4 90%
CC’ 4 38 4 90%
PEC 4 38 14 73%
In-Degree 2 38 30 56%
Age 9 38 4 90%

(b) chall-mar29-2: Lineage of “brain atlas” atlas-x.gif.

Algorithm
Thres- Correct Extra

Precision
hold Nodes Nodes

Grnd. Truth – 26 – –
AC 1 26 6 81%
CC’ 1 26 6 81%
PEC 1 26 6 81%
In-Degree 1 26 5 84%
Age 1 26 42 38%

(c) chall3-failed: Examining the task that failed.

Algorithm
Thres- Correct Extra

Precision
hold Nodes Nodes

Grnd. Truth – 10 – –
AC 1 10 2 83%
CC’ 2 10 2 83%
PEC 1 10 4 71%
In-Degree 1 10 2 83%
Age (There are no timestamps in the dataset.)

(d) chall3-twc: Successful loading of a scientific database.

Table 1: Summary of the results. Recall is 100% in all cases.

describes the semantically meaningful task that produced
the given node.

am-utils (51,358 nodes, 167,359 edges): the compilation
of the BSD auto-mounter utilities ver. 6.1.5 [2], collected
by PASSv2 [15]. The trace consists of archive extraction,
execution of ./configure, and compilation of each tool.
Seed: The executable for wire-test, one of the tools in
the package. The complete lineage consists of 9,502 nodes
and 9,852 edges, most of which are due to the ./configure

process. A good cluster shoulould include only those nodes
that are directly relevant for the compilation, but not for
./configure.

chall-mar29-2 (12,595 nodes, 40,227 edges): an fMRI work-
flow dataset from the First Provenance Challenge [13] from
the PASS group. The trace consists of archive extraction,
compilation of four Bioinformatics tools, data copying, and
execution of two instances of the fMRI workflow.
Seed: atlas-x.gif, one of the three main results of the
workflow. The complete lineage consists of 5,190 nodes and
9,835 edges, most of which correspond to the compilation of
the tools. A good cluster should contain only those nodes
that are directly relevant to the workflow execution.

chall3-failed (4,286 nodes, 7,691 edges): an intention-
ally failed execution of a scientific database loading work-
flow submitted by the PASS group to the Third Provenance
Challenge [19].
Seed: fail.log, which contains the detailed error informa-
tion. The complete lineage has 310 nodes and 362 edges,
most of which correspond to copying the workflow files. A
good cluster should contain nodes relevant to the failed stage
of the workflow, but no nodes related to copying the files.
chall3-twc (63 nodes, 94 edges): a complete execution of
the Third Provenance Challenge workflow from the Teth-
erless World Constellation’s ProtoProv system (TWC) [20],
which loads three database tables.
Seed: The final processing step of the last table. The com-
plete lineage has 61 nodes and 92 edges. A good cluster

should only contain nodes that are relevant to loading this
table.

6.2 Results
Table 1 summarizes the results. We achieve excellent ac-

curacy in task identification, an important application of lo-
cal clustering in provenance – and thus arguably also in the
second application, because task identification can be used
to produce good answers to underspecified lineage queries,
as explained in Section 1.1.

Ancestor centrality produced the best results, generating
ideal or almost-ideal clusters with perfect recall and a min-
imal number of extraneous nodes. In almost all cases, the
extraneous nodes were executables for the process executed
by the task; it can be argued that including them is tech-
nically correct, although filtering them out would also be
relatively straightforward.

Opsahl’s closeness centrality produces similar results with
a few additional extraneous nodes in a small number of cases,
but using it, requires considering more discontinuities in the
metric (i.e., we have to look at several different threshold
values). As a result, it is more difficult to automatically
select the right threshold. Provenance eigenvector centrality
produces fewer such jumps, so it is easier to pick thresholds,
but its accuracy is lower.

The readily-available metrics, in-degree centrality and age,
do not perform consistently; they either work well or very
poorly.

Please refer to the extended version of this paper for more
details [11].

7. RELATED WORK
Although centrality metrics are well-studied, it is typical

to find that the standard metrics are inadequate for a specific
domain or application. This can create the need for a novel
metric [8] or for a novel comparative analysis of existing
metrics in the new domain [10]. Provenance graphs seem
relatively unknown in the graph theory community, so little
work has been done studying their structure [1]. Our work

extends the tradition of centrality analyses to provenance
graphs.

Local clustering is likewise a well-studied problem [18],
but as mentioned in the introduction, most existing ap-
proaches focus on optimizing metrics that do not work well
for provenance graphs. It is also uncommon to study lo-
cal clustering using metrics that need to be precomputed,
which we choose to do because of the nature of our appli-
cations. Little work that has been done in clustering prove-
nance graphs, such as by using semantic information [3, 12].

Ré and Suciu [17] addressed unconstrained lineage queries
in probabilistic databases, a subfield of provenance. Their
method omits objects that do not “significantly contribute”
to a result; however, this concept is tightly linked to their do-
main, in which provenance relationships (edges) are proba-
bility-weighted and used for forensic inference. This method
does not obviously extend to provenance data in general, in
which relationship strength may be more difficult to define
and quantify.

8. CONCLUSION
The paper introduced the problem of local clustering in

provenance graphs, which has important applications in ef-
fective use of provenance. We demonstrate that our new
metric for directed acyclic graphs, ancestor centrality (AC),
coupled with our threshold detection algorithm works well
for provenance applications. We also demonstrated that a
straightforward adaptation of closeness centrality and prove-
nance eigenvector centrality work with some degree of suc-
cess. In the process, we identified the relative strengths and
limitations of real-time metrics such as in-degree and age.
Facilitating effective provenance query in large and/or dy-
namic graphs will likely require combining these real-time
metrics with other algorithms to obtain adequate behavior
when precomputing values is infeasible. Finally, we suggest
several avenues of future research, such as developing algo-
rithms to incrementally maintain offline metrics, incorporat-
ing temporal clustering in conjunction with other methods,
and developing efficient techniques for approximating cen-
trality metrics.

9. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0937914 and
Oracle Corporation. We would also like to thank Michael
Mitzenmacher, Matt Welsh, and the anonymous CIKM re-
viewers for their comments and their helpful guidance.

10. REFERENCES
[1] U. Acar, P. Buneman, J. Cheney, J. Van Den Bussche,

N. Kwasnikowska, and S. Vansummeren. A graph
model of data and workflow provenance. In TaPP,
2010.

[2] 4.4BSD automounter utilities. http://www.fsl.cs.
sunysb.edu/docs/am-utils/am-utils.html, March
2011.

[3] M. Borkin, C. Yeh, M. Boyd, P. Macko, K. Z. Gajos,
M. Seltzer, and H. Pfister. Evaluation of filesystem
provenance visualization tools. In InfoVis, 2013.

[4] J. Cheeger. A lower bound for the smallest eigenvalue
of the laplacian. Problems in Analysis: Symposium in
Honor of Salomon Bochner (1969), page 195, 1970.

[5] C. Dangalchev. Residual closeness in networks.
Physica A: Statistical Mechanics and its Applications,
365(2):556–564, June 2006.

[6] L. Freeman. Centrality in Social Networks:
Conceptual Clarification. Social Networks, 1:215–239,
1979.

[7] L. C. Freeman. A set of measures of centrality based
upon betweenness. Sociometry, 40:35–41, 1977.

[8] W. Hwang, T. Kim, M. Ramanathan, and A. Zhang.
Bridging centrality: graph mining from element level
to group level. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’08, pages 336–344,
New York, NY, USA, 2008. ACM.

[9] R. Kannan, S. Vempala, and A. Vetta. On clusterings:
Good, bad and spectral. J. ACM, 51(3):497–515, 2004.

[10] E. Le Merrer and G. Trédan. Centralities: capturing
the fuzzy notion of importance in social graphs. In
Proceedings of the Second ACM EuroSys Workshop on
Social Network Systems, SNS ’09, pages 33–38, New
York, NY, USA, 2009. ACM.

[11] P. Macko, D. Margo, and M. Seltzer. Local clustering
in provenance graphs (extended version). Technical
report, Harvard University, 2013.

[12] P. Macko and M. Seltzer. Provenance map orbiter:
Interactive exploration of large provenance graphs. In
TaPP, 2011.

[13] L. Moreau et al. The First Provenance Challenge.
Concurrency and Computation: Practice and
Experience, 20(5):409–418, April 2008. Published
online. DOI 10.1002/cpe.1233.

[14] L. Moreau and P. Missier. PROV-DM: The PROV
data model. Recommendation, W3C, Apr. 2013.
http://www.w3.org/TR/2013/REC-prov-dm-
20130430/.

[15] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In
Proceedings of the 2009 USENIX Annual Technical
Conference. USENIX, June 2009.

[16] T. Opsahl, F. Agneessens, and J. Skvoretz. Node
centrality in weighted networks: Generalizing degree
and shortest paths. Social Networks, 32(3):245–251,
2010.

[17] C. Ré and D. Suciu. Approximate lineage for
probabilistic databases. Proc. VLDB Endow.,
1(1):797–808, 2008.

[18] S. E. Schaeffer. Survey: Graph clustering. Comput.
Sci. Rev., 1(1):27–64, Aug. 2007.

[19] Y. Simmhan, P. T. Groth, and L. Moreau. Special
section: The third provenance challenge on using the
open provenance model for interoperability. Future
Generation Comp. Syst., 27(6):737–742, 2011.

[20] Tetherless world for the third provenance challenge.
http://tw.rpi.edu/wiki/TetherlessPC3.

[21] S. van Dongen. Graph Clustering by Flow Simulation.
PhD thesis, University of Utrecht, 2000.

