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Abstract

The results of Raghavendra (2008) show that assuming Khistigue Games Conjecture (2002),
for every constraint satisfaction problem there existsrzege semi-definite program that achieves the
optimal approximation factor. This result is existentigitadoes not provide an explicit optimal rounding
procedure nor does it allow to calculate exactly the Uniqgaen@s hardness of the problem.

Obtaining an explicit optimal approximation scheme anddbesponding approximation factor is
a difficult challenge for each specific approximation pgesh. Khotet al. (2004) established a general
approach for determining the exact approximation factat the corresponding optimal rounding algo-
rithm for any given constraint satisfaction problem. Hoeethis approach crucially relies on results
explicitly proving optimal partitions in the Gaussian spabntil recently, Borell's result (1985) was the
only non-trivial Gaussian partition result known.

In this paper we derive the first explicit optimal approxiioa algorithm and the corresponding ap-
proximation factor using a new result on Gaussian parttidne to Isaksson and Mossel (2012). This
Gaussian result allows us to determine the exact Unique Gataminess of MAX-3-EQUAL. In partic-
ular, our results show that Zwick’s algorithm for this preivl achieves the optimal approximation factor
and prove that the approximation achieved by the algorigwn®.796 as conjectured by Zwick.

We further use the previously known optimal Gaussian pantit results to obtain a new Unique
Games Hardness factor for MAX-k-CSP: Using the well knowet flat jointly normal pairwise in-
dependent random variables are fully independent, we shatthie UGC hardness of Max-k-CSP is
W;%, improving on results of Austrin and Mossel (2009).

1 Introduction

The study of inapproximability of Constraint SatisfactiBroblems (CSPs) has been an important area of
research in complexity theory in the past two decades. A G3pecified by a alphabét] and a set of
predicatesP such that allP € P : [¢]* — {0, 1}E|. Herek is called the arity of the predicate. An instance
of the problem (say-) is given byn variableszy, ..., z,, and a set of constrain&ssuch that every € £ is

of the forme = (S, P) whereS ¢ [n]* andP € P.

Now, consider any mapping : [n] — [¢]. A constrainte = (S, P) is said to be “satisfied” if
P(L(S1),...,L(Sk)) = 1 whereS; is thei'" element ofS. We also defineval,(G) aswvals(G) =
E,ce[P(L(S1),...,L(Sk))]. The algorithmic task is to come up with the mappifiguch thawal,(G) is
maximized. Towards this, we definel(G) = max, valz(G).

The reason for studying the very general framework of CSBeeause many specific problems of in-
terest say MAX-CUT, MAX-3-SAT etc. fall in this frameworkn the past two decades, there have been im-
portant results in the study of inapproximability of CSRdliding the monumental work of Hastad [Has01]
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who obtained optimal inapproximability results for CSHR®IMAX-3-SAT and MAX-3-LIN. Still, a gap
continued to exist between the known algorithms and hasdressilts for many important CSPs like MAX-
CUT and MAX-2-SAT. Towards closing this gap, Khot [Khd02trimduced the Unique Games Conjecture
(UGC) which stated the following (equivalent form from [KK®O7]):

Conjecture 1. Given anys > 0, there is a primep such that given a set of linear equations— z; =
cij (mod p), itis NP-hard to decide which one of the following is true:

e There is an assignment to the's which satisfies at least — § fraction of the constraints.

e All assignments to the;’s can satisfy at most fraction of the constraints.

A series of (often optimal) inapproximability results weneven using the Unique Games Conjecture
starting with [KR08/ KKMOOT] which culminated in the bedutiresult of Raghavendra [Rag08] who
showed that for every CSP of constant arity and alphabef sigzee is a simple and generic SDP which is
optimal assuming the Unique Games Conjecture. More speltifji he showed the following.

Theorem 2. Suppose that for the generic SDP, there is an instaiceich thatval(G) = s while the SDP
objective value ig. Then, assuming the UGC, given an instattef the CSP such thatul(G') = ¢ — 7,
itis NP-hard to find aC such thatwal,(G) > s + n for anyn > 0. Further, there is an efficient rounding
algorithm such that given an instan€éwith valuec on the instancé?, it finds an assignmenf with value
s —n (forn > 0).

While this result essentially settles the question of axipnability of CSPs from an an abstract per-
spective, perhaps not too surprisingly , it says nothingualiee exact hardness factors for specific CSPs.
This is in contrast to the situation in the case of MAX-CUT [KIOO07] or MAX-2-SAT [Aus07] where
exact inapproximability factors are known. The reason & th Raghavendra’s framework (and all previ-
ous results), determining the optimal inapproximabiligult for a specific CSP requires knowledge of the
optimal partitioning of the Gaussian space for the corradpw predicate. While the optimal partitioning is
known for the predicates corresponding to MAX-CUT and MA>SAT, it is not known for arbitrary pred-
icates. In fact, it should also be mentioned that while Raghdra’s result is a generalization of the results
for MAX-CUT and MAX-2-SAT, it does not imply the results for AX-CUT or MAX-2-SAT without the
knowledge of the optimal Gaussian partitioning. Likewiseen though the rounding algorithm jn [Rag08]
is efficient, it is a brute force search over a small space rbsults only in a close to optimal rounding
scheme. Thus, in a sense, the result provides implicitlygaesgce of rounding algorithm whose approxi-
mation factors is guaranteed to converge to the hardnets fachis again is different from the rounding
algorithms in [GW95 Zwi98, LLZ02] where the rounding algbhm is far more explicit (in the first two
cases, it is simply random hyperplane rounding).

We now elaborate on the reason for difficulty in establighéxact hardness factors: The exact hardness
factor in the case of MAX-CUT[KKMOQ7] and MAX-2-SAT [AusO7rucially rely on Gaussian Analy-
sis. More specifically, it uses the invariance principle@kA10] together with a result in Gaussian space
specifying explicitly arOptimal Gaussian Partitiofior the particular predicate. However, only few optimal
Gaussian partitions are known (or even conjectured). It fathe best of our knowledge, before this paper,
Borell's result [Bor85] was the only non-trivial Gaussiaar{ition result used in hardness of approximation
(for e.g., [KKMOO7 [Aus07]).

The above issue also explains the “brute-force” searcleasp the rounding scheme in [Rag08]. The
optimal rounding scheme and the optimal gaussian paititip(for a given predicate) are known to be
intimately linked to each other (se€e [Rag08] for a detaileplanation). In absence of knowledge of the
optimal partitioning,[[Rag(08] uses dimension reducti@.g4]) to reduce the dimension of the SDP solution
and subsequently resorts to brute-force search in the Ime+tsional space. The proof of optimality of this
algorithm (assuming the UGC) uses the invariance principle



1.1 Our contributions In this paper, we consider two maximization CSPs, namely XVBAEQUAL and
MAX-k-CSP. Since we are dealing with maximization problems set the (usual) convention that a (ran-
domized) algorithm is said to give arapproximation (for < 1) if (in expectation over the randomness
of the algorithm), the value of the output is at leadimes the optimal value.

We first start by describing our result for MAX-3-EQUAL. In AX-3-EQUAL, the variables are
boolean-valued and every constraint consists of thremlgend it is satisfied if and only if all the three
literals are either all zeros or all ones. We show that assgitiie Unique Games Conjecture, the MAX-3-
EQUAL problem isaggr ~ 0.796 hard to approximate in polynomial time. On the complemegnszde,
we also provide a polynomial time algorithm for this problevith the approximation ratiovgg. More
formally, we prove

Theorem 3. There is a polynomial time approximation algorithm for théX+3-EQUAL problem which
achieves the following approximation ratio:

1— 3cos™1(1-6)

= inf — 2T~ (.796.
omeu = I T

Assuming the Uniqgue Games Conjecture, for every0 there is no polynomial time that provides a better
approximation ratio tharx gy + 0.

The hardness proof uses a recent Gaussian noise stalslitly of Isaksson and Mossél [IM112] which
does not seem to have been previously used in the literaturdving hardness of approximation results.
In fact, all previous optimal hardness of approximatiorulsswith a “non-trivial” approximation ratio were
dependent on the Gaussian noise stability result of Bdelf§5] eg. MAX-CUT, MAX-2-SAT.

We also give an analytic proof of the performance of the ramtigperplane rounding algorithm on the
generic SDP for MAX-3-EQUAL (from[[Rag08]) showing that th@proximation ratio achieved by this
rounding algorithm is exactlyzg 4 Our proof is computer assisted but completely rigorous. \dte n
that while Zwick [Zwi98] also considers this problem and lgmas the performance of this algorithm, the
analysis is a computer based search and he notes that tleepossibility of the search having missed the
worst instance for the rounding algorithm. Nevertheleks,dlaimed optimum in [Zwi98] is same as the
optimum of our SDB.

Remark 4. After the publication of the preprint, David Williamsan [M8] informed us that our analysis
of the SDP is essentially identical to the analysis of MAXGOT SDP from[[GW95]. Thus, the analysis
from [GW95] can be plugged in to give a much shorter proof fa performance of our algorithm.

While revisiting the study of the relationship between Gaaus partitions and UGC hardness, we addi-
tionally prove hardness results for MAX-k-CSPs. In pafticuwe investigate the hardness of the MAX-k-

AND predicate, i.e., every constraint consistgdterals/y, . .., /; and the constraint is satisfied if and only
if /4 = ... =/, = 1. Following [Mos10] and[[AMO9] by using the fact that in Gaissspace, pair-wise

independence implies independence, we prove the follothiegrem:

Theorem 5. Assuming the Unique Games Conjecture, for every0, there is no polynomial time approx-
imation algorithm that provides an approximation ratio tmtthanw“;;% for the MAX-k-AND problem.

2We actually do a variant of the random hyperplane roundiggrithm where we sample normal random variables with the
covariance matrix given by the SDP vectors. Then each Jariakassigned or 1 depending on the sign of the corresponding
normal random variable. Our analysis goes through everi&tiiual random hyperplane algorithm is used.

3We elaborate on the difference between Zwick’s SDP and ou BISectiofB.



This improves upon [AM0O9] where it was shown that MAX-k-CSP(k + O(k%2%)) /2% hard to
approximate. Assuming the Hadamard Conjecture, they dondove it to[(k + 1)/4]/282.

It is worth mentioning that [AMOB] proves the aforementidrieardness for a very general class of pred-
icates (ones whose satisfying assignments support paimdependent distributions) but MAX-k-AND is
not included in that class of CSPs. Another important poirtifference is that[[AM09] shows that given
a MAX-k-CSP with optimal valud — n, it is (Unique Games) hard to find an assignment which sasisf

%’fﬁ%) + n fraction of the constraints (for any > 0). In terms of PCPs, the PCP in [AMO09] has
near perfect completeness. This in fact is true even for dieepaper on hardness of MAX-k-CSPs by
Samorodnitsky and Trevisah [ST06]. In contrast, our restuttws that given an instance of MAX-k-CSP
with optimal valuem — 7, itis hard to find an assignment satisfying more thant 1 fraction of
the constraints.

We do remark that while our improvement over [AMO09] might reeeery minor, Makarychev and
Makarychev [MM12] give a).62k/2* approximation algorithm for MAX-k-CSP over boolean alpbab
This shows that in some sense, the scope of improvement ixtbing hardness results for MAX-k-CSPs
is rather limited. Of course, the question of closing the Igejpveen our hardness result and the performance
of the algorithm of Charikaet al. remains open.

Overview of proofs of hardness: The two main novelties in our paper are:

e Use of the new Gaussian stability result of Isaksson and 8¢Bd12] to construct a “dictatorship”
test for MAX-3-EQUAL.

e Use of the “obvious” Gaussian stability result (i.e., s&apartitions for independent gaussians) in a
new context to construct a “dictatorship” test for MAX-kND.

In particular, both these dictatorship tests are constdubly a careful combination of a “good” choice of
distribution (for the dictatorship test) and the relevamiuSsian stability result (along with the Invariance
principle). Given the dictatorship test, getting the cep@nding Unique Games hardness result is rather
standard (seé [KKMOO7, Rag08]). For the sake of completerves give a complete proof of for hardness
of MAX-3-EQUAL using the corresponding dictatorship teBor MAX-k-AND, we do not show the con-
version of the dictatorship test to a Unique Games hardressgtras the proof is completely analogous to
that of MAX-3-EQUAL.

To show the tightness of the UG-hardness result for MAX-3:EAQ, we also devote a major part of
the paper towards analyzing the performance of our roundliggrithm on the generic SDP from [Rag08]
and showing that it indeed matches the hardness result. Wiel\ike to emphasize that while the Gaussian
stability result of [IM12] applies to a set df Gaussian variables (for arky), we do not know if this can
yield a tight hardness result for MAX-k-EQUAL. In particulawhile the Gaussian stability result will
imply some hardness of approximation for MAX-k-EQUAL, cemtly, we do not have an algorithm whose
approximation ratio provably matches the hardness reéldtelaborate more on this in Sectidn 7.

1.2 Organization Sectior 2 states all the fourier analytic and other techmiogliminaries required for
this paper. Sectiohl 3 describes a dictatorship test wheraetster checks for equality of three literals.
Section 4 describes a dictatorship test where the testekslikall the k literals arel. Sectior[b has the
two main theorems of this paper, namely a UG-hardness resulie MAX-3-EQUAL problem and a UG-
hardness result for MAX-k-AND. Sectidd 6 describes a SDBxaion and a rounding algorithm for the
MAX-3-EQUAL problem showing the tightness of the hardnessuit.



2 Prdiminaries

2.1 Basicsof Fourier analysis Our proofs are significantly dependent on fourier analy$ige start by
giving several important definitions. For a more extensaference, see lecture notes by Mosisel [M0s05].
We recall that any functiorf : {—1,1}"™ — R can be written as a multi-linear polynomial.

= f(S)zs,

Scln]

wherezs = [[;.q z;. Moreover, considering the uniform measure oferl, 1}", we have:

E(f] = f(0), Varl[f]=)_ f*(9)
S#0

Thei'th influence of f is given by

L(f) = E Varlfley,....zic1, 21, zll = Y f2(S)

L1y Ti—1,T4+415-3Tn SieS

2.2 Noiseoperatorsand their properties We will also require the notion of noise operators. We cossid
a particularly important instantiation of the Bonami-Beek operator namely that on functions over the
boolean hypercubé—1,1}" equipped with the uniform measure.

Definition 6. For p € [—1, 1], we define the Bonami-Beckner operaigron functionsf : {-1,1}" — R
as follows.

T,f(x) = E [f(y)];

Y~pT
where each coordinatg; is set to ber; independently with probabilityl + p)/2 and —x; with probability

(1—p)/2.

The effect of the Bonami-Beckner operaffyy can be conveniently expressed in terms of the fourier
spectrum of a function. In particular, ffis as above, then

= > (9 xs(x)
SC[n]

The following standard lemma proves a bound on the numbeoafdnates with high influence on a
function after applying the Bonami-Beckner operator oseg e.g.[[KKMOQO].

Lemma7. Letf : {—1,1}" — [0,1] and 7,y > 0. If A(f) = {i : Inf;(T1—,f) > 7}, then|A(f)|] <
1/(7).

The next lemma is a specialization of Lemma 6.2 from [Mos1i§ays that expected value of product
of polynomials does not change by a lot when noise is addeddao individual coordinates come from
correlated probability spaces such that no coordinatesslately fixed given rest of the coordinates.

Lemmas8. For1 <i <n,let(y, u;) = ({—1,1}*, ;) where

min () > a > 0.
ze{-1,1}k Hile) 2

Let (2, p) = [17(Q4, ). Forl < a <k, letpu? be thea’th marginal of ;, in other words

ud(z) = pi({(x1, ... z) : 2y = x}).



Let u* = [[;L, n%. Anelementt € Qis ak x n matrix. We writez® for the a’th row of = which is
distributed according t@.®. For1 < a < k, let @, be a multilinear polynomial§), : {—1,1}" — [—1, 1].
Then, for alle > 0, 3y = (e, ) > 0 such that

k

[T @u(a®)

a=1

E —E < ¢k.

k
[l
a=1

2.3 Gaussian Stability results The following theorem from Isaksson and Mossel [IM12] is thain
technical result that we use here.

Theorem 9. (Theorem 5.1[[IMIR]LetQ = {—1,1}*, p € [0, 1] and letx be a probability distribtion over
Q) such that

e ;(x) > a > 0forall z.

e Fors,te{—1,1}andalll <a #b < k:
1 1
Wy =s,xp=1t) = 5pé(s,t) + Z(l -p),

whered(s,t) = 1iff s = t. Consider the spacé?”, 1™). An element: € Q" may be viewed as & x n
matrix. Writex® for the a’th row of this matrix forl < a < k. Note thatz® is uniformly distributed in
{=1,1}™

Then for every > 0, 37 = 7(e, k, ) > 0 such that for anyfy, ..., fr : {—1,1}" — [0, 1] satisfying

max; ; Inf; (f;) <,
k

H fa(z®)

a=1

E <PrlVa e [k]: Z, <t;]+e,

wherez, ..., Z; ~ N(0,1) are jointly normal andCov(Z,, Z,) = pforall a # o’ and each; is chosen
so thatPr[Z, < t,] = E[fa].

To intuitively understand the above theorem, consider #s=avhenf, = ... = fr = f has range
{0,1}. Also, letz!,... ¥ € {~1,1}" such that each’ is uniform in{—1,1}" and for any;j < [n] and
i # ¢ € [k], thej*" bit of 2* andz* arep-correlated. Let us equiR™ with the standard normal measure and
define the functiory : R” — {—1,1} as follows : f : # — sgn(z; — #) wherez; is the first coordinate of
r andd is chosen so thdk,c(_; 1~ [f(7)] = ExeNn(OJ)[f(x)]. Then, for all “low-influence” functionf,
the probability thaw/¢ e [k], f(z!) = 1 is upper bounded by the probability that € [k], f(zf) = 1. We
also consider the corollary of the above theorem whea 0. We do remark that the following corollary
can actually be obtained using the Invariance principlenfddossel [Mos10] and does not require the full

strength of [[IM12].

Corollary 10. LetQ = {—1,1}* and letx be a probability distribtion ovef2 such that
e /(x) > a > 0forall z.
e Fors,te{—1,1}andalll <a #b < k:

1
/L(l’a = 5, Ty = t) = Z



Consider the spac&”, u™). An element: € Q" may be viewed as & x n matrix. Writez® for the
a'th row of this matrix forl < a < k. Note thatz® is uniformly distributed in{—1, 1}".
Then for every > 0, 37 = 7(e, k, ) > 0 such that for anyfy, ..., fr : {—1,1}" — [0, 1] satisfying

max; ; Inf; (f;) <,
k

k
1T fa(w“)] < [[Elfd +e
a=1

a=1

E

Proof. The corollary follows by putting = 0 in Theoreni® and then observing tiat, . . ., Z, ~ N (0,1)
in the conclusion of Theoref 9 are simply i.if.(0, 1) random variables. O

2.4 Useful facts We will require the following very useful fact about GaussiaFor a reference, sée [Bat63].

Fact 11. LetX,Y, Z ~ N(0,1) such that X', Y, Z) are jointly normal andCov (X, Y) = p1, Cov(Z,Y) =
p2 andCov(X, Z) = p3. Then,

1 -1 -1 -1
PT[X>Y,Z§0]:Pr[X,Y,ZZO]zi_COS P1+COS4 p2tcos” p3
78

We will also use the following very useful construction ofrpase independent distribution (which can

be found in [BGGP1Z, BP89]).
Fact 12. For anyk € N, there is a distributionD;, on {—1, 1}* such that the following holds:

e Foranyi € [k], E[z;] = 0.
e Foranyi,j € [k] andi # j, E[z;z;] = 0, i.e., any two coordinates are pairwise independent.

Proof. We will construct a symmetric distributio®;, with the above mentioned properties. First, we
consider the case whénis odd. In this case, definB;, as follows:

ot if z=(1,...,1),
k 1 ; k _
Dy(z) = &+1° (ssy/2) it > iy v =—1,
0 otherwise.

It is easy to verify that all the three required propertie&lHor this construction of);,. We next move to
the case whek is even. In this case, we defire, as

= if z=(1,...,1),
AR EE
Dy(z) =1 4 p—"
21 ik) it > i =2,
1+§
0 otherwise.
Again, it is easy to verify that all the three properties lieeg of D;, hold for this construction. O



3 Dictatorship test for MAX-3-EQUAL

In this section, we will construct a dictatorship test whitre tester checks for equality of 3 literals. More
precisely, we will prove the following theorem:

Theorem 13. Forany0 < § < 1ande > 0, there is a distributionD? over ({—1,1}")3 such that if
(X,Y,Z) ~ Dy, then for everyf : {—1,1}" — [0,1] with E[f] = 1/2,

o If f(x) = (1+ z;)/2for somei € [n], then

E [f(X)-f(V)-f(Z)+ (A= f(X) - A=f(V)) -(1=-f(2))]=1- )

(X,Y,Z)~D7 4
e d7 =17(6,¢) > 0andn = n(d,e) > 0 such that ifmax; Inf; (71—, f) < 7

E [f(X)f(YV) f(2)+0-f(X)- (1= (V) (1= f(2))] < 1= (Bcos™ (1 -6))/2m+e.

(X,Y7Z)ND§'

Before starting the proof, we note thatfifvere a boolean function with randge, 1}, thenf(X)- f(Y)-
)+ —=f(X)-1—=f(Y)-(1—f(Z))islifandonlyif f(X) = f(Y) = f(Z). Thus, we have a
dictatorship test which checks for equality3bits.

Proof. Let us define a distributio®s over{—1, 1}* as follows:

B ifr=(1,1,1)orz = (-1,-1,-1),
otherwise.

Let Dy, Ds,..., D, beni.id. samples ofD;s. Let D;(j) denote thej™” bit of D;. With this, let us define
X, Y, Ze{-1,1}"as

X = (Di(1),...,Dn(1)) Y = (D1(2),...,Dn(2)) Z = (D:(3),...,Dn(3)).

We let the joint distributior{ X, Y, Z) as defined here bB}. We start with the proof of the first item.
Completeness: Note for any particutae [n], thei'" coordinate ofDs; has the same string with probability
1 —36/4. Now, if f(z) = (1 + =z;)/2, then it means that(x) = 1 if ; = 1 and0 otherwise. Hence, we
have

Exy,z)epplf(X) - f(Y) - f(Z2)+ (1 - f(X))- 1= f(Y))- ( f(2))
=Exyzep (X =Y = Z;)] =1-36/4,

wherel(P) denotes the indicator function for the predic#&teThis finishes the proof of the first item. We
next do the proof of the second item.

Soundness: Le® be the multilinear polynomial representation fof Note that for anyr € {—1,1}",
|Q(x)| < 1. LetQ be the probability space with domafa-1,1}* and probability measur®; on it. Note
thatve € {—1,1}3, Ds(z) > 6/8. Hence, by Lemm&l8, we get tha = (5, ¢) > 0, such that,

[BIf(X) - fY) - £(Z) = Trgf(X) - Tron f(Y) - Tiy f(2)]] < €/4. (1)

Likewise, we get that
E[1-f(X)-(A=f(V))-A=f(2) = (A1=T1- (X)) A=T1 f(YV))- A=T1 f(2))]| < €/4. (2)

7



In the last two equationg X, Y, Z) ~ Dy. We now apply Theoref 9. In particular, note thgtXf, Y, Z) ~
Dy, then the variable$X;,Y;, Z;) are independently and identically distributed. Also, faya < [n],
X;, Y; and Z; are pairwisep = (1 — §) correlated and for anyz,y,z) € {-1,1}3, Pr[(X;,Y;, Z;) =
(z,y,2)] > /8 > 0. Finally, note thatX, Y and 7 are distributed a#/,,. Hence

Ex[f(X)] = Ey[f(Y)] = Ez[f(2)] = 1/2.

As the Bonami Beckner operator preserves expectation dutieion under the uniform distribution, we
get
Ex[T1—f(X)] = Ey[T1—f(Y)] = Ez[Ti— f(Z)] = 1/2.

Thus, by Theorefl®r = 7(4, ¢) such that ifmax; Inf; (71, f) < 7, then we have
Ex,v.z)epp [T1-nf(X) - Thn f(Y) - Tin f(Z)]| < Pr[X, ), Z < 0] +€/4,

whereX, Y, Z ~ N(0,1) andCov(X,)) = Cov(Z,)) = Cov(X, Z) = 1 — 4. Here, we again assume
that 7 in the hypothesis of the theorem is sufficiently small sa the hypothesis of Theorel 9 is valid.
Likewise, we get that

Exv,z)epp[(1 =T1-nf(X)) - (1 =T1—pf(Y)) - 1 = T1i—f(2))]| < Pr[X, ¥, Z < 0] +¢/4.
Combining the above with{2) and] (1), we get that
Exy,z)epplf(X) - f(Y)- f(Z2)+ (1 = f(X))- (A= f(V))- (1= f(Z))] <2Pr[X, P, Z < 0] + e
Using Fact 1L, we conclude that

3cos™H(1 —6)

Exy,2)epp [f(X) - f(¥) - f(Z2) + (A= (X)) - A= f(¥)) A= f(Z)] <1 - ——F— +¢

completing the proof. O

4 Dictatorship test for MAX-k-AND

In this section, we construct a dictatorship test for MAXAKID i. e. the tester checks if a particular set of
k literals are all set ta. For the purposes of this section, let us assuiiig = W

Theorem 14. Foranyk > 3ands > 0, there is a distributionD over({—1, 1}")* such that if X1, ..., X}) ~
D such that for every : {—1,1}" — [0,1] with E[f] = 1/2,

o If f(x) = (1+ z;)/2for somei € [n], then
Prix, .. xo~plf(X1) ... f(Xi)] = p(k) = 6.

e 3r =17(0,k) > 0andn = (4, k) > 0 such that ifmax; Inf; (11—, f) < 7,

L

o5 + 6.

Prix,  x~plf(X1) ...  f(Xp)] <

We remark that iff were to take values if0, 1}, then we note thaf(X;) - ... f(Xy) = 1 ifand only
if f(X1)A...Af(Xk)=1.



Proof. Let Dy, be the distribution from Fafi12. We let= 6/4. Now, we letD; = (1 — §) Dy, + (U Let

Dy, ...,D, beniid. samples fromD;. Let D;(j) be thej*" bit of D;. Having done this, we defing;

forl <j<kasX; = (Di(j),...,Dn(j)). LetD be defined as the joint distribution X ,..., X}).
As before, we start with the proof of the first item.

Completeness: Sincg(z) = (1 + z;)/2 (for somei € [n]), it means thatf(z) = 1if ; = 1 and0

otherwise. Hence, we have

Ex,,. . xpeplf(X1) .- f(Xe)] = Ex, . x)epI(X1() =... = Xi(i) = 1)]
= p(k)(1 =€) +&27" > p(k) — 6.

Soundness: Le® be the multilinear polynomial representation fif Note that for anyx € {—1,1}",
|Q(x)] < 1. LetQ be the probability space with domain-1,1}* and probability measuré; on it.
Observe thaDg(z) > ¢ -2 % for all z € {—1,1}*. Hence, by LemmB&l8, we get thay = n(¢, k) > 0
(note becausé = /4, we can also expressas a function ob andk as required by the theorem),

Ex,,..xpeplf(X1) oo f(Xk) = Ty f(X1) oo Ty f(XR)]] < 2 3)
We can now apply Corollafy 10 to the functi@h_,, f and the random variablés(y, ..., X;) ~ D. Much
like in the proof of Theorerh 13, it is easy to check that all ¢eeditions are satisfied (In particular, note
that for any: € [n], X1(7), X2(7), ..., Xx(i) are pairwise independent). By Corolldry]l B, = 7(¢, k)
such that ifmax; Inf;(f) < 7, we have

B, xoenTigf(X) o Tigf (X)) < 274+ @

As before, we note that(¢, k) can be expressed a$d, k). Here, we are assuming that thé&, k) and
7(&, k) chosen to be sufficiently small so that the hypothesis ofollany [10 is valid. Combining[{3) and
@), we get that

£

B, xenlf(X) -  fX)] <278+ 5.

5 Unique games hardness from Dictator ship test

In this section, we use the dictatorship tests constructegectio] B and Sectidd 4 to show the following
theorems.

Theorem 15. Assuming the Uniqgue Games Conjecture, for every § < 1 ande > 0, it is NP-hard to

distinguish an instance of MAX-3-EQUAL with vallie 35 /4—¢ from an instance of valug— 3= (=% .
e. In other words, for every > 0, MAX-3-EQUAL isapqr + € hard to approximate where

1— 3cos1(1-6)
apou = inf ——2T — ~(.796.

5€(0,1) — %

Theorem 16. Assuming the Unique Games Conjecture, for every 0, it is NP-hard to distinguish an
instance of MAX-k-AND with valu (k+11)/21 — ¢ from an instance of valu2—* + e. In other words, for

everye > 0, MAX-k-AND is[(’“;;% + ¢ hard to approximate.



Theorem[_Ib uses the dictatorship test in Theofein 13 to reduigue Games to MAX-3-EQUAL.
Similarly, Theoreni_ 16 uses the dictatorship test in Thedfdno reduce Uniqgue Games to MAX-k-AND.
As we said in the introduction, these reductions are by naw s&ndard and can be found in several places.
For the sake of convenience of the reader, we include therodlf of Theoreri I5. The proof of Theorém 16
is exactly analogous and hence, we do not do it here.

We begin by defining the Unique Label Cover problem and thiate<hot’'s Unique Games Conjecture
(slightly differently stated than Conjecture 1).

Definition 17. An instance of a Unique Label Cover probléid, ) on alphabet size is defined by a
graphG = (V, E) and a set of permutations = {0, ,) : [t| = [t]}(u,0)ep- FOrany mapl : vV — [t]

and (u,v) € E, Ag(u,v) = 1if and only if L(v) = 0(,,)(L(u)), otherwise it is zero. For a map
L:V — [t], vale(G) = B ~plAc(u,v)]. The value of the unique label cover instance is (denoted by)
val(G) = max .y, vale (G).

Conjecture 18. [Kho02] Unique Games Conjecture: For everye > 0, there is at = t(¢) such given a
unique label cover problerfz, 3) on alphabet size, distinguishing whetheral(G) < eorval(G) > 1—e¢
is NP-hard. We can also assume that the grépls regular.

Having stated the unique games conjecture, we describe av&@ier for the unique label cover prob-
lem which checks for equality df bits. By the standard reduction between PCP verifiers andhnleas of
approximation, we get a hardness result for the MAX-3-EQUkhblem.

Description of the PCP verifier: Given the unique games instan@@, ) (on alphabet size), we
assume that’ = [n] and build a PCP verifier over - 2! boolean variables as follows: For everg [n],
we have a functiory; : {—1,1}' — {0,1}. Note that any such truth table can be described’iyoolean
variables and hence the family of functiofi } can be described in all by - 2¢ variables.

Remark 19. We will also assume the functions are folded, i.e., foranf(z) # f(—z). Note that this can
be done without loss of generality, because whenever thievereeds to queny (x), if z; = 1, it queries

f(z). Else it queriesf (—x) and flips the output. We note that “flipping” the output cha implemented by
introducing negated literals in the resulting CSP. Also,atserve that dictators satisfy this requirement.

For a givend € (0,1), let D} be the distribution in the hypothesis of TheorEm 13. Noté tha
distribution D% is over({—1,1}!)3. Also, we use> to denote composition of functions. In other words, for
two functionsg; andgs, g1 o go(z) denotesy; (g2(z)). With this, the verifier is as follows:

e Pickwv € V uniformly at random and choose three random neighbots sdy,w, ws, ws uniformly
at random.

e Choose(X,Y, Z) ~ D (described above) and accept if and only if
Juy © U(wl,v)(X) = fuwy © U(wz,v)(y) = fws © U(ws,v)(z)'

We next show the correctness of this verifier. In other wovds prove the following two lemmas.

Lemma 20. If val(G) > 1 — ¢, then there is a set of functiods; : {—1,1}" — {0,1}};¢[, such that the
above verifier accepts with probability at legdt— 3¢)(1 — 35/4).

Lemma2l. For anye > 0, if the above verifier passes with probability more tHan M

- +¢, then
L : V — [t] such thawal, (G) = k(e §) > 0.

Sincewal,(G) in conclusion ofx(e, §) does not depend ofy hence by combining Lemnial20 and
Lemma[21 and the standard reduction between PCPs and hamin€SPs, we prove Theordml15. The
proofs of Lemm&20 and Lemrhal21 follow.
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of Lemma 20.Sinceval(G) > (1—¢), 3L : V — [t] such thaval;(G) > 1—e. Let L be such alabeling of
the vertices. We lef; : {—1,1}* — {0, 1} be the dictator function corresponding£¢:). In other words,
fi(z) = (1 + 2£(;) /2. Now, sinceval(G) > 1 — e and the constraint graph is regular, if we choose
uniformly at random and then a uniform random neightegrthen A, (v, w;) = 1 with probability 1 — e.
By a union bound, with probability at least— 3¢, Az (v, w1) = Az(v,w2) = Ag(v,ws) = 1. If thisis
indeed the case, then,

fw1 O O (wy,w) = wa © O (wy,w) = fwg © O (ws,v)-
Now, applying the first part of TheoremI13, we get that in tidse the test accepts with probability 35 /4.
Thus, the total probability that the test accepts is at lélast 3¢)(1 — 35/4). O

We next move to the more difficult case of soundness.

of Lemmd 2I1.The proof follows the arguments in [KKMOO7] very closely. Wit describe the labeling
L and then describe its correctness. Our labeling is a rarmbahdcheme. Lej, 7 > 0 be two parameters
which are chosen according to the second part of the hypstb&é3heoreni 1B for parameteeg2 ando.
First, for everyv € V, we defineg, : {—1,1} — [0,1] as

gv(ﬂj‘) = E(w,U)GE[fw O O (w,v) (:L')]
Again for everyv € V we defineA(v) C V as

A(w) = {i : Inf;(Th—, fo) > 7/2} U {i : Infy(T1—,9,) > T}

The randomized labeling scheme is the following: If the.4ét) is empty,L(v) is chosen arbitrarily. Else,
it is chosen to be a uniformly random element from the.4@t). The following proposition gives us the
desired result.

Proposition 22. Over the choice of randomness for choosihygE [val- (G)] > (en?7?)/64.

By fixing the randomness in the above proposition desirably get Lemma 1. So, the proof boils
down to proving Proposition 22.

Proof. Let D be a probability distribution over* where(v, wy, ws, w3) € D is sampled as followsy € V
is chosen uniformly at random and, w», w3 are chosen to be three random neighbors.ofurther, let
(X,Y, Z) € D% Then, the probability of acceptance of the verifier is givy

E[I(fwl © O (w1,v) ( ) = fw2 O O (waq,v) (Y) = fw3 ° U(w;;,v)(Z))]

= E[fwl O (un v)( ) ’ fw2 © U(wz,v)(y) ’ fws © U(w:;,v)(Z)]
[

9

&=

+ (1 fwl © O (w, v)(X)) ’ (1 - fwz 0 U(wg,v)(y)) ’ (1 - fws © U(wg,v)(Z))]
= El9o(X) 9u(Y) - 90(Z) + (1 = go(X)) - (1 = g(Y)) - (1 — 9u(2))]-

3cos™1(1-6)

Since the verifier accepts with probability at ledast T + ¢, a Markov argument gives that for at

least are/2 fraction of vertices € V,

cos (1 —
Elgo(X) - 9u(V) - () + (1 gu(X)) - (1 (V) - (1 go(2))] 2 1 - 2 020

Denote this subset (df) by A. Note that by the second part of Theorlenh 13, for eveey A, 3i € [t], such
thatInf;(71_,9,) > 7. For everyv € A, fix an which satisfiednf;(71_,g,) > 7.

TG0 = > (=5 = 3 (=) (Buumenlfu o o ()

Ses S:es

+¢/2.

2

= > (1-n (E(w werlfuloy, v)(S))])Q .

S:eS
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Herea(‘lj’v)(S) is the pre-image of the sétunder the map(,, .,,. Now, by Jensen’s inequality we get that

> - IS (o'(_wl’v)(S))]

S:esS

- Inf,- N Ti—pfw)| -
(UJ,EEE [ " C’(wl,l,)(l)( 1-nf )]

3 - ) (Buerlfaloily))” < E

Sies (wv)€E

Using a Markov argument, this implies that for such & A and: such thafinf;(7_,g,) > 7, at least a
7/2 fraction of neighborsv of v satisfy,

Infg(*wlm)(i) (Tl—nfw) > 7_/2'

We say that such a paiw,w) of vertices is “good”. Using Lemmal7, it can be easily shovattfor
everyv € V, |A(v)| < 4/(rn). This means that for every € A, the randomized schemé assigns
L(v) = i such thatinf;(T7_,g,) > 7 with probability at leas{n7)/4. Observe that for any suah e A,
at leastr /2 fraction of its neighborsv are such thatv, w) is “good”. Note that for any good paifv, w),
if Inf;(Th—pgv) > T, thenInfU(va)(i)(Tl_nfw) > 7/2. This implies thatr, ! (i) € A(w). Thus, with

(w,v)
probability at leas{(rn)/4, L(w) = J(_11)1v) (7). Thus, overall the probability thaf(v,w) = 1 is at least
em®n?/64. This completes the proof of Propositionl 22. O

O

6 Approximation algorithm for the M AX-3-EQUAL problem

In this section, we give a SDP based approximation algoritimMAX-3-EQUAL whose performance
matches the hardness result from the last section. In pkatjave prove the following theorem.

Theorem 23. There is a polynomial time approximation algorithm for th&K+3-EQUAL problem which
achieves the following approximation ration :

1— 3cos™1(1-6)

inf —— 2T ~(.796.
561%,1) 1-3%

Thus, this theorem shows that we have an approximationitiigpmwhose performance ratio matches
the Unique Games hardness for this problem. Towards provivepren{ 2B, we state a SDP relaxation
for the MAX-3-EQUAL problem followed by a rounding proce@uand then analyze the performance of
this algorithm. The SDP formulation is essentially the gen8DP by Raghavendra [Rag08] specialized
to the MAX-3-EQUAL problem. We assume that the variablesaare. ., z,, € {—1,1}. The constraint
setisE C [n)® x {—1,1}? such that for every(i, j, k) x (m;,n;,m) € E we have a constraint that
nix; = njT; = MpTE. In other wordsy); represents the polarity with which the variahlgappears in the
constraintE (likewise forn; andn;). The SDP relaxation is given in Figure 1.

Remark 24. We note that Zwick [Zwi98] describes a SDP relaxation andnailsr rounding procedure
for the MAX-3-EQUAL problem. The paper also gives numegeadence towards showing that the perfor-
mance ratio of their algorithm is approximately796. However, the paper notes that they do not have an
analytical proof of this and to the best of our knowledge, nalgtical proof has appeared ever since. We
analyze a slightly different SDP and analytically show ttieg performance of it is indeed what we claim.
There are a couple of differences between our SDP formulatial Zwick’'s SDP. The first one is that we

12



SDP formulation

1. Vi€ [n], v; € R™ and|v;||2 = 1.
2. Vi, g ke [n]g,i <j<k, Qi 4 k) s B(i,j,k)n V(i g k) 5(1’,]’,1@) € RT U {0} such that

i k) + Bk + Vgk) + 0G5k = 1.
3. Vi, jken]?i<j<k,

i gk) + Blaigk) = Vigk) = Oigik) = (Vis V)
Aiik) = Bk F Vgk) — Ok = (Vs Uk)-
Qiik) — Bligk) = Vigk) T Ok = (Vis Vk)-

4. Fore € E, wheree = (i, 7, k) x (n:,n;, nx), define

QG gk e =mn5= M,
Aoy = 4 B =y = -
Yeigey =18 =15 =Nk,
Sijry  KEmi=—m5 =nk,

5. Subject to the above, MaximiZ&; ; i) (a,8,7)c A (€)]-

Figure 1: SDP relaxation for MAX-3-EQUAL problem

use some additional real variables. However, this diffesers purely cosmetic as the presence of those
variables does not make our relaxation any tighter than X&i&DP. The second difference between our
SDP and Zwick’s SDP is that our SDP implies an additional $ebastraints, namely, for all, j, k € [n]?,

1+ (vi,v;) + (v, vg) + (v;, v) > 0. We should mention that this family of constraints appeafZwi98]

for SDP relaxations of some other CSPs but it is unclear framgaper if Zwick uses these constraints
in the SDP relaxation for MAX-3-EQUAL as well. Potentialligese additional constraints make our SDP
tighter than that of Zwick though the reason we use thesdiadédl constraints is that our analysis becomes
simpler. As remarked earlier, after the publication of thegrint, Williamson [Wil13] pointed out to us
that an analysis similar to ours had already appeared in [@BM8 the context of MAX-DICUT. Using this
analysis as a black-box, we can shorten the analysis of theding algorithm substantially. We however
keep our original analysis here so that the paper is self @iowd.

To see why the SDP in Figuig 1 is a relaxation, consider aquéati assignment to the variables
xr1,...,T,. Letus definevg € R™ as havingl in the first coordinate an€é everywhere else. If; = 1,
setv; = vq. Else, ifz; = —1, setv; = —vg. The rest of the variables are set as follows. For everyetripl

(’L.?j? k)! Z < j < k!
o If z; = Tj = T, thena(m,k) =1, ﬁ(i,j,k) = V(i,j.k) = 5(i,j,k) =0.
o |If Ti=Tj = —Tf, thenﬁ(m,k) =1, a(i,jk) = ’y(i,jk) = 5(i,j,k) =0.

o If —z;, = Tj = Tk, thenfy(m,k) =1, Qi k) = B(i,j,k) = 5(i,j,k) = 0.
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o If Ty = —Tj = Tk, thené(i,jvk) =1, a(i,j,k) = /B(i,j,k) = ’Y(i,j,k) =0.

Itis easy to verify that with these assignment&f; 1y, B j k)» V(i,j,k)» O(i,j,k) @Ndv;, constraints, 2 and3
are indeed satisfied. Further, for this assignment, if atamte € £ is satisfied, then it is easy to see that
A(e) = 1. Also, if a constraint is not satisfied, then(e) = 0. Thus, the objective value of the program for
this assignment is exactly the fraction of constramts £ which are satisfied and hence its a relaxation.

6.1 Rounding algorithm Our rounding algorithm is as follows: L&t € R™*" be the matrix such that
¥i; = (vi,v;). Note that¥ is positive semidefinite. So, we lét ~ A (0,Y), i.e., X be a jointly normal
distribution inR™ with mean at the origin and the covariance matix The rounding algorithm gets a
sampleX and assigng; = 1 if &; > 0 and—1 otherwise. HereY; denotes thé'” coordinate ofY. We
will call this rounding as the “random gaussian” rounding/e now prove Theorem 23 by analyzing the
performance of this rounding algorithm.

We would also like to remark that (perhaps not too surprigingf instead of the “random gaussian”
rounding, we would have used “random hyperplane” roundihg performance of the algorithm would
have been the same and our analysis would have also gonglthnetinout any changes.

Proof of Theorerh 23We start by considering a particular constraine E. Without loss of generality,
assume that = (i, 7,k) x (n;,1;, ), wheren; = n; = n, = 1. We note that if the triplén;, n;, 7, ) were
to take some other value in-1,1}3, our analysis would remain unchanged.

Now, for the particular edge, its contribution to the SDP objective )e) = a(; j ). On the other
hand, let the expected contribution to the true objectivenfthis edge be(e). Note that

It is obvious that the performance ratio of the algorithmasér bounded bynf x(e)/A(e). Hence, we
will simply aim to prove a lower bound odimf x(e)/A(e). Observe that for anyi, j, k), o j k) + Bijk) +
Y(i,j.k) T 0,k = 1. Now, using this and plugging Fdctl11 infd (5), we get (below,usex as a shorthand
for a; ;1) and likewise for3, v ando),

cos 1 ((vi, v5)) + cosTL((vj, vg)) + cos ™ ((vy, vg))
2
cos ' 2(a+B) — 1) +cosH2(a+7) — 1) +cos L (2(a+6) — 1)

= 1- .
2

k(e) = 1-—

Thus, fora, b, c,d € RT U {0}, if we define

1— cos ™1 (2(a+b)—1)+cos 1 (2(a+c)—1)+cos ! (2(a+d)—1)

b,c,d)= 2
g(a7 7C7 ) a 9
k(e) . :
then, W > 1glfdg(a, b,c,d) subjected ta + b+ ¢+ d = 1 anda, b,c,d > 0.
€ a,0,¢,

For the purposes of the analysis, it is helpful to fix the eatdia, and then find the optimum choice bfc,
d for that value ofa to minimizeg(a, b, ¢,d). Subsequently, one optimizes over the choice.ofn other
words, let us definé, (b, c, d) as

ha(b,c,d) = cos™ (2(a + b) — 1) 4+ cos ' (2(a + ¢) — 1) 4 cos ' (2(a + d) — 1).

U(a) = sup hy(b, c,d) subjected td + ¢+ d = 1 — a andb, ¢,d > 0 wherea > 0. (6)
b,c,d
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Hence, we now get that

“0) » gup 1T 2w (7)

Ae) — 0da<i

Thus, we now focus on finding’(a) for everya € (0,1]. In order to find out¥(a), we find out the lo-

cal minima by evaluating the partial derivatives of the fimt A, (b, ¢, d) and also investigate the value of
hq(b, ¢, d) atthe boundaries of the domain. Williamsbn [Wil13] notedsdhat the expressianfo«,<1 M
had already been analyzed in [GW95] (see Lemma 7.3.2). Henvexe keep our original analysis here.

6.2 Supremum of h,(b,c,d) at the boundary of the domain: The next claim gets the supremum of
hq(b, ¢, d) whenb, ¢, d lie on the boundary of the domain defined in Equafibn 6.

Claim 25. The supremum df, (b, ¢, d) whenb, ¢ andd lie on the boundary of the domain defined[ih (6) is
cos 1(2a — 1) + 2cos(a).

Proof. Note that becausk ¢,d > 0 andb + ¢ + d = 1 — a, the boundary of the domain is defined by at
least one ob, ¢ andd being0. Without loss of generality, we assurhe= 0. Note that because is fixed,
we are viewing the domain as a two dimensional object. Indhag,

ha(0,¢,d) = cos 1 (2a — 1) 4+ cos ™ (2(a + ¢) — 1) + cos 1 (2(a + d) — 1),
with ¢4+ d =1 — a ande,d > 0. Performing the substitutiodi = 1 — a — ¢, we get
ha(0,c,d) = cos™1(2a — 1) + cos ™ (2(a + ¢) — 1) + cos (1 — 2¢), (8)

where0 < ¢ < 1 — a. Now, note that since is fixed, h,(0, ¢, d) is solely a function of. Hence, to find
out the supremum di, (0, ¢, d), we evaluate it at the end points of the domain, i.ec,-at0, c =1 —a and
at its critical points.

e If c = 0, thend = 1 — a. Hence, at this pointh, (b, c,d) = he(0,0,1 —a) = cos™!(2a — 1) +
cos 1 (2a — 1) 4+ cos™1(1) = 2cos™1(2a — 1).

e If c = 1 —a, thend = 0. Hence, at this pointh,(b,c,d) = hy(0,1 — a,0) = cos™(2a — 1) +
cos (1) + cos™H(2a — 1) = 2cos™(2a — 1).

Having evaluated, (0, ¢, d) at the boundary points, we now find out the critical pointsha$ function.
Differentiating the expression ifl(8), we get
O0ha(0,¢,d) -2 2

de _\/1—(2(a+c)—1)2+\/1—(1—26)2:0

This implies that
1-2a+e)—1)*=1-(1—2¢)?

= (2(a+c¢) —1) =£(1 —20¢).

This means that either = 0 or ¢ + 2¢ = 1. Sincea > 0, we can neglect the first condition. Thus, the only
condition we need to considerds+ 2c = 1. Becauser + ¢ + d = 1, this means that = d = (1 — a)/2.
Thus,h, (0, ¢,d) = cos™(2a — 1) + 2cos~*(a). Thus, we get that

sup hq(0, ¢, d) = sup{cos ™ (2a — 1) +2cos " (a),2cos 1 (2a — 1)} = cos ' (2a — 1) +2cos " (a). (9)

c,d

The last equality uses Fact]27. O
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6.3 Evaluation of h,(b, c,d) at thecritical points: The next claim evaluates the supremunhgfb, ¢, d)
at the critical points of the domain.

Claim 26. The supremum df, (b, ¢, d) at the critical points inside the domain defined[ih (6) isegivby

“tda—1) f0<a<1/4,
sup ha (b, ¢, d) = T+ cos™ (4da — 1) fO_a_ /
3cos™H((4a —1)/3) ifl1/d<a<1.
Proof. Note thath + ¢ + d = 1 — a. Thus, we get
ha(b, ¢, d) = cos (1 — 2¢ — 2d) + cos 1 (2(a + ¢) — 1) + cos 1 (2(a + d) — 1).

Asa is fixed, h (b, ¢, d) is a function ofc andd alone. At the critical point,

Oha(b,c,d) 2 B 2 0
g JT—(1-2c—2d J1—(1—-2a-2c)2

Oha(bc,d) 2 B 2 0
od V1-(1—-2c—2d)? /1—(1—2a—2d)?

Thus, at the critical point,
(1—2¢—2d)* =(1—2a—2¢)? = (1 —2a — 2d)*
= +(1—2c—2d) = £(1 — 2a — 2¢) = (1 — 2a — 2d).
We now solve for, d for the various possibilities listed above.

e 1 —2c—2d=1-2a—2c=1-—2a— 2d. In this case, we get = ¢ = d and hencé = 1 — 3a.
Sinceb > 0, this possibility occurs only whet < a < (1/3). If this indeed holds,

ha(b,c,d) = cos™' (1 — 4a) + cos ' (4a — 1) + cos ™ (4a — 1) = m + cos ™' (4a — 1).
o 1-2c—2d=—(1—-2a—2c)=1-2a—2d. Inthis case, we get = ¢ = bandd = 1 — 3a. Again
asd > 0, this possibility occurs only whet < a < (1/3). As before,
ha(b,c,d) = cos™' (1 — 4a) + cos ' (4a — 1) + cos ™ (4a — 1) = m + cos ' (4a — 1).
e 1—-2c—2d=1-2a—-2c=—(1—2a—2d). This goes exactly the same way as in the previous
case. Here again, we have
ha(b,c,d) = cos ' (1 — 4a) + cos ™ (4a — 1) + cos ' (4a — 1) = 7 + cos™ ' (4a — 1).
o (1-2c—2d)=1—-2a—2c=1-2a—2d. Inthiscasep = c=d = (1 —a)/3. Now, we get
ha(b,c,d) = cos ' ((4a —1)/3) +cos *((4a —1)/3) + cos ' ((4a —1)/3) = 3cos ((4a —1)/3).
Hence at the critical points, we have

ha(b, ¢, d) = sup{m + cos'(4a — 1),3cos ' ((4a — 1)/3)} if0<a<1/3,
SRR ST T 3cos (40 - 1)/3) if a > 1/3.

However, using Fa¢t 28, the above simplifies to saying théteacritical points,

m4+cosHda—1) if0<a<1/4,

sup hg (b, c,d) = {3008—1((4a —-1)/3) if1/4<a<1.
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Define ¢ to be the smallest of the following three quantities:

inf 2 , inf 2 , inf n
a€(0,1/4] a ac(1/4,1] a a€(0,1] a

{ 1— m+cos ™! (4a—1) 1— 3cos™1((4a—1)/3) 1— 2cos™ ! (a)+cos ™1 (2a—1) }

Combining Claim$ 25 and 26 along wiffl (7), we get t@% > (. By Fact29, the first quantity inside the
definition of ¢ simplifies to1 as follows:

1— m+cos ™1 (4a—1) 1— m+cos ™1 (4-(1/4)—1)

inf D 2 ~1. 10
ac(0.1/4] a (1/4) 4o

At this point, we are left with the task of finding the follomg quantities:

1 2cos™1(a)+cos ™1 (2a—1) 1 3cos™1((4a—1)/3)
: — 2T : — 27
inf inf
a€(0,1] a a€e(1/4,1] a

Thus, we are now left with the task of finding the infimum ofasingle-variable functions and then taking
the minima of these two quantities. We do this computatioeafuating these two functions at sufficiently
many points and then taking the infimum of these. For a magtieal justification, see AppendxA.2.
Doing the numerical computation, we get,

1— 2cos ™ !(a)+cos 1 (2a—1)

inf n = [0.803125, 0.803325]. (11)
ae(0,1] a

1 — Beos”1((4a=1)/3)

inf 2 = [0.795970, 0.796170]. (12)
a€c(1/4,1] a

Further, the value aof achieving the infimum in[(12) ia = 0.700296 + 0.000001. Hence, we have that

3cos™((4a—1)/3 3cos™ 1 ((4a—1)/3
A s O e
Ae) T ae(1/4,1] a ae(0,1] a

The second equality (i.e., making the doméin1] instead of(1/4, 1]) follows because Fa€t P8 arld {10)
can be combined as:

1— 3cos™!((4a—1)/3) 1— m+cos 1 (4a—1)

Vo<a<1/4 n > n > 1.
a a

Puté = 4(1 — a)/3. Then, we get that

3cos™!((4a—1)/3) 3cos~1(1-6) 3cos™1(1-6)
: 1 - 27 : 1 - 2 : 1 - 27
inf = inf ——2F—— = inf =5
a€(0,1] a 0<5<4/3 -7 0<<1 11—

Here the last equality is true because we have earlier abdehat the infimum of the expression [n{12)
is obtained whem ~ 0.700. This means the corresponding valuejof 0.400 < 1. Thus, making the
domain ofd to be (0, 1] instead of(0, 4/3] does not affect the value of the infimum. This also conclue t
proof of the theorem.

]

17



7 Difficulty in getting optimal resultsfor MAX-k-EQUAL

Given our results on MAX-3-EQUAL, a very obvious questiomisether or not our results can be extended
to MAX-k-EQUAL for k£ > 3. More concretely, since it is known that assuming the UGQ@Haaendra’s
SDP achieves the optimal approximation ratio for every GSB,natural to ask if the “random gaussian”
rounding algorithm described in subsection] 6.1 also a€sighis ratio. We now explain the difficulty in
proving such a result in a nutshell.

Consider the case of MAX-k-EQUAL. L&Y, . . ., gx) be jointly normally distributed random variables
such that each; ~ N™(0, 1) (the value of: isimmaterial as long as > k). Assume that for all < a < n,
the covariance matrix of; (a), ..., gx(a) is given byp € R¥** (andp is independent of,). Hereg;(a)
represents thé” coordinate of;.

Let us define a family of distribution®(p) over {—1, 1}* in the following way:.A € D(p) if and only
if

e V1<i<k, A(i)is auniformly random bit.

o V1<i<j<kE[A®)-AQG) = pi.

We next define the following two quantities:
> 0] + Pryepnnion[Vi € [k] g-g: <0

hs(p) = Pryeamo,1)[Vi € [K]

he(p) = Arggz;)[A(l) =

g-
Alk )]
It is easy to show that the approximation ratio achieved ky‘ttandom gaussian” rounding algorithm on
Raghavendra’s SDP is (lower)-boundedib, h(p)/hc(p).

If we want to show that the “random gaussian” rounding alhon on Raghavendra’s SDP indeed
achieves the optimal approximation ratio (assuming the Y &en the task essentially boils down to con-
structing a dictatorship test for MAX-k-EQUAL whose ratibsmundness to completenesi§, h4(p)/he(p).
To do this, let us assume thatg inf, hs(p)/he(p) = p

First of all, we construct a dictatorship test for MAX-k-E@QU whose completeness is.(p’). To
do this, let us assume that the distribution Ttp’)) which achieves the maximum in the definition of
he(p') is A. The dictatorship test is as follows: Given a functipn: {—1,1}" — {0,1}, we sample
(X1,...,Xi) € A" and acceptifand only if (X1) = ... = f(X}).

It is easy to see that if is a dictator, then the probability th#{ X;) = ... = f(X}) is exactlyh.(p).
Thus, the completeness of the dictatorship test is exactly’). The hard part is to bound the soundness
of the dictatorship test. In other words, assuming thas a balanced function where every coordinate
has a low-influence, we need to bound the probability ff@;) = ... = f(X%). An application of the
invariance principle[[Mos10] says that it suffices to bouhe following quantity: Letf’ : R" — {0,1} be
a function on the gaussian space such Bigt (x)] = 1/2. Letgy, ..., gr ~ N™(0,1) be jointly normally
distributed random variables where for al< a < n, the covariance matrix af; (a), . .., gx(a) is given
by p’. We need to upper bound the probability thfatg,) = ... = f'(gx). The result in[[[M12] says that
as long as all the off-diagonal entries @gf ! are non-positive, the probability is maximum whghis a
halfspace. However, if’ is indeed a halfspace, th&h[f'(g1) = ... = f'(gx)] = hs(p'). Thus, if all the
off-diagonal entries of’~! are non-positive, then the soundness of the dictatorskipste;(p’).

For the case ok = 3, by a direct analysis of the rounding algorithm, we showet phis a matrix
who diagonal entries are dlland all the off-diagonal entries are the same positive diyaftrom this, it is
easy to check that all the off diagonal entriespof! are non-positive and hence the results of [IM12] are
applicable here. On the other hand, for> 3, it seems difficult to comput@’ exactly or even prove that
all the off diagonal entries gf —! are non-positive. This makes it impossible to apply theltesi [[M12]
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here. One might consider the possibility of doing compuimuations to findinf, hs(p)/h.(p) for k > 3
(or to make a reasonable conjecture about this quantityyveter, note that fok > 3, h.(p) is not even
completely determined by. As a result, even doing computer simulations#ar 3 is rather complicated.
This summarizes the difficulty in extending our results t&XAk-EQUAL for £ > 3.

8 Conclusion

Our results illustrate the importance of Gaussian partitesults in establishing exact optimal UGC hardness
and rounding schemes. Not only did we show that a new Gaupsidition result allows to obtain exact
UGC hardness of MAX-3-EQUAL, we also showed how the trivi@uSsian partition gives near optimal
hardness for MAX-k-CSPs.

There are many interesting open problems that emerge fremaik and previous work. Perhaps the
most natural open problem is regarding the hardness of MABQIJAL. In particular, is it true that the
generic SDP from [Rag08] followed by the random gaussiarpéhylane rounding is optimal for MAX-k-
EQUAL (assuming the Unique Games Conjecture)?

A more general challenge it to obtain further optimal Gaarsgiartition results. In particular we recall
the Standard Simplex Conjecture fram [IM12] which says thék, Y) are jointly normal random variables
in R™ such thatX, Y ~ N™(0,1) andCov(X,Y) = pI,, wherep > 0, then a partitioning of the gaussian
space intok parts of equal measure such thaf, Y) fall in the same partition is maximized when the
partition corresponds to/asimplex centered at the origin. Proving this, will have sequences for hardness
of MAX-k-CUT.

Acknowledgements

We are grateful to Ori Gurel-Gurevich and Ron Peled for ams\geseveral questions related to [BGGP12].
We are grateful to Per Austrin and Jelani Nelson for helpfunments on an earlier draft. We also
thank Anand Bhaskar and Piyush Srivastava for help withguMathematica. We are grateful to David
Williamson for letting us know that our analysis of the MAXEQQUAL SDP is essentially identical to the
analysis of the MAX-DICUT SDP froni [GW95].

AD is grateful to Luca Trevisan and Madhur Tulsiani for numes discussions and Satish Rao for
financially supporting him during the period when this wevks done.

References

[AMO9] P. Austrin and E. Mossel. Approximation Resistane@icates from Pairwise Independence.
Computational Complexityl8(2):249--271, 2009. Conference version in CCC 20009.

[Aus07] P. Austrin. Balanced MAX-2-SAT might not be the hestd InProc. 39th Annual ACM
Symposium on Theory of Computing (STQ®)ges 189--197. ACM, 2007.

[Bac63] R. Bacon. Approximations to Multivariate Normaltant probabilities Annals of Mathemat-
ical Statistics 34:191--198, 1963.

[BGGP12] I. Benjamini, O. Gurel-Gurevich, and R. Peled. Owise Independent Distributions and
Boolean Functions. Available at http://arxiv.org/ab®13261, 2012.

[Bor85] C. Borell. Geometric bounds on the Ornstein-Uhkstbvelocity processProbability Theory
and Related fields70:1--13, 1985.

19



[BP8Y]

[GW95]

[Has01]

[IM12]

[JL84]

[Kho02]

[KKMOO07]

[KROS8]

[LLZ02]

[MM12]

[MOO10]

[Mos05]

[Mos10]

[Rag08]

[STO6]

[Wil13]
[Zwi98]

E. Boros and A. Prekopa. Closed Form Two-Sided BodmdBrobabilities that at Leastand
Exactlyr out of n Events OccurMathematics of Operations Researdd:317--342, 1989.

M.X. Goemans and D.P. Williamson. Improved Approziinn Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programgndournal of the ACM42(6):1115-
-1145, 1995.

J. Hastad. Some optimal inapproximability resulournal of the ACM48(4):798--859, 2001.

M. Isaksson and E. Mossel. Maximally stable Gausgartitions with discrete applications.
Israel Journal of Mathemati¢s89:347--396, 2012.

W. Johnson and J. Lindenstrauss. Extensions of itipsmapping into Hilbert spaceContem-
porary Mathematics26:189--206, 1984.

S. Khot. On the power of unique 2-prover 1-round gamnia Proc. 34th Annual ACM Sympo-
sium on the Theory of Computingages 767--775, 2002.

S. Khot, G. Kindler, E. Mossel, and R. O’'Donnell. @mal inapproximability results for Max-
Cut and other 2-variable CSP§$?AM Journal on Computing7(1):319--357, 2007.

S. Khot and O. Regev. Vertex cover might be hard to ayipnate to within2 — e. Journal of
Computer & System Scienc¢&gl(3):335--349, 2008.

M. Lewin, D. Livnat, and U. Zwick. Improved Roundingechniques for MAX-DI-CUT and
MAX-2-SAT. In Integer Programming and Combinatorial Optimizatjgrages 67--82, 2002.

K. Makarychev and Y. Makarychev. Approximation Algtihm for Non-boolean MAX k-
CSP. Ininternational Workshop on Approximation Algorithms fom@lnatorial Optimization
Problems, APPRO)pages 254--265, 2012.

E. Mossel, R. O’'Donnell, and K. Oleszkiewicz. Nogability of functions with low influences:
invariance and optimalityAnnals of Mathemati¢s71:295--341, 2010.

E. Mossel. Lecture notes on Fourier Analysis. Witpvw.stat.berkeley.ede/mossel/teach/206af05/,
2005.

E. Mossel. Gaussian bounds for noise correlatiofun€tions. Geometric and Functional
Analysis 19(6):1713--1756, 2010.

P. Raghavendra. Optimal algorithms and inapprakitity results for every CSP? IRroc.
40th Annual ACM Sympaosium on Theory of Computing (ST Qéges 245--254, 2008.

A. Samorodnitsky and L. Trevisan. Gowers uniformityfluence of variables, and PCPs. In
Proc. 38th Annual ACM Symposium on Theory of Computing (ST@@es 11--20, 2006.

D. Williamson. . Personal communication, 2013.

U. Zwick. Approximation Algorithms for Constrairatisfaction Problems Involving at Most
Three Variables per Constraint. Rroc. of the Ninth Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms --- (SODA 1998)ages 201--210, 1998.

20



APPENDI X

A.1 Useful Trigonometric facts
Fact 27. Forevery0 < a < 1,2cos !(a) — cos™'(2a — 1) > 0.
Proof. Note that
cos(2cos H(a)) = 2a® — 1 < 2a — 1 = cos(cos *(2a — 1)).

Now recall that if0 < 0,¢ < m, thencosf < cos¢ if and only if § > ¢. Clearly, asa > 0, 0 <
2cos~!(a) < m. Also,0 < cos™!(2a — 1) < 7. This concludes the proof. O

Fact 28. Let —1 < = < 1. Then, ifz > 0, thenw + cos™!(z) < 3cos™!(z/3). Else if,z < 0, then
7+ cos~H(z) > 3cosTH(z/3).

Proof. Considerf(z) = 3cos™!(z/3) — m — cos~!(x). Then, note that within the domaipn-1, 1), the
function is differentiable and hence

df () -1 1

_ + .
dz \/1—:E2/9 V1—z2

It is easy to see that for alt € (—1,1), df(z)/dx > 0. As f(0) = 0, we can conclude that for all
xz € [-1,0], f(x) < 0andforallx € [0,1], f(x) > 0. This concludes the proof. O

Fact 29. Letf : (0,1/4] — R be defined as

1— m+cos 1 (4z—1)

fx) = =

x

Then,f(z) is decreasing in the intervdD, 1/4].

Proof. We do a change of variables. Rk 0 = 4x — 1. Thus proving the claim is equivalent to showing
that form/2 < 6 < 7, g(#) (defined below) is an increasing function in the said ingrv

1_ 0
f) =4 221
9(0) 1+ cosf

Next, we evaluatg’(6).
(1+cosf) - 52 +sinb- (3 — %)
(14 cos0)?

Note that if we showy/(6) > 0 in the intervald € [r/2, 7], then itimplies thay(0) is an increasing function
in the same interval. Thus, we need to show thatfar|r /2, ]

g(0) =4

-1 1 0
R i === >0.
(1+ cosf) 27T—|—Sln9 <2 271)‘0

Using the identitied + cos @ = 2 cos?(0/2) andsin § = 2 cos(6/2) - sin(6/2), we get
(m—0)sin(/2) > cos(6/2) <= 7 —0—cot(0/2) > 0.
So, we finally need to show tha{6) = = — 6 — cot(#/2) is non-negative in the intervaél € [r/2, 7). But

h'(0) = — cot?(f) < 0. This means that() > h(r) = 0 proving our claim. O
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Fact 30. For0 <z < 1,cos™(z) < 7/2 — .
Proof.

smz<z = cos(n/2—xz)<z = w/2—x>cos (z).

U

Fact 31. For0 <z <1,cos '(z — 1) <7 — /2.

Proof. Letg(x) = cos(y/x) — 1 + z. Observe thay(0) = 0. Also,

J(z) = _si;\/éi +1>0.
This implies thay(x) > 0 for all 0 < z < 1. This implies
cos(vz)—1+2>0 = x-—1>—cos(y/x)=cos(m —+/x)
= cos H(z—1)<m—+x

U

Fact 32. For0 < x <1,cos !(z) < 31 —x.

Proof. Putz = 1 — €. Then, the claim is equivalent to proving that for< € < 1, cos™(1 — €) < 3y/e.
Towards this, defing(e) = 3,/¢ — cos™1(1 — ¢). Clearly,g(0) = 0. Next, we note that

, 3 1 3 1 3 1
€) = — = — = — .
9l =57 1-(1-€e2 2V V2e—& Vie V2e—&
It is easy to see that farc [0, 1], ¢'(e) > 0. Hence, fore € [0, 1], g(e) > 0 finishing the proof. O

Fact 33. For0.9 <z <1,cos™'(2x — 1) < 5y/1 —z.

Proof. Note that puttinge = 1 — ¢, this is equivalent to proving that for< e < 0.1, cos~!(1 —2¢) < 5y/e.
To prove this, consider the functigrie) = 5/¢ — cos~!(1 — 2¢). Clearly,g(0) = 0. Also,

o 5 2 5 1

€) = — = — .

I 2Ve  J1—(1—-22 2Ve e—¢2

Now, note that fok € [0,0.1], ¢’(¢) > 0. Hence, fore € [0, 0.1], g(e) > 0 finishing the proof. O

A.2 Jugtification for numerically finding the minima In Section 6, we numerically evaluate the mini-
mum of two single variable functions using the software ‘thlematica”. We now give a detailed explana-
tion of how we find the minima of these functions to the desieeror and the mathematical soundness of
this computer-assisted procedure.
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A.2.1 Infimum of hy(a) Given the functiom; : (0,1] — R from Sectiori b (which is defined as)

1_ 2cos ™1 (a)+cos~ 1 (2a—1)

hl(a) — a27r

To find inf ¢ (g 1) h1(a), we do the following:

e Show that for the intervall; = (0,z5] and Ay = [z, 1] (Wherez, = 0.179 andz; = 0.99),
infyzea, hi(z) > 0.85 andinf c 4, h1(z) > 0.83.

e Show that for the intervalls = (z,, z;), andz € As, |h)(z)| < A whereA = 500.

e Divide the intervalAs into A /n (with n = 10~%) intervals of equal length and evaludte at each of
these points wherk; (a) is evaluated at each point with an errorcof 10-%. Subsequently, take the
minimum of all these numbers.

It is clear that the above procedure returns the infimurh,ah the interval(0, 1] to within errore + n/2 <
10~*. Following this procedurénf,¢ g 1) h1(a) was obtained to be.803225. Since, we note that the error
can be at most0~*, henceinf ¢ (o 1) h1(a) € [0.803125,0.803325].

We now give proofs for the first and the second item in the alqmocedure.

Proposition 34. Leth, : [0,1] — R be defined as
1— 2cos ™1 (a)+cos ™1 (2a—1)

hl(a): a27r

Then, for0 < a < 0.179, h(a) > 0.85.
Proof. Using Fact3D and FactB1, we have

. (a) _ 1_ 2cos*1(a)—i-2vjros*1(2a—1) N 2 + \/% _ l 1
! a ~ 2ma T 1v2a
Plugging in the values, this implies that as longias 0.179, hq(a) > 0.85. O

Proposition 35. Leth; : [0,1] — R be defined as

1— 2cos ™1 (a)+cos™1(2a—1)

hl (CL) = a 2

Then, for0.99 < a < 1, h(a) > 0.83.
Proof. Using Fact 3R and FaciB3, we have

1— 2cos ™1 (a)+cos ™1 (2a—1) 1 _ 6vVI—a+5vI—a
21

hi(a) = = > -

Plugging in the values, this implies that as lond&@® < a < 1, hy(a) > 0.83. O

Propositio 3% and Propositién]35 imply the proof of thetfitsm. The next proposition implies the
correctness of the third item.

Proposition 36. For everya € [0.179,0.99], |k} (a)| < 500.
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Proof.

cos™(a) COS*1(2a—1)
1(a) W\/la_(ﬂ i ”\/1—?1—211)2 =t o
1\a) = 5
a
This implies that
a _|_ a + 3 1 + 1
‘hl (CL)’ < m/1—a?2 27\ a—a? < i 4 mv/1—a? omva—a?
! o a? = g2 a

To bound the value df (a)|, we consider the two cases: whei79 < a < 0.5 and wher0.99 > a > 0.5.
Splitting into these two cases, it is easy to show

|R (a)] < 500.

A.2.2 Infimum of hy(a) Recall that we need to find the following quantity:

1— 3cos™1((4a—1)/3)

inf h here h = 2m
sl f2(a) where ha(a) a

We do the following change of variables: We gut. — 1)/3 = cos z. Then, the problem becomes finding

the quantity
_ 3z

inf where —4. 2™
me[lé,lw/z) 9(x) 9() 1+ 3cosx

To find inf,¢(o ~/2) 9(), we do the following:
e Show that forx € [0,7/2), |¢/(x)] < A whereA = 50.

e Divide the interval[0, 7 /2) into A /n (with = 10~%) intervals of equal length and evaluatér) at
each of these points whegér) is evaluated at each point with an erroreof= 10-°. Subsequently,
take the minimum of all these numbers.

It is clear that the above procedure returns the infimunhin the interval(0, 1] to within errore + 7 -
(w/4) < 107, Following this procedureinf ¢ o 1) h2(a) was obtained to b8.796070. Since the error is
bounded byl0~*, we knowinf ¢ 1) h2(a) € [0.795970,0.796170]. We now give proof for the first item
in the above procedure.

Proposition 37. Letg : [0,7/2) — R be defined as above. Then, for [0, 7/2), |¢'(x)| < 50.

Proof.
: 3asi 13
g (x) =12 Sz~ For o — Tor
(14 3cosx)?
It is now trivial to see that the absolute valuegfz) is bounded bys0 at all points in[0, 7/2). O

24



	1 Introduction
	1.1 Our contributions
	1.2 Organization

	2 Preliminaries
	2.1 Basics of Fourier analysis
	2.2 Noise operators and their properties
	2.3 Gaussian Stability results
	2.4 Useful facts

	3 Dictatorship test for MAX-3-EQUAL
	4 Dictatorship test for MAX-k-AND
	5 Unique games hardness from Dictatorship test
	6 Approximation algorithm for the MAX-3-EQUAL problem
	6.1 Rounding algorithm
	6.2 Supremum of ha(b,c,d) at the boundary of the domain: 
	6.3 Evaluation of ha(b,c,d) at the critical points:

	7 Difficulty in getting optimal results for MAX-k-EQUAL
	8 Conclusion
	A.1 Useful Trigonometric facts
	A.2 Justification for numerically finding the minima
	A.2.1 Infimum of h1(a)
	A.2.2 Infimum of h2(a)



