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ABSTRACT 
The widespread use of road sensors has generated huge 

amount of traffic data, which can be mined and put to various 

different uses. Finding frequent trajectories from the road 

network of a big city helps in summarizing the way the traffic 

behaves in the city. It can be very useful in city planning and 

traffic routing mechanisms, and may be used to suggest the best 

routes given the region, road, time of day, day of week, season, 

weather, and events etc. Other than the frequent patterns, even 

the events that are not so frequent, such as those observed when 

there is heavy snowfall, other extreme weather conditions, long 

traffic jams, accidents, etc. might actually follow a periodic 

occurrence, and hence might be useful to mine. This problem of 

mining the frequent patterns from road traffic data has been 

addressed in previous works using the context knowledge of the 

road network of the city. In this paper, we have developed a 

method to mine spatiotemporal periodic patterns in the traffic 

data and use these periodic behaviors to summarize the huge 

road network. The first step is to find periodic patterns from the 

speed data of individual road sensor stations, and use their 

periods to represent the station's periodic behavior using 

probability distribution matrices. Then, we use density-based 

clustering to cluster the sensors on the road network based on 

the similarities between their periodic behavior as well as their 

geographical distance, thus combining similar nodes to form a 

road network with larger but fewer nodes. 

Categories and Subject Descriptors 

H.2.8 [Database Applications] – Data Mining, Spatial 

Databases and GIS 

General Terms 

Algorithms, Experimentation 

Keywords 
Periodic Patterns, Spatiotemporal data, Traffic Data, KL-

Divergence, Density-based clustering, Road network, 

Probability Distribution Matrices 

1. INTRODUCTION 

With the developments in technology, there are different 

ways in which moving objects are being monitored, generating 

huge amounts of mobility data. We have movement data for 

individuals, with the help of GPS systems; for animals and birds, 

with animal scientists studying their movement patterns; and 

other moving objects. Traffic sensors have been installed at a 

large number of monitoring stations on different highways, 

expressways, freeways and road intersections to monitor the flow 

of traffic through them. Such stations usually monitor the speed 

of the vehicles crossing through them, and keep a track of the 

average speeds and flow of the traffic they monitor over small 

periods of time, generating huge amounts of data that needs to be 

analyzed. The main aim of this paper is to find periodic behaviors 

from the speed data of traffic in the California region, and use 

them to cluster the stations in the road network that have similar 
behaviors to be able to summarize the huge road network.  

There are two major different types of mobility data – 

individual and aggregate. In the individual or object-based 

mobility data, the identity of each object can be traced and the 

movement trajectories of each of the objects are analyzed 

separately to find patterns. In the aggregate or sensor-based 

mobility data, the identity of each object cannot be traced and the 

analysis is done on the collective behavior of the moving objects. 

The data from traffic sensors falls into the second category, 

where we have only averages over a large number of individual 

moving objects. 

There are a number of different applications of mining road 

traffic data. It can help us in better management of traffic in a city 

and can help in identifying where new roads need to be 

developed. Another very important application is to be able to 

summarize the huge, and complex traffic data into actionable 

knowledge, which can even be used to discover best routes 

between any two points on the map. In addition to the basic route 

discovery, we can even use this knowledge to develop 

comprehensive methods that take into account the frequently 

traveled roads, the weather conditions, the traffic conditions, and 

so on. There are many challenges in being able to extract such 

information from the raw data. Firstly, the data is very huge, with 

speed values being collected every few minutes, and complex, 

owing to the large number of factors that can affect the behavior 

of traffic on the roads, introducing large variable noises in the 

data. Secondly, apart from the data, the patterns in the real world 

data are also complex as there are many patterns that are 

interacting with each other, making it very difficult to identify 
and model them.  

One of the most important and frequently occurring patterns 

in moving object data is periodicity. Finding periodic behaviors is 

very important in understanding the object movements and in 

summarizing those movements. These periodic behaviors can 

very effectively describe the entire motion of the object, and 

hence, it is possible to store only these behaviors rather than 

storing the entire data. The main challenges in identifying periods 

is that with traffic data, the patterns may not repeat at the exact 

same times every time, or the speed that is repeating may not be 

the exact same. Also, there may be multiple different periods in 

the same series and the overlay and interaction of them makes 

them difficult to identify. For example, let us consider a station 

that is located near the San Jose exit on highway 101. Every 

morning, a large number of vehicles will take that exit to go to 

work to their offices located in San Jose. Now, there will be 

periodic patterns in the speeds of vehicles, but the actual speed at 
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a given time may vary on different cycles of the period, as the 

traffic at a given time on the exit might vary given the fact that 

the drivers may be running a little late or early. Also, there will 

be daily patterns and weekly patterns in the speed values, as 

people do not go to work on weekends, but there may be other 

vehicles entering San Jose on weekends for other purposes. But 

both these patterns are intertwined in the speed data, making it 

more difficult to mine them. 

There have been many works ([4], [5], [13], [15]) that have 

tried to identify the periodic patterns from moving object data. 

Fourier transform and autocorrelation have been used for period 

detection in signal processing field for period detection but it is 

not feasible to use them directly for the traffic data because of the 

challenges mentioned above. We have modified the period 

detection approach from the KDD’10 paper to fit the needs of our 
dataset, to find the multiple periods in the traffic data.  

Apart from periodicity finding methods, there have been efforts 

to develop much more comprehensive systems to summarize 

traffic data and use them for various applications. One such 

system proposed by Xiaolei Li et al [1], is FlowScan, which uses 

traffic-density based approach to find hot routes in traffic data. 

They use a hybrid between object-based and sensor-based 

analyses of mobility data and try to cluster road segments based 

on the density of traffic they share.  Another work by Hector 

Gonzales et al [2], adaptively computes the fastest path between 

two points, based on the frequent traffic patterns mined from the 

traffic data. They use the hierarchy of roads to partition the road 

network into areas, and different path pre-computation strategies 

can be used at the area level. It also incorporates knowledge 

from driving patterns and speed patterns to take care of the 

weather conditions and the knowledge of the local people. 

Most of these works require an understanding of the underlying 

road network, to be able to identify the traffic patterns from the 

huge collection of data. In this paper, we try to come up with a 

method to summarize the road traffic data with a minimal 

amount of knowledge about the road network.  

The main contributions of this paper are: (1) identifying the 

periodic behavior in the speed data of an individual station, 

which can tell us the distribution of speeds at different times of 

days, and on different days of week; (2) developing a method to 

find similarities between the periodic behaviors of different 

stations, and making clusters of stations on a particular route 

based on this similarity and the geographical distance between 

the stations.  

The rest of the paper is organized as follows: Section 2 gives an 

overview of the problem that the paper is trying to solve, the 

data that is used and a high-level description of how the 

algorithm works. Section 3 discusses in detail the technique used 

to detect the periods and periodic behaviors from the traffic data. 

Section 4 discusses the clustering of stations to form nodes using 

the periodic behaviors discovered in the previous step. The 

subsequent sections then describe the experimental results, and 

conclusions.  

2. OVERVIEW 

To be able to understand the methods developed in this paper, it 

is first important to understand the data that has been used for 

conducting the various experiments. We use the well-established 

Performance Management System (PeMS) [8] to obtain the 

speed and flow data for the traffic on a large number of roads in 

the state of California. PeMS collects and stores data from 

California loop detectors, which record the occupancy and flow 

of vehicles on a freeway section. Each detector makes a 

recording every thirty seconds, where the data values are the 

average speeds across all the vehicles that cross the detector in 

that time span. The entire data is huge, given that it collects this 

data every 30 seconds over years for a large number of stations. 

To make it much more feasible to use the data effectively, PeMS 

makes available these data entries averaged over five minute 

intervals. For the purposes of this paper, we reduce the scope to 

considering only the stations that are on one single highway over 

the time span of only one month at a time. Even then, the data 

remains huge and has too fine granularity, and thus, we further 

average these readings over periods of one hour.  

Fig. 1 shows a plot of the original speed data for a station for 

the time period of one month, that is, 720 hours, where x-axis 

shows the time in hours. The increments on x-axis are multiples 
of 24 to show the progression of the data with days. 

 

Figure 1. Original data for one station 

Our algorithm takes this data as its input and analyzes it to find 

spatiotemporal periodic patterns from the data and summarize 

the road network. Figure 2 gives an overall flow of the algorithm 

and gives an idea about how the algorithm progresses. The 

whole algorithm works in two major stages: 

1. Detection of periodic behaviors – In this stage, the 

algorithm analyses the speed data for an individual station 

to find the periodic behavior of the station. This in itself 

involves first finding the periods from the data and then 

constructing the categorical distribution matrices for the 

station. 

2. Clustering the stations – Once we have constructed the 

categorical distribution matrices for all the stations, we use 

the similarity between these matrices, i.e., the periodic 

behavior of the stations, and the physical distance between 

the stations to form clusters. 

 

Figure 2. The flow of the whole algorithm 

The next two sections discuss both these steps in much more 

detail along with appropriate examples.  

3. PERIODICITY DETECTION 

3.1 Finding periods 

The first step in our approach is to find periods in the traffic data 

from a single station so as to be able to represent the station 

using its periodicity. The speed data obtained from PeMS has 
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continuous values of speed, and has multiple periods interleaved 

and is very noisy. Hence, typical period detection methods like 

Fourier transform cannot be directly used on this speed data. To 

be able to find the periods, we first discretize the speed data into 

four discrete levels. To find the speed limits that will divide the 

entire possible speed range into four different discrete levels, we 

perform k-means clustering on the set of all possible speeds for 

all the stations under consideration. Setting the value of k to 4, 

the following speed ranges were obtained, <38, 38-57, 57-67, 

and >67, and we used 0, 1, 2, and 3 to represent these speed 

ranges in the discretized version of the data. Fig. 3 shows the 

same data after it has been discretized into 4 levels; 1, 2, 3, and 

4, using the speed ranges.  

 

 

Figure 3 Discretized Data for the station 

It can be seen clearly from these figures that there is some 

periodicity in the data, but it is not feasible to apply periodicity 

detection methods directly even on the discretized data, because 

of the presence of multiple periods. Thus to effectively detect 

the periods, we try to find the periodicities of the different speed 

levels individually. To do so, we convert the discretized speed 

time series into Boolean time series from the reference point of 

each of the speed levels. This simply entails the following step: 

If the series is of the form 112344232133212… 

Then we convert it to the following Boolean series by taking all 

the 3’s as 1’s and the rest of the labels as 0’s 

000100010011000…  

This is when we are trying to find the periods in the occurrences 

of speed level 3. 

 

Figure 4 Station Data in Boolean form 

Fig. 4 shows how the time series looks after it has been 

converted to a Boolean time series. Once we have this Boolean 

series, we find periods in it using Fourier Transform followed by 

circular autocorrelation. Vlachos et al [13] discuss how the two 

most common periodicity detection methods in the signal 

processing area, Fourier transform and auto-correlation, 

complement each other. On one hand, Fourier transform often 

suffers from the low resolution problem in the low frequency 

region, hence provides poor estimation of large periods. Also, it 

tends to generate a lot of false positives in the periodogram due 

to its spectral leakage problem. On the other hand, 

autocorrelation offers accurate estimation for both short and 

large periods, but is more difficult to set the significance 

threshold for important periods. To overcome these 

shortcomings of both the methods, they proposed to combine 

them to find periods from time series. In our paper, we use a 

similar approach that is a modification of the periodicity 

detection technique used by Zhenhui et al in [4]. 

The first step is to take the Discrete Fourier Transform (DFT) of 

the Boolean sequence B = b1, b2,  . . ., bn (bi is the Boolean speed 

value for the present analysis at the ith time interval), to 

transform it into the sequence of n complex numbers X1, X2, . . . 

,Xn. A periodogram is then constructed for the series, which is a 

plot of the power spectral density of each of these complex 

numbers. The periodogram helps in identifying the possible 

periods in the frequency domain, which is done by setting a 

threshold and taking all the frequencies that have power 

densities above a threshold as period hints.  

The threshold is determined using the idea that any random 

permutation B′ of B should not exhibit any periodicities, and 

hence even the maximum power in B’ will not indicate the 

period in the sequence. Therefore, the threshold is set as the 

maximum power for B’, and to get a 99% confidence level on 

what frequencies are important, we repeat the above random 

permutation experiment 100 times and record the maximum 

power of each permutated sequence. The 99-th largest value of 

these maximum powers is then taken as the threshold. 

The frequencies thus identified might still not indicate the true 

period of the data, as a single value k in frequency domain 

corresponds to a range of periods [n/k, n/k−1) in time domain. 

The next step is thus to use circular auto-correlation to identify 

the true periods from among the period hints provided by the 

Fourier Transform. The intuition is that only if the candidate 

period from the periodogram lies on a hill of the auto-correlation 

function, then we can consider it as a valid period, otherwise it is 

a false alarm.  

Thus, for each period range [l, r) given by the periodogram, we 

test whether there is a peak in {R(l), R(l+1),  . . . , R(r−1)} by 

fitting the data with a quadratic function. We return the point in 

this range which has the maximum value in case the function is 

concave, as that indicates the presence of a peak.  

 

Figure 5. Periodogram of the Boolean series 

To illustrate this technique of finding the periods of the 

datamore clearly, we will work on the Boolean series obtained 

from the speed data of one of the stations for the month of June 
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2009. Figures 1, 3 and 4 show how the plots of the original, 

discretized, and the Boolean data look for any station for one 

month. For one of these stations, Fig. 5 shows the periodogram 

obtained after taking the Fourier transform of the Boolean series. 

The x-axis shows the frequencies and the y-axis is a measure of 

the power spectral density. For a given frequency, higher power 

spectral density indicates a stronger sense of periodicity with 

that frequency in the data. The red dashed line shows the 

threshold identified using the method described above. We can 

see that there are many frequencies which pass the threshold 

test, but not all of them are true periods of the data. Fig. 6 then 

shows the auto-correlation function for all the candidate periods, 

where and we can easily see that only one of those lies on a 

peak, and hence, is the true period of the Boolean series.  

 

Figure 6 Autocorrelation function fitted to a quadratic 

In this way, we do period analysis for each station individually 

and we limited our work to one route at a time, and considered 

only the stations on that highway. For each station, we generate 

four different Boolean series from the perspectives of the four 

speed levels, and then find out the periods for all these four 

series, giving us up to four different periods for each station.   

For each station, the set of observed periods contained periods 

corresponding to approximately one day, i.e., 24 hours, or 

multiples of 24 hours. Thus, we identified the principal period 

for each station and associated each station to a single period. 

This also accommodates noises, treating periods of 23 or 25 

hours as roughly daily periods, and if a station has both 24 hours 

and 24*k as its periods, then 24 hours is identified as its 

principal period.  

3.2 Periodic Behavior of Stations 

The main aim behind finding the periods for the stations was to 

determine a better way to represent the station data. Now, once 

we have the periods of the stations, we can use the periods to 

summarize the speed distribution at a station. This is done by 

constructing a categorical distribution matrix for each station. 

DEFINITION 1 (Categorical Distribution Matrix) 

Let T = {t1, t2, . . . , tT } be a set of relative timestamps, and xk be 

the categorical random variable indicating the speed level at the 

station at timestamp tk. A categorical distribution matrix M for 

the station is a size s*T matrix where T is the period and s is the 

number of possible speed levels. Here, M(i,j) is the probability 

that the speed level at timestamp j is i.  

In other words, M = [p1, . . . , pT ], where each column pk = [p(xk 

=0), p(xk = 1), . . . , p(xk = s)]T is an independent categorical 

distribution vector with  ∑ p(xk = s) = 1s
i=0 . 

Now, suppose that the time series for a station is generated by 

some distribution matrix P. To estimate P, we use the maximum 

likelihood estimation method. Let the whole series be denoted 

by S. We divide the series into T-sized intervals to get T= {T1, 

T2, …,Tn} , where n = floor(length(S) T⁄ ). 

Then, the probability that S is generated using P is given by: 

𝑃(𝑆|𝑃) =  ∏ ∏ 𝑃(𝑥𝑘 =  𝑆𝑖
𝑗
)

𝑇

𝑗=0

𝑛

𝑖=0

 

Where Si
j is the speed level at jth timestamp in ith segment. 

 
According to maximum likelihood estimation (MLE), to find the 

best generative model, the following log likelihood 

maximization problem needs to be solved. 

𝑚𝑎𝑥𝑝{𝐿(𝑃|𝑆) = log 𝑃(𝑆|𝑃)} 

 

The well-known solution to this problem is given by: 

𝑝(𝑥𝑘  =  𝑚) =  ∑(𝐼𝑛(𝑆𝑖
𝑘 == 𝑚))/𝑛

𝑛

𝑖=0

 

where, In(b) is an indicator function which returns 1 if b 

evaluates to true, and 0 otherwise. In words, we say that p (xk = 

m) is the ratio of the number of times the speed level is m at 

relative timestamp tk with the total number of intervals, n. 

To avoid the probabilities from being zero, in case, a particular 

relative timestamp never sees a particular speed level, we use a 

background prior probability u, and add it to p(xk=i). 

𝑝(𝑥𝑘 = 𝑖) = (1 − 𝜆)𝑝(𝑥𝑘 = 𝑖) +  𝜆𝜇 

where, λ is a small smoothing parameter 0 < λ <1. 

In this way, the categorical distribution matrix is constructed for 

each station, representing the periodic behavior of the station. 

4. CLUSTERING OF STATIONS  

The main motivation for this paper is the need to be able to 

summarize the entire road network and the way traffic behaves 

in a city. The type of road, that is, if it is an inter-state highway, 

state highway, or a local road greatly affects the speeds of the 

vehicles travelling on that road. Apart from the road type and 

size, there are many other factors that affect the behavior of 

traffic. One of the major factors is the time of day at which the 

vehicle is traversing the road. For example, in the early hours of 

morning, there are very few vehicles on the road, and hence the 

traffic moves smoothly, with high average speeds. Whereas, 

during peak rush hours, around 9-10 am in the morning or 4-6 

pm in the evenings, the average speeds are much lower and the 

possibility of occurrences of traffic jams becomes much higher. 

In addition for a given road at a given time, the speed at which 

vehicles move also depends on the position of the vehicles on 

the road. The speeds might be much lower on those segments of 

the road where the traffic from other roads merges, or other 

temporary factors, like construction work, or an accident. 

To be able to effectively represent the traffic behavior on the 

road network, the roads have to be divided into smaller segments 

rather than being used as individual edges. In the scope of this 

paper, where we collect data from a large number of stations that 

are present along the highways, an obvious choice is to use each 

station as a node and the road segments between them as the 

edges in the network.   

The problem with doing this is that this creates a very huge 

network, and also due to the proximity of the stations to each 

other, sometimes, it is not necessary to consider them as separate 

nodes. For example, let us consider two stations that are close to 

each other on the same road, then there is a possibility that the 

behavior of traffic at each of these stations is very similar, as 

there are no major changes that take place in the average speeds 

of vehicles in moving from one station to the other. Thus, it is 

more efficient and less redundant to combine these stations into 

one node, to reduce the size of the road network. The periodic 

behavior of the node then can be defined as the average of the 

periodic behaviors of all the stations that are a part of the node.  

In this part of this paper, we develop a method to identify such 

stations and combine them into one node. An intuitive approach 



to do so is to cluster the stations that are close to each other 

based on a similarity measure for their periodic behavior 

representations. The main challenges in the clustering process 

are: (1) finding a similarity measure that can effectively identify 

the stations that should be put together in a node, and (2) finding 

an appropriate clustering algorithm for the stations.  

4.1 Similarity Measures 

For any clustering algorithm, it is very important to select the 

correct similarity measure. For our system, we have very limited 

information about each of the stations. The two major pieces of 

information we have are (1) the geographical location of the 

station and, (2) the categorical distribution matrix representing 

the periodic behavior of the speeds of vehicles crossing the 

station.  

4.1.1 Physical Distance 
For this work, since we are limited to analyzing only one 

highway at a time, we use the Manhattan distance between two 

stations along the road as the physical distance between them. 

PeMS system makes available details about all the stations as 

metadata. The metadata has the location of a station in the form 

of latitude and longitude coordinates, but it also has the mile 

position of the station on the highway it is located on. In this 

paper, we directly use the absolute value of the difference 

between the mile positions of two stations as the physical 

distance between them. 

4.1.2 Similarity between the periodic behaviors 
Since the periodic behaviors are represented using probability 

distribution matrices, a similarity measure between the two must 

be such that two stations similar to each other will have a high 

chance to be generated from the same periodic behavior. One of 

the most popular distance measures is Kullback-Leibler 

divergence (KL divergence), which is defined as follows: 

𝐾𝐿(𝑃, 𝑄) = ∑ ∑ 𝑝(𝑥𝑘 = 𝑖). log (
𝑝(𝑥𝑘 = 𝑖)

𝑞(𝑥𝑘 = 𝑖)
)

𝑑

𝑖=1

𝑇

𝑘=1

 

Where T is the time period and d is the number of possible speed 

levels. KL divergence might become infinite if the probability 

values become 0, and hence, we already added a smoothened 
background variable u to p(xk=i) to avoid this.  

Although KL divergence is a good measure of similarity between 

two probability distribution matrices, it is not a metric as it is not 

symmetric with KL(P,Q) ≠ KL(Q,P). Dominik Endres et al 

suggested a metric which is derived from KL divergence, called 

the Jersen-Shannon divergence (JS divergence) defined as 
follows: 

𝐽𝑆(𝑃, 𝑄) =  
1

2
(𝐾𝐿(𝑃, 𝑀) + 𝐾𝐿(𝑄, 𝑀)) 

Where M =1/2 (P+Q) is the mid-point between the two matrices. 

JS divergence is a metric as it is both symmetric and bounded, 

and hence, it is a better similarity measure as compared to KL 

divergence. 

Clearly,  

𝐽𝑆(𝑃, 𝑄) = 𝐽𝑆(𝑄, 𝑃) 

Also, 0 ≤ 𝐽𝑆(𝑃, 𝑄) ≤ 1, if we take logarithms on base 2.  

If we examine JS divergence from a statistical point of view, we 

can see that 

𝐽𝑆(𝑃, 𝑄) = 𝐻(𝑀) −
1

2
𝐻(𝑃) −

1

2
𝐻(𝑄) 

Let us use pi to denote p(xk=i), qi to denote q(xk=i) and mi to 
denote m(xk=i). Then, 

𝐽𝑆(𝑃, 𝑄) =  
1

2
(∑ ∑ 𝑝𝑖 . log (
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) +  𝑞𝑖 . log (
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)

𝑑
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𝑇

𝑘=1

) 

=
1

2
(∑ ∑ 𝑝𝑖 . log 𝑝𝑖 + 𝑞𝑖 . log 𝑞𝑖

𝑑

𝑖=1

𝑇

𝑘=1

− (𝑝𝑖 + 𝑞𝑖) log 𝑚𝑖) 

=  
1

2
(−𝐻(𝑃) − 𝐻(𝑄) + 2𝐻(𝑀)) 

Since the KL divergence, KL(P,Q) can be interpreted as the 

inefficiency of assuming that the true distribution is Q when it 

really is P, JS divergence, JS(P,Q) could be seen as a minimum 

inefficiency distance. Thus, we can see that this is an efficient 

and appropriate measure to find the distance between the periodic 

behaviors of two stations. 

4.2 Clustering Algorithm 

After the similarity measures have been finalized, an appropriate 

clustering algorithm needs to be developed which can effectively 

use both the distance measures to put similar stations into one 

node and non-similar stations into separate nodes. Another 

important thing is that the algorithm should not require the 

system to pre-specify a number of clusters in the clustering result. 

In this paper, we used an adaptation of density-based clustering to 

cluster the stations. 

The main idea is that for each station, the algorithm first finds out 

the stations that are in physical proximity to the station. This set 
of stations is called the neighborhood of the station. 

DEFINITION 2 (Neighborhood of a station) 

The neighborhood of a station s N(s) is defined as: N(s) = {t| 

d(s,t) < d0}, where d(s,t) is the physical distance between stations 

s and t and d0 is a user-defined distance threshold that controls the 

size of the clusters formed. 

From the neighborhood of a station, we then isolate those stations 

that have JS divergence less than a threshold, and put them 

together in a cluster. The threshold for JS divergence is set locally 

relative to the neighbor set. Consider a neighborhood set N(s) for 

a station s. To set the threshold, we take all possible pairs in the 

set and compute the JS divergence between them. The threshold 

is then set to (mean + 0.5 standard deviation) for this set of 

distances. Setting the threshold locally is more effective than 

setting a global threshold as it helps to discover clusters from 

neighborhoods depending on the average divergence between the 

neighborhood stations. If the average divergence is very high in 

one neighborhood, setting a small global threshold will never be 

able to cluster them. Similarly, if the average divergence in a 

neighborhood is very small, and the global threshold is set to a 

large value, the algorithm will always put them in the same 

cluster.  

The algorithm iterates over all the stations and tries to form a 

cluster from the neighborhood of that station. It maintains a 

visited flag for each station and sets it when a station becomes a 

part of a cluster, to ensure that no station is part of two clusters. 
The algorithm is described in detail in Fig. 7. 

5 EXPERIMENTAL RESULTS 

For this study, we used stations on a single route only to form 

clusters to form the clusters in the target road network. We have 

included the results from the intermediate steps like periodicity 

detection along with the description of those steps. Fig. 8 shows 

the results from the final step when the algorithm is run on the 

highway I-405. It is clear from the image that the stations put in 

the same cluster are close to each other. The size of the clusters 

can be easily adjusted by adjusting the distance threshold 

parameter, d0. In Fig. 8, d0 was set to 2 miles, and in Fig. 9, d0 was 

set to 1 mile. We can see clearly the difference in the clusters that 
are obtained.  



6 RELATED WORK 

A lot of different types of work have been done on different 

spatiotemporal data in the past. Finding the periods from time 

series data is a very important part of the work done in this paper. 

A number of periodic pattern mining techniques have been 

proposed in data mining literature. Han et al. [15, 16] propose the 

algorithms for mining frequent partial periodic patterns. There 
have been a number of works that are based on 

 

Figure 7. Density-based clustering of stations 

 

Figure 8. Clusters discovered on I-405 

the definition of frequent periodic pattern mining with a strict 

minimum support threshold. They tend to output a large set of 

patterns, most of which are slightly different. Besides, frequent 

periodic patterns cannot capture the statistical information as the 

periodic behaviors. Indyk et al. [9] studies the problem of 

discovering the most representative trend that repeats itself every 

T timestamps. However, they can only discover one trend for a 

given period T and such trend covers the whole time span. 

Vlachos et al. [13] proposed a method to use a combination of 

Fourier transform and auto-correlation to find periods without 

having to face the problems of finding false periods along with 

the true periods. 

 

Figure 9. Clusters on I-405 with a smaller distance threshold 

Zhenhui et al. [4] proposed an adaptation of this method so that it 

can be effectively used to find multiple periods from spatio-

temporal data. The main intuition in this work is to separate the 

series into many Boolean series from different reference spots 

and then find periods. Another work by Zhenhui et al. [5] 

proposed a probabilistic method to find periods from incomplete 

observations. 

Apart from work in finding periodicities, another set of works 

related to this paper includes work that try to summarize traffic 

data, finding frequent trajectories from moving object data, 

clustering trajectories, or route discovery from traffic data. Also, 

there is a large spectrum of works in this area, ranging from 

study of trajectories of individual objects to a collective study of 

the average behaviors of a large number of moving objects. 

Moving object clustering [18] discovers groups of objects that 

move together. Trajectory clustering [19] discovers groups of 

similar sub-trajectories from the whole trajectories of moving 

objects. Xiaolei Li et al. [1] proposes a method that is a hybrid 

of both these general techniques. The proposed method, 

FlowScan, that uses a density-based approach to discover hot 

routes from the trajectories of vehicular data. They try to cluster 

road segments based on the density of traffic that share, and 

hence even though they don’t consider individual moving 

objects, they use the identities of the objects to find how much 

of the traffic is really shared between two road segments. In 

another work, Hector Gonzales et al. [2] propose a method that 

tries to incorporate a large number of factors into the traffic 

analysis to find fastest paths between two points in an adaptive 

manner. The three main contributions of this work are to 

partition the road network into regions based on the hierarchy of 

roads, use of driving patterns and speed to incorporate the 

wisdom of the local people about the peculiar things that may 

affect the traffic. This work is closely related to the methods 

proposed in this work as the authors also strive to come up with 

an effective representation of the road network and 

consequently, to be able to discover edges between those nodes, 

based on speed patterns. 

 

Another related area to our work is the work done in defining 

similarity measures between large time series. Felix Iglesias et 

al. [12] analyze the various different types of similarity measures 

that can be used while clustering time series. The unique thing 

about time series is that the shape of the input vectors entails 

features that are arranged in time, and hence, correlation 



becomes an important factor to consider. There are usually two 

types of methods used for clustering time series data: (a) feature-

based or model-based, where raw data is pre- summarized or 

transformed by means of feature extraction or parametric 

models, e.g., dynamic regression, ARIMA, neural networks 

[20]; and, (b) raw-data-based, where clustering is directly 

applied over time series vectors without any space-

transformation previous to the clustering phase. Several works 

concerning each kind of time series clustering are referred to in 

detail in [21]. The distance measures like simple Euclidian 

distance do not take into account the correlation between the 

different points in the time series. In this work, we first 

transform the time series into a probability distribution matrix 

and then try to find the distance between them. Kullback-Leibler 

divergence is the most popular similarity measures for 

probability distributions. Jersen-Shannon divergence [14] is 

based on KL-divergence and converts it into a metric, making it 

a more suitable similarity measure for clustering. 

We would also like to briefly mention the works related to 

various different types of clustering methods. Xu Rui et al. [22] 

is a good compilation of all the clustering algorithms that are 

used to cluster different types of data. There are partitioning-

based clustering algorithms like k-means and k-medoids that 

require the users to pre-specify the number of clusters that the 

objects should be divided into. Another set of clustering 

algorithms are those that do not require the user to pre-specify 

the number of clusters. Hierarchical clustering and density based 

clustering approaches are examples of clustering algorithms that 

aim to automatically discover the optimum number of clusters 

given the set of objects to be clustered.  

7 CONCLUSIONS AND FUTURE WORK  

In this paper, we were able to develop an effective method to 

cluster stations on a road to effectively reduce the size of an 

otherwise huge road network. This is only the creation of nodes, 

and work still has to be done on defining the edges between 

these nodes. The main intuitions behind constructing the edges 

between these nodes would be (1) there can be many edges 

between two nodes, and (2) the edge weights will be based on 

the travel times between the nodes. 

 

Let us consider two nodes A and B that are next to each other on 

a highway. If the edge between them were to be constructed 

based on the time that a vehicle takes to travel from A to B, it is 

evident that we cannot have a unique edge between A and B. 

This is because the behavior of traffic depends on a large 

number of factors, including and not limited to time of day, day 

of week, whether it’s a weekday or weekend and weather 

conditions. For example, during winters, if it snows, the time 

taken to go from one point to another can increase by manifolds 

as compared to the time taken during a warm summer day. Thus, 

construction of edges will entail defining many possible edges 

between any two nodes, and an edge would be a tuple of form 

<n1, n2, c1, c2,…, cm> , where n1 is the starting node, n2 is the end 

node, and c1, c2,…, cm are the different factors that could 

possibly affect the vehicle speeds. One possible approach to 

discover edges can be to mine frequent patterns of traffic, and 

the defining of nodes beforehand will make mining such patterns 

much easier and more feasible. 

 

Apart from the construction of edges, another important 

direction in which we are planning to work in the future is to 

find causal relationship patterns in the traffic propagation. To 

explain this, let us take the example of propagation of traffic 

jams. It is easy to observe that if there is a traffic jam on a road 

segment, it tends to propagate backwards, and the road segment 

just before the jammed segment also gets jammed in some time. 

The aim of discovering causal relationships between nodes is to 

be able to find models that can predict how such abnormal 

activity on a road segment propagates to other segments.  

 

Once these basic extensions are made to the system, we can 

think of using the system to solve many real-life problems, such 

as discovery of the fastest routes between two given points. We 

could also think of using Data cubes to effectively store all these 

patterns and make it easier to manage them for real-time 

problem solving. 
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