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Abstract 
We derive by program transformation Pierre Cregut's full-reducing 
Krivine machine KN from the structural operational semantics of 
the normal order reduction strategy in a closure-converted pure 
lambda calculus. We thus establish the correspondence between the 
strategy and the machine, and showcase our technique for deriving 
full-reducing abstract machines. Actually, the machine we obtain 
is a slightly optimised version that can work with open terms and 
may be used in implementations of proof assistants. 

1. Introduction 
An operational semantics is a mathematical description of the re­
duction of program terms. An operational semantics is underlied 
by a reduction strategy that specifies the order in which reducible 
subterms ('redices' for short, singular 'redex') are to be reduced. 
An operational semantics can be implemented. A reduction-based 
normaliser is a program implementing a context-based small-step 
operational semantics, or 'reduction semantics' for short. (Such 
a semantics defines reduction as the iteration of three steps [15]: 
uniquely decomposing a term into a term with a hole (a con­
text) with a redex within the hole, contracting (reducing) the redex 

within the hole, and recomposing the resulting term.) A reduction-
free normaliser is a program implementing a big-step natural se­
mantics. Finally, abstract machines are first-order, tail-recursive 
implementations of state transition functions that, unlike virtual 
machines, operate directly on terms, have no instruction set, and 
no need for a compiler. 

There has been considerable research on inter-derivation by 
program transformation of such 'semantic artefacts', of which the 
works [3, 5,12,14] are noticeable exemplars. The transformations 
consist of equivalence-preserving steps (CPS transformation, in­
verse CPS, defunctionaUsation, refunctionalisation, inlining, light­
weight fusion by fixed-point promotion, etc.) which establish a 
formal correspondence between the artefacts: that all implement 
the same reduction strategy. 

Research in inter-derivation is important not only for the corres­
pondences and general framework it establishes in semantics. More 
pragmatically, it provides a semi-automatic way of proving the cor­
respondence between small-step semantics, big-step semantics, and 
existing contrived abstract machines, some of which are used in 
real applications, e.g., [19]. Such proofs otherwise require external 
mathematical machinery (a famous case in point is [23] concern­
ing call-by-value and the SECD machine.) Furthermore, research 
in inter-derivation extends the repertoire of equivalence-preserving 
program-transformation steps, and brings about the discovery of 
new calculi, new abstract machines, and new versions of known 
machines which might be easier to define, or be better suited for 
optimisation. 

Surprisingly, inter-derivation techniques are not used as often 
as they should. A recent example is [25] in which several semantic 
artefacts are defined for the gradually-typed lambda calculus, but 
their correspondences are conjectured when they could have been 
shown by inter-derivation. On a related note, the operational se­
mantics that have been considered in inter-derivations have been 
weak-reducing, e.g., call-by-value or call-by-name. Full-reducing 
strategies have received less attention. Full-reducing strategies re­
duce terms fully and deliver (full-)normal-forms.1 Full-reducing 
strategies are important and useful [7]. Two applications are pro­
gram optimisation by partial evaluation, and type checking in proof 
assistants which may have to reduce some terms fully, e.g. [19]. 

In a recent work [17, 18] we have refined the current inter-
derivation techniques to inter-derive semantic artefacts for full-
reducing strategies, and have showcased the inter-derivation of 
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Figure 1. Derivation path of KN. 

substitution-based artefacts for normal order, the standard, full-
reducing strategy of the pure (untyped) lambda calculus. Normal 
order delivers the normal form of a term if it exists or diverges 
otherwise. As explained in Section 3, it is a hybrid strategy, i.e., it 
relies on an ancillary subsidiary strategy, call-by-name. 

In the derivation we obtained a substitution-based, eval/apply, 
open-terms abstract machine that resembles Pierre Cregut's KN 
machine, a well-known machine that fully reduces pure lambda cal­
culus terms [8]. However, KN is an environment-based, push/enter, 
closed-terms machine that uses de Bruijn indices and levels for rep­
resenting terms. It has been proven (mathematically) that KN finds 
the normal form of a closed term when the normal form exists [8], 
but the actual correspondence between KN and normal order (that 
KN realises normal order) has remained unproven. 

Contributions. In this paper we derive the original KN from a 
small-step operational semantics of normal order in a new calculus 
of closures, thus proving by means of program-transformation the 
correspondence between the strategy and the machine. Actually, 
what we obtain is a slightly optimised version of KN that can 
also work with open terms, and is therefore suitable for use in 
implementations of proof assistants [7,19, 20]. 

There are four points to stress about our derivation. Our opera­
tional semantics are 'single-stage' [17,18], i.e., they define a single 
but hybrid normal order strategy that relies on a subsidiary call-by­
name strategy (Section 3). Consequently, we can use single-layer 
CPS without control delimiters, as opposed to a two-layer CPS or 
a single-layer CPS with control delimiters, as found in other works 
(Section 10). Second, following [14] we derive the reduction-based 
normaliser (and so the reduction semantics) from search functions 
that implement the compatibility rules of the structural operational 
semantics of normal order in our calculus of closures. Third, we 
introduce a non-standard but straightforward 'preponing' step and 
show that it is equivalence-preserving (Section 8). Last, we con­
struct the grammar of continuation stacks as in [18]. In that work 
we showed that the stack is easily obtained from the grammar of the 
reduction semantics, but we only used the stack grammar to recover 
shallow inspection whereas in this paper we also use it to remove 
explicit control. This paper thus illustrates once more the import­
ance of that step in derivations of full-reducing hybrid strategies. 

Figure 1 illustrates the derivation path. The start and end points 
are shown in boldface. The figure extends the derivational tax­

onomy of [5, p.24] and summarises the contents of Sections 7.2 
to 9.4 of this paper. 

Here is a more detailed list of the contributions: 

• We introduce the Xp calculus which naturally extends the Xp 
calculus2 of Biernacka and Danvy [5] with de Bruijn levels 
(present in KN), closure abstractions, and absolute indices. The 
latter two are required for full-reduction. Closure abstractions 
are required to represent closures where the redex may oc­
cur under lambda, and absolute indices are required to repres­
ent 'neutral closures', i.e., non-redex closure applications. We 
formalise the translation from Xp to the pure lambda calculus A 
by providing a substitution function <rc that simulates capture-
avoiding substitution in the pure lambda calculus. 

• We define the small-step structural operational semantics of 
normal order in Xp and derive from the search functions that 
implement the compatibility rules the trampolined reduction-
based normaliser, and from it the reduction-free normalisers. 
In other words, we derive the context-based and the big-step 
natural semantics of normal order in Xp. 

• In the reduction-free normalisers we can better justify the re-
quiredpreponing of certain normal order reduction steps to call-
by-name, and justify the correctness of this non-standard but 
straightforward step (Section 8). 

• After shortcut optimisation, which takes us to a version of 
Xp without ephemerals that we call A£, we have to introduce 
explicit control to combine two reduction-free normalisers into 
one. Using the correlation between explicit control and the 
continuation stack [17, 18], we finally obtain the open-terms 
version of KN by applying further standard derivation steps. 

We have written all the code of the derivation in Standard ML, 
the traditional programming language of derivation papers. Though 
semi-automatically obtained, the code is rather long (we include 
all steps in detail) and language-specific. Therefore we present the 
semantic artefacts in mathematical notation and simply name in the 
paper the functions implementing the artefacts in the code, which 
is available online.3 We have tested the code. We have not verified 
the transformations using a proof assistant for several reasons. 
First, most transformation steps are standard and easy to check by 
readers familiar with derivation papers in Standard ML. Second, 
involving a proof assistant or a dependently-typed language would 
result in a different paper for a different readership. We would have 
to explain additional proof techniques and the particulars of the 
assistant. See for instance [26] where several techniques (logical 
relations, etc) have to be introduced to obtain the weak-reducing 
KAM machine for the simply typed lambda calculus. And last, our 
calculus is untyped and our normalisers are partial functions which 
may diverge, and whether they do or not, is undecidable. 

2. Preliminaries 
We consider the pure untyped lambda calculus with de Bruijn in­
dices [4], hereafter A for short, whose terms are defined by the 
grammar A ::= n | (A.A) | (A A). A natural number n repres­
ents a variable bound to the nth lambda starting from 0, or to a 
free variable when n is greater than or equal to the nesting level. 
For example, the abstraction A.O is the identity function whereas 
A. 1 is a constant function delivering free 0 when the function is ap­
plied to an operand. Uppercase, often primed, letters M, M', JV, 

2 The \p* calculus is itself an extension of Curien's lambda calculus of 
closures Xp [9], which is an extension of the pure lambda calculus that 
adds closures for handling explicit substitutions [1, 20]. 
3 http://babel.Is.fi.upm.es/~agarcia/papers/KrivineFull 
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B, etc, will range over elements of A. We use the standard pre­
cedence and association convention: applications associate to the 
left and abstraction binds tighter than application. The reader must 
be familiar with the usual lambda calculus notions of bound and 
free variables, redices {\.B)M, syntactic equivalence =, capture-
avoiding substitution [N/n]M, /3-contraction, and relations —>#, 
—•J, and =0. A reduction strategy s of A is a partial function that 
is a sub-relation of —> J. We write —>s and i)-B for the small-step and 
big-step definitions of s. 

We define terms and calculi using EBNF grammars with regular 
expressions {a}* (denoting zero or more occurrences of sentential 
form a) and {a} ? (denoting zero or one occurrence of a). For 
example, NF ::= A.NF | n {NF}* defines the set of (full-)normal-
forms. Some sentential forms of the second production are n, 
nNF, nNFNF, etc., which respectively associate as n, (nNF), 
((nNF) NF), etc, according to the convention. In the text we use 
'whnf and 'nf to abbreviate 'weak-head-normal-form' and '(full)-
normal-form' respectively. The set of whnfs and nfs is defined in 
Figure 2 (bottom left). Notice that a term in nf is also in whnf. 

3. Normal order in all substitution-based styles 
Normal order is typically defined by the slogan 'contract the left­
most redex first', understanding 'leftmost' as in [11] or 'leftmost-
outermost' when referring to the redex's position in the abstract 
syntax tree of the term. Normal order is hybrid, it relies on subsi­
diary call-by-name (which reduces terms to whnf) to avoid going 
prematurely 'under lambda' so as to discard unneeded potentially 
divergent subterms. Given an application MN, when call-by-name 
reduces the operator M to an abstraction X.B (a whnf) then the 
leftmost (outermost) redex (X.B)N is contracted next instead of 
the redices in B. For example, given the term (A.O ft)(A.l) where 
Q is a divergent subterm, since the operator is in whnf, normal or­
der reduces that leftmost outermost redex to (A.l)fJ, and this term 
to 0, discarding CI. 

Figure 2 shows the structural (left) and natural (right) opera­
tional semantics of normal order. In the structural small-step there 
is no rule for variables because these are in normal-form. There 
are four rules for applications. The first (/?) is well-known. The 
second (/xl) says the redex must be searched for in the operator if 
the operator is not in whnf. These two rules make up subsidiary 
call-by-name. The third rule Qx2) says the redex must be searched 
for in the operator if it is a whnf but not a nf nor an abstraction (if 
an abstraction then (/3) is applicable). Finally, (y) says the redex 
must be searched for in the operand if the operator is a nf but not an 
abstraction. The outermost application does not reduce to a redex 
and so the redex must be searched for in the operand. (Although a 
nf is also a whnf, rules (/x2) and (v) are non-overlapping because 
the third premiss in (p,2) is not the case when M S NF.) Here­
after we shall refer to variables and non-redex applications as neut­
ral terms, defined by the regular expression n {A}*. Last, rule (£) 
provides structural compatibility with abstractions, that is, 'go un­
der lambda'. 

In the big-step, normal order JJ.no relies on subsidiary and uni­
form call-by-name i)-bn to reduce operators to whnf (first premiss 
of rules REDreo and NEU„0), and then fully reduces the resulting 
redex (rule RED™) or the resulting neutral (rule NEUno). Finally, 
LAMno says that normal order goes under lambda and VAR„0 says 
normal order is an identity on variables. In contrast, call-by-name 
does not go under lambda and does not reduce operands in neutral 
terms.4 

4 Call-by-name in the pure untyped lambda calculus differs from call-by­
name in the applied and implicitly typed calculus of [23] (which also 
assumes closed input terms) precisely in its treatment of neutral terms [24, 
p.421]. 

The structural and natural semantics in Figure 2 are single-
stage. There is an alternative two-stage eval-readback [19] ap­
proach that defines reduction as the composition of two partial func­
tions (i.e., two single-stage natural semantics), namely, an 'eval' 
function that delivers intermediate results, and a 'readback' func­
tion that distributes reduction over the subterms of the interme­
diate result. The eval-readback approach is a degenerate case of 
normalisation-by-evaluation [2] in which the value domain is the 
set of terms, and readback is 'reify' without the translation from do­
main values to terms. (The two-stage nature of eval-readback defin­
itions is also present in their corresponding small-step semantics, 
where a reduction sequence consists of nested concatenations of 
eval and readback sequences.) Normal order is defined in eval-
readback style as the composition .(J.™ o ij.bn where JJ-6„ is eval 
and-IJ. is readback: 

n -D-m n 
VARr 

B JJ-ftn B B JJ-rr, B 

X.B i}-rn X.B 
LAM r 

Mij-mM' NUnN' N'l),mN" 
MNij-mM'N" 

A p p r 

Readback takes input terms in whnf (no redex at the outermost 
level) which explains the lack of a contraction rule for it. The 
equivalence between single-stage and eval-readback, namely ij-rw 
= tym o ty.bn, can be proven by induction on derivations, or by 
program transformation using lightweight fusion by fixed-point 
promotion [21] (Section 8). 

Now to the context-based reduction semantics. In addition to 
the grammar of terms and normal forms there is a grammar for 
reduction contexts and a contraction rule that applies (/?) within the 
context hole. 

Red. context: 

C„[] 

:= [ ] | C » „ [ ] A | A . C n o [ ] | C „ [ ] 
~ [] |C*n[]A 

n{NF}* C„ 
Contraction: Cno[{X.B)N] ->rao C„o[[AT/0]B] 

Given a term M, it is either in nf or is uniquely decomposed into a 
context, derived from non-terminal Cno [ ], and a redex within the 
hole. The unique decomposition of C„0 [ ] is proven by induction on 
terms [17,18]. For example, the term A.(A.0)0 is decomposed into 
A.[(A.0)0] with the context A.[ ] grammatically derived as follows: 
Cno[ ] => A.Cno[ ] =>• A.[ ]. Hybridisation is signalled by the 
presence of call-by-name subcontexts Cbn[ ]• 

4. Closures and environment machines 
The operational semantics defined in Section 3 are substitution-
based, i.e., rely on the traditional meta-level substitution function 
[N/n]B. But die full-reducing Krivine machine is an environment-
based machine that works with closures M[p] consisting of a term 
M with an environment p that maps M's variables to correspond­
ing bindings. Usually, the environment is a list of closures, such 
that de Bruijn indices act as lexical offsets (starting with 0) that 
point to the appropriate binding in the environment. 

The Ap calculus of Biernacka and Danvy [5] extends the pure 
lambda calculus with definitions for closures C and environments p. 
This calculus is itself an extension of Curien's calculus of closures 
Xp. Here is their respective syntax for terms, adapted from [5] to 
our own notation explained below. 

C ::= A|p] 
p ::= e\C:p 

C ::= A[p] | C • C 
p ::= e\C:p 

In the Xp calculus we have proper closures A[p] and closure ap­
plications C • C. We use a left-associative explicit closure ap-
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Figure 2. Structural (left) and natural (right) operational semantics of normal order [17]. 

plication operator • which is elided in [5]. In both calculi, an 
environment p is either empty, which we denote by e, or a list 
of colon-separated closures. In Curien's calculus the /3-rule is 
((X.B)N)\p\ ->• B[N[p] : p] which pushes the substitution on 
the environment. A rule for variables is introduced n[p] —y n th(p) 
to deliver the nth binding in the environment. Both Xp and Xp as­
sume closures without free variables, i.e., the term is closed by 
the environment and a binding is always found. As noted in [5], 
small-step reduction relations cannot be expressed in Xp and a 
natural solution is to extend Xp with closure application together 
with an ephemeral expansion rule (MN)\p] —>• M[p] • N\p] that 
distributes the environment by constructing an ephemeral clos­
ure application.5 The /3-rule now operates on closure applications: 
(X.B)[p] • N —• B[N : p\. (We use uppercase sans-serif letters M, 
N, etc, for closure terms to save us from contriving environment 
symbols. For instance, N above stands for some closure N[p'] with 
some environment p'.) 

To illustrate, consider a closed term (A.O)AT. It is initialised 
to a closure ((A.0)AT)[e] and reduced as follows: ((A.0)AT)[e] ->• 
(A.0)[e] • N[e] -+ 0[N[e] : e] - • 0th([AT[e] : e]) - • N[e] - • . . . 
The simulation of Ap reductions in Xp, which is easy to see, is 
proven in [5]. 

4.1 Call-by-name semantics and environment-based machine 

The structural and context-based small-step operational semantics 
of call-by-name in Ap are shown in Figure 3 (adapted from [5] to 
our notation). Observe in the reduction semantics that closure ap­
plication enables the definition of reduction contexts for closures. 
The redex can now occur in the operator side of a closure applic­
ation. In [5], a reduction-based normaliser for this reduction se­
mantics is implemented, and an environment-machine derived. The 
ephemeral expansion step is shortcut, getting rid of the closure ap­
plication. The machine obtained is the call-by-name KAM machine 
[7]. 

The connection between Ap and A is established by substitution 
function a [5, p.9] (Figure 4) that forces all the delayed substitu­
tions and simulates capture-avoiding substitution in A. The function 
carries a lexical adjustment parameter k that is incremented when 

5 'Ephemeral' in the sense that closure applications are shortcut when de­
riving big-step artefacts [5]. 
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Figure 3. Structural and reduction semantics of call-by-name in 
Ap (adapted from [5]). 
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if n < k 
ifn>k 

Figure 4. Substitution function a connects Xp and A. 

going under lambda (second clause). Integers n < k stand for oc­
currences of formal parameters of abstractions that have not been 
applied to an operand. Integers n > k are occurrences of formal 
parameters of abstractions that have been applied to an operand and 
thus have a binding in the environment (recall Ap assumes closures 
without free variables). For these variables the index is adjusted to 
n — k, and substitution is applied on the binding with the lexical 
adjustment reset to zero. The environment and the lexical adjust­
ment are duplicated for application closures and closure applica­
tions (third and fourth clauses). The lexical adjustment discipline 
faithfully implements substitution for closures without free vari­
ables. 
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Figure 5. Cregut's full-reducing KN with its calculus of closures 
Xp and continuation stack S (adapted from [8]). 

5. Cregut's full-reducing Krivine machine 
The full-reducing machine KN, shown in Figure 5 (adapted from 
[8] to our notation), is the target of our derivation. KN is a first-
order transition function which operates on a triple consisting of a 
closure, a continuation stack, and a de Bruijn level I (lambda level 
for short). Closures C now include de Bruijn indices (n coming 
from A) and lambda levels for encoding the nesting of formal 
parameters that are pushed on the environment (written n). Lambda 
levels realise what we shall refer to as the parameters-as-levels 
technique. Closures also include an embedding of ground terms 
with a level [A, l\ whose meaning is explained below. The syntax 
suggests an implicit calculus which we name Xp. The continuation 
stack S can be empty (same symbol as empty environments), store 
operands, store the control character A which indicates that the 
current scope is under an abstraction, or store embedded ground 
terms. 

The execution example in Figure 6 shows the rules in Figure 5 
at work. We explain each rule in detail. The first init rule constructs 
a triple for a closed term T. The next two rules are for looking up 
variables by peeling off the environment while decrementing in­
dices. The binding at the top of the environment is delivered when 
the index is 0. The 4th rule pushes on the stack the operand in clos­
ure form. The 5th rule embodies a contraction: the operand closure 
is retrieved from the stack and pushed on the abstraction body's en­
vironment. The 6th rule is for unapplied abstractions (there is no 
closure operand on the top of the stack). The control character A 
is pushed on the stack to signal that the machine is going under 
lambda, and the level I is incremented and also pushed on the ab­
straction body's environment. The level pushed on the environment 
I + 1 encodes the nesting of the abstraction's formal parameter. In 
the 7th rule, the appropriate de Bruijn index is computed by sub­
tracting n from the level in the current scope, and the computed 
index is embedded in a ground term with the current level. The 
subtraction is reminiscent of the lexical adjustment technique in a 
(Section 4) although in KN level I is not reset to zero and no adjust­
ment is needed when looking up in the environment, for it grows 
as formal parameters are pushed onto it. This guarantees an index 
alignment property, i.e., every index points to a binding on the en­
vironment. 

The remaining rules are for neutral terms and illuminate the 
reason for embedded ground terms with levels. We shall explain 
them with an example. Consider the abstraction A.O(A.M)N which 
has a neutral term as body. Subterm N has to be reduced with the 
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A.0((A.0)0) 
init} 
'(A.0((A.0)0))[e],e,0) 
unapplied abs., push 1 onto env. and A onto stack} 
:'0((A.0)0)[T:e],A:e,l) 
application, push operand onto stack} 
0[T:e],((A.0)0)[T:e]:A:e,l) 
retrieve top binding} 
I , ( (A.0)0)[ l :e ] :A:e , l ) 
embed abs. index n — I into ground term with level} 
|p , l J , ( (A.0)0)[ l :e ] :A:e , l ) 
reduce operand of ground term, store ground in the stack} 
((A.0)0)[T:e],L0,lJ : A : e, 1) 
application, push operand onto stack} 
( A . 0 ) [ l : e ] , 0 [ l : e ] : l p , l J : A : e , 
/3-redex, push operand in body's env.} 
0 [0[T:e ] :T :e ] ,L0 , l J :A:e , l ) 
retrieve top binding} 
0[T:e],L0,lJ : A : e , l ) 
retrieve top binding} 

|0,1J : A : e, 1) 
embed abs. index n — I into ground term with level} 
10,11,1.0,1] : A : e , l ) 
accumulate neutral in nf into ground term} 
L00, lJ ,A:e, l ) 
out-of-lambda} 
'lA.00,lJ,e,l) 
done} 

A.00 

Figure 6. Execution example of KN on term A.0((A.0)0). 

same level as the head variable 0. The head variable is embedded 
in a ground term with its level (7th rule, already explained), and the 
embedding pushed on the stack (8th rule). The machine increments 
the level when going under lambda in X.M (6th rule, already 
explained), but it does not decrement the level when scoping out of 
it (9th rule). However, the appropriate level for N can be recovered 
from the ground term on the top of the stack (10th rule). 

6. Introducing the calculus of closures Xp 
We introduce the Ap calculus as the natural extension of Xp that 
subsumes Xp. 

X? 

c 
p 

::= A\p] | TI | |nj | A.C | C • C 
::= e\C:p 

The calculus only adds two ephemeral constructors which are re­
quired for full-reduction, namely, absolute indices [n\ and closure 
abstractions A.C. Absolute indices are de Bruijn indices that are 
not relative to an environment. Absolute indices are different from 
closures n[e]. The latter stand for free variables (as well as n[p] 
with n > |p|) and, as we will see below, they trigger index cal­
culations. The reader can deduce from the previous sentence that 
Ap assumes closures with free variables (open terms). Absolute in­
dices are required to represent neutral closures which are closure 
applications of an absolute index to other closures (for an advance, 
see the irreducible forms at the bottom of Figure 9). Closure ab­
stractions are required to represent closures where the redex may 
occur under lambda. There is an obvious isomorphism between A 
and all the ephemeral closure constructions (hereafter 'ephemeral 
closures'), gathered in E ::= ["J I A.E | E • E. As was the case 



<rc(C,N) ->• 
crc( |nj,0 = 

<7C(n[p],l) = 

ac((X.B)[p],l) = 
a c(A.B,0 = 

(TC(n,l) = 
ac((MN)[p],l) = 

o-c(M-N,0 = 

E 

M 
( <Tc(nth(p),l) ifn<\p\ 
X L« - (IPI - OJ i f n > | p | 
ac(X\.B[l + l:p],l) 
)Sk.ac(B,l + l) 

L'-nJ 
ac{M\p]-N\p],l) 
ffc(M,J)-o-c(N,J) 

Figure 7. Substitution function crc. 

fc(C) 

h(n[p]) 

h((X.B)[p]) 
K(MN)[p\) 

h(n) 

MM) 
h()SK.B) 

h(M • N) 

->• 

= 

= 
= 
= 
= 
= 
= 

N 
f h(nth(p)) if n<\p\ 
\ 0 i f n > \p\ 
1 + A(B[n : p\) 
max{ft(M[p]),fc(JV[p])} 
0 
0 
l + fc(B) 
max{/i(M),ft(N)} 

Figure 8. Height of a closure. 

with Ap (Section 4), the ephemeral closures of Ap are required to 
define reduction contexts for closures (Section 6.1). 

The connection between Ap and A is established by substitution 
function <TC (Figure 7, top) which is the analogous of function a in 
Ap and simulates capture-avoiding substitution in A. Function ac 

now carries a lambda level parameter I and enforces index align­
ment like KN (Section 5). Observe that in the 3rd clause, crc incre­
ments the level encoding the scope of the formal parameter that is 
pushed on the environment, namely I + 1, but does not increment 
the level parameter /. It is in the 4th rule, when going under clos­
ure abstraction, that the lambda level I is incremented but the en­
vironment is not touched. The remaining clauses are unsurprising. 
Absolute indices are simply returned (1st clause), bound variables 
are looked up in the environment (2nd clause, case n < \p\), free 
variables are given their absolute indices (2nd clause, case n > \p\) 
which are calculated by subtracting to the current index n the num­
ber of proper bindings in the environment, i.e., bindings other than 
levels encoding the nesting of formal parameters. This number co­
incides with the length of the environment |p| minus the current 
lambda level I. Finally, crc calculates the absolute index of formal 
parameters retrieved from the environment (5th clause), lifts applic­
ation closures to closure applications (6th clause), and distributes 
over closure applications (7th clause). 

Function <TC simulates capture-avoiding substitution in A, that 
is, <Tc(B[N{p] : p'\,l) = <rc(([c7c(N{p],l)/0]B)[p'],l), provided 
that N\p] is a proper closure. This simulation property is proven 
by induction on the height of -B[iV[p] : p'\ which is calculated by 
function h shown in Figure 8. As we shall see in the next section, 
the structural operational semantics of normal order will guarantee 
that N[p] is always a proper closure. 

6.1 Structural operational semantics of normal order in Ap 

Figure 9 shows the structural operational semantics of normal or­
der in Ap which we have obtained from the structural version in 
A (Figure 2) by adding ephemerals and KN's parameters-as-levels 
(Section 5). The lambda level I has to be carried along and thus 
—yjjo operates on pairs (C, N) rather than just closures. The rules 
on the left of Figure 9 are notions of reduction for the new con­

structs and come naturally from <7C. VARp is the rule for bound 
variables, ApPp for lifting to closure application, PARp for formal 
parameters, FREp for free variables, and LAMp for lifting to closure 
abstraction where the formal parameter (the incremented lambda 
level) is pushed on the environment. The first rule on the right (ftp) 
contracts /3p-redices (W.B[n : p]) • N, where the formal parameter 
n that was pushed on the top of the environment by an immediately 
preceding ephemeral expansion LAMp is discarded and replaced 
by the operand N. The other compatibility rules {pip), (p2p), (Vp), 
and (£p) are obtained by adapting to closure-level pairs the corres­
ponding rules in Figure 2. A pair's lambda level is incremented in 
(£p), for it 'goes under closure abstraction', leaving B's environ­
ment untouched. 

Hybridisation can be observed by noticing that rules VARp, 
ApPp, FREp, LAMp, ((3p) and (pip) define call-by-name in Ap, 
which coincides with call-by-name in Ap (Section 4.1, Figure 3), 
save for the addition of LAMp and FREp, and for the omission in 
(/Up-) of the premiss M 0 WHNFc which is present in (pip). LAMp 
is the immediately preceding ephemeral expansion required for 
(Pp), and FREp is required for free variables. Finally, the premiss 
M g WHNFc is not present in (pp) because that rule applies only 
when M is not in whnf. The premiss is required in (pip) to control 
the rule's applicability as part of a larger set of rules that specify 
the whole hybrid strategy. 

Observe that derivations are balanced, i.e., a pair's lambda level 
remains constant in the left- and right-hand sides of judgements 
in derivation trees. This makes reasoning by structural induction 
easier and guarantees that the lambda level of a proper closure A[p] 
is compatible with its environment, i.e., the lambda level matches 
the level of the bindings in p. Consequently, lambda levels don't 
have to be carried along with closures in environments and, unlike 
KN, levels don't have to be recovered from the environment when 
reducing operands of neutral closures. This suggest an optimisation 
of KN that we discuss in Section 9.4. 

The syntax for closure whnfs (hereafter whnfc) and closure nfs 
(hereafter nfc) is shown at the bottom of Figure 9. The nfcs are in­
cluded in ephemeral closures E but are not included in whnfcs be­
cause abstraction bodies in whnfc are proper closures with delayed 
substitutions in their environments. These environments may be en­
larged by the combination of LAMp and (/3p), and their closures can 
only be removed when demanded by VARp. 

As discussed in Section 6, the substitution function crc (Fig­
ure 7) connects Ap with A. Moreover, the connection can be es­
tablished at the step-by-step level between —>ss in Ap and —>no in 
A, as illustrated by the following diagram. 

<M,0)-r<M',0> 

J ' 
M 

(M 1 ) 0)^(M' 1 ) 0) 
5 P 

Mi 

(M2)0) 
5 I 

CTCI 

^ M 2 

The input term M is injected into the closure M[e] abbreviated M. 
The closures M, map via <7C to ground terms Mi which are the res­
ult of step-by-step normal order in A. The reduction relation —>p 
is that induced by all the rules in Figure 10 except (/3p). The re­
duction relation —y#- is that induced by all the rules on the right 
column. Due to the compatibility rules, which are exactly those 
taken from A, the relation —>p ephemerally expands (M, 0) using 
notions of reduction ApPp and LAMp until finding either the left­
most ,8p-redex R or an index closure n[p] in head position. In the 
first case, (7c(R, 0 (where I is R's lambda level) is the leftmost 0-
redex in M. In the second case, n is either bound to a proper clos­
ure, or to a formal parameter m, or is out of bounds. The binding 
for n is retrieved (VARp), or its proper absolute index calculated 
(PARp, FREp), and —>p continues looking for the leftmost /Sp-redex. 



n< \p\ 
S1TJ. (VAR5) 

(n\p],l) ->& (nth(p),l) " 

{(MN)[p],l)^(M[p]-N{p},l) ( A P P ? ) 

(n,l)^no([l-ni,l) ( P A R ? ) 

n> \p\ 

(n[p],0^so(Ln-(|p|-OJ.O(FREp_) 

= (LAMj) 
{(\.B){p],l)^0{&.B[l + l:p],l) " 

WHNFc :: 

<(A\.B[n : p\) • N, I) ->S8 (B[H : p],l) (fi?) 

M ^ WHNFc {M,l)^no(M',l) i 

M e WHNFc M^AX.B (M,Z)->H5 (M',Z) 

<M-N,/>-^ss(M'-N,/> 

M e N F c M ^ ^ . B (N,/>^H3 (N',0 

(M2?) 

A.AM 
L«J{-c}' 

NFC 

( M - N , Z > ^ - S 5 < M - N ' , 0 

(B,f + l ) -»sg(B' , f + l) 

<A.B,J)-»ss<A.B',J> 

A.NFc 
|n_|{-NFc}* 

te) 

(fe) 

Figure 9. Parameters-as-levels and closure-converted structural operational semantics of normal order in Ap 

The notions of reduction VARp, PARp, and FREp merely implement 
substitution on demand and do not interfere with (/3p). 

The step-by-step connection rests on the property that erc simu­
lates capture-avoiding substitution in A (Section 6) and that normal 
order guarantees that bindings on environments are always proper 
closures or formal parameters. Since all the notions of reduction but 
(jSp) come from <rc, and since <rc and —>p do not go under environ­
ments, then at commutes with —>-p, i.e., given (P, 0} —>-p {Q, 0) 
and (R, 0) ->p (S, 0), it is the case that crc(P, 0) = ac(R, 0) iff 
<7c(Q,0) = ffC(S,0). 

7. From structural operational semantics to 
reduction-free normaliser 

7.1 From structural to reduction semantics 

The search functions search.whnf and search_nf implement the 
compatibility rules of the structural operational semantics of nor­
mal order in Ap (Figure 9). The search functions deliver for an in­
put term the (normal order or call-by-name) redex subterm to be 
contracted or the input term back if the input term is irreducible. 
The entry function search invokes search.nf. (From now on we 
omit for brevity the entry functions of all our semantics.) Function 
search_nf searches for a nfc or for the next redex to be contracted. 
It relies on search.whnf to check if operators in applications are in 
whnfc. Function search_whni searches for a whnfc or for the next 
redex in the call-by-name subreduction to be contracted. The use of 
two functions explicitly reflects the inclusion of the subsidiary in 
the hybrid whereas an alternative equivalent implementation using 
a single search function with a boolean check for whnfc -ness would 
only reflect it implicitly. The derivation tree above a second premiss 
of {pip) will only contain call-by-name rules because (p2p), (Up) 
and (fp) are only applicable when the operator is in whnfc or in 
nfc. 

We apply standard derivation steps (CPS transformation, sim­
plification, defunctionalisation, decomposition) and obtain three 
decomposition functions decompose_whnf, decompose_nf, and 
decompose.cont (the latter the continuation dispatcher that inev­
itably pops up). By adding the necessary contract, recompose, 
and trampoline i terate functions [12] we obtain the trampolined 
reduction-based normaliser normalise that implements the reduc-

Red. context: C^0[] ::= []' | d~[] • C | )X.Cl±'[] | C^[ ] 
C'K[] :== N ' l C y i - C 
G U I ::= [n]{-NFcV-CL5[]\CLi[].C 

Contraction: (C~[n[p]],l) - ^ 
f {CUnth(p)],l) ifn<\p\ 
I {Chlln-(\p\-l)]],l) if n>\p\ 

(<%sWN)\p]],l) -+S5 (<%s[M\p]-N\p]],l) 
(Cgsln],/) -^ss (CUVl-n\],l) 
(C<Li{(\.B)\p]],l) ->«, ((JL[».B[l + l:p]],t) 
(C°S3[(A.JB[n : p]) • N],l) - ^ ( C ^ N : p]],l) 

Figure 10. Reduction semantics for normal order in Ap. 

tion semantics of Figure 10. This reduction-based normaliser is the 
starting point of the derivation path shown in Figure 1. 

The reduction relation —>gs is defined on pairs (C~ [R], I) con­
sisting of a top-level context (with the closure redex R within the 
hole) and the lambda level / at which the redex occurs. Reduc­
tion contexts keep track of the lambda level (superscripts), start­
ing with level zero (top scope) and incrementing it when enter­
ing a A\ scope. Thus, the lambda level I in (C~[R], I) is such that 
cas[R] = . . . [ R ] ' . . . 

Observe that the reduction semantics of call-by-name in Xp 
(Section 4.1) coincides with the reduction semantics defined by 
considering C~[ ] to be the top-level context, by removing the 
contraction cases for free variables and for formal parameters, 
and by shortcutting closure abstractions. Free variables are not 
considered in Ap- which assumes closures without free variables. 
Formal parameters n are not considered in Ap because call-by­
name does not go under lambda. Finally, the last contraction case 
for call-by-name in Figure 3 is obtained by shortcutting the last 
two contraction cases in Figure 10. The lambda level is never 
incremented by C~ [ ] and can be dropped. 

7.2 Syntactic correspondence 

The correspondence between the reduction semantics of Figure 10 
and the environment-based eval/apply abstract machine of Fig-
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Figure 11. Normal order environment-based eval/apply machine 
with continuation stack S. 

ure 11 is obtained by performing refocusing, inlining-of-iterate-
function, and transition compression steps. We apply the refined 
inlining-of-iterate-function step in [17, 18] that exploits the shape 
invariant of the continuation stack, and enables the derivation of 
the machine with the shallow inspection property. The machine has 
three states, normalise to whnf, normalise to nf, and apply. The 
configurations for each state are type-annotated by subscripts w, n, 
and a respectively. The machine decrements the level I (6th rule 
from the bottom) when leaving a Xk scope, thus mirroring rule 
(£p) in Figure 9. This machine is the closure-converted version 
of the substitution-based, eval/apply machine in [17]. The func­
tions normalise4_whnf, normalise4_nf, and normalise4_cont in 
the code make up the big-step tail-recursive implementation of the 
machine. 

7.3 Functional correspondence 

We apply refunctionalisation and inverse CPS to the big-step tail-
recursive implementation of the machine in Figure 11 and obtain 
the reduction-free normalisers normalise6_whnf and normalise6_nf 
that implement the big-step natural semantics in Figure 12. Notice 
that levels are unneeded and hence dropped from final results. 

8. Towards shortcutting ephemeral expansion 
To shortcut ephemeral expansion in the natural semantics of Fig­
ure 12 we have to introduce a preponing step which we explain in 
this section. Consider these two examples of call-by-name normal­
isation that deliver a whnfc: 

<(A.BM0> ^n A.B[T:p] (1) 
«0(A.M))[p],0> ^n LOJ • «A.M)[p]) (2) 

Abstraction bodies in whnfc are not ephemeral closures by the 
definition of whnfc (Figure 9, bottom), and neither are operands 
in neutral terms by the definition of JJ-ĝ . In the examples above, 

neither B\l : p] nor (X.M) [p] can be embedded into a ground term 
without further processing, e.g., expanding and substituting like ac. 
Consequently, the ephemeral expansion steps cannot be coalesced 
in call-by-name because ephemeral constructors must appear in the 
rules of JJ.^ and in the definition of whnfc. More precisely, JJ.^ is 
used in the premiss (M,Z) J].^ M' of rules RED^S and NEU^S, with 
M' later used by their respective second premiss. Operationally, 
(M»0 -U-K M' is computed first and then the appropriate rule 
(either REDjjj or NEUjjg) is selected depending on whether M' is a 
closure abstraction X\.B[n : p] or a neutral closure [n\{ • C}* as 
in the case of examples (1) and (2) above. 

Coalescing ephemeral expansion for closure abstraction is 
straightforward. First, we have to change rule LAMj^ so that it de­
livers the body B[l + 1 : p], a proper closure. Second, we have to 
modify the second premiss of REDj^, NEUJ^, RED^S, and NEURO, 
to a check on whether M' is a proper closure. We shall come back 
to this in Section 8.1. 

Coalescing ephemeral expansion for neutral closures would be 
possible if its operands where in nfc after call-by-name. That is, 
if the reduction steps within the third premiss (M',Z) -JJ-frs M" 
of NEURO that normalise the operands of neutral closures were 
preponed to the call-by-name steps of the first premiss (M, I) .|j.j^ 
M' of that same rule. Fortunately, this can be easily achieved by 
copying the last premiss (N, I) 4J-H3 N' in NEU^S and pasting it 
as the last premiss in N E U ^ , and by removing the third premiss 
(M', I) ty-ns M" in NEUSB which is no longer needed because M' 
would now be in nfc. Figure 13 shows the resulting NEUr- and 
N E U ~ rules, relabelled with a p superscript for readability. The 
remaining rules stay as in Figure 12 save for the addition of the 
superscript. 

Due to this transformation both J].~ and JJ-— are mutually re­
cursive hybrid strategies. The resulting preponed normaliser is im­
plemented by functions normalisel5_whnf and normalisel5_nf in 
the code. 

The preponing step is intuitive and its correctness is proven by 
induction on derivations. The correctness can also be proven in the 
alternative eval-readback version of the reduction-free normaliser. 
The single-stage and eval-readback normalisers are inter-derivable 
by inverse and direct lightweight fusion by fixed-point promotion 
[21]. For the sake of completeness we have included their de­
tailed inter-derivation in the code (entry functions normalise7 to 
normal ise l4) . 

Recall from Section 3 that i^„0 = 4m ° -O-fcn. Preponing here 
consists of moving to the call-by-name stage the first reduction 
steps of JJ-m for applications, namely those of the first premiss 
M JJ.rn M' of APPT O . In other words, it consists of shifting the 
point at which the eval ends and the readback begins when reducing 
neutrals. This is easily achieved by removing the first premiss 
M ii-m M' of APPm, and then copying the last two premisses 
N -U-fm N' and N' JJ-m N" of the same rule, and pasting them as 
the last two premisses of rule NEU6„ in Figure 2. 

8.1 Shortcut normaliser 

The preponed reduction-free normaliser can now be shortcut [5] 
resulting in the reduction-free normaliser implementing the natural 
semantics in Figure 14. The normaliser is implemented by func­
tions normalisel6_whnf and normalisel6_nf in the code. 

Shortcutting removes ephemeral constructors and rules A B S ~ , 
A P P ~ , A B S ~ , and A P P ~ . The resulting rules in Figure 14 now 
deliver ground terms except for V A R ^ , R E D ^ , and L A M ^ . AS ex­
plained in Section 8, instead of an abstraction closure, rule L A M ^ 
now delivers the body B[l + 1 : p], a proper closure. Rules VAR^ 
and R E D ^ simply propagate proper closures. Consequently, the 
second premiss of R E D ^ and RED^O checks if M' is a proper clos-



n<\p\ ( n t h ( p ) , Q ^ N n > | p | 

<"M, *> * c N ( ^ (n[p],l) ^ [n -(\p\- OJ ( 6"' <H,J> ^ L« - " J ( "»J 

( L A M ~) ( A B S _ ) ( M [ P ] - i V [ p M ) ^ C 
<(A.B)W,I) ^ A.B[J + 1 : p] 6"' (LnJ,Z> ^ N ( " J <(MiV)[p],Z> ^ C lAPP**J 

( M , Z ) ^ M ' M' = &.B[n:p] < B [ N : p ] , Q ^ B ' ( M , Q ^ M ' M' ^ &.B[n : p] 
< M - N , Z ) ^ B ' bJ ( M - N , / > ^ M ' - N bJ 

n<\p\ ( n t h ( p ) , Q ^ N n > |p| 

<n[p], /> ^ N (VAR"D} (n[p],l) ^so L« - (|p| - OJ ™ fa0 *S8 L« - «J ™ 

<Bf + T:p] , t + l ) ^ B ' ( M [ p ] . i V [ p ] , 0 ^ C 

<(A.B)[p] , J>^*.B ' "D} < l n J , l > * « 3 l n J ( "" «MN)\p],l) ^ C "° 

< M , i ) ^ M / M' = A.B[n : p] (B[N : p],l) i}.m B' 

( M . N , 0 ^ B ' CRED"o) 

( M , l ) ^ M ' M'£&.B[n:p] {M',l)^M" {N.Q^ggN' 

( M - N , / ) ^ M " - N ' (NEUreo) 

Figure 12. Natural semantics of normal order in Xp. 

(M,l)^~M' M' ^ A\.B[n : p] ( N . Q ^ N ' < M , i ) ^ M / M' ^ )X.B[n : p] ( N . t ) ^ N' 

( M - N , Z ) ^ M ' - N ' *"»» ( M - N , 0 ^ ~ M ' - N ' 

Figure 13. Rules changed by preponing. The remaining rules are the same as in Figure 12 save for the addition of the p superscript. 
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Figure 14. Shortcut natural semantics of normal order in Xp. 
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Figure 15. Natural semantics of normal order in A„ with explicit control. 
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ure, and the second premiss of N E U ^ and of NEU™ checks if M' 
is a ground term. 

The underlying calculus, which we call A ,̂ is an optimised 
variant of \j that omits the levels in ground terms |_AJ: 

C 
P 

AW I n | 
e\C:p 

LAJ 

9. From reduction-free normaliser to push/enter 
abstract machine 

9.1 A reduction-free normaliser with explicit control 

The mutually recursive \y-^ and 4«o of the shortcut natural se­
mantics in Figure 14 differ in the treatment of abstractions. Rule 
L A M ^ takes place when the abstraction is applied to an oper­
and whereas LAM™ takes place when the abstraction is unap­
plied. We transform the shortcut normalisers normalisel6_whnf 
and normalisel6_nf into a single normalise_ctl normaliser with 
explicit control that encodes the different treatment of abstractions. 
We introduce the control characters w and n that respectively en­
code a subderivation with L A M ^ and a subderivation with LAM™ . 
The normaliser with explicit control implements the natural se­
mantics of Figure 15. The control character w is used for operators 
in applications, and n for operands of neutral closures. 

9.2 From reduction-free normaliser to eval/apply abstract 
machine 

We apply defunctionalisation and CPS transformation to the norm­
aliser with explicit control to obtain the eval/apply machine with 
explicit control shown in Figure 16. The machine is implemen­
ted by functions normalise_ctl_cont and apply_ctl_cont in the 
code. The horizontal bar in the middle separates the eval configur­
ation from the apply configuration. The eval configuration pattern-
matches on the control character c to decide whether to go under 
lambda. The apply configuration does not use the control charac­
ter. The occurrence of the control character discriminates both con­
figurations and there is no need for type annotations. Observe the 
use of w when reducing operators in applications and the use of n 
when reducing operands in neutral closures. Observe that continu­
ation Ci (C, c) carries along the control character which is restored 
after contraction (first rule of the apply configuration). 

9.3 Removing explicit control 

Once the normaliser is in defunctionalised CPS, the correlation 
between explicit control and the continuation stack can be ob­
served. The machine uses w when continuation Ci is pushed on the 
stack. The remaining transitions just preserve the current control, 
except for the transition dealing with operands in neutral closures, 

S ::= C 0 |C i (C , 
c ::= w | n 
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Figure 16. Eval/apply machine with explicit control and continu­
ation stack S. 

where the machine uses n and pushes C3 on the stack, signalling 
the point at which call-by-name ends and normal order resumes. 
Consequently, control character w can be replaced by checking for 
the occurrence of Ci on the top of the stack, and control charac­
ter n can be dropped because it is used only when the machine 
resumes normal order. This fact can be proven more rigorously by 
constructing the following grammar of well-formed stack values. 
The grammar can be obtained from the reduction semantics of Fig­
ure 10 in similar fashion as in [18]: 

S ::= {D}?C0 

D ::= {{Ci(C,c) :}*C3(C) :}?{C2 :}* 
I {D}?C5([n\{ • NFc}') : {C4(C) :}*{C2 :}* 

Pattern-matching on the stack breaks the shallow inspection re­
quired to refunctionalise the machine, but this context-dependency 
is present in KN and has to be introduced at some point in order to 
derive the machine. 

The resulting machine with implicit control in Figure 17 is 
implemented by functions normaiise20_cont and appiy20_cont in 
the code. Type annotations are required again to distinguish the eval 
and apply configurations. 

9.4 From eval/apply to push/enter machine 

To turn the machine into push/enter, the apply function has to be in-
lined in eval. There are three eval transitions going to apply, namely 
the 2nd, 3th, and 4th. The last can be inlined ('compressed') with 
the first transition of apply. To inline the other two we first 'pro­
trude' (inverse inline) them into a new eval transition for ground 
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Figure 18. Push/enter machine (optimised KN). 

Figure 17. Eval/apply machine with implicit control. 

terms going to apply: 

( i f n > | p | ) (n\p],S,l)e -> (Ln- ( |p | -Z)J ,5 ,Z) e 

(n,S,l)e -> (LZ-nJ,5,Z)e 

(LnJ,5,Z)e -»• (LnJ.5,0-
The rest of the transitions remain the same and are omitted. 
The protruded machine is implemented in the code by functions 
normalise2l_cont and apply2l_cont. We inline the transitions of 
apply for ground terms into the new transition in the protruded ma­
chine and obtain the push/enter machine shown in Figure 18, which 
is implemented in the code by function normalise22_push. 

Save for two minor visual differences that we discuss in the 
next paragraph, this machine is an optimised version of the original 
KN that can work with open terms. The optimisation is minor: 
embedded ground terms do not carry a level, so such levels need 
not be recovered from the environment when reducing operands 
of neutral closures, because the machine decrements the current 
level when leaving a lambda scope, as specified by rule (£p) in 
the structural operational semantics of normal order in Figure 9. 
Naturally, the machine can take closed terms as input. The clause 
for free variables would simply not be used. 

The visual differences with the original KN of Figure 5 are the 
following. First, the use of n t h for lookup instead of a recursive 
peeling-off of the environment (n th can be implemented by recurs­
ive peel-off, but also by random access). Second, the presence of 
defunctionalised continuations coming from the stack 5 defined in 
Figure 17. 

We remove the visual differences in Figure 19. The n t h function 
for lookup is replaced by a peeling-off definition (consequently, the 
transition for free variables n[e] has to be adapted). And defunc­
tionalised continuations in 5 are replaced by the constructors of 
A£ (and the control character A) that they represent (collected in 
stack 5 in Figure 19). The machine is implemented by function 
normalise23_push in the code. 

We have derived KN and are now at the end of our journey. 

10. Related and future work 
Single-stage and eval-readback (Section 3) approaches require dif­
ferent CPS transformations. For the former, a single-layer CPS 
without control delimiters is enough [17] because reduction is per­
formed in a single stage. All the artefacts shown in this paper are 
single-stage. For eval-readback, either a two-layer CPS or a single-
layer CPS with control delimiters is required [6]. Both NBE and 
eval-readback are popular within the programming languages com­
munity. However, single-stage structural and natural semantics are 
conceptually simpler, and their implementations more amenable to 
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Figure 19. Push/enter machine (optimised KN) in format closer to 
original. 

program transformation because no specific CPS techniques nor 
meta-theory for delimiting control is required. 

In a recent personal communication with Olivier Danvy, he 
has informed us of a related unpublished work [13] that presents 
a derivation involving the full-reducing machine of Curien [10] 
itself based on the KAM machine [7]. Our work and [13] have 
been independently developed and are, to our knowledge, the only 
works demonstrating the derivation of full-reducing machines. The 
differences between our work and Danvy's are substantial. 

• The full-reducing machines are different. Moreover, we arrive 
at KN whereas [13] departs from Curien's machine. 

• We follow a single-stage approach to derive KN, and use single-
layer CPS and plain CPS-related techniques. In contrast, [13] 
follows the eval-readback approach present in Curien's machine 
and presents two derivation paths, one using two-layer CPS and 
another using single-layer CPS with control delimiters. 

• The precise control of levels in A\ scopes (rules LAMp and (£p) 
in Figure 9) results in index alignment and balanced derivations 
which makes reasoning by structural induction easier and sub­
stantiates the optimisation of the original KN machine (Sec­
tion 6.1). In [13] environments carry a lexical adjustment value 
that is incremented when popping a binding off the environ­
ment which complicates reasoning by structural induction on 
environments. 

• In Section 9, we introduce explicit control to combine the hy­
brid and subsidiary reduction-free normalisers into one, and 
derive an explicit-control eval/apply abstract machine. When 



removing explicit control the resulting machine is context-
dependent, i.e., it does not have the shallow-inspection prop­
erty. This prevents the refunctionalisation of the machine. How­
ever, the problem is not in our derivation but in the fact that 
context-dependency is present in KN, and has to be introduced 
at some point in order to derive the machine. In any case, we 
have shown in Figures 11 and 16 that environment-based ma­
chines with the shallow-inspection property can be derived. In 
[13], machines do not have explicit control because two-layer 
CPS or single-layer CPS with control delimiters are used. 

In [19] a full-reducing strategy is specified in eval-readback style 
that is used in a proof assistant. The eval stage V() is implemen­
ted by an optimised, pre-compiled abstract machine. This machine 
has been contrived, not derived. The readback stage JV() is sym­
bolic. The strategy resulting from the composition of VQ and N() 
is the same as the strategy resulting from the composition of sym­
bolic e v a l and symbolic byValue in [22, p.390], save for the 
right-to-left sequencing order in which operands are reduced before 
operators. (The strategy implements strict semantics for redices, 
but performs /3-reduction, not the /3v -reduction of the lambda-
value calculus of [23], and consequently, it is not a full-reducing 
strategy of that calculus.) We are currently studying the deriva­
tion of a whole machine from the single-stage natural semantics 
obtained (via lightweight fusion by fixed-point promotion) from 
eval-readback e v a l and byValue. A question to answer is whether 
optimisations can be incorporated by program transformation. We 
are also studying the inter-derivation of a machine from the single-
stage structural and natural semantics of the full-reducing strategy 
of the lambda-value calculus that we have presented in [16]. 

The closure calculi Ap and AJ we have introduced are rather 
natural extensions of Ap, as illustrated by the following diagram: 

+ LA J y> \ + C • C 

"p *p 

|AJ S3 | n j J * +™ 
I ».c \ _ + L"J 
| C C ' V +A.C 

We have not defined the reduction theory of Ap, only presented 
the reduction strategy no, which has taken us to the KN machine. 
Such theory is of interest since it has to consider compatibility with 
environments (reducing bindings inside environments) which poses 
a challenge. 

Acknowledgments 
We are grateful to Oliver Danvy for his inspiring dTFP course 
on inter-derivation techniques, for his hospitality, advice, and for 
his comments on the ideas of this paper. We are also grateful to 
the PPDP'13 anonymous reviewers for their positive yet balanced 
comments, and for their words of encouragement. 

References 
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitu­

tions. Journal of Functional Programming, 1(4): 375-416,1991. 

[2] K. Aehlig and F. Joachimski. Operational aspects of untyped normal­
isation by evaluation. Mathematical Structures in Computer Science, 
14(4):587-611,2004. 

[3] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional 
correspondence between evaluators and abstract machines. In Pro­
ceedings of International Conference on Principles and Practice of 
Declarative Programming, pages 8-19, 2003. 

[4] H. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North 
Holland, 1984. 

[5] M. Biernacka and O. Danvy. A concrete framework for environment 
machines. ACM Trans. Comput. Log, 9(l):6:l-6:29, Dec. 2007. 

[6] M. Biernacka, D. Biernacki, and O. Danvy. An operational found­
ation for delimited continuations in the CPS hierarchy. CoRR, ab-
s/cs/0508048,2005. 

[7] P. Cregut. An abstract machine for lambda-terms normalization. In 
Proceedings of LISP and Functional Programming, pages 333-340, 
1990. 

[8] P. Cregut. Strongly reducing variants of the Krivine abstract machine. 
Higher-Order and Symbolic Computation, 20(3):209-230, Sept. 2007. 

[9] P.-L. Curien. An abstract framework for environment machines. The­
oretical Computer Science, 82(2):389^102, May 1991. 

[10] P.-L. Curien. Categorical Combinators, Sequential Algorithms and 
Functional Programming. Progress in Theoretical Computer Science. 
Birkhaiiser, 1993. 

[11] H. B. Curry andR. Feys. Combinatory Logic. North-Holland, 1958. 

[12] O. Danvy. From reduction-based to reduction-free normalization. 
Electr. Notes. Theor. Comput. Sci, 124(2):79-100, 2005. 

[13] O. Danvy, K. Milikin, and J. Munk. A correspondence between 
reduction-based and reduction-free normalization functions. Manu­
script, 2007. 

[14] O. Danvy, J. Johannsen, and I. Zerny. A walk in the semantic park. In 
Proceedings of the 2011 Workshop on Partial Evaluation and Program 
Manipulation, pages 1-12, 2011. 

[15] M. Felleisen. The Calculi of Lambda-v-CS Conversion: A Syntactic 
Theory of Control and State in Imperative Higher-Order Programming 
Languages. PhD thesis, Department of Computer Science, Indiana 
University, 1987. 

[16] A. Garcia-Perez and P. Nogueira. Towards Bohm trees for lambda-
value: the operational and proof-theoretical machinery. Mathematical 
Structures in Computer Science, 2012. Submitted for publication. 

[17] A. Garcia-Perez and P. Nogueira. A syntactic and functional corres­
pondence between reduction semantics and reduction-free full norm-
alisers. In Proceedings of the 2013 Symposium on Partial Evaluation 
and Program Manipulation, pages 107-116, 2013. 

[18] A. Garcfa-Perez and P. Nogueira. A syntactic and functional cor­
respondence between full-reducing normalisers and full-reducing ab­
stract machines. Science of Computer Programming, 2013. Submitted 
for publication. 

[19] B. Gregoire and X. Leroy. A compiled implementation of strong 
reduction. In Proceedings of International Conference on Functional 
Programming, pages 235-246, 2002. 

[20] D. Kesner. The theory of calculi with explicit substitutions revisited. In 
Proceedings of the 21st International Workshop on Computer Science 
Logic, volume 4646 of Lecture Notes in Computer Science, pages 238-
252. Springer, 2007. 

[21] A. Ohori and I. Sasano. Lightweight fusion by fixed point promo­
tion. In Proceedings of Symposium on Principles of Programming 
Languages, pages 143-154, 2007. 

[22] L. C. Paulson. ML for the Working Programmer. Cambridge Univer­
sity Press, second edition, 1996. 

[23] G. Plotkin. Call-by-name, call-by-value and the lambda calculus. 
Theoretical Computer Science, 1:125-159, 1975. 

[24] P. Sestoft. Demonstrating lambda calculus reduction. In The Essence 
of Computation, Complexity, Analysis, Transformation. Essays Ded­
icated to Neil D. Jones, volume 2566 of Lecture Notes in Computer 
Science, pages 420-435. Springer, 2002. 

[25] J. G. Siek and R. Garcia. Interpretations of the gradually-typed lambda 
calculus. In Proceedings of the Scheme and Functional Programming 
Workshop, 2012. 

[26] W. Swierstra. From mathematics to abstract machine: a formal deriva­
tion of an executable Krivine machine. In Proceedings of the 4th Work­
shop on Mathematically Structured Functional Programming, pages 
163-177, 2012. 


