
Dependent Types for Enforcement of Information Flow
and Erasure Policies in Heterogeneous Data Structures

Gordon Stewart
Princeton University

jsseven@cs.princeton.edu

Anindya Banerjee
IMDEA Software Institute

anindya.banerjee@imdea.org

Aleksandar Nanevski
IMDEA Software Institute
aleks.nanevski@imdea.org

ABSTRACT
We consider verification of information flow and erasure proper-
ties in programs with heterogeneous heap-based data structures,
in the presence of procedures with local state. A heterogeneous
data structure, such as a hash table implementing a medical record
database, may store both secret and public data simultaneously. In
contrast, extant work primarily focuses on homogeneous data struc-
tures which store data of a uniform security level. Heterogeneity,
however, does not come for free. For example, standard imple-
mentations of hash tables do not support heterogeneity, and may
leak sensitive information easily owing to hash collisions. In this
paper we identify unique representation as a sufficient condition
for a heterogeneous data structure to be leak-free, while simultane-
ously supporting abstraction and modularity in verification. As a
case study, we implement and verify a novel uniquely-represented
variant of heterogeneous hash tables. Furthermore, we demonstrate
modular reasoning by showing how specifications of the hash table
methods can be used in a client application; we thereby obtain ab-
stract and concise formal proofs of erasure. We formalize our work
in Relational Hoare Type Theory (RHTT), an expressive, higher-
order imperative language and program logic embedded in the Coq
proof assistant.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and Theory
— Semantics; D.4.6 [Security and Protection]: Access Controls,
Information Flow Controls, Verification; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs — Assertions, invariants, logics of programs, pre- and
post-conditions.

General Terms
Security, Verification, Languages

Keywords
Dependent Type Theory, Verification, Information Flow, Erasure,
Data Structures
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PPDP ’13, September 16 - 18 2013, Madrid, Spain. Copyright is held by
the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2154-9/13/09 ...$15.00.
http://dx.doi.org/10.1145/2505879.2505884.

1. INTRODUCTION
This paper considers verification of information flow and erasure

policies [10, 11, 18, 23, 32] in programs that manipulate mutable,
heap-based, data structures. One of the challenges for program-
ming and enforcement of security policies in this setting is that
data structures often need to be heterogeneous, i.e. store data of
different security levels. For example, a patient record in a medical
database may contain public (or low security) data, such as patient
name and address, as well as confidential (or high security) data,
such as diagnosis.

Extant type systems and logics for information flow security pri-
marily target homogeneous data structures, where the data stored
in the structures is either all low, or all high. A medical database,
as in the example above, therefore must be factored into two sepa-
rate parts, one for storing low fields and the other for storing high
fields of the patient records. Moreover, the relationship between
the two parts must be maintained in order to match patient names
and addresses with diagnoses. Even if this can be done using cur-
rent database technology, it leads to code which violates data ab-
straction: the factoring propagates throughout client programs. For
example, a client program that stores a patient record into a hash
table also must be factored. It has to introduce two hash tables, one
for the low and another for high security fields, and then somehow
maintain the connection between the two hash tables.

In this paper we study heterogeneous data structures in order
to circumvent the above problems. Heterogeneity, however, does
not come for free. To illustrate the difficulties that arise, consider
the following scenario with two program modules A and B. A has
some private state, a salary, which it is prepared to share with mod-
ule B in order for B to compute A’s tax rate via a method called
compute_tax. B would like to store A’s salary into a heteroge-
neous hash table in B’s local state. A allows this storage, but wants
to make sure that upon termination of compute_tax, no informa-
tion about its salary can be leaked from B’s local state. A’s policy
therefore allows B to access the secret salary provided B proves
(i.e., provides evidence) that compute_tax erases A’s salary and
all results that depend on the salary, upon return.

However, forcing B to remove the salary from the hash table,
and to erase any results that may depend on it, is itself insufficient
to prevent leakage of information about the salary. Due to hash
collisions, the insertion of the salary into the hash table may influ-
ence the positions of subsequently inserted low entries. Thus even
if the salary is eventually removed, an attacker that can traverse the
hash table, say via a computation that follows pointers into the data
structure or via pointer arithmetic, may be able to reverse-engineer
useful information about the salary simply by inspecting the rel-
ative positions of the surviving low elements. For example, in an
open-addressing hash table with linear probing, collision of a newly

inserted low security element with a high security entry already in
the table will change the index at which the low element is placed.
A concrete attacker program could follow pointers into the hash ta-
ble array in order to determine the index of the low security entry,
and thus determine the existence of the high element, and perhaps
its hash value, even after the high element is deleted.

To address the above problem, one might consider encapsulating
the internals of the hash table by means of type abstraction. Then,
the only way to access the hash table is by invoking its API methods
for lookup, insertion and removal of elements. The relevant aspects
of the layout of the structure, e.g. the pointer linkage or the distance
of elements from the origin of the open-addressing hash table, can-
not be directly obtained, and thus cannot be a source of information
leak. However, even type abstraction does not quite suffice in the
above scenario. A has to make a decision on whether to grant B
access to its secret, and we want B to provide a certificate of lack
of leaks. Thus, B must prove that it only uses data structures which
are well-encapsulated by type abstraction. While recently there has
been a flurry of work on developing logics for parametricity [5, 6],
the goals of which include reasoning about encapsulation via type
abstraction, we are unaware of a system in which parametricity has
been reconciled with information flow (i.e., absence of leaks) and
mutable state.

In this paper, we therefore advance unique representation, a no-
tion that applies irrespective of whether a data structure is well-
encapsulated by type abstraction, as an alternative for stating and
certifying the absence of leaks in heterogeneous data structures.
Unique representation (UR, [15, 16, 30]) ensures that if the log-
ical representations of B’s hash table—e.g., as a set of key-value
pairs—at any two program points are indistinguishable, then the
concrete heap layouts will be indistinguishable as well. In other
words, information leakage through the layout of a UR data struc-
ture, as in the linear probing hash table example described above, is
impossible. Moreover, we show that we can formally prove using a
proof assistant (in our case, Coq) that programs respect such infor-
mation flow policies. We can do so modularly, verifying clients of
hash tables separately from the implemenation of hash tables, while
exposing only that the hash table satisfies the UR property. Our re-
sults apply not just to hash tables, but to many other heterogeneous
data structures as well.

The technical details of our usage of UR data structures are as
follows. We specify and statically enforce A’s policy above using
higher-order methods [24]. A’s interface exposes a higher-order
method, endorse, which takes a method (e.g. B.compute_tax) as
an argument and grants the argument method access to A’s salary,
provided that the argument method comes with a proof that its local
state, upon termination, is independent of the salary. This proof is
statically checked at link time, and is developed in a higher-order
relational variant of Hoare logic. The logic is relational because
independence is a relational notion: semantically it means that any
two runs of compute_tax executed from indistinguishable initial
states result in indistinguishable final states. With this in mind, we
make the following technical contributions:

1. We observe that, in a language with pointers such as RHTT,
the proof required by A.endorse guarantees proper erasure
and absence of leaks only if B carries it out with respect
to the concrete states (i.e. concrete heaps), as it is the leak-
age through the layout, or linkage, of the data structure that
we want to prevent. Unfortunately, proofs about concrete
states are necessarily low-level. They are overly specific to
the data structure implementation, thus preventing different
implementations of one and the same library interface from
being interchanged in the client code. We show that with UR

data structures (Sec. 5), one may reason about the high-level
logical representation of states, and due to the uniqueness
of representation, the results directly transfer to the level of
concrete heaps (Sec. 6 and Sec. 7).

2. To demonstrate that nontrivial, formally verified UR data
structures are feasible, we develop a UR variant of hash ta-
bles called multilevel UR hash tables (Sec. 6) and verify
its correctness and unique representation formally in Coq.
Sec. 7 demonstrates how the multilevel UR hash tables of
Sec. 6 can be used in a medical database application. To the
best of our knowledge, this is the first formal static (as op-
posed to run-time) verification of a security property for a
non-trivial data structure (but see Sec. 8 for discussion).

Uniquely represented data structures have been considered be-
fore in the algorithms and complexity communities, by Golovin [15],
Naor and Teague [25] and others [8, 16, 20, 30]. In each of these
cases, the data structures were motivated by the need to prevent an
observer with access to the final state of a computation from recon-
structing its history, and thus uncovering information that should
remain private. In this paper, we show a different application of
unique representation, namely, as a tool for verifying programs that
manipulate heterogeneous heap-based data structures for confor-
mance with information flow and erasure policies.

We use Relational Hoare Type Theory (RHTT, [24]) for both
programming and proof throughout this paper. RHTT is a pro-
gramming language and logic for specifying and enforcing expres-
sive, state-based access control and information flow policies of im-
perative programs. Although RHTT is implemented as a domain-
specific language in the Coq interactive theorem prover, we do not
assume previous knowledge of either interactive theorem proving
or of Coq. Sec. 3 presents all the features of RHTT necessary to
understand the code in this paper. Our code and proofs are available
at http://www.cs.princeton.edu/~jsseven/papers/ur.

2. ATTACK MODEL
For the purposes of this paper, attackers are well-typed RHTT

programs that can read from the public components of initial and
final (but not intermediate) states of a computation. For example, in
the above case with A and B, we will consider B’s hash table to be
public in the end, on account of erasure of A’s secret. Therefore, the
attacker can observe the layout of the hash table, e.g., by following
pointers into the data structure, after compute_tax has terminated,
although during the tax computation the hash table may still contain
secret data.

Technically, by “states” we mean the source-level representation
of heaps given by the semantics of standard sequential program ex-
ecution; we do not address erasure in compiled code, nor low-level
erasure in hardware, or from cache lines, etc. in this paper. Fol-
lowing Nanevski et al. [24], we assume heaps are indistinguishable
iff they are exactly equal, i.e., they contain equal addresses, storing
equal values. Thus we also guard against attackers that can distin-
guish concrete representations of pointers as integer addresses, and
perform pointer arithmetic.

3. BACKGROUND: RHTT
We briefly recapitulate the main components of the RHTT frame-

work introduced by Nanevski et al. [24]. Fundamentally, RHTT is
based on the following aspects of dependent type theory: depen-
dent function types, inductive types and module systems. Depen-
dent function types describe how a function body depends on its
arguments; inductive types are needed to specify data structures

http://www.cs.princeton.edu/~jsseven/papers/ur

such as lists, trees, graphs, etc.; module systems including abstract
types and predicates are needed for information hiding. Nanevski et
al. show that these aspects jointly give RHTT the power to specify
and verify flexible security policies: for example, one can specify
the erasure-dependent access policy “A grants B the right to read
its salary provided B proves that its code will erase all copies of the
salary before termination.” In Sec. 4, we adapt a medical records
system from Borgström et al. [9] to incorporate erasure policies
such as the one above. First we provide basic intuitions.

Noninterference, types, specifications. The specification
of flexible security policies crucially depends on a relational spec-
ification of noninterference (NI) which says low outputs of a com-
putation are independent of high inputs [12]. It is independence
that is a relational property: Consider a function f :A2→A2, where
A2 = A×A. Let e.1 and e.2 denote resp. the first and the second
component of the ordered pair e . Then, mathematically, f ’s first
output is independent of f ’s second argument iff

∀x1 x2 y1 y2. x1 = x2 → f (x1, y1).1 = f (x2, y2).1

In other words, in two runs of f , equal x inputs, lead to equal
f (x , y).1 outputs. This relational statement of independence can
be viewed as a statement about NI between f ’s second argument
and f ’s first output [2, 4]. The consequence is this: rather than em-
ploy security lattices and orderings on variables to determine what
is low security and what is not [3, 13], we consider inputs and out-
puts related by equality in the two runs of f above as low (x and
f (x , y).1 above). The unconstrained values (y and f (x , y).2) are
implicitly considered high. These ideas can be lifted to security
lattices with multiple levels (see discussion in [24]), but we forgo
such development here.

This reading of low security immediately lends itself to a type-
theoretic interpretation and thus motivates RHTT’s use of depen-
dent type theory. The primary observation is that if information
that x is low is absent at a module interface then x is possibly high.
But this is precisely a notion of information hiding that is explained
using standard constructs of type theory such as abstract types and
abstract predicates [21].

The type STsec A (p, q) specifies heap-manipulating, potentially
diverging RHTT computations. The type A gives the return type of
an RHTT computation (int, string, etc.) whereas p and q define the
program’s precondition and postcondition respectively, as in Floyd-
Hoare logic. Following Separation Logic [26], the precondition p
is a predicate on heaps that defines the subset of memories in which
it is safe to run the command. In particular, if a program typechecks
in RHTT with precondition p, then every heap location accessed by
the program (besides those allocated by the program itself) will be
accessible in every heap described by p.

In order to specify relational properties such as NI, the postcon-
dition q :A2 → heap2 → heap2 → prop relates pairs of return
values (y1, y2) of type A2 with pairs of initial heaps (i1, i2) and
pairs of final heaps (m1,m2). Here heap is the type of heaps,
modeled semantically as finite partial maps from locations to val-
ues, and prop can roughly be read as bool. Intuitively, the rela-
tional postcondition of the (termination-insensitive) STsec judg-
ment says that if two runs from initial states i1 and i2 terminate
in final states m1 and m2, returning values y1 and y2 as results,
then the triple ((y1, y2), (i1, i2), (m1,m2)) is in q . NOTATION:
Examples in the sequel will often use the notation, yy , ii ,mm to
stand for pairs (y1, y2), (i1, i2), (m1,m2) respectively. Also, we
will view a predicate p on A as a characteristic function of a set
of A-typed elements, and frequently write a ∈ p instead of p a ,
where a : A.

An example erasure policy. Consider the following specifi-
cation of an erasure policy, and a program conforming to the speci-
fication, adapted from Hunt and Sands [18], both presented here in
a somewhat stylized RHTT notation. We consider two integer heap
pointers x and y that are arguments to the program. The contents of
x is initially low, and the contents of y is initially high. The policy
is: the program must erase the high value stored in y . In RHTT, we
express this policy with the type

Πx y :ptr. STsec [] unit (p, q)

where the precondition, p, is

fun i . ∃u v :nat. i = (x 7→ u • y 7→ v)

and the postcondition, q , is

fun rr ii mm. ∀uu vv .
ii = ((x , x) Z⇒ uu •• (y , y) Z⇒ vv) → u1 = u2 →
∃uu ′ vv ′.mm = ((x , x) Z⇒ uu ′ •• (y , y) Z⇒ vv ′) ∧ v ′1 = v ′2

(Recall our notation: uu is (u1, u2), vv ′ is (v ′1, v ′2); We will ex-
plain the local context [] momentarily.) The above STsec type
is an instance of a dependent function type; it describes functions
with arguments x and y of type ptr (pointers), as indicated by the
variables following the Π-symbol. Such functions produce compu-
tations of type STsec with the listed pre- and postconditions; the
type is dependent, because the arguments appear in the assertions
in order to describe the policy.

The precondition p states that the program must start with an
initial heap i containing two pointers x and y , with appropriately-
typed contents. Here x 7→ u is the singleton heap containing only
the location x storing value u; while • is disjoint heap union. As i
is the disjoint union of smaller singleton heaps, there is no aliasing
between the two pointers x , y . The postcondition binds over three
variables rr :unit2 and ii ,mm:heap2, which are, respectively, the
pair of return values, the pair of initial heaps, and the pair of final
heaps for the two runs of the program.

The notation zz Z⇒ ww denotes a pair of singleton heaps (z1 7→
w1, z2 7→ w2). Similarly •• lifts • to pairs; that is, jj •• kk =
(j1•k1, j2•k2). Thus, the postcondition q states that if the contents
of x in the two initial heaps are equal (hence low), then the contents
of y are low in the end. This is only possible if the value stored in
y is erased, by overwriting it with a constant, or with some other
value computed from the initial (low) contents of x , but not y , as
the initial contents of y are not declared low.

One program satisfying the above policy (i.e. type) is the follow-
ing.

fun x y . do (u ← read x ; v ← read y ;
if v = 0 then write x (u + 1) else skip;
write y (u + 2))

In this program, in addition to purely functional constructs such as
anonymous functions fun, we use side-effecting primitives such as
write x n , which stores the value of n into the location x ; read x ,
which returns the contents of x ; and x ← e1; e2, which sequen-
tially composes e1 and e2, substituting the return value of e1 for x
in e2.

The above program satisfies the policy because the value stored
into y at the end is low (the initial contents of x incremented by
2). The ending contents of x are not low, as they depend on the
initial contents of y . Our policy, which does not specify the ending
security level of the contents of x , allows this flow. Indeed, the
program illustrates that the contents of memory cells may change
their security level during the program run—a key characteristic of
our semantic definition of NI.

Therefore, in RHTT, memory addresses are classified separately
from their contents. For example, we can have a low pointer ad-
dress whose contents is high. While the STsec type of the above
program classifies the security of the contents of x and y , it doesn’t
classify the pointer addresses themselves, as the latter requires dis-
cerning the address names in two different runs. RHTT provides
for this possibility by endowing the STsec type with a local con-
text. This is a list of types for the arguments of the computation,
whose significance we illustrate by an example.

To reflect that the pointer y is high at the beginning, in addition to
having high contents, we change the original STsec type as follows.

Πx :ptr.STsec [ptr] unit
(fun y i .∃u v :nat.

i = (x 7→ u • y 7→ v),
fun yy rr ii mm.∀uu vv .

ii = ((x , x) Z⇒ uu •• yy Z⇒ vv) → u1 = u2 →
∃uu ′ vv ′.mm = ((x , x) Z⇒ uu ′ •• yy Z⇒ vv ′) ∧ v ′1 = v ′2)

Whereas in the original type, the local context was the empty list [],
now it contains the element ptr, which is the type of the argument
y . Correspondingly, the variable y is pushed inside the precondi-
tion, and similarly, yy is pushed into the postcondition, so that y1

and y2 refer to the addresses of y in two different runs (contrast
with (y , y) in the postcondition of the original type). Since the
postcondition does not include an equation y1 = y2, the address
y is high. The program syntax changes too, as the local variables
now have to be bound within the scope of do. In other words, our
program now looks like:

fun x . do (fun y . u ← read x ; · · ·)

In general, variables bound by Π are always low, whereas variables
declared in the local context may be low or high, depending on the
policy described by the type.

4. ERASURE-DEPENDENT ACCESS CON-
TROL

The erasure policies we described in the introduction grant one
method access to some module’s private data, provided the method
furnishes a proof that it will eventually erase the private data and
any derived secrets out of its local state. In this section, we demon-
strate, through a concrete application to data storage, the difficulties
that arise when the method’s local state consists of mutable, heap-
allocated data structures.

In order to do so, we first survey a database application contain-
ing medical records and a database client, both built in RHTT, and
inspired by an example from Borgström et al. [9]. We do not de-
scribe the complete database system here, though it is fully devel-
oped in our Coq scripts. The primary motivation of this section is
rather to to illustrate how the verification effort required to prove
erasure policies scales as the local state maintained by modules
evolves, from local scalar variables to heap-allocated data struc-
tures such as arrays or hash tables. This section also serves to mo-
tivate the use of unique representation.

4.1 Example: Data Store for Medical Records
Our medical database application grants access to patient records

via the method read_emr (Fig. 1), which stands for “read electronic
medical record.” The access policy for this method requires that its
caller owns a token, called can_read_emr, for the patient whose
records it wishes to access. Access to this token is limited to meth-
ods of modules from an appropriate group of users (e.g., doctor)
who have previously requested (and been granted) permission by

Module A.
read_emr : ... //requires can_read_emr token
endorse : ∀ (R : type)

(G : type)

(ccshape : R2 → G2 → heap2 → prop)

(cmp : G → G)

T



//input : STsec program requiring can_read_emr
(e : STsec [database,R, user] int

(fun db r pat i .
∃(g:G) (u:user) (j t :heap).

can_read_emr (get_uid u) (get_uid pat) ∧
i = j • t ∧
j ∈ shape db u ∧ t ∈ cshape r g,

fun ddb rr ppat yy ii mm.
∀gg uu jj tt . ii = jj •• tt →
jj ∈ sshape ddb uu →
tt ∈ ccshape rr gg →
∃tt ′:heap2. mm = jj •• tt ′ ∧
tt ′ ∈ ccshape rr (cmp g1, cmp g2) ∧
//no leakage of high data
(t1 = t2 → t ′1 = t ′2))).

S



//output : equivalent program w/o can_read_emr
STsec [database,R, user] int

(fun db r pat i .
∃(g:G) (u:user) (j t :heap).

i = j • t ∧
j ∈ shape db u ∧ t ∈ cshape r g,

fun ddb rr ppat yy ii mm. · · ·) =̂
do (fun db r pat . e db r pat)
· · ·

End Module A.

Figure 1: Erasure in a database application. The function
A.read_emr provides access to medical records, but only to
client methods that possess the can_read_emr token. The func-
tion A.endorse takes as input an STsec computation requiring
the can_read_emr token, and produces as result a new compu-
tation that does not require can_read_emr. Client methods that
call endorse must prove that they do not leak confidential infor-
mation (t1 = t2 → t ′1 = t ′2). Thus it is safe for such client meth-
ods to access private information in the database using endorse
even if they are not pre-authorized to do so.

Module B.

R =̂ ptr

G =̂ int

ccshape (rr :R2) (gg:G2) (ii :heap2) =̂ ii = rr Z⇒ gg

cmp : G → G =̂ fun g. g + 1
prog : T =̂ do (fun db r pat .

emr ← A.read_emr db pat ;
g ← read r ;write r (f1 emr);write r (g + 1);
ret (f2 emr))

counting_client : S =̂ A.endorse R G ccshape cmp prog
End Module B.

Figure 2: Method B.counting_client calls A.endorse in order to
access confidential database records without pre-authorization.
On each call to endorse, counting_client stores a hash of the
confidential patient record emr into its local integer state
(write r (f1 emr)), then overwrites this hash with the incre-
mented count g + 1 (write r (g + 1)). In order to typecheck
counting_client, the programmer must prove that prog leaks
into its final local state no data derived from emr (this is in-
deed the case). f1 and f2 here are integer hash functions.

the patient. With this in mind, consider the following generalization
of the policy, along the lines of the policy on A’s salary from the
introduction: a client method may read confidential patient records
even without the can_read_emr token, but only if it erases any data
derived from these records before it terminates.

To conservatively enforce that a client method does not steal pa-
tient records, the medical records database could require that the
clients deallocate all local state on function return, and thereby en-
sure that the client methods steal nothing, but this is prohibitively
expensive. If a client makes many thousands of calls to the database,
allocating and then deallocating local state on each call becomes in-
feasible. Requiring deallocation also prohibits the client methods
from maintaining persistent, but innocuous, local state, e.g., statis-
tics about the CPU usage. In general, any client local state not
derived from the confidential data should be allowed to escape a
call to the database. In RHTT, higher-order STsec types allow us
to formulate such permissive policies.

Fig. 1 gives the database-specific definitions required to support
erasure-dependent access control: namely, the function endorse;
while Fig. 2 presents a client method that calls endorse in order
to access confidential patient medical records. The endorse func-
tion is parametric in several arguments, which the client methods
instantiate to their choosing.

• Type R circumscribes the shape of the client method’s lo-
cal heap, typically by encoding the number of required root
pointers (e.g., R equals ptr if the client’s local heap requires
a single root pointer, ptr2 for two root pointers, etc.)

• Type G defines what kind of values are stored in the client
method’s local state. For example, G may equal int if the lo-
cal state encodes a single integer value, or G may be list int,
if the local state stores integers in a linked list, etc.

• Predicate ccshape describes the shape in which the data (of
type G) is layed out in the client method’s local heap, starting
from the root pointers as given by the type R. The predicate
ccshape is relational (i.e., its arguments are “squared”), so
that it can specify the security levels of the pointer addresses
and their contents in the client’s local heap. In Fig. 1 we
also make use of the relational predicate sshape which rep-
resents the shape and security levels of the local state of the
database, similar to how ccshape does so for the clients. The
sshape predicate is local to the database module, but is not a
parameter of endorse, as it is not something that the clients
can choose.

• Function cmp defines how the values given by G evolve after
each call to the database. For example, letting G = int and
cmp = fun g . g +1 corresponds to the client method storing
an integer count g as its local state which increments g after
each call.

The body of endorse’s specification puts everything together. It
takes as argument an STsec computation of type T and produces
a computation of type S . The precondition in T demands that the
computation works over the local states of the database and the
client only. It does so by requiring that the initial heap i can be
split into disjoint parts j and t . j “belongs” to the shape predicate
of the database, and t “belongs” to the shape predicate of the client.
Here shape and cshape are non-relational versions of sshape and
ccshape, respectively. For example

cshape r g = fun i . (i , i) ∈ ccshape (r , r) (g , g)

Importantly, the precondition in T requires a proof of the ab-
stract predicate can_read_emr, which serves as a permission, or

a token, necessary to call the database function read_emr. The
precondition of S is similar to T , except that it omits the token
can_read_emr. Thus, while the input to endorse is a method that
requires a permission, and could ordinarily be executed only by a
call from a method of a user (e.g., a doctor) that has been granted
the token, the output is a method which needs no permission.

Crucially, endorse will only accept as input those client methods
which come with a proof that the client’s final local state does not
depend on any secrets that the method computed during the call (the
“no leakage of high data” condition). We express this requirement
in the postcondition of R: if the client method’s local heaps t1 and
t2 were equal initially (low), then the client method’s final heaps t ′1
and t ′2 must also be equal in the two runs (t1 = t2 → t ′1 = t ′2).

The proof of such a property is derived by applying relational
Hoare-style reasoning (omitted here, but present in our Coq scripts)
on the code of the client method. In case the client method con-
tains outgoing calls to functions from its own module, or poten-
tially other modules, we use the specification of each function to
verify that the client method satisfies the erasure property, and sep-
arately prove that each of the functions that is called satisfies its
specification.

Counting Client. Fig. 2 defines a client which maintains as lo-
cal state a count of the number of times it has been called. The type
R = ptr declares a single root pointer, which is a pointer to this
count. The shape invariant ccshape specifies that the heaps i1 and
i2 in the two runs (recall that Z⇒ operates on pairs of pointers and
values) are singleton heaps from r1 and r2 to the integer counts g1
and g2 respectively. The function cmp just increments the count
after each call.

The client program prog operates as follows: it first reads the
medical record of a patient, pat , from the database and stores the
resulting value in the variable emr . Next, it dereferences the pointer
r into a second local variable g , for safekeeping. It now stores an
integer hash of the medical record emr into r . If prog were to re-
turn at this point, it would not satisfy the required noninterference
property (i.e., t ′1 = t ′2) since emr is confidential data and there-
fore not known to be equal in the two runs. To ensure that t ′1 does
equal t ′2—and that the count is properly updated—prog overwrites
the value in the client local heap a second time with g + 1, the in-
cremented count. It then returns f2 emr , a second integer hash of
pat’s medical record.

The program counting_client applies endorse to prog. On its
own, prog would have had to request permission from a patient
in order to call read_emr, thereby establishing the function’s pre-
condition. By endorsing prog, we avoid the need to establish this
precondition, but at the expense of the additional proof obligation
t1 = t2 → t ′1 = t ′2. In this case, demonstrating that prog meets this
specification is straightforward: even though the program stores
the confidential value f1 emr into local state at an intermediate
point during the computation, it overwrites this value with a low
value (g + 1) before function return. Because counting_client’s
local state consists of a single pointer to a scalar value, proving that
t ′1 = t ′2 is relatively easy. Indeed, this proof in RHTT is only a few
lines.

Issues with Extending to Hash Tables. Now consider the
situation in which r is not an integer pointer but a hash table, and
the sequence write r (f1 emr); write r (g + 1) is replaced by

insert r (f1 emr); insert r (g + 1); remove r (f1 emr).

If emr is not known to be equal in the two runs, then (f1 emr)
may equal g + 1 in one run—leading to a collision—but not the

other, leading to two different hash table layouts in the two runs. In
general, operation sequences on data structures that are invertible at
the level of the data structure interface—such as insertions of key-
value pairs into a hash table followed by their removal—can leave
traces in the underlying heap representation, and therefore make it
difficult to prove noninterference.

For the enforcement of erasure properties, it therefore becomes
important to impose additional conditions on the data structure im-
plementation. In particular, we must know that any series of invert-
ible data structure operations leaves the underlying heap represen-
tation unchanged. Otherwise, the mere erasure of items from the
structure can leak information through the layout, as we disscussed
previously. In the next section, we focus on unique representation
as a particularly simple property to enforce and verify of a data
structure, which guarantees the above behavior.

Unique representation alleviates the problem just described by
making it possible to reason symbolically about (the absence of)
such flows: by ensuring that logical equality of the data structure
states in two runs implies actual equality of the underlying heaps,
it reduces noninterference proofs to arguments about equalities of
symbolic, mathematical representations. This reasoning can often
be performed elegantly, through the application of algebraic laws.
Moreover, proofs constructed in this way are portable to future im-
plementations satisfying the mathematical interface.

In the next two sections, we first introduce unique representation
more formally, then present a UR variant of open-addressing hash
tables which guarantees that the heap leaves no trace of the history
of operations performed. This “history independence” property—a
key consequence of unique representation—makes our hash table
variant amenable to proofs of erasure properties such as those re-
quired by endorse, and to noninterference proofs more broadly.

5. UNIQUE REPRESENTATION
In this section, we formally define unique representation and

explore its implications. We then describe an implementation of
insert-only bounded multisets as an example of a naturally UR data
structure. Sec. 6 presents our implementation of a UR variant of
hash tables. First, we develop general definitions.

Data Structures. A data structure ties a logical interface (an
abstract type and operations on that type) to a concrete implemen-
tation of the interface. One can model a data structure mathemat-
ically as a tuple consisting of the type G—of logical or abstract
states—and the type of concrete states. For us, the concrete states
will always be heaps, whereas logical states may range from inte-
gers (as in Sec. 4), to vectors that model arrays, to finite key-value
maps that model data structures such as hash tables. As in Sec. 4,
we also need a third type, R, to store the root pointers of the struc-
ture.

Each pair of a data structure’s logical states and root pointers de-
fines a set of concrete states that implement it. When a root pointer
r and logical state g are implemented by heap h , we say that the
shape of r and g is h . The predicate

shape : R → G → heap→ prop

on representation types R, logical states G , and heaps, gives the
formal definition of the shape relation in our development.

Unique Representation. A UR data structure [15, 16, 25] in
this context is one for which the relation shape uniquely determines
the heap h .

DEFINITION 1 (UNIQUE REPRESENTATION). A data structure is
uniquely represented iff for all root pointers r , logical states g and
heaps h1 and h2, if h1 ∈ shape r g , and h2 ∈ shape r g , then
h1 = h2.

As an example of a shape predicate that is naturally UR, consider
the definition of shape for standard imperative arrays. Arrays are
the simplest UR data structures, and will be the basic building block
for all the other UR structures in the paper.

shape (r :array n T) (g :In → T) (h:heap) =̂
h = (r + 0 7→ g(0),

r + 1 7→ g(1),
· · ·
r + (n − 1) 7→ g(n − 1))

n is the size of the array, and is a parameter of the definition,
as is the type T of elements stored in the array. The finite type
In = {0..n − 1} enumerates the indices of the array. The root type
R = array n T is implemented as a single pointer r storing the
base of the array. The type of logical states G is In→T , so that
g : In→T logically represents the contents of the array as a fi-
nite function (i.e., vector) of n , T -typed elements. The predicate
shape on heaps asserts that the array consists of contiguous mem-
ory blocks rooted at a pointer r ; h is the heap that contains value
g(0) at location r + 0, g(1) at location r + 1, and so on. This
shape predicate is naturally UR: for a given r and g , the heap h
that results is always uniquely determined.

Security Implication of UR. Why is unique representation a
useful property for security? The answer is: An attacker with ac-
cess to the concrete representation of a UR data structure can learn
no more than an attacker constrained by the data structure’s pub-
lic interface. In other words, different sequences of operations that
result in the same logical state leave no trace of the history of oper-
ations that got them there. In particular, any sequence of operations
that is then reverted (e.g., a series of insertions in an array followed
by removals of all these inserted elements) is equivalent, at the level
of concrete heaps, to having never performed the operations in the
first place.

5.1 Example: Insert-only Bounded Multisets
Molnar et al. [22] describe the architecture of a vote storage

unit that achieves operation-order independence, and thus voter
anonymity, by storing votes in insert-only bounded multisets. In
this section, we illustrate an RHTT implementation of insert-only
bounded multisets as another example of a UR datastructure, which
builds on arrays.

We implement multisets whose elements are integers bounded
by n , as arrays with n cells, each containing a natural number. The
value of the natural number at each index i in the array denotes the
number of times element i appears in the multiset, or its multiplic-
ity.

Fig. 3 gives the signature and RHTT implementation of the insert-
only bounded multisets module. The type mset is an alias for arrays
with size n and cells of type nat. The predicate shape takes a mul-
tiset r—a pointer to the base of the array—and a finite function g
as arguments. The latter encodes the multiplicity of each multiset
element. The shape predicate is implemented by calling the corre-
sponding shape predicate of the array module, which specifies that
r is the base of a contiguous memory region of size n with contents
given by g .

The precondition of insert defines when it is safe to execute the
method, i.e., shape r g must hold of the input heap i and the base

Module MultiSet.
mset =̂ array n nat

shape (r :mset) (g :In → nat) =̂ Array.shape r g

bump (k :I) (g :In → nat) =̂ g [k 7→ g(k) + 1]

new : STsec [] mset . . .

insert (r :mset) :
STsec [In] unit

(fun k i . ∃g . i ∈ shape r g ,
fun kk yy ii mm. ∀gg .

ii ∈ sshape (r , r) gg →
mm ∈ sshape (r , r) (bump k1 g1, bump k2 g2)) =̂

do (fun k . x ← Array.read r k ;
Array.write r k (x + 1))

End Module MultiSet.

Figure 3: Signature and implementation of insert-only mul-
tisets. The module is parameterized by n : nat, which is the
bound on the number of elements of the multiset. The specifi-
cation and implementation of the method new are elided.

pointer r for some finite function g . In insert’s postcondition, the
proposition mm ∈ sshape (r , r) (bump k1 g1, bump k2 g2) states
that in the two runs, the output heaps mm contain the local state of
the multiset r , the contents (i.e., multiplicities) of whose indices k1
and k2 have been incremented by 1. In the case of arrays and multi-
sets, the relational predicate sshape is defined as a “duplication” of
shape, that is sshape rr gg hh = shape r1 g1 h1 ∧ shape r2 g2 h2.

The code for insert first reads the contents of the array at in-
dex k into x by calling the array read operation Array.read. Next,
it writes x + 1 at index k by calling the array write operation
Array.write. In our RHTT implementation of arrays, Array.read
and Array.write are implemented via pointer arithmetic on the base
address.

The proof (in the Coq scripts) that bounded multisets are UR
follows from the fact that multisets are implemented as arrays, and
the latter are UR as explained previously.

6. MULTILEVEL UR HASH TABLES
Open-addressing hash tables—those that use probing to resolve

collisions—are a key imperative data structure with wide-ranging
applications. However, such hash tables are unfortunately not UR:
key collisions can create different memory layouts depending on
the order in which keys are inserted, and thus leak information.
When modules use hash tables to store their local state, it therefore
becomes quite difficult to prove the sorts of information flow and
erasure specifications that appeared in earlier sections of the paper.

Inspired in part by a particular kind of open-addressing hash ta-
ble, called a filter hash (cf. Fotakis et al. [14]), in this section we
present a variant of standard open-addressing hash tables, called
multilevel UR hash tables, that is uniquely represented. Although
we will describe below the filter hash tables of Fotakis et al. in
order to introduce our UR multilevel variant, we note at the out-
set that our UR multilevel hash tables do not have the same com-
plexity profile as the Fotakis et al. filter hash tables. Indeed, the
primary purpose of this section is not to demonstrate that UR data
structures present efficient alternatives to standard data structures;
Golovin, in his Ph.D. thesis [15], has already demonstrated this
point by presenting a variety of efficient UR data structures (though
the particular hash table variant we implement in this section has

not been analyzed before). The purpose of this section is, rather, to
demonstrate that it is possible, in a fully mechanized system such
as RHTT, to prove nontrivial data structures uniquely represented.
Section 7 then revisits how unique representation can be used in
practice to prove erasure and information flow properties of mod-
ules that employ multilevel UR hash tables in their local state.

6.1 Canonical Representation
Standard filter hash tables were first proposed by Fotakis et al.

[14] as a simple yet efficient variant of m-level cuckoo hash tables.
They consist of m levels, or filters, each of which has an associated
hash function hash and an array for storing key-value pairs, just as
in standard open-addressing hashing. When a collision occurs in
the top filter of the table (i.e., level 0), insertion is reattempted at a
lower level (e.g., level 1) until either the insertion succeeds or the
table runs out of filters. In the latter case, the item is placed in a
secondary key-value map. As we mentioned above, filter hash ta-
bles unfortunately suffer from the same kinds of information leaks
as standard open-addressing hash tables. It is therefore difficult to
prove erasure and information flow specifications of modules that
use filter hash tables to define their local state.

Multilevel UR hash tables are just like filter hash tables except
that (1) they impose a canonicity invariant on the layout of the keys
at each level of the table; and (2) they employ a single hash function
across all levels, whereas filter hash tables use n hash functions for
n levels. Condition (1), the canonicity invariant, is what makes our
multilevel hash tables uniquely represented. We explain canonicity
in more detail below. Condition (2) is slightly more ad hoc. If our
hash table variant did not implement deletion, then condition (2)
would be unnecessary. However, as it currently stands condition (2)
enables the implementation of efficient deletion, while most likely
adversely affecting the space usage of the data structure. We are not
aware of a better UR algorithm; this is an open research question.

It is also possible to define uniquely represented chaining hash
tables, by ensuring that the linked list that implements each bucket
in the table remains sorted at all times. Although RHTT supports
dynamic allocation, reconciling allocation with information flow
and erasure is quite tricky (cf. Golovin [15]). For example, pointer
comparisons make even the order in which memory blocks are al-
located observable. Considerations such as these prompted our in-
vestigation of the multilevel alternative tables we describe in this
section.

To get an intuition for the canonicity invariant, imagine an m-
level hash table is split into two parts: (1) the top level d0 and (2)
the remaining levels d1 . . . dm−1, together with the auxiliary store
b, which we call the “bucket”. Let < be a total order on keys.

DEFINITION 2 (CANONICITY). An m-level hash table is canon-
ical when the following properties hold for all 0 ≤ i < m:

• For all keys k and k ′, if (a) k is stored in level di , (b) k ′ is
stored either in a strictly lower level or in the bucket, b, and
(c) hash(k) = hash(k ′), then k < k ′.

• For all indexes j , if di [j] is empty, then there is no key k such
that (a) hash(k) = j , and (b) k is stored either in a strictly
lower level or in the bucket, b.

In other words, canonicity requires that keys be placed as high up
in the multilevel hash table as possible and that whenever there is
a collision during insertion, a suitable strict order < be used to
resolve the collision. Of course, deletion must preserve the canon-
icity invariant as well. One consequence of this property is that all
occupied slots in the top level d0 always contain the minimum key
among all keys currently in the table that would also have hashed

A,3

D,4

G,9

C,7

F,3

I 11

B,7

A,3

D,4

G,9

F,3

B,7D,4E,1

G,9

F,3

B,7
0

D,4 B,7

G,9

F,3

Panel 1: insert GFDB Panel 2: insert E Panel 3: insert A

Panel 4: insert CIH

E,1

E,1

H,3

D,4

G,9

C,7

F,3

B,7

Panel 5: remove A

E,1

H,3

D,4

G,9

C,7 B,7

Panel 6: remove F

E,1

H,3

I,11

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3I 11

bucket

stash

Figure 4: 4-level UR hash table containing keys A-I . Any two insertion orders, e.g., ABCDEFGHI and GFDBEACIH , produce the
same memory layout. Each additional level added to the structure implements, along with those beneath it, the kv -map interface,
yielding a modular construction. For example, in Panel 1, levels 1-3 and the auxiliary kv -map, bucket, together form the stash for
the top level 0.

to that slot. Nonminimum keys that collided with the minimum
key upon insertion must be placed in lower levels of the hash ta-
ble. Intuitively, canonicity implies unique representation since: (1)
the keys in every hash collision path are uniquely ordered by the
< relation; and (2) empty slots are always filled in order, topmost
first.

To maintain the canonicity invariant, we ensure that the mini-
mum key for each index is always stored in d0 (and so on for levels
1 through m − 1, for the remaining keys). This requires checking
whether a newly inserted key k ′ with hash(k ′) = j is less than the
current key in slot j of d0. If it is, then k ′ is placed in d0 and the
current key k in slot j is evicted to a lower level. If k ′ > k then
k ′ is inserted into a lower level as usual. When k = k ′, the new
value v ′ associated with k ′ overwrites the current value v (we do
not maintain duplicate keys). Deletion is somewhat trickier: when
a key k is removed from slot j in level d0, we must find the smallest
key k ′ at level d1 such that hash(k ′) = j and recursively move this
key up into level d0.

Fig. 4 illustrates insertion of the keys GFDBEACIH , paired
with their values, into a 4-level UR hash table. Key G is inserted
first. Then key F is inserted, causing a collision with G in the
topmost level. Since F < G in the usual lexicographic order, G is
evicted from d0 and re-inserted into d1. Keys D and B are inserted
next, without incident, into level d0. The state of the table after G ,
F , D and B have all been inserted is shown in Panel 1 of the figure.

Next, key E is inserted in slot 1 of d0, causing a second collision
with F . The eviction of F and its re-insertion into level d1 causes a
chained collision with G , which is evicted now for the second time
into level d2. The state of the table after E has been inserted is
shown in Panel 2. Key A’s insertion causes the eviction of D into a
free slot in level d1 (Panel 3). The rest of the keys are inserted in a
similar manner, resulting in the multilevel UR hash table shown in
Panel 4 of the figure. Note that the table that results after all keys
have been inserted is equivalent to the table resulting from insertion
of the keys in order, ABCDEFGHI , or in any other permutation.
In Panel 4, key I is placed in the auxiliary key-value map, bucket,
since it collided with other keys at every level of the table during
insertion. Panels 5 and 6 illustrate deletions. In Panel 5, key A is
deleted, causing D to be moved up into level 0. In Panel 6, key F
is deleted, causing a chain of three reorderings: key G is moved
from level 2 to level 1, key H is moved from level 3 to level 2 and
key I is moved from the bucket into level 3.

Module MultilevelURHashPrelim.
hashmap =̂ (array n (option (K ×V)) × kvmap)

minkey (g :K ⇀fin V) (ix :In) =̂
min (filter (fun k . hash k = ix) (keys_of g))

hashtab (f :K ⇀fin V) =̂ fun (ix :In).
if minkey g ix is bkc then

if fnd k g is bvc thenb(k , v)c else None
else None

stash (g :K ⇀fin V) =̂ foldr (fun ix g0.
if hashtab g ix is b(k , v)c then rem k g0
else g0) g [0. .n − 1]

shape (r :hashmap) (g :K ⇀fin V) (i :heap) =̂
∃j k :heap. i = j • k ∧

Array.shape r .1 (hashtab g) j ∧
KVMap.shape r .2 (stash g) k

sshape (rr :hashmap2) (gg :(K ⇀fin V)2) (ii :heap2) =̂
shape r1 g1 i1 ∧ shape r2 g2 i2

End Module MultilevelURHashPrelim.

Figure 5: Preliminary specifications and definitions for mul-
tilevel UR hash tables. The module is parameterized by the
types K and V , n : nat, and a hash function hash : K → In . The
functions hashtab and stash define the reference functional im-
plementation of the partitioning of key-value pairs into the top
level and the stash. Functions fnd, ins and rem are for look up,
insertion and removal of a key in a finite map such as g .

6.2 Preliminary Definitions for Multilevel UR
Hash Tables

Now we turn to the definition of multilevel UR hash tables in
RHTT. Fig. 5 gives the preliminary RHTT definitions used in our
implementation and in the correctness and unique representation
proofs. We present these definitions first, before the imperative
RHTT code for hash table lookup, insertion and deletion, because
the definitions are important for understanding the specifications of
these functions.

The function hash of type K → In maps keys k :K to indices
of type In . Here K is a type with a built-in order operation. For

example, K could be instantiated as the type of integers with the
usual < relation as the order. Indexes of type In are integers in
the range 0 to n − 1, inclusive. These indexes define the slots in
the arrays that are used to implement each level of the hash table.
Fixing the n parameter, as the above definitions do, forces each
level in the hash table to have the same size.

Hashmaps (hashmap) are pairs of objects, an array defining the
uppermost level in the hash table (level 0 in Fig. 4) and a “hashable”
key-value map called the stash, defined by the type kvmap (high-
lighted in gray in Fig. 4). The stash includes all of the levels besides
the topmost one, as well as the bucket. The type option (K × V)
defines optional pairs of keys and values. These pairs can either
be None, meaning no pair at all, or b(k , v)c, pronounced “some”,
meaning an actual pair (k , v). Hashable key-value maps are just
like standard key-value maps except that they expose—in addi-
tion to methods for lookup, insertion and deletion of key-value
associations—a hash function on keys. We use this hash function
parameter to fix the hash function for each level. Our construction
of multilevel UR hash tables is modular in that they are parameter-
ized by a stash and themselves implement the hashable key-value
map interface. This means we can construct multilevel UR hash ta-
bles of depth m by instantiating the stash with a second multilevel
hash table of depth m − 1. For the bucket, we use a simple func-
tional implementation of the hashable key-value map interface as
sorted association lists. The only requirement is that the bucket be
UR, for which we sort the key-value pairs and remove duplicates.

The next four functions in the figure together define the shape
predicate for multilevel UR hash tables. The function minkey takes
two arguments, a finite map g from keys to values and an index
ix , and returns the minimum key in g , if one exists, that hashes
to ix . To find the keys that hash to ix , it first filters the keys
of g (keys_of g) by the predicate (fun k . hash k = ix). The
hashtab and stash functions partition the key-value pairs in g into
the toplevel array and the stash. The hashtab function constructs
g’s toplevel array by building a new (finite) function that returns
at index ix , b(k , v)c, whenever k is the minkey for g at index ix .
Otherwise, hashtab returns None at that index. The stash function
operates by iteratively removing any keys already in the toplevel
table. For each index ix in the range [0. .n − 1], it removes k
from g whenever the hashtab of g already contains a key-value
pair at index ix . Thus the stash includes all key-value pairs that
were not already selected for inclusion in the toplevel. Finally,
shape (r :hashmap) (g :K ⇀fin V) asserts that the heap, i , can
be split into two subheaps, j and k , such that j has the shape of the
array given by hashtab g (Array.shape r .1 (hashtab g) j) and k
has the shape of the key-value map given by

stash g (KVMap.shape r .2 (stash g) k).

Note that our implementation of multilevel UR hash tables requires
that KVMap.shape be UR.

6.3 Implementation
Fig. 6 presents our RHTT implementation of multilevel UR hash

tables, parameterized by a key-value map module Stash, the sig-
nature of which is given in Fig. 7. Function new is the shortest of
the four functions in the interface. It calls the new functions from
the array module and from the key-value map module to allocate a
new array, r1, and a new stash, r2. The array is initialized to con-
tain values of type option (K ×V), with default value None. The
stash is initially empty.

The lookup function takes a key k as its sole local argument.
It first looks up the value in the top level, r .1, at position hash k
using the array read method. Array.read returns an option, o, so

Module MultilevelURHashTab.
new =̂ do (r1 ← Array.new n None;

r2 ← Stash.new;
ret (r1, r2))

lookup (r :hashmap) =̂
do (fun k . o ← Array.read r .1 (hash k);

if isNone o then ret None
else if (o is b(k ′, v ′)c && k = k ′) then ret bv ′c

else Stash.lookup r .2 k)

insert (r :hashmap) =̂
do (fun k v . o ← Array.read r .1 (hash k);

if (isNone o || (o is b(k ′, v ′)c && k = k ′))
then Array.write r .1 (hash k) b(k , v)c
else let b(k ′, v ′)c = o in

if k < k ′ then Stash.insert r .2 (k ′, v ′);
Array.write r .1 (hash k) b(k , v)c

else Stash.insert r .2 k v

remove (r :hashmap) =̂
do (fun k . o ← Array.read r .1 (hash k);

if (o is b(k ′, v ′)c && k = k ′)
then kmin ← Stash.minkey r .2 (hash k);

if isNone kmin then Array.write (hash k) None
else let bk ′minc = kmin in

bv ′minc ← Stash.lookup r .2 k ′min ;
Stash.remove r .2 k ′min ;
Array.write r .1 (hash k) b(k ′min , v ′min)c

else Stash.remove r .2 k
End Module MultilevelURHashTab.

Figure 6: RHTT implementation of multilevel UR hash tables.
The module is parameterized by n : nat, which is the size of the
levels in the hash table, and a key-value map Stash.

lookup must first check whether o is None—meaning the toplevel
array is empty at position hash k—before proceeding. If o is None,
then lookup immediately returns None. It can do so because the
canonicity invariant implies that k is not present: if k were present,
it would have been hashed into the empty slot.

The insert function is somewhat more complicated. It takes two
local arguments, a key, k , and a value, v . Like lookup, its first step
is to look up the current key-value pair, o, at position hash k in the
toplevel array. If o is None then insert writes the pair b(k , v)c into
the array at that position. The canonicity invariant again implies
that there are no keys elsewhere in the table that hash to the same
slot as k and yet are less than k in the order. Likewise, if o is an
actual key-value pair (k ′, v ′) such that k = k ′, then insert can just
overwrite the current value of k ′ with the new value, v . Otherwise,
o is a key-value pair (k ′, v ′) such that k 6= k ′. Now there are two
cases: either (1) k < k ′, or (2) k ′ < k . In case (1), lookup inserts
k ′ recursively into the key-value map, then overwrites k ′ at position
hash k in the toplevel array with b(k , v)c. Case (2) is even simpler:
k ′ stays where it is and k is inserted recursively into the stash.

The remove function is similar in structure to insert. Like both
insert and lookup, it first reads the current key-value pair, o, lo-
cated at position hash k in the top level. If o is b(k ′, v ′)c such
that k = k ′, then remove must delete k from the toplevel array
and replace it with the next smallest key that would have hashed
to that slot, if one exists. To do so, remove calls Stash.minkey
on the stash, returning a value kmin of type option K . If kmin

is an actual key, then it and its associated value, vmin , are removed

Module KVMapSig.
sshape : R2 → (K ⇀fin V)2 → heap2 → prop
shape : R → (K ⇀fin V)→ heap→ prop
shape_fun :
∀r g i1 i2.
i1 ∈ shape r g →
i2 ∈ shape r g → i1 = i2

sshape_shape :
∀rr gg i1 i2.
ii ∈ sshape rr gg →
i1 ∈ shape r1 g1 ∧ i2 ∈ shape r2 g2

lookup (r :kvmap) : STsec [K] (option V)
(fun k . ∃g . i ∈ shape r g ,
fun kk yy ii mm. ∀gg .

ii ∈ sshape (r , r) gg →
mm = ii ∧ yy = (fnd k1 g1, fnd k2 g2))

insert (r :kvmap) : STsec [K ,V] unit
(fun k v . ∃g . i ∈ shape r g ,
fun kk vv yy ii mm. ∀ff .

ii ∈ sshape (r , r) gg →
mm ∈ sshape (r , r) (ins k1 v1 g1, ins k2 v2 g2))

. . .
End Module KVMapSig.

Figure 7: Specifications of key-value map lookup and insert.
The module is parameterized by the types R, K and V . The
hash table functions of Fig. 6 meet these interfaces, along with
similar ones for new, remove, and minkey (elided). The type
kvmap is a parameter to the specifications. The predicates
shape and sshape are related by laws like sshape_shape above.
In addition, shape is required to be a function (shape_fun),
thus enforcing that modules matching the key-value map in-
terface, such as the multilevel hash table library of this section,
be uniquely represented.

from the stash and written into the toplevel array at position hash k .
(Stash.minkey guarantees that hash k = hash k ′.) Otherwise,
None is written into the array at that position, effectively clearing
the slot. When o is None or b(k ′, v ′)c such that k 6= k ′, k is
removed recursively from the secondary map.

Unique Representation. The unique representation theorem
for multilevel UR hash tables follows from the canonicity invari-
ant we defined in Sec. 6.1 (Definition 2) and the definition of the
multilevel UR hash table shape predicate (cf. Fig. 5).

THEOREM 1 (UR FOR MULTILEVEL UR HASH TABLES). For
all multilevel UR hash tables r , finite maps g : K ⇀fin V and
heaps m1 and m2, if m1 ∈ shape r g and m2 ∈ shape r g then
m1 = m2.

6.4 Specifying Multilevel UR Hash Tables
Our multilevel hash table implementation satisfies the key-value

map interface we first described informally in the previous section.
We forgo presenting the entire interface here since most of the spec-
ifications are straightforward (please see our Coq scripts for more
details, file kvmaps.v). Below we focus on a few of the interface
functions.

The lookup function, specified by the STsec type given in Fig. 7
and implemented in the previous section by multilevel hash table
lookup, takes two arguments, a function argument r defining a key-
value map and a local argument of type K providing the key to

be looked up. The precondition of lookup states that the heap i
satisfies the key-value map shape predicate, which is required to
be a function by the interface.

In our multilevel hash table implementation of the key-value
map interface, shape is instantiated with the multilevel hash table
shape predicate defined in the previous section. The requirement
that shape be a function (law shape_fun in Fig. 7) is satisfied by
the unique representation proof for multilevel hash tables (Theo-
rem 1). The postcondition of lookup states that lookup leaves the
heap unchanged (mm = ii) and that the option values y1 and y2

that lookup returns are those discovered when keys k1 and k2 are
looked up, via fnd, in the mathematical finite maps g1 and g2 that
represent the key-value map r (ii ∈ sshape (r , r) gg).

Key-value map insert (also shown in Fig. 7) takes three argu-
ments, the map r , a key k , and its new value v . As in lookup, r
is a function argument that we assume to be low, whereas k and v
are function arguments that are implicitly high. insert’s postcondi-
tion states that in the output heap mm , k1 is mapped to v1 in one
run and k2 is mapped to v2 in the other. We model these updates
mathematically using the finite map insertion function, ins, which
updates a key with a new value in a key-value map.

The interactions among ins, fnd and rem are governed by several
algebraic laws, e.g., rem k (ins k v g) = rem k g . As we described
in the introduction, clients of the multilevel UR hash table module
will reason using laws of this nature. In particular, client reasoning
is entirely independent of the number of levels in the table and other
implementation details.

7. ERASURE-DEPENDENT ACCESS CON-
TROL REVISITED

In Sec. 4, we described an RHTT implementation of a medical
database application. One of the distinguishing features of the sys-
tem was that it supported expressive conditional information flow
policies. In particular, the higher-order function endorse granted
a client unrestricted access to confidential patient records provided
the client could first prove that any confidential data it stored in
local state during the computation was erased before its function
exited. In Sec. 4, our example client’s local state consisted of a
single pointer to an integer; the simplicity of this local state made
it quite easy to prove that the client program met the erasure policy
required by endorse.

In this section, we revisit the client of Sec. 4 in order to prove
erasure policies for more complicated data structures such as the
multilevel UR hash tables of Sec. 6. Unique representation is the
key property that enables these proofs.

Hashing Client. Fig. 8 presents the RHTT code for our en-
hanced medical database client. In the original client of Sec. 4,
the client’s local state, given by the type R, was a pointer to an
integer. Here R is the type of 4-level UR hash tables, defined by
the function build_map. This function constructs a multilevel UR
hash table with an arbitrary number of levels (4 in this case). The
hash function hash is a parameter. The predicate ccshape is de-
fined wrt. the multilevel UR hash table’s relational shape invariant,
FilterHashPrelim.sshape. This shape invariant applies the multi-
level UR hash table’s unary shape predicate shape (Sec. 6) to heaps
i1 and i2 respectively. The function cmp defines how the client’s lo-
cal state evolves after each call to hashing_client. Here we specify
that after each call, the client will have inserted the low key-value
pair (18, v), for some v , into (and removed key 17 from) its local
hash table.

The hashing_client function is similar to the counting_client
function of Sec. 6. Within the do block, prog first reads pat’s elec-

Module B′.
R =̂ build_map hash 4
G =̂ finMap K V

ccshape (rr :R2) (gg :G2) (ii :heap2) =̂
MultilevelURHashPrelim.sshape rr gg ii

cmp (g :G) : G =̂ ins 18 v (rem 17 g)

prog (r :R) : T =̂ do (fun db pat .
emr ← read_emr db pat ;
MultilevelURHashTab.insert r 17 (f1 emr);
MultilevelURHashTab.insert r 18 v ;
MultilevelURHashTab.remove r 17;
ret (f2 emr))

hashing_client (r :R) : S =̂ A.endorse R G
MultilevelURHashPrelim.sshape cmp prog

End Module B′.

Figure 8: A medical database client with a 4-level UR hash ta-
ble as local state. The module is parameterized by the types K
and V .

tronic medical record, then inserts a confidential integer hash of this
record (f1 emr) into the multilevel UR hash table, associated with
key 17. prog next inserts the low key-value pair (18, v) into the
hash table. Finally, it removes the confidential data it previously
inserted at key 17 by calling FilterHashTab.remove r 17.

To prove that hashing_client meets the erasure policy, we must
show that the client’s local heap is low after the function is exe-
cuted, assuming its local state was low before execution. To do so,
we reason in two steps: we first show that symbolically executing
prog from equal initial states results in equal symbolic, i.e., logi-
cal, final states. That is, inserting the confidential key-value pair
(17, (f1 emr)), the public or low key-value pair (18, v) and then
removing the confidential pair (17, (f1 emr)) to g1 and g2 results
in final key-value maps g ′1 and g ′2 that are equal. That this is true
can be seen by considering how insert commutes with remove. For
example, one such commutation property is rem k (ins k v g) =
rem k g . Note that this symbolic proof is performed with respect to
the mathematical abstraction of hash tables as key-value maps and
therefore is entirely independent of our particular hash table imple-
mentation (thus achieving portability to future implementations).

Once we have proved that g ′1 = g ′2, in the second step we apply
the unique representation theorem for multilevel UR hash tables
(Theorem 1) to show that equality of the logical states g ′1 and g ′2
implies equality of the final memory states.

8. RELATED WORK
There has been much work on semantics of noninterference and

its relaxations [28, 29] as well as enforcement mechanisms based
on type systems, logics and other program analyses. Chong and
Myers [10, 11] study specification and enforcement of erasure poli-
cies in the context of a simple imperative language and show how
their framework can be implemented in Jif [23]. Their framework
handles declassification policies as well: they describe a duality be-
tween declassification and erasure where the former can be viewed
as a relaxation of noninterference and the latter as a strengthening
of noninterference. Hunt and Sands [18] show the close connec-
tion between information erasure policies and noninterference in
the context of simple imperative as well as interactive programs.

Russo et al. [27] employ a flow-sensitive dynamic type system, to
perform run-time enforcement of secure information flow in non-

UR, but heterogeneous, data structures such as dynamically allo-
cated DOM trees. Further extensions by Hedin and Sabelfeld [17]
and by Birgisson et al. [7] consider tracking information flow in
heap-based heterogenous data structures in dynamic languages such
as JavaScript. In this line of work, the nodes in a linked struc-
ture are assigned several security labels. For example, specifically
in [17], each node has one security label for inspecting the exis-
tence of the node, another label for changing the structure rooted
at the node, and another one for the node’s contents. In a secret
control context, addition of new fields to a node is allowed only if
the node’s structure label is high. Otherwise, the addition results in
run-time error. Similar to this work, RHTT is also a flow-sensitive
type system. In contrast, we do not consider security labels, but
use a semantic definition of NI. Furthermore, in RHTT we focus
on static verification of non-interference and erasure, rather than
run-time enforcement.

Swamy et al.’s F? system [31] permits properties of data values
to be specified via preconditions and postconditions in the form
of dependent types of methods. The verification conditions are
discharged automatically by passing them to the SMT solver Z3,
though some manual work is usually needed in the course of devel-
opment, to guide the SMT solver. The assertions on the methods
focus on the properties of values only. In this respect, RHTT dif-
fers from F?, as we allow arbitrary higher-order logic assertions
over heap shapes, and the assertions may, moreover, be relational.

Nanevski et al. [24] consider verification of flexible security poli-
cies in possibly heterogeneous linked lists. Such lists may contain
mixed high and low data as well as mixed high and low links, al-
though their main example considers low links only. Here we con-
sider more involved data structures such as hash tables and recog-
nize unique representation as a critical property to ensure secure
erasure in the presence of adversaries who have access to the con-
crete memory state.

In the algorithms community, Amble and Knuth [1] studied hash
tables without deletions. However, their goal was to develop fast
searching algorithms rather than to exploit properties such as his-
tory independence. Theoretical work on history independent data
structures by Naor and Teague [25], Hartline et al. [16], and Blel-
loch and Golovin [8, 15] has been a primary impetus for our work,
which complements the algorithmic approaches by applying unique
representation to achieve provable guarantees about the functional
correctness and security of programs.

9. DISCUSSION AND FUTURE WORK
This paper proposes unique representation as a means of enforc-

ing expressive information flow and erasure policies in programs
with modules and procedures with local state, in the presence of
pointers and mutable data structures such as hash tables. To ex-
plore the verification of UR data structures, we present a case study
in which we (1) formalize a UR variant of hash tables and (2) show
how the UR theorem for this data structure can be used to prove
noninterference of a medical database client. We believe this is the
first verification case study of involved security properties such as
NI and erasure that considers non-trivial heap-based data structures
and their clients.

Much work remains. One direction to explore is the connection
between enforcement of information flow policies in a high-level
language (as done in this paper) and their preservation through the
compilation toolchain. For example, an information-flow aware
compiler must not optimize away operations introduced by the pro-
grammer to prevent information leakage (e.g., zeroing out of con-
fidential local variables in the stack frame before function return)
just because these operations do not affect a program’s dataflow.

Another direction involves studying interactions between garbage
collection and erasure guarantees, especially in the context of tim-
ing and other attacks over covert channels. Proper engineering of
an incremental garbage collector could ensure that private data is
erased, and prevent some timing attacks. However, any end-to-end
erasure guarantee of programs composed with the garbage collec-
tor would depend on the correctness of the garbage collector itself
(cf. McCreight et al. [19]).

The resolution of both of the above issues may require gener-
alizing our specifications so that they express not only properties
of the beginning and the end of the computation, but of interme-
diate points as well. This may require reasoning about traces and
temporal properties.

Another direction for generalization involves studying the veri-
fication of history independent data structures [16]. History inde-
pendent structures cannot distinguish different but logically equiv-
alent operation sequences. They generalize UR. Indeed, there are
some history-independent data structures that use internal random-
ization as an implementation strategy, that are not UR. For example,
in order to prevent a binary search tree from leaking information
through the physical layout, one may consider randomly rebalanc-
ing the tree after each operation. Currently, RHTT cannot reason
about randomization. In the presence of randomization, we fore-
see generalizing the notion of indistinguishability of heaps, which
feeds into the definition of uniqueness of representation (cf. Defi-
nition 1). RHTT currently employs exact equality of heaps, but it
may be possible to relax this notion by attaching a random distri-
bution to the set of heaps.

We also plan to study the interplay between UR and parametric-
ity, and consider how internalized reasoning about type abstrac-
tion [6] may be used to formally prove that a module interface
tightly encapsulates the internal state of the module.

Acknowledgments. We thank Deepak Garg for his comments
and encouragement, and the anonymous referees for their sugges-
tions. This research was partially supported by Madrid Regional
Government Project S2009TIC-1465 Prometidos; Spanish Ministry
of Economy and Competitiveness projects TIN2009-14599-C03-
02 Desafios, TIN2010-20639 Paran10, and TIN2012-39391-C04-
01 Strongsoft; EU Project NoE-256980 Nessos; Ramon y Cajal
grant RYC-2010-07433 and AMAROUT grant PCOFUND-GA-
2008-229599.

References
[1] O. Amble and D. E. Knuth. Ordered hash tables. Comput. J.,

17(2):135–142, 1974.
[2] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for infor-

mation flow in object-oriented programs. In POPL, 2006.
[3] D. Bell and L. LaPadula. Secure computer systems: Math-

ematical foundations. Technical Report MTR-2547, MITRE
Corp., 1973.

[4] N. Benton. Simple relational correctness proofs for static
analyses and program transformations. In POPL, 2004.

[5] J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free —
parametricity for dependent types. JFP, 22(2), 2012.

[6] J.-P. Bernardy and G. Moulin. A computational interpretation
of parametricity. In LICS, 2012.

[7] A. Birgisson, D. Hedin, and A. Sabelfeld. Boosting the per-
missiveness of dynamic information-flow tracking by testing.
In ESORICS, 2012.

[8] G. E. Blelloch and D. Golovin. Strongly history-independent
hashing with applications. In FOCS, 2007.

[9] J. Borgström, A. D. Gordon, and R. Pucella. Roles, stacks,
histories: A triple for Hoare. JFP, 21(2):159–207, 2011.

[10] S. Chong and A. C. Myers. Language-based information era-
sure. In CSFW, 2005.

[11] S. Chong and A. C. Myers. End-to-end enforcement of era-
sure and declassification. In CSF, 2008.

[12] E. S. Cohen. Information transmission in sequential pro-
grams. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J.
Lipton, editors, Foundations of Secure Computation. 1978.

[13] D. Denning. A lattice model of secure information flow.
CACM, 19(5):236–242, 1976.

[14] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space ef-
ficient hash tables with worst case constant access time. In
STACS, 2003.

[15] D. Golovin. Uniquely Represented Data Structures with Ap-
plications to Privacy. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, August 2008.

[16] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and
E. Rocke. Characterizing history independent data structures.
Algorithmica, 42(1):57–74, 2005.

[17] D. Hedin and A. Sabelfeld. Information-flow security for a
core of Javascript. In CSF, 2012.

[18] S. Hunt and D. Sands. Just forget it - the semantics and en-
forcement of information erasure. In ESOP, 2008.

[19] A. McCreight, T. Chevalier, and A. Tolmach. A certified
framework for compiling and executing garbage-collected
languages. In ICFP, 2010.

[20] D. Micciancio. Oblivious data structures: Applications to
cryptography. In STOC, 1997.

[21] J. C. Mitchell and G. D. Plotkin. Abstract types have existen-
tial type. TOPLAS, 10(3):470–502, 1988.

[22] D. Molnar, T. Kohno, N. Sastry, and D. Wagner. Tamper-
evident, history-independent, subliminal-free data structures
on prom storage-or-how to store ballots on a voting machine
(extended abstract). In IEEE Symp. Security and Privacy,
2006.

[23] A. C. Myers. JFlow: Practical mostly-static information flow
control. In POPL, 1999.

[24] A. Nanevski, A. Banerjee, and D. Garg. Dependent type the-
ory for verification of access control and information flow
policies. TOPLAS, 35(2):6, 2013.

[25] M. Naor and V. Teague. Anti-persistence: history indepen-
dent data structures. In STOC, 2001.

[26] J. C. Reynolds. Separation logic: a logic for shared mutable
data structures. In LICS, 2002.

[27] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking informa-
tion flow in dynamic tree structures. In ESORICS, 2009.

[28] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, 2003.

[29] A. Sabelfeld and D. Sands. Declassification: Dimensions and
principles. JCS, 17(5):517–548, 2009.

[30] R. Sundar and R. E. Tarjan. Unique binary-search-tree repre-
sentations and equality testing of sets and sequences. SIAM J.
Comput., 23(1):24–44, 1994.

[31] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan,
and J. Yang. Secure distributed programming with value-
dependent types. In ICFP, 2011.

[32] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type
system for secure flow analysis. JCS, 4(2/3):167–188, 1996.

	Introduction
	Attack Model
	Background: RHTT
	Erasure-Dependent Access Control
	Example: Data Store for Medical Records

	Unique Representation
	Example: Insert-only Bounded Multisets

	Multilevel UR Hash Tables
	Canonical Representation
	Preliminary Definitions for Multilevel UR Hash Tables
	Implementation
	Specifying Multilevel UR Hash Tables

	Erasure-dependent Access Control Revisited
	Related Work
	Discussion and future work

