
Timely crawling of high-quality ephemeral new content

Damien Lefortier
Yandex

damien@yandex-team.ru

Liudmila Ostroumova
Yandex

Moscow State University
ostroumova-la@yandex-

team.ru

Egor Samosvat
Yandex

Moscow Institute of Physics
and Technology

sameg@yandex-team.ru

Pavel Serdukov
Yandex

pavser@yandex-team.ru

ABSTRACT
Nowadays, more and more people use the Web as their pri-
mary source of up-to-date information. In this context, fast
crawling and indexing of newly created Web pages has be-
come crucial for search engines, especially because user traf-
fic to a significant fraction of these new pages (like news,
blog and forum posts) grows really quickly right after they
appear, but lasts only for several days.

In this paper, we study the problem of timely finding and
crawling of such ephemeral new pages (in terms of user inter-
est). Traditional crawling policies do not give any particular
priority to such pages and may thus crawl them not quickly
enough, and even crawl already obsolete content. We thus
propose a new metric, well thought out for this task, which
takes into account the decrease of user interest for ephemeral
pages over time.

We show that most ephemeral new pages can be found
at a relatively small set of content sources and present a
procedure for finding such a set. Our idea is to periodically
recrawl content sources and crawl newly created pages linked
from them, focusing on high-quality (in terms of user inter-
est) content. One of the main difficulties here is to divide
resources between these two activities in an efficient way.
We find the adaptive balance between crawls and recrawls
by maximizing the proposed metric. Further, we incorpo-
rate search engine click logs to give our crawler an insight
about the current user demands. Efficiency of our approach
is finally demonstrated experimentally on real-world data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurement, Theory

1. INTRODUCTION
A web crawler traditionally fulfills two purposes: discov-

ering new pages and refreshing already discovered pages.
Both of these problems have been extensively investigated
over the past decade (see the survey paper by Olston and
Najork [17]). However, recently, the role of the Web as a me-
dia source became increasingly important as more and more

1The authors are given in alphabetical order

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

no
rm

al
iz

ed
 n

um
be

r
of

 d
ai

ly
 v

is
its

age (days)

ephemeral page
non-ephemeral page

Figure 1: Typical user interest patterns for ephemeral and
non-ephemeral new pages

people start to use it as their primary source of up-to-date
information. This evolution forces crawlers of Web search
engines to continuously collect newly created pages as fast
as possible, especially high-quality ones.

Surprisingly, user traffic to many of these newly created
pages grows really quickly right after they appear, but lasts
only for a few days. For example, it was discussed in several
papers that the popularity of news decreases exponentially
with time [12, 16]. This observation naturally leads to dis-
tinguishing two types of new pages appearing on the Web:
ephemeral and non-ephemeral pages. Note that here we do
not consider the ephemeral content, which might be removed
before it hits the index as in [18] (e.g. advertisements or the
“quote of the day”), but we consider persistent content that
is ephemeral in terms of user interest (e.g. news, blog and
forum posts). We clustered user interest patterns of some
new pages discovered in one week (see Section 3 for details),
and Figure 1 shows the centroids of the obtained clusters. In
Section 3, we show that a significant fraction of new pages
appearing on the Web every day are ephemeral pages.

The cost of the time delay between the appearance of
such ephemeral new pages and their crawl is thus very high
in terms of search engine user satisfaction. Moreover, if a
crawler fails to find such a page during its period of peak
interest, then there might be no need to crawl it at all. It
was reported in [10], that 1-2% of user queries are extremely
recency sensitive, while even more are also recency sensitive

ar
X

iv
:1

30
7.

60
80

v2
 [

cs
.I

R
]

 2
4

Ju
l 2

01
3

to some extent. The problem of timely finding and crawling
ephemeral new pages is thus important, but, to the best of
our knowledge, is not studied in the literature.

Indeed, different metrics were suggested to measure the
coverage and freshness of the crawled corpus [5, 8, 17], but
they do not take into account the degradation of the profit
to a search engine contributed by these pages. Crawling
policies based on such metrics may then crawl such new
pages not quickly enough, and even crawl already obsolete
content. Thus, we need a new quality metric, well thought
out for this task, and a crawling algorithm optimized to
maximize this metric over time, that takes into account this
degradation of pages’ utility.

Our daily experience of using the Web also suggests that
such ephemeral new pages can be found from a relatively
small set of “hubs” or content sources. We investigate this
intuition and show that it is possible and practical to find
such sources at scale. Examples of content sources are main
pages of blogs, news sites, category pages of such news sites
(e.g. politics, economy), RSS feeds, sitemaps [24], etc., and
one needs to periodically recrawl such sources in order to
find and crawl ephemeral new pages way before their peak
of user interest. However, frequent recrawling of all these
sources and all new pages found on them requires a huge
amount of resources and is quite inefficient. In order to
solve this problem efficiently, we analyze the problem of di-
viding limited resources between different tasks (coined as
holistic crawl ordering by Oslton and Najork in [17]), i.e.,
here between the task of crawling ephemeral new pages and
the task of recrawling content sources in order to discover
those new pages. A possible solution for this problem is to
give a fixed quota to each policy (see, e.g., [13]), but we will
show that such solutions based on fixed quotas are far from
being optimal.

In this paper, we propose a new algorithm that dynami-
cally estimates, for each content source, the rate of new links
appearance in order to find and crawl newly created pages
as they appear. As a matter of fact, it is next to impossible
to crawl all these new pages immediately due to resource
constraints, therefore, a reasonable crawling policy has to
crawl the highest quality pages in priority.

The quality of a page can be measured in different ways,
and it can, for example, be based on the link structure of
the Web graph (e.g., in-degree [13] or PageRank [9, 1]), or
on some external signals (e.g., query log [11, 19, 20] or the
number of times a page was shown in the results of a search
engine [19]). In this paper, we propose to use the number of
clicks in order to estimate the quality of pages, and predict
the quality of newly created pages by using the quality of
pages previously linked from each content source. By the
number of clicks, we mean the number of times a user clicked
on a link to this page on a search engine results page (SERP),
which most reliably indicates a certain level of user interest
in the page’s content. In this way, we are able, in fact, to
incorporate user feedback into the process of crawling for
our algorithm to find and crawl the best new pages.

To sum up, this paper makes the following contributions:

• We formalize the problem of timely crawling of high-
quality ephemeral new Web content by suggesting to
optimize a new quality metric, which measures the
ability of a crawing algorithm to solve this specific
problem (Section 2).

• We show that most of such ephemeral new content
can be found at a small set of content sources, and we
propose a method to find such sources (Section 3).

• We propose a practical algorithm, which periodically
recrawls content sources and crawls newly created pages
linked from them, as a solution of this problem. This
algorithm uses user feedback to estimate the quality of
content sources (Section 4).

• We validate our algorithm by comparing it to other
crawling strategies on real-world data (Section 5).

Besides, in Section 6, we review related work, while in Sec-
tion 7, we conclude the paper and discuss possible directions
for future research.

2. FORMALIZATION OF THE PROBLEM
In this section, we formalize the problem under consider-

ation by introducing an appropriate quality metric, which
measures the ability of a crawling algorithm to solve this
problem. As we discussed in the introduction, we deal with
pages for which user interest grows within hours after they
appear, but lasts only for several days. The profit of crawl-
ing such ephemeral new pages thus decreases dramatically
with time.

Assume that for each page i, we know a decreasing func-
tion Pi(∆t), which is the profit of crawling this page with
delay ∆t seconds after its creation time ti (by profit, one can
mean the expected number of clicks or shows on SERP). If,
finally, each page i was crawled with a delay ∆ti, we can
define the dynamic quality of a crawler as:

QT (t) =
1

T

∑
i:ti+∆ti∈[t−T,t]

Pi(∆ti). (1)

In other words, the dynamic quality is the average profit
gained by a crawler per second in a time window of size T .

The dynamic quality defined above can be useful to un-
derstand the influence of daily and weekly trends on the per-
formance of a crawler. Let us now define the overall quality
of a crawler, which allows to easily compare different algo-
rithms over larger time windows. It is natural to expect that
if T is large enough then the influence of season and weekly
trends of user interest will be reduced. In other words, the
function QT (t) tends to a constant while T increases. Thus,
we can consider the overall quality :

Q = lim
T→∞

1

T

∑
i:ti+∆ti∈[0,T]

Pi(M ti), (2)

which does not depend on t and T .
In this paper, by Pi(∆t) profit of crawling a page i at

time ti + ∆t, we mean the total number of clicks this page
will get on a SERP after this time (ignoring any indexing
delay). In this way, we can approximate the relevance of a
page to current interests of users. From a crawler’s perspec-
tive, it is thus an appropriate measure of the contribution of
new pages to a search engine performance (given a specific
ranking method).

Alternatively, instead of the number of clicks, we could use
the number of shows, i.e., the number of times a page was
shown in the top k results of a search engine. This value
also reflects a crawler’s performance in the sense that we
only want to crawl ephemeral new pages, which are going

to be shown to users. But, as we discuss further in this
section, the number of clicks and the number shows behave
similarly and we thus use clicks since they reflect the actual
preference of users.

At this point, we have defined a new metric to measure
the quality of crawling ephemeral new pages. We are going
to use this metric to validate our algorithm in Section 5.
Note, that this metric can only be evaluated with some delay
because we need to wait when crawled pages are not shown
anymore to take their profit, i.e., their number of clicks, into
account.

However, for our crawling algorithm, we do not want to
wait for such a long period of time to be able to use the
profit of freshly crawled pages in order to quickly adapt to
changes of content sources’ properties. Of course, we do
not know the function Pi(∆t) for pages that just appeared,
but we can try to predict it. It is natural to expect that
pages of similar nature exhibit similar distributions of user
interest. In order to demonstrate this, on Figure 2a and
Figure 2b we plot respectively the average number of cu-
mulative shows and clicks depending on the page’s age for
all pages published on a news site and a blog (both being
randomly chosen) over 1 week. We can see that almost all
clicks and shows appear in the first week of a page’s life,
and that the dependency of the cumulative number of clicks
(shows) gathered by a page on the page’s age is pretty well
described by the function: P

(
1− e−µ·∆t

)
, where P is the

total number of clicks (shows) a page gathers during its life.
We thus propose the following approximation of the profit
Pi(∆t) (i.e., the number of future clicks):

Pi(∆t) ≈ Pi · e−µi·∆t,

where the rate of decay µi and the profit Pi are content-
source-specific and should be estimated using historical data
(see Section 4.2.1 for details). We use this approximation in
Section 4 in order to analyze the problem under considera-
tion theoretically.

3. CONTENT SOURCES
In this section, we show that most ephemeral new content

can indeed be found at a small set of content sources and
then describe a simple procedure for finding such a set, that
fits our use case.

3.1 Analysis of content sources
Our hypothesis is that one can find the most of ephemeral

new pages appearing on the Web at a small set of con-
tent sources, but links from these sources to new pages are
short living so a crawler needs to frequently recrawl these
sources to avoid missing links to new pages, especially to
high-quality pages.

In order to validate this hypothesis about content sources,
we need to follow the evolution over time of the link struc-
ture of the Web, to understand which content sources refer
which new pages as they appear. Our Web crawler logs
could be used for this, but there are two main issues with
this approach: 1) keeping the full history of new pages linked
from each content source, even for some small time period,
is impractical due to resource constraints; and 2) existing
crawlers do not revisit each content source often enough to
provide more than a really partial view of the evolution of
the link structure of the Web.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

no
rm

al
iz

ed
 n

um
be

r
of

 d
ai

ly
 v

is
its

age (days)

46%
21%
19%
6%
4%
4%

Figure 3: User interest patterns for new pages.

So, instead, we used the toolbar logs continuously col-
lected at Yandex (Russia’s most popular search engine) to
monitor user visits to Web pages. In this way, we can easily
track the appearance of new pages that are of interest to at
least one user, know which content sources referred them,
and also follow the evolution of user interest over time for
each of these new pages. This data is a representative sam-
ple of the Web as this toolbar is used by millions of people
across different countries. But we cannot use this data in
the algorithm itself since it is not available in all countries,
and thus we use it only in order to validate our hypothesis
about the existence of relatively small set of content sources.

Using this toolbar data, we randomly sampled 50K pages
from the set of new pages that appeared over a period of
one week and were visited by at least one user. These pages
were distributed over ∼ 1.6K different hosts. For each page,
we computed its number of daily visits for a period of two
weeks after it appeared. Then, using this 14-dimensional
(one per day) feature vector (scaled to have its maximum
value equal to 1), we clustered these pages into 6 clusters by
applying the k-means method1. Let us note that when we
tried less clusters, non-ephemeral pages were not assigned to
one cluster. Finally, we obtained only ∼ 4% non-ephemeral
pages. The percentage of new pages that are ephemeral (and
were visited at least once) for this week is thus 96%, which
is really significant. Centroids of these clusters are plotted
on Figure 3 (in Section 1 we showed only two of them).

Our toolbar logs also contain, in most cases, the referrer
page for each recorded visit to a page, i.e., the source page
from which the user came to visit this target page. We
extracted all these links (users transitions between pages)
found in the logs pointing to one of the ephemeral new pages
in our sample over the same period of one week plus several
days (for the most recent pages to become obsolete), and
obtained ∼ 750K links.

Using these links, we studied the percentage of ephemeral
new pages reached depending on the number of content
sources. We want to find the smallest set of content sources
that allows to reach the most of new pages and thus proceed
as follows (in a greedy manner). We first take the source
page, which allows to reach the most of pages, then remove
it and all covered pages, then select the second one in the
same way, and so on. We see on Figure 4, that only 3K

1http://en.wikipedia.org/wiki/K-means_clustering

http://en.wikipedia.org/wiki/K-means_clustering

 0

 50

 100

 150

 200

1 2 3 4 5 6 7

cu
m

ul
at

iv
e

nu
m

be
r

of
 s

ho
w

s

age (days)

news
blog posts

228 (1 - e-age)
68 (1 - e-0.33 age)

(a) Shows

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7

cu
m

ul
at

iv
e

nu
m

be
r

of
 c

lic
ks

age (days)

news
blog posts

25 (1 - e-1.2 age)
23 (1 - e-0.5 age)

(b) Clicks

Figure 2: Average cumulative number of shows and clicks depending on page’s age

0.25

0.5

0.75

1

2K 4K 6K 8K 10K 12K

po
rt

io
n

of
 r

ea
ch

ed
 e

ph
em

er
al

 p
ag

es

number of content sources

Figure 4: Share of ephemeral new pages reached depending
on the average number of content sources per host.

content sources are required to cover 80% of new content,
which validates our hypothesis about content sources. In-
terestingly, 42% of these 3K content sources are main pages
of web sites, while 44% are category pages, which can be
accessed from the main page. So, overall, 86% of them are
at most 1 hop away from the main page.

3.2 Procedure to find content sources
Now, we need to understand how to effectively find these

content sources at scale without relying on toolbar logs,
which, as said, are not available world-wide. Our crawling
algorithm (described in the next section) focuses on high-
quality ephemeral new content. Therefore, even if content
sources that produce low quality content or almost no new
content at all are given to this algorithm, they will almost
never be crawled or crawled just in case much later when
some spare resources are available (see Section 4). We are
thus, to some extent, only interested in recall when finding
such sources here, i.e., to get most of them, which makes
this task much easier to solve in practice.

Analyzing the set of content sources discovered using tool-
bar data, we noticed that 86% of content sources that we
found are actually at most 1 hop away from the main page
of their host, as said. The following procedure will thus yield
a relatively small set of content sources that generate most
of the ephemeral new content on a given set of hosts.

Let us note that this procedure is easy to run periodically

Procedure to find content sources with good recall

input : A list of hosts that generate new content
output: A list of content sources

1. Crawl the main page of each host (once) and keep
pages linked from it (all pages 1-hop away from the
main page);

2. Select the main page, and all found pages older than
few days, by using historical data, as content sources
(as new pages are almost never content sources).

to refresh the set of content sources, and to find new con-
tent sources. It is possible to use URL patterns as described
in [14] in order to get a better precision, but this optimiza-
tion is not required here, because our crawling algorithm
optimizes precision itself by avoiding to crawl low-quality
content sources (see Section 4).

The input list of hosts for this procedure can be obtained
during a standard web crawling routine by ranking found
hosts by their tendency to generate new content. This simple
method also fits our usage scenario considering that, as said,
only recall is important for us when finding content sources
as input for our algorithm.

4. OPTIMAL CRAWLING
OF CONTENT SOURCES

In this section, we assume that we are given a relatively
small set of content sources, which regularly generate new
content (see Section 3 for the procedure to select such a
set). Our current aims are to (1) find an optimal schedule
to recrawl content sources in order to quickly discover high-
quality ephemeral new pages, and (2) understand how to
spread resources between crawling new pages and recrawling
content sources.

First, we analyze this problem theoretically and find an
optimal solution. Then, we describe an algorithm, which is
based on this solution.

4.1 Theoretical analysis
Assume that we are given a set of content sources S1, . . . , Sn.

Note that the rate of new content appearance may differ

p1

ω

pi

pn

µn In µi Ii

p1 g(x)

pi g(x)

pn g(x)

Figure 5: Optimizing of Ii

from source to source. For example, usually there are much
more news about politics than about art, and therefore, dif-
ferent categories of a news site generate new content with
different rates. Let λi be the rate of new links appearance
on the source Si, i.e., the average number of links to new
pages, which appear in one second.

Let us consider an algorithm, which recrawls each source
Si every Ii seconds, discovers links to new pages, and also
crawls all new pages found. We want to find a schedule
for recrawling content sources, which maximizes the overall
quality Q (see Equation (2)), i.e., our aim is to find optimal
values of Ii. Suppose that our infrastructure allows us to
crawl N pages per second (N can be non-integer). Due to
these resource constraints, we have the following restriction:∑

i

1 + λiIi
Ii

≤ N.

On average, the number of new links linked from a source
Si is equal to λiIi , therefore every Ii seconds we have to
crawl 1 + λiIi pages (the source itself and all new pages
found). Obviously, the optimal solution requires to spend
all the resources: ∑

i

1

Ii
= N −

∑
i

λi. (3)

And we want to maximize the overall quality (see Equa-
tion (2)), i.e.,

Q =
∑
i

1

Ii

∑
j:pj∈Si∧tj∈[0,Ii]

Pj(M tj)→ max .

Note that this expression is exactly the average profit per
second.

Content sources may not be equal in quality, i.e., some
content sources may provide users with better content than
others. We now assume that, on average, the pages from one
content source exhibit the same behavior of the profit decay
function and hence substitute Pj(∆tj) by the approximation
Pie
−µi∆tj discussed in Section 2. We treat the profit Pi and

the rate of profit decay µi as the parameters of each content
source Si. Thus, we obtain:

Q =
∑
i

Pi
Ii

λiIi−1∑
j=0

e
−µi

j
λi =

=
∑
i

Pi
Ii

1− e−µiIi

1− e−
µi
λi

=
∑
i

pixi
(

1− e−µi/xi
)
,

here pi = Pi

1−e
−µi
λi

and xi = 1
Ii

. Without loss of generality,

we can assume that p1 ≤ . . . ≤ pn. We now want to max-
imize Q(x1, . . . , xn) subject to (3). We use the method of
Lagrange multipliers:{

pi
(

1− e−µi/xi
)
− µipi

xi
e−µi/xi = ω i = 1, . . . , n ,∑

i xi = N −
∑
i λi ,

where w is a Lagrange multiplier.
Note that Ii = 1

xi
, so we get:{

pi
(
1− (1 + µiIi)e

−µiIi
)

= ω, i = 1, . . . , n ,∑
i

1
Ii

= N −
∑
i λi .

(4)

The function g(x) =
(
1− (1 + x)e−x

)
increases monoton-

ically for x > 0 with g(0) = 0 and g(+∞) = 1. If we are
given 0 < ω < pi, then we can find the unique value µiIi =
g−1(ω

pi
) as shown in Figure 5. One can easily compute g−1

using a binary search algorithm2. Note that bigger values
of ω lead to bigger values of µiIi. That is why

∑
i

1
Ii

is

a monotonic function of ω and we can, here also, apply a
binary search algorithm (see Algorithm 1) to achieve the
condition

∑
i

1
Ii

= N −
∑
i λi.

Algorithm 1: Find an optimal recrawl schedule

input : profits Pi, rates of profit decay µi,
intensities of new links appearance λi,
number of crawls per second N , precision ε

output: optimal recrawl intervals Ii

ωl ←− 0;ωu ←− pn = Pn

1−e
−µn
λn

;

while
∣∣∣∑i:Ii 6=∞

1
Ii
−N +

∑
i:Ii 6=∞ λi

∣∣∣ > ε do

ω ←− ωu+ωl
2

;

Ii ←− 1
µi
g−1

(
ω
pi

)
= 1

µi
g−1

(
ω 1−e

−µi
λi

Pi

)
;

if
∑
i:Ii 6=∞

1
Ii
< N −

∑
i:Ii 6=∞ λi then

ωu ←− ω;

else
ωl ←− ω;

Let ωl and ωu be, respectively, the lower and upper bounds
for ω. At the first step, we can put ωl = 0 and ωu = pn.
Indeed, pn is the obvious upper bound for ω, since in this
case we do not crawl any content source. At each step of the
algorithm, we consider ω = ωu+ωl

2
. For this value of ω, we

recompute intervals Ii = 1
µi
g−1

(
ω
pi

)
. Note that if we get

ω > pj for some j, then Ij = ∞ and we never recrawl this
content source. After that, if

∑
i:Ii 6=∞

1
Ii
< N−

∑
i:Ii 6=∞ λi,

then we can put ωu = ω, since it is an upper bound. If not,
we put ωl = ω. We proceed in this way until we reach the
required precision ε.

The value of ω may be interpreted as the threshold we
apply to content sources’ utility. Actually, we can find the

2http://en.wikipedia.org/wiki/Binary_search_
algorithm

http://en.wikipedia.org/wiki/Binary_search_algorithm
http://en.wikipedia.org/wiki/Binary_search_algorithm

minimal crawl rate required for the optimal crawling policy
not to completely refuse to crawl content sources with the
least utility.

We completely solved the optimization problem for the
metric suggested in Section 2, the solution of (4) is the-
oretically optimal (we use the name ECHO-based crawler
for the obtained algorithm, where ECHO is an abbreviation
for Ephemeral Content Holistic Ordering). However, some
further efforts are required in order to make this algorithm
practically useful. There are parameters, which we need to
estimate for each source: the profit Pi, the rate of profit
decay µi, and the rate of new links appearance λi. In the
following section, we describe a practical crawling algorithm,
which is based on our theoretical results.

4.2 Implementation
Let us describe a concrete algorithm based on the results

of Section 4.1. First, we use the results from Section 3 to ob-
tain an input set of content sources. Then, in order to apply
Algorithm 1 for finding an optimal recrawl schedule for these
content sources, we need to know for each source its profit
Pi, the rate of profit decay µi, and the rate of new links
appearance λi. We propose to estimate all these values dy-
namically using the crawling history and search engine logs.
Since these parameters are constantly changing, we need to
periodically re-estimate time intervals Ii (see Algorithm 1),
i.e., to update the crawling schedule. Obviously, the more
often we re-estimate Ii, the better results we will obtain,
and the choice of this period depends on the computational
resources available.

Thus, we first discuss how to estimate these sources’ char-
acteristics (Sections 4.2.1 and 4.2.2) and then how to deal
with deviations of content sources’ behavior from our ideal-
istic assumptions to make a practical scheduling algorithm
(Section 4.2.3).

4.2.1 Estimation of profits Pi and
rates of profit decay µi

For this part, we need search engine logs to analyze the
history of clicks on new pages. We want to approximate
the average cumulative number of clicks depending on the
page’s age by an exponential function. This approximation
for two chosen content sources is shown on Figure 2b.

Let us consider a cumulative histogram of all clicks for all
new pages linked from a content source, with the histogram
bin size equals to D minutes. Let si be the number of times
all N new pages linked from this content source were clicked
during the first iD minutes after they appeared. So, si/N is
the average number of times a new page was clicked during
the first iD minutes.

We can now use the least squares method, i.e., we need to
find:

arg min
µ,P

F (P, µ) = arg min
µ,P

∑
i

(
P
(

1− e−µiD
)
− si
N

)2

.

(5)
In other words, we want to find the values of µ and P , that

minimize the sum of the squares of the differences between
the average cumulative number of clicks and its approxima-
tion P

(
1− e−µiD

)
. It is hard to find an analytical solution

of (5), but we can use the gradient descent method to solve
it:

4 ∂F
∂P

(P, µ) = 2
∑
i

(
P
(
1− e−µiD

)
− si

N

) (
1− e−µiD

)

Algorithm 2: Estimate profit decay function

input : histogram bin size D, cumulative number
of clicks si, number of new pages found N ,
precision ε, step size γ, initial values Pinit
and µinit

output: profit P , rate of profit decay µ

Pold ←− 0;P ←− Pinit;µold ←− 0;µ←− µinit;
while max{|Pold − P |, |µold − µ|} > ε do

Pold ←− P ;
µold ←− µ;
P ←− Pold − γ ∂F∂P (Pold, µold);

µ←− µold − γ ∂F∂µ (Pold, µold);
4

From the production point of view, it is very important
to decide, how often to push data from search engine logs to
re-estimate the values of µi and Pi as it is quite an expensive
operation. We denote this logs push period by L. In Section
5, we analyze how the choice of L affects the performance of
the algorithm.

4.2.2 Estimation of the rate of new links
appearance λi(t)

The rate of new links appearance λi(t) may change during
the day or during the week. We thus dynamically estimate
this rate for each content source. In order to do this, we
use historical data: we consider the number of new links
found at each content source during the last T crawls. We
analyze how different values for T affect the performance of
the algorithm in Section 5.

4.2.3 Scheduling
Finally, in order to apply our algorithm, we should solve

the following problem: in reality the number of new links
that appear on a content source during a fixed time period
is random and we cannot guarantee that we find exactly
λiIi new links after each crawl. We can find more links than
expected after some recrawl and if we crawl all of them, then
we will deviate from the schedule. Therefore, we cannot
both stick to the schedule for the content sources and crawl
all new pages. So we propose the two following variants to
deal with these new pages, that we cannot crawl without
deviating from the schedule.

ECHO-newpages. In order to avoid missing clicks, we
always crawl newly discovered pages right after finding them.
If there are no any new pages in the crawl frontier, we try
to come back to the schedule. We crawl the content source,
which is most behind the schedule, i.e., with the highest
value of I ′i/Ii, where I ′i is time passed after the last crawl of
the i-th content source.

ECHO-schedule.We always crawl content sources with
intervals Ii and when we have some resources to crawl new
pages, we crawl them (most recently discovered first).

We compare these two variants experimentally in the next
section.

4.2.4 Possible production architecture
We finish this section by presenting a possible production

architecture for our algorithm (see Figure 6) to emphasize
that it is highly practical to implement it in a production

∂F
∂µ

(P, µ) = 2
∑
i

(
P
(
1− e−µiD

)
− si

N

)
iPDe−µiD

Scheduler

New links rate
estimator

Profit decay function
estimator

Content
source list

Fetcher

Users

Index

Search engineLogs
queries, clicks

Crawled new pages

Recrawl content source
New links

Crawl new page

Figure 6: Possible production architecture.

system. Initially, a set of content sources with good recall
of new pages linked from these sources is created using the
procedure described in Section 3. This procedure must be
run periodically to refresh this set and include new content
sources. Then, Scheduler finds the optimal crawling sched-
ule for content sources, while Fetcher crawls these sources
according to this schedule. Scheduler dynamically estimates
the rate of new links appearance for content sources and
also estimates the profit decay function using the number
of clicks from the search engine logs. Given a fixed ranking
method, the number of clicks measures the direct effect of
the crawling algorithm on the search engine’s performance.
Scheduler dynamically uses this feedback in order to improve
the crawling policy.

5. EXPERIMENTS
In this section, we compare our algorithm with some other

crawling algorithms on real-world data.

5.1 Data
Since it is impractical and unnecessary to conduct research

experiments at a production scale, we selected some sites
that provide a representative sample of the Web, on which
we performed our experiments.

We selected the top 100 most visited Russian news sites
and the top 50 most visited Russian blogs using publicly
available data from trusted sources5. We consider these web-
sites to be a representative sample of the Web for our task
as they produce 5-6% out of the ∼ 500K new pages (visited
by at least one user) that appear in this country daily (we
estimated this second value using toolbar logs). For each
such site, we applied the procedure described in Section 3
and obtained about 3K content sources.

Then, we crawled each of these content sources every 10
minutes for a period of 3 weeks (which is frequent enough to
be able to collect all new content appearing on them before
it disappears). The discovery time of new pages we observed
is thus at most delayed by these 10 minutes. We considered
all pages found at the first crawl of each source (each content
source was crawled ∼ 3K times) to be old and discovered
∼ 415K new pages during these 3 weeks. Keeping track of
when links to new pages were added and deleted from the
content sources, we created a dynamic graph that we use
in the following experiments. This graph contains ∼ 2.4M
unique links.

Additionally, we used search engine logs of a major search

5http://liveinternet.ru/rating/ru/media/
http://blogs.yandex.ru/top/

engine to collect user clicks for each of the newly discovered
pages in our dataset for the same period of 3 weeks plus
1 week for the most recent pages to become obsolete. We
observed that ∼ 20% of the pages were clicked at least once
during this 4 weeks period.

5.2 Simplifications of the algorithm
We compare the algorithm suggested in Section 4 with

several other algorithms. There are no state-of-the-art algo-
rithms for the specific task we discuss in this paper, but one
can think of several natural ones:

• Breadth-first search (BFS) We crawl content sources
sequentially in some fixed random order. After crawl-
ing each source, we crawl all new pages linked from
this source, which have not been crawled yet.

We also compare our algorithm with the following sim-
plifications to understand the importance of 1) the holistic
crawl ordering and 2) the usage of clicks from search engine
logs.

• Fixed-quota This algorithm is similar to ECHO-
schedule, but we use a fixed quota of 1

2
for recrawling

content sources and for crawling new pages that have
not been crawled before.

• Frequency This algorithm is also similar to ECHO-
schedule, but we do not use clicks from search engine
logs, i.e., all content sources have the same quality and
content sources are ordered only by their frequency of
new pages appearance.

We also propose a simplification of our algorithm, based
on Section 4, which could be much easier to implement in a
production system.

• ECHO-greedy We crawl the content source with the
highest expected profit, i.e., with the highest value of
λiPiI

′
i, where I ′i is the time passed since the last crawl

of the content source, λi is its rate of new links appear-
ance, and Pi is the average profit of new pages linked
from the content source. Then, we crawl all new pages
linked from this source, which have not been crawled
yet, and repeat this process.

5.3 Results

5.3.1 Experimental scheme
In this section, we experimentally investigate the influence

of parameters on our algorithm’s performance and compare
the algorithm with the approaches from Section 5.2 on real-
world data.

We simulated, for each algorithm, the crawl of the dy-
namic graph described in Section 5.1, using the content
sources as seed pages. Each algorithm can thus, at each
step, decide to either crawl a newly discovered page or to
recrawl a content source in order to find new pages.

In the following experiments analyzing parameters influ-
ence, we used the crawl rate per second N = 0.1. This
crawl rate is enough to crawl a significant fraction of the
new pages as shown on Figure 7, but is not too high to let
BFS algorithm crawl all new pages (which is highly unreal-
istic in a production context). We then also use two other
crawl rates N = 0.05 and N = 0.2 per second to investigate
the influence of this value.

http://liveinternet.ru/rating/ru/media/
http://blogs.yandex.ru/top/

 0

 0.05

 0.1

 0.15

 0.2

Mon Tue Wed Thu Fri Sat Sun

ra
te

 o
f

ne
w

 li
nk

s
ap

pe
ar

an
ce

time

Figure 7: Estimation of the rate of new content appearance.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue

dy
na

m
ic

 p
ro

fit

time

ECHO-schedule, logs push period = 1 hour
ECHO-schedule, logs push period = 1 week
ECHO-newpage, logs push period = 1 hour
ECHO-newpage, logs push period = 1 week

Figure 8: Dynamic profit for a 1-week time window.

5.3.2 Influence of parameters
We apply Algorithm 1 to re-estimate Ii values every 30

minutes, which is frequent enough so that smaller intervals
have almost no influence on its performance, and which is
also realistic in a production context. We also set the bin size
D used in Algorithm 2 to 20 minutes, which is good enough
to have robust estimations of Pi and µi, as, typically, the
profit decay function Pi(4t) does not change significantly
in such a small time period. We do not study in details,
here, the influence of these two parameters due to space
constraints as, according to the experiments we performed,
it is negligible, for values below these realistic choices, in
comparison with other parameters.

Besides that, we need default values for profits Pi as we
start crawling without knowing anything about the quality
of each content source. Please, note that we need to use
pessimistic default values because we want to avoid crawling
low quality sources too frequently, while we do not have
enough feedback to have precise estimations. We cannot
use Pdefault = 0 as according to Algorithm 1, we do not
crawl content sources with zero profit, so, we used some
small non-zero value Pdefault = 0.01.

We compared the two variants of ECHO-based crawler
from Section 4.2.3 with different values for: 1) the crawl
history size used to estimate the rate of new links appearance
λi(t) discussed in Section 4.2.2 (from 3 to 10 crawls), and 2)
the logs push period L, which was described in Section 4.2.1
(we considered 1h, 12h, 24h, and 1 week). Interestingly,
for both variants we noticed no difference, and we therefore
conclude that these parameters do not affect the final quality
of the algorithm in our setup. On the other hand, the logs
push period has a really big influence during the warm-up
period and the smaller the logs push period, the better the
results (see Figure 8). There is nothing interesting to observe
for the crawl history size.

Let us also note that the optimal schedule of ECHO-based

Table 1: Average dynamic profit for a 1-week window.

Algorithm N = 0.05 N = 0.10 N = 0.20
Frequency 0.014± 0.004 0.39± 0.04 0.61± 0.06
BFS 0.24±0.04 0.46±0.03 0.62±0.03
Fixed-quota 0.43±0.04 0.59±0.03 0.69±0.03
ECHO-greedy 0.60±0.03 0.68±0.03 0.69±0.03
ECHO-schedule 0.52±0.02 0.69±0.03 0.71±0.03
ECHO-newpages 0.62±0.04 0.69±0.03 0.71±0.03

Upper bound 0.72 0.72 0.72

algorithms almost does not recrawl 70% of content sources,
which means that it does not spend much resources on low
quality content sources.

5.3.3 Comparison with other algorithms
Then, we took the crawl history of size 7 and the logs

push period of 1 hour (randomly, following the discussion
in Section 5.3.2), and compared ECHO-based crawlers with
other algorithms on three different crawl rates. In order to
compare our algorithms during the last week of our observa-
tions (after the warm-up period) we measured the dynamic
profit every two minutes using a time window of one week
(enough to compensate daily trends). Table 1 shows aver-
age values and their standard deviations. Note that we also
include the upper bound of algorithms’ performance that we
computed using BFS algorithm with an unbounded amount
of resources, which allows to crawl all new pages right after
they appear. This upper bound therefore does not depend
on the crawl rate and equals 0.72 of profit per second.

ECHO-newpages shows the best results, which are really
close to the upper bound, although the crawl rate used is
much smaller than the rate of new links appearance. This
means that our algorithm effectively spends its resources
and crawls highest quality pages first. Note that the smallest
crawl rate that allows BFS to reach 99% of the upper bound
is 1 per second (this value is measured, but not present in
the table), as BFS wastes lots of resources recrawling con-
tent sources to find new pages, while ECHO-newpage and
ECHO-schedule reach this bound with crawl rate 0.2 per
second (see the last column of the table).

Note that the profit of ECHO-greedy is also high. This
fact can be a good motivation for using it in a production
system, where ease of implementation is a strong require-
ment (as it is much easier to implement). First, it only
requires a priority queue of content sources rather than a re-
crawl schedule updated using the binary search method from
Algorithm 1. Second, it does not use µi, so Pi is thus simply
the average number of clicks on pages linked from the i-th
content source, and can therefore be computed easier than
by using the gradient descent method from Algorithm 2.

Let us show a representative example (atN = 0.1) demon-
strating the advantage of ECHO-based algorithms over the
baselines (see Figure 9). One can observe that ECHO-based
algorithms perform the best most of the time. It is interest-
ing to note though that during the night BFS shows better
results. It happens as BFS is “catching up” by crawling
pages, which were crawled by other algorithms earlier. This
follows how the dynamic profit is defined: we take into ac-
count the profit of the pages, which were crawled during
the last 5 hours. We also see that the algorithm with fixed

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

Wed Thu Fri Sat Sun Mon Tue

dy
na

m
ic

 p
ro

fit

time

Upper bound ECHO-newpage ECHO-schedule ECHO-greedy fixed-quota frequency BFS

Figure 9: Dynamic profit for a 5-hour time window.

quota for crawl and recrawl perform well during the week-
end because less new pages appear during this period and
the crawl rate we use is thus enough to crawl practically all
good content without additional optimizations.

6. RELATED WORK
Most papers on crawling are devoted to discovering new

pages or refreshing already discovered pages. Both of these
directions are, to some extent, related to the problem we
deal with, though cannot serve as solutions to it.

Refresh policies.
The purpose of refresh policies is to recrawl known pages

that have changed in order to keep a search engine’s index
fresh. Usually, such policies are based on some model, which
predicts changes on Web pages. In pioneering works [3, 4,
5, 6, 7], the analysis of pages’ changes was made in the
assumption of a time-homogeneous Poisson process, i.e., it
was assumed that the pages change rate does not depend on
time. However, in [3], it was noted that there are daily and
weekly trends in the pages change rate. Then, a history-
based estimator, which takes such trends into account, was
proposed in [15]. A more sophisticated approach based on
machine learning is used in [21], where the page’s content,
the degree of observed changes and other features are taken
into account.

For our specific task, refresh policies can be used to find
links to ephemeral new pages, that appeared on already
known pages (content sources). So, pages changes are rel-
evant for us only if new links to such new pages can be
found. Interestingly, this simplifies the estimation of pages
change rate as one can easily understand, given two succes-
sive snapshots of a page, that two new links appeared, while
it is much harder to know if the page’s text changed once or
twice. This fact allows us to use a simple estimator for the
rate of new links appearance, which reflects timely trends.
Of course, more sophisticated methods (e.g., using machine
learning [21]), can be applied here, but it was out of focus
of the current paper.

Moreover, our method actually monitors content sources
updates to avoid missing new links. In this way, our work
is more related to the problem of creating an efficient RSS
feeds reader, which needs to monitor RSS feeds updates to
avoid missing new postings [22, 23]. The RSS reader de-
scribed in these papers learns the general posting pattern
of each RSS feed to create an efficient scheduling algorithm

that optimizes the retrieval of RSS feeds in order to provide
timely content to users.

This RSS reader uses a short description from the RSS
feed, when presenting an article to users, and there is thus
no need for it to crawl these articles. It is not exactly our
case as we need to crawl and index newly discovered pages
to allow users to access them via the search engine. Thus,
although RSS monitoring policies are somehow similar to the
problem of finding ephemeral new pages on content sources,
one cannot use such policies out of box for our task. The
main reason is that we need to spend significant amount
of resources for crawling new pages and, if we want to do
this in an efficient way, then we need to change the recrawl
schedule to take this fact into account. However, RSS feeds
themselves can be used in our approach as content sources.

Discovery policies.
The main idea behind discovery policies is to focus breadth-

first search on high quality content, i.e., to prioritize discov-
ered, but not yet crawled pages (the crawl frontier) accord-
ing to some quality measure. Some approaches are based
on the link structure of the Web graph, e.g., in [13] pages
with the largest number of incoming links are crawled first,
while pages with largest PageRank are prioritized in [1, 9].
In [11], such approaches were compared in their impact on
Web search effectiveness. However, as Pandey and Olston
discussed in [19], the correlation between link-based impor-
tance measures and user interest is weak, and hence they
proposed to use search engine logs of user queries to drive
the crawler towards pages with higher potential to be inter-
esting for users. In turn, we follow recent trends and do not
rely on the link structure of the Web, but use clicks from
search engine logs.

Our crawler discovers and crawls new pages, but there
is a principal difference between our approach and previous
ones. Previous approaches are based on the assumption that
the Web is relatively deep and therefore, starting from some
seed pages, a crawler needs to go deeper, in direction of
high-quality pages if possible, to find new pages. We instead
argue that one can find most ephemeral new pages that are
appearing on the Web at a relatively small set of content
sources, but that a crawler needs to frequently recrawl these
sources to avoid missing short living links to new pages.
This observation, on one hand, simplifies the problem but,
one the other hand, introduces new challenges to find the
right balance between crawling new pages and recrawling
content sources.

Holistic crawl ordering.
Usually, papers about crawling focus either on discovery of

new pages or on refreshing already known pages, but the im-
portant question of how to divide limited resources between
refreshing and discovery policies is usually underestimated.
Some authors proposed to give a fixed quota to each policy
[13, 24]. However, as it follows, e.g., from our analysis (see
Section 4.1), such fixed quotas can be far from optimal. In
contrast, our optimization framework simultaneously deals
with refreshing and discovery and can thus find an optimal
way to share resources. Moreover, the problem of making
a holistic crawl ordering, i.e., to unify different policies into
a unified strategy, was proposed by Oslton and Najork as a
future direction in their extensive survey on Web crawling
[17] and we tried to make a step forward in this direction.

7. CONCLUSION
To the best of our knowledge, the problem of timely and

holistic crawling of ephemeral new content is novel. In this
paper, we introduce the notion of ephemeral new pages, i.e.,
pages that exhibit the user interest pattern shown on Fig-
ure 1, and emphasize the importance of this problem by
showing that a significant fraction of the new pages that are
appearing on the Web are ephemeral.

We formalized this problem by proposing to optimize a
new quality metric, which measures the ability of an algo-
rithm to solve this specific problem. We showed that most
of the ephemeral new content can be found at a relatively
small set of content sources and suggested an algorithm for
finding such a set. Then, we proposed a practical algorithm,
which periodically recrawls content sources and crawls newly
created pages linked from them as a solution of this prob-
lem. This algorithm estimates the quality of content sources
using user feedback.

Finally, we compared this algorithm with other crawling
strategies on real-world data and demonstrated that the sug-
gested algorithm shows the best results according to our
metric. Our theoretical and experimental analysis aims at
giving a better insight into the current challenges in crawling
the Web.

In this paper, we predict the expected profit of a new page
using two features: the time when this page was discovered
by a crawler, and the content source where a link to this
page was found. The natural next step, which we leave for
future work, is to predict this profit using more features,
e.g., give a higher priority to pages having an anchor text
related to the current trends in user queries like in [20], or
to the pages with more incoming links. Also, URL tokens
and its hyperlink context (anchor text, surrounding text,
etc.) may be useful for such prediction. This will help to
prioritize new pages with seemingly higher quality found on
the same content source at the same time.

8. REFERENCES
[1] Abiteboul, S., Preda, M., Cobena, G.: Adaptive

On-Line Page Importance Computation. In Proc.
WWW Conference, 2003.

[2] Bai, X., Cambazoglu, B.B., Junqueira, F.P.:
Discovering URLs through User Feedback. In Proc.
CIKM, 77–86, 2011.

[3] Brewington, B.E., Cybenko, G.: How dynamic is the
Web? Computer Networks, vol. 33(1–6), 257–276, 2000.

[4] Brewington, B.E., Cybenko, G.: Keeping up with the
changing web. Computer, vol. 33(5), 52–58, 2000.

[5] Cho, J., Garcia-Molina, H.: Effective Page Refresh
Policies for Web crawlers. ACM Transactions on
Database Systems, vol. 28(4), 2003.

[6] Cho, J., Garcia-Molina, H.: Estimating Frequency of
Change. ACM TOIT, vol. 3(3), 2003.

[7] Cho, J., Garcia-Molina, H.: Synchronizing a database
to Improve Freshness. In Proc. SIGMOD Conference,
2000.

[8] Cho, J., Ntoulas, A.: Effective Change Detection Using
Sampling. In Proc. VLDB Conference, 2002.

[9] Cho, J., Schonfeld, U.: RankMass crawler: a crawler
with high personalized pagerank coverage guarantee. In
Proc. VLDB 2007.

[10] Dong, A., Chang, Y., Zheng, Z., Mishne, G., Bai, J.,
Zhang, R., Buchner, K., Liao, C., Diaz F.: Towards
recency ranking in web search. In Proc. WSDM, 11–20,
2010.

[11] Fetterly, D., Craswell, N., Vinay, V.: The impact of
crawl policy on web search effectiveness. In Proc.
SIGIR Conference, 580–587, 2009.

[12] Goyal, A., Bonchi, F., Lakshmanan, L. V.S.: Learning
Influence Probabilities In Social Networks. In Proc.
WSDM, 241–250, 2010.

[13] Kumar, R., Lang, K., Marlow, C., Tomkins, A.:
Efficient Discovery of Authoritative Resources. In Data
Engineering, 2008.

[14] Liu, M., Cai, R., Zhang, M., Zhang, L.: User browsing
behavior-driven web crawling. In Proc. CIKM
Conference, 2011.

[15] Matloff, N.: Estimation of Internet
File-Access/Modification Rates from Indirect Data.
ACM Trans. Model. Comput. Simul., 15(3), 233–253,
2005.

[16] Moon, T., Chu, W., Li, L., Zheng, Z., Chang, Y.:
Refining Recency Search Results with User Click
Feedback. arXiv:1103.3735, 2011

[17] Olston, C., Najork, M.: Web Crawling. Foundations
and Trends in Information Retrieval, vol. 4(3), 175–246,
2010.

[18] Olston, C., Pandey, S.: Recrawl Scheduling Based on
Information Longevity. In Proc. WWW Conference,
2008.

[19] Pandey, S., Olston, C.: Crawl ordering by search
impact. In Proc. WSDM, 2008.

[20] Pandey, S., Olston, C.: User-centric web crawling. In
Proc. WWW Conference, 2005.

[21] Radinsky, K., Bennett, P.N.: Predicting Content
Change on the Web. In Proc. WSDM, 2013.

[22] Sia, K.C., Cho, J.: Efficient Monitoring Algorithm for
Fast News Alert. In IEEE Transaction on Knowledge
and Data Engineering, vol. 19(7), 950–961, 2007.

[23] Sia, K.C., Cho, J., Hino, K., Chi, Y., Zhu, S., Tseng,
B. L.: Monitoring RSS feeds based on user browsing
pattern. In Proc. ICWSM Conference, 2007.

[24] Schonfeld, U., Shivakumar, N.: Sitemaps: above and
beyond the crawl of duty. In Proc. WWW Conference,
2009.

http://arxiv.org/abs/1103.3735

	1 Introduction
	2 Formalization of the problem
	3 Content sources
	3.1 Analysis of content sources
	3.2 Procedure to find content sources

	4 Optimal crawling of content sources
	4.1 Theoretical analysis
	4.2 Implementation
	4.2.1 Estimation of profits Pi and rates of profit decay i
	4.2.2 Estimation of the rate of new links appearance i(t)
	4.2.3 Scheduling
	4.2.4 Possible production architecture

	5 Experiments
	5.1 Data
	5.2 Simplifications of the algorithm
	5.3 Results
	5.3.1 Experimental scheme
	5.3.2 Influence of parameters
	5.3.3 Comparison with other algorithms

	6 Related work
	7 Conclusion
	8 References

