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Dynamic networks reveal key players in aging
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ABSTRACT

Motivation: Since susceptibility to diseases increases with age,
studying aging gains importance. Analyses of gene expression or
sequence data, which have been indispensable for investigating
aging, have been limited to studying genes and their protein products
in isolation, ignoring their connectivities. However, proteins function
by interacting with other proteins, and this is exactly what biological
networks (BNs) model. Thus, analyzing the proteins’ BN topologies
could contribute to understanding of aging. Current methods for
analyzing systems-level BNs deal with their static representations,
even though cells are dynamic. For this reason, and because
different data types can give complementary biological insights, we
integrate current static BNs with aging-related gene expression data
to construct dynamic, age-specific BNs. Then, we apply sensitive
measures of topology to the dynamic BNs to study cellular changes
with age.

Results: While global BN topologies do not significantly change with
age, local topologies of a number of genes do. We predict such genes
as aging-related. We demonstrate credibility of our predictions by:
1) observing significant overlap between our predicted aging-related
genes and “ground truth” aging-related genes; 2) showing that our
aging-related predictions group by functions and diseases that are
different than functions and diseases of genes that are not predicted
as aging-related; 3) observing significant overlap between functions
and diseases that are enriched in our aging-related predictions and
those that are enriched in “ground truth” aging-related data; 4)
providing evidence that diseases which are enriched in our aging-
related predictions are linked to human aging; and 5) validating all of
our high-scoring novel predictions via manual literature search.
Contact: tmilenko@nd.edu

1 INTRODUCTION
1.1 Motivation and background
Since the US is on average growing older because @8 million

of baby boomers who have began turning 65 in 2011, and sinc

susceptibility to diseases increases with age, studyimggimuaging

gains importance. Analysis of gene expression data has be

indispensable for investigating aging (Wiestral, 2011; Fortney

et al, 2010). However, it has mostly been limited to studying

differential expression of individual genes, without ciolesing
their connectivities (Fortnegt al, 2010). But, it is the proteins

(gene products) that carry out cellular processes and tleey
so by interacting with other proteins instead of acting alon

And this is exactly what biological networks amaotein-protein

interaction (PPI) networksn particular model; in PPl networks,

nodes are proteins and edges correspond to physical ititersc
between the proteins. Thus, analyzing topologies of pmetén

*To whom correspondence should be addressed

PPI networks could contribute to understanding of the ses of
aging. Although as a proof of concept this study focuses oh PP
networks, it is applicable to other types of biological netks.
High-throughput screens for PPI detection have yieldedegsys-
level (though incomplete) PPI networks for many organisnisch

are publicly available (Breitkreutzt al., 2008).

The majority of current methods for analyzing systems{l&r!
networks deal with theistatic representations, due to limitations
of biotechnologies for PPI data collection, even thoughscate
dynamic (Przytycka and Kim, 2010). For this reason, and imea
different data types can give complementary biologicalgins
(MemiSevicet al, 2010; Przytycka and Kim, 2010), wategrate
current static PPI network data (Petial,, 2004; Breitkreutzt al,,
2008) with age-specific gene expression data éLal., 2004) to
computationally construaynamic, age-specific PPI networkis
order to study cellular changes with age from such networks.

Furthermore, topological positions of aging-related geimethe
static networks have been studied (Krie¢¢ al, 2011; Ferrarini
et al, 2005; Rejaet al, 2009; Promislow, 2004; de Magalhaes,
2009), but mostly withcrude measures of topology that can
not cope with the complexity of PPl networks (Przulj, 2011)
For example, node degrees have been used to argue the central
role or aging-related proteins in the yeast network conpdece
proteins that are not associated with aging, or to study the r
of chaperones (heat stock proteins) in aging (Promislovd420
S6ti and Csermely, 2007). In addition to aging, many apgiiea
have aimed to link node degrees with, for example, esséntial
(Jeonget al, 2001), disease (Sharan and Ideker, 2008; Vanunu
et al, 2010), cancer (Jonsson and Bates, 2006; Aragies.,
2008), or pathogenicity (Dyest al., 2008). However, it is possible
that the high-degree proteins have been more studied simply
because of their known relevance to human health (Przafj12
Ratmannet al, 2009). Hence, more constraining measures of
topology might be needed that go beyond capturing only thectli
Qetwork neighborhood of a node (Milenkovic and Przulj020
Milenkovit et al., 2010a). While such measures exist and have been
elTI.Fed to link proteins’ network positions with their invohaent in
some biological processes (Shaetral,, 2007; Milenkovicet al,
2011), to our knowledge, they have not been linked to pretein
involvement in aging even in static and especially in dyrami
PPI networks. Here, we apply seriesof measures of topology,
dincluding some highly sensitive measures (Milenkovic &wdulj,

2008; Milenkovicet al, 2011), to thedynamicPPI networks to
identify key players in aging.
1.2 Our study

We aim to study human aging via integration of aging-related
gene expression data with static PPl network data (Fig. 1§. W
obtain dynamic, age-specific PPI networks by selectingersthtic
network: 1) all proteins that correspond to actively expeglsgenes
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predict such proteins as aging-
related and validate our predictions
in several ways.

Literature
validation

a gene as beingxpressedor active) at a given age if itdetectionp-value
which indicates the significance level of its mMRNA abundaaicihat age, is

at a given age. We hypothesize that the dynamic and integrati less thar0.04. We adopt the same procedure (Supplementary Section S1.1).

network analysis provides a valuable model of cellular fioming
that can reveal aging-related information and that canalevere
of the information than static analysis of individual datpds.

2.1.2 Static PPI network datawe obtain human static PPIs from
HPRD (Periet al, 2004) and BioGRID (Breitkreutet al., 2008). HPRD
data consists of 9,322 unique proteins and 36,030 unique Bflveen the

Given the dynamic network data, we first aim to answer whether, oeins. BioGRID data consists of 10,078 unique proteiith(respect to

the overall network topologies change with age (Fig. 1)c8ithis

their gene IDs) and 50,954 unique PPIs between the proteins.

is not the case, and since the gene expression data alone revealed

only a small portion of all genes as aging-related ¢tal., 2004), it
could be thatocal topologies around only subsedf proteins in the
network do change with age. Hence, we study positions oEprst
in each age-specific PPI network with respect to measurescaf |
topology, callednode centralities with the goal of identifying
proteins whose centralities significantly change with age. find
515 such proteins (8.1% of all proteins in the static netywoskich
is quantitatively consistent to the result by leti al. (2004). We
predict these proteins as aging-related and validate tlsefiollaws.
1) The predictions are statistically significant, i.e., namgom.

2.1.3 Integrating static PPl network with gene expressiatad
to form age-specific PPI networksve form dynamic, age-specific
networks as follows. To form the network specific to a givere,awe
select in the static network those proteins that are expdess that age
(Section 2.1.1) and all PPIs that exist between the expigss#eins (see
Supplementary Section S1.2 for a formal description). &gene expression
data is collected for 30 ages, 30 age-specific networks cdarbeed from
the given static network. Since we study two static netwd#BRD and
BioGRID), we obtain two sets of dynamic networks. We run sujoent
analyses on each of the network sets. Since we find that sem@tsimilar
across the two sets, for simplicity, here we report resuitg for the HPRD

2) The overlap of our predicted aging-related genes and “groun network. Results for the BioGRID network are reported in$Supplement.

truth” aging-related genes is significant. All of our fildghest-
scoring predictions, namely GORASP2, MAP2K4, TIAML1,
MAP1B, and S100B, are presentnmultiple aging-related “ground
truth” data sets. Nonetheless, many of our predictionsavel i.e.,
absent from the “ground truth” data. This confirms that dyitam
network analysis of integrated data types can reveal additi
biological knowledge compared to static analysis of indlixl data.
3) Our predictions group by biological functions and diseabas
are different than functions and diseases of genes that weotlo
predict as aging-related. The overlap between functiodsleseases
that are enriched in our predictions and those that arelestim the
“ground truth” aging-related data is significant. Diseated are
enriched in our predictions are linked to human aging.

4) We manuallysearch in the literature for our top 10% highest-

scoring predictions that are not present in the “grounchtraging-
related data, and we successfully validate all of them.

2 MATERIALS AND METHODS

2.1 Data

2.1.1 Aging-related gene expression dat&e use human brain gene
expression data consisting of 30 samples obtained from @Widals
between 26 and 106 years of age. In an individualetal. (2004) defined

2.1.4 *“Ground truth” aging-related data We denote the set of
genes present in both the static PPI network (Section 2ah@)brain gene
expression data (Section 2.1.1)3tstNetExpression

By studying brain gene expression data from Section 2.1.4, L
et al. (2004) predicted 442 genes as aging-related, as their &sipre
significantly correlated with age. Of these, 341 genes amsqmt in
StatNetExpression. Henceforth, we denote this “grountth’traging-related
set of 341 genes predicted frobrain gene expression data alores
BrainExpression2004Age

By studying another brain gene expression data with 174 Esmp
from 55 individuals, with multiple sample per individual, e&htold
et al. (2008) identified 8,277 genes (via 12,514 probes) whoseesgfmn
significantly changed with age. Of these, 3,228 are present i
StatNetExpression. Henceforth, we denote this “grountth’traging-related
set of 3,228 genes predicted frobmain gene expression data aloras
BrainExpression2008Age

Clearly, BrainExpression2004Age and BrainExpressioB2@@ are very
similar in the sense that their aging-related genes have inéerred from
brain gene expression data. (And as such, among all “growti” tdata
sets (see below), these two sets are expected to be the mukstr sb
our aging-related predictions, since our predictions dse partly based
on brain human gene expression data.) However, it is impbita note
that BrainExpression2004Age and BrainExpression2008#ere predicted
from two independent data sets, and compared to BrainEsipre2)04Age,
BrainExpression2008Age is a result of a newer microarraglystit covers
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more samples and more individuals, and it covers more sampbe
individual.

By studying brain gene expression data set related to eiffestages
of Alzheimer's disease (AD), Simpsat al. (2011) identified 2,911 genes
(linked to 3,404 probes) that have significantly differerpression levels
at different stages of AD. Of these, 1,117 are present irN8t&ixpression.
Henceforth, we denote this “ground truth” AD-related setlgf17 genes
predicted frombrain gene expression datsADExpressionAge

By studying gene expression data related to Hutchinsofol@iprogeria
syndrome (HGPS), a human premature aging-related diséasest al.
(2011) identified 1,731 genes that have a differentially hyleted region
between wild-type and HGPS-affected fibroblasts of vasculascles cells.
Of these, 708 are present in StatNetExpression. Hencefar¢hdenote
this “ground truth” HGPS-related set of 708 genes prediftech vascular
muscles-related gene expression dasd GPSExpressionAge

In July 2012, GenAge contained 261 human genes that havelibged
to aging as sequence-based orthologs of aging-related gemodel species

2.3 Do local topologies of proteins change with age?

We study topological positions of proteins in each age-ifpetetwork with

respect to seven node centrality measures (Section 2\8/d)predict as
aging-related those proteins whose centralities sigmificahange with age
(Section 2.3.2). We validate our predictions in severals\y@ection 2.3.3).

2.3.1 Local measures of topology or node centraliti®arious
centrality measures have been used to link topological itapoe of a node
in the network to its functional importance. Below, we defeseh of the
seven measures that we use and provide biological jusitficér their use.
Degree centralitf DEGC) measures the degree of a node in the netwo
i.e., the number of the node’s neighbors. The higher theedegf a node,
the more central the node according to DEGC. Since currehh&orks
have “power-law” degree distributions, with many low-degnodes and few
high-degree nodes, and since removal of the high-degrezsmealuld impact
the network structure (by disconnecting it), DEGC of a geaelteen related

rk,

to the gene’s essentiality as well as its involvement inatisgBarabasi and
‘Oltvai, 2004; Sharan and Ideker, 2008).
Clustering coefficient centralityCLUSC) measures, for a given node,

(de Magalhaest al,, 2009). Of these, 230 are present in StatNetExpression
Henceforth, we denote this “ground truth” aging-relatetl afe230 genes
predicted fromsequence dathy SequenceAge

2.1.5 Complements of the “ground truth” aging-related dat&e
define a set of genes as themplemenbf a “ground truth” aging-related
data set if the genes are present in StatNetExpression bt the “ground
truth” data set. We denote the complements of BrainExpra26i04Age,
BrainExpression2008Age, ADExpressionAge, HGPSExpoegsie, and

how many pairs of neighbors of the node are connected by ae, exlg
of all pairs of the node’s neighbors. Intuitively, the manéerconnected the
neighborhood of the node, the more central the node is aicepia CLUSC.
In a PPI network, a node with high clustering coefficient,etbgr with the
node’s neighbors, forms a highly interconnected netwogkorg which is
likely to correspond to a functional module (Barabasi atitstd® 2004).

SequenceAge drainExpression2004ComplemeBrainExpression2008Complefagtfere of a network is a maximal subset of nodes in the network such
ADExpressionComplemetGPSExpressionComplemeahdSequenceCompléiagfich node is connected to at Iefasithers in the subsefs-coreness

respectively.

All above data sets are defined with respect to HPRD PPI daia. F

BioGRID data, see Supplementary Section S1.3.

2.2 Do global network topologies change with age?

Given the dynamic, age-specific PPI networks, we test whektgeoverall
(global) topologies of the networks change with age. We doysmomparing
the different networks with respect to several commonlygebal network
properties (Section 2.2.1), by evaluating the fit of eachhef age-specific
networks to a series of well-known graph families, i.e.,waek models
(Section 2.2.2) (Milenkovicet al,, 2008; Kuchaievet al., 2011), and by
measuring the overlap of the age-specific networks (Segti®:3).

2.2.1 Comparing global properties of age-specific netwone
analyze three properties: the average clustering coeffj@eerage diameter,
and graphlet frequency distribution (Memiseeital., 2010). The properties
are defined in Supplementary Section S1.4.

2.2.2 Evaluating the fit of age-specific networks to diffeggaph
families or network modelswe compare the fit of the dynamic PPI
networks to different graph families, i.e., network mod@&slenkovit et al,,
2009), to test whether the best fitting model changes with &@eious
network models have been proposed. We use: (1) ErdosiRangiom
graphs (ER), (2) generalized Erdds-Rényi random graptissame degree
distribution as the data (ERDD), (3) geometric random gsaftbEO), (4)
geometric gene duplication and mutation model (GEOGD),s(%)le-free
networks (SF), and (6) scale-free gene duplication and tiatanodel
(SFGD) (Milenkovicet al, 2008; Kuchaiewet al, 2011). To evaluate the
fit of the data network to a given model, we compare the topoligthe
data network to the topology of a random network instancevdifaom the
model with respect to a highly constraining measure of netwapological

similarity calledgraphlet degree distribution agreement (GDD-agreement)

(Przulj, 2007). For details, see Supplementary Sectiab.S1

2.2.3 Computing the overlap between age-specific netwonks
measure the overlap between each pair of age-specific Hetvas the
percentage of nodes (or edges) in the smaller of the two mktwtbat are
common to the two networks. For details, see Supplementectidd S1.6.

centrality (KC) of a node isk if the node is ink-core. Nodes with high KC in
the human PPI network have been found to correspond to “teeaskome,”
a subnetwork that is significantly enriched in disease gandsdrug targets
(Janjic and Przulj, 2012), as well as to influential “splea” of information

throughout the network (Kitsadt al., 2010).

Graphlet degree centralitf GDC) measures how many graphlets
node participates in, for all 2-5-node graphlets (Milerikost al, 2011).
Intuitively, the more graphlets a node touches, the moréralethe node
is according to GDC. Since it captures tgendechetwork neighborhood
of a node, GDC is a highly sensitive measure of network tapoldhus,
in a PPI network, proteins with high GDCs represent potecaadidates
for therapeutic intervention, since targeting such pnstevith drugs would
have more significant impact on the network structure thayetang proteins
that reside in sparse and non-complex network regions (l4ieic et al,,
2011). Indeed, GDC has been found to capture well diseaseathdgen-
interacting proteins and drug targets (Milenkoeital.,, 2011).

Betweenness centralifBETWC) measures the involvement of a node

in the shortest paths in the network. Intuitively, noded thacur in many
shortest paths have high centrality according to BETWC. BfETof nodev,

Z Ost (v)
sEVALEV Ost
in the network,os; is the number of shortest paths between nodasdt,
andos¢ (v) is the number of shortest paths betweesnd¢ that go through
v. In a PPl network, BETWC of a protein indicates the “likeldaj of the
protein to participate in pathways connecting all othettgires (Koschiitzki
and Schreiber, 2008). Removal of a protein that is on cligathways
between many other proteins could cause loss of commumicagtween
the proteins. Also, targeting such a node with a drug coultsedhe drug
effects to spread fast to all the nodes (Milenkosi@l, 2011). This property
has been used to identify gene-disease associations bgirgaeach gene
in the network based on the distribution of shortest patgtlento all genes
associated with disease (Radivojetal, 2008). Also, see Kitsalet al.
(2010).

Closeness centralityCLOSEC) measures the “closeness” of a node
all other nodes in the network. Intuitively, nodes with shsdiortest path
distances to all other nodes have high centrality accortin@LOSEC.
CLOSEC of nodev, Cglosed?v), IS: Celosedv) = = where

1
wev o(u,v)’

Chetwe(v), is: Chetwe(v) = , whereV is the set of nodes
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o(u,v) is the shortest path distance between nodeand v. In a PPI
network, CLOSEC of a protein indicates the “likelihood” dfetprotein to
reach or be reachable from all other proteins (Scardoal., 2009). And it
has been a widely accepted assumption that proteins thatamer to each
other are more likely to perform the same function (Shateed., 2007).

Eccentricity centrality(ECC) is very related to CLOSEC, except that it
measures the “closeness” of a namey to thefarthestnode in the network
(Wuchty and Stadler, 2003). Intuitively, nodes with smdibgest path
distances to the furthest node in the network have high alégtaccording
to ECC. ECC of node, Cecc(v), is: Cece(v) = m
2.3.2 Prediction of aging-related genesor each measure, we
compute centrality values for a node in each of the 30 ageH{fspeetworks.
Then, we calculate Pearson or Spearman correlation bettheeB0 ages
and the node’s 30 centrality values (Supplementary Se&ibd). We do
this for all genes that are expressed in at least five ages &t bl (2004)’s
brain gene expression data (Section 2.1.1). If such a geoeespressed
at a given age, we assign it a centrality value of zero at that &ince
results are consistent for both correlation measures, wereeport results
only for Pearson correlation. Results for Spearman cdioelare shown in
the Supplement.

We quantify the statistical significance of the given catieh value by
measuring the probability (i.ep-value) of observing by chance a better
value (i.e., the same or higher value when the original vaysositive, or
the same or lower value when the original value is negatiVé. do this
by randomly reshuffling the 30 node centrality values at (h@@es and by
computing the resulting “random correlation”. We repea h000 times to
get 1,000 random correlations. We compute phealue as the percentage
of the 1,000 runs in which the random correlation is bettantthe original
one. We predict a gene as aging-related ipigalue is below 0.01.

Since we study multiple node centralities, each of which peedict
the given gene as aging-related, we score our predictiorisasdhe more
centrality measures support a prediction and the highesith@ficance of
the change of its centrality values with age, the higher t@esand the
more credible the prediction. For details, see Supplemeg8ection S1.7.

2.3.3 Validation of predicted aging-related genes

Statistical significance of our predictions. To test whether our approach
of combining static network data with aging-related expi@s data into
the dynamic network data actually gives meaningful préghst, we study
whether the number of aging-related genes that we prediot the actual
data is statistically significantly larger than the numbéraging-related
genes that we predict from “randomized data”. By ‘“randomiziata”,
we mean that we randomize the expression data before ititegitwith
the static network data (Supplementary Section S1.8). ,Thenintegrate
the randomized expression data with the static PPl netwodnstruct
randomized age-specific networks just as in Section 2.faBpeedict aging-
related genes from the randomized networks just as in $eeti®.2. We
repeat the above procedure multiple times, in order to asgigvalue to the
number of predictions that we make from the actual data (Bupgntary
Section S1.8).

Overlap between genes of different data setdVe measure the statistical
significance of the overlap of genes in one data set and geremther data
set by using the hypergeometric test, which computes piiityap (i.e., p-
value) of observing the same or larger overlap by chancellasvio Let £
denote the set of genes that are present in StatNetExpneg&io= 6, 397.
Let A denote the subset of genesfnthat are in any one of the two data
sets. Let7 denote the subset of geneskhthat are in the other data set. Let
O denote the set of genes that are in the overlap betweendG. Then,p
|O|—1 (\E\)(\E\—\A\)
i |G|—1

issp=1— Z (}g“)

i=0
Gene Ontology (GO) enrichment.We study the enrichment of a data set
in biological process GO terms (Ashburner al, 2000). We use: 1) all

. We use thep-value threshold 06.05.

4,913 GO terms that annotate (independent on the eviderd®) eb least
two genes from StatNetExpression and 2) 2,088 GO terms thattate
(with respect to an experimental evidence code only) at teasgenes from
StatNetExpression. For a GO tegmwe compute the statistical significance
of its enrichment via the above hypergeometric test foronubeere nowE is

the set of genes from StatNetExpression that are annotgtedybGO term,

A is the gene set in which we are measuring GO term enrichniéig,the
subset of genes fromy' that are annotated by GO tergm andO is the set

of genes in the overlap betweehandG. We use thep-value threshold of
0.05.

GO term overlap. We measure the statistical significance of the overlap of
GO terms enriched in one data set and GO terms enriched iheardrta set
via the above hypergeometric test formula, where riovs the set of GO
terms that annotate at least two genes from StatNetExpresdiis the set

of GO terms enriched in any one of the two data sétds the set of GO
terms enriched in the other data set, @ the set of GO terms that are in
the overlap betweerd andG. We use the-value threshold 0.05.

Disease Ontology (DO) enrichmentWe study the enrichment of a data set
in all 517 DO terms that annotate at least two genes from St&pression
(Du et al, 2009) in the same way as when we study GO term enrichments.
DO term overlap. We study the overlap of DO terms from different data sets
in the same way as when we study GO term overlaps.

Literature validation. We automatically search for a gene in PubMed
(http://wvww.pubmed.gov) and consider the gene to be viailan the
context of aging if its name is mentioned (according to NGH-utilities

— http://www.ncbi.nlm.nih.gov/books/NBK25500/) withdga”, “aging”, or
“ageing” in the title or abstract of at least one article. &lsve manually
search for a gene by reading relevant PubMed artitiese closely

3 RESULTS AND DISCUSSIONS

We studyglobal topologies of the age-specific networks in Section
3.1. We studylocal topologies of proteins in each network and
predict aging-related genes in Sections 3.2.1 and 3.2.2:dlidate
our predictions in Section 3.2.3.

3.1 Global network topologies do not change with age

3.1.1 Global properties of age-specific networks are simila
Average clustering coefficients, average diameters, aaghggt
frequency distributions (Section 2.2.1) of the age-speaiitworks
do not significantly change with age (Supplementary Fig. &d a
S2).

3.1.2 Networks at different ages belong to the same grapiyfam
We compare the fit of the age-specific networks to six network
models (Section 2.2.2). The best-fitting model does notgaavith

age (Supplementary Fig. S1 and S2). Note that our primary goa
is not to identify the best-fitting model for dynamic PPI netks.
Nonetheless, consistent to results for static PPl netwPksulj

et al, 2010; Kuchaieet al, 2011; Ratmanet al, 2009), it is gene
duplication models that fit the age-specific networks thé. bes

3.1.3 Overlap of age-specific networks is larg€he age-specific
networks sharen average93% of the nodes and 90% of the edges,
depending on age, while every pair of the networks shatrésast
86% of the nodes and 79% of the edges (Supplementary Fig. S3).
Hence, the network overlaps are quite large.

3.2 Local topologies of proteins do change with age

3.2.1 Prediction of aging-related genessene expression data
alone revealed only 442 out of thousands of genes as adatgde
(Lu et al, 2004). Thus, while global network analysis failed to




Dynamic networks reveal key players in aging

600

I
S
o

[ Both
W Negative

W
@
=}

o
=]
S

W Positive

600

© Both

W In BrainExpression2008Age
m Negative

B Not in BrainExpression2008Age

<1.E-15

| Positive

w
=]
S

S
S
S]

Now

a o

o o

400

w
S
S]
)
=3
S]

»-\
G
o
t

w
=3
S

)
=3
S]

S

]

f

N
=]
]

3
o

«

o

1

i
1<
S

The number of aging-related genes
The number of aging-related genes

S}
S}

BETWC CLOSEC CLUSC DEGC ECC
Node centrality

@)

GDC KC  UNION 1 2 3

(b)

The number of node centralities

The number of aging-related genes

4 5 6 7

Node centrality

©

Fig. 2. The number of our predicted aging-related genes. Rapshows the number of predictions for each of seven node digisgandividually (BETWC,
CLOSEC, CLUSC, DEGC, ECC, GDC and KC) or by at least one of ti{edNION). Panel(b) shows the number of genes predicted by exaktly

node centralitesk = 1,2,..

., 7). In the panels, blue and red bars show the number of geneathagositively and negatively correlated with age,

respectively. Green bars denote the number of genes forhwdrie centrality measure identifies the given gene as palgitzorrelated with age, while
another measure identifies the same gene as negativelyatedrevith age. Pandk) shows the overlaps of our predictions with aging-relatedegefrom
BrainExpression2008Age “ground truth” data, for each @ity individually or for all centralities combined. Iné¢hpanel, blue and red bars show the number
of predicted genes that are absent from and present in therigrtruth” data, respectively. Thevalues for the overlaps are noted at the top of the bars. The
results are consistent when we use Spearman correlatioed@paging-related genes instead of Pearson correléfieation 2.3.2 and Supplementary Fig.
S4). Also, the results are consistent when we use BioGRIB akthe static PPI network instead of HPRD data (SectioB arid Supplementary Fig. S5).

uncover any aging-related information, it could be thatdjeamic
network data encodes aging-related information only lgcahd
around only a subset of nodes. So, we use node centralityunesas
(Section 2.3.1) to quantify local positions of nodes in thye-a
specific networks and find nodes whose centralities coeeleat|
with age, as such proteins could be key players in aging.

We predict a gene as aging-related if its centrality values a

statistically significantly correlated with age (Sectio.2) for at
least one centrality measure. This results in 515 (8.1%jigtiens
out of all 6,397 genes. Fig. 2 (a) shows the number of agitejee
predictions for each centrality individually and all ceslities
combined. No centrality predicts drastically more genestbthers.

A gene’s centrality can be positively correlated with adpe @ene

becomes more network-central with age) or it can be nedgtive

correlated with age (the gene becomes less central with @ge)
majority of our predictions are negatively correlated watie (Fig.
2). This finding is encouraging, since it has already beeneatghat
aging is associated with failure of “hubs” — highly interoected
and thus network-central proteins (Soltetval.,, 2010).

3.2.2 Relationships and potential redundancies of differede

However, when we study pairwise overlaps of aging-related
predictions produced by the different centralities, thesrtaps
are not very large for any pair of centralities (Fig. 3 (b)hig
result, together with the result from Fig. 2 (b), which shaivat
the majority (~57%) of the predictions are identified by a single
centrality, suggests that the centralities are not redunttaeach
other. When we focus on our aging-related genes predicted by
exactly one centrality measure, in most cases, these firetic
are not even marginally significant with respect to othertredity
measures (Fig. 3(c) and Supplementary Fig. S6), indicatgain
that the different centralities are in general not redubdareach
other. Thus, we keep all 515 predictions, independent onuhger
of centralities supporting the given prediction. Henc#fprwe
denote this set of 515 aging-related genes predicted viardiyn
network analysis aBDyNetAge We denote the complement of this
set, i.e., the set of genes that are present in StatNetEsipndsut not
in DyNetAge, aDyNetComplemenClearly, DyNetComplement is
the set of genes whose centralities do not significantlyetate with
age, and as such, we do not predict them as aging-related.

Next, we study the effect of the number of centralities
supporting a prediction on the quality of the predictionisltnot

centralities We predict a gene as aging-related if its centrality necessarily the case that predictions supported by maryatitias

values correlate well with age with respecttdeast onecentrality.

are more enriched in “ground truth” aging-related gene< (se

So, we study whether any genes are predicted by more thanrone below) compared to predictions supported by only few céitiga

even all of the centralities. We find that almost half (43% )Hof
515 aging-related predictions are supported by multipheredéties,
while the remaining predictions are supported by a singhéraéty
(Fig. 2 (b)). As expected, the number of predictions de@gas the
number of centralities supporting the predictions incesas

(Supplementary Fig. S7). Nonetheless,idtthe case that the
more centralities support a prediction, the more signifidie
correlation of its centrality values with age (as indicabsdlower
p-values in Fig. 3(d)). Hence, to account for the number of
centralities supporting a prediction, we rank the preditto that

We study the redundancy of the different centralities bythe more centralities support it and the more significanictienge

computing, for each pair of centralities, the correlati@tween
their centrality values over all nodes in the given netwoakd
by averaging correlations over the 30 age-specific networs

of its centrality values with age, the more credible the tazh
(Section 2.3.2). (Supplementary Tables S1 and S2 contan th
ranked lists of all predictions.) We validate our scorindgiesoe

observe high correlations between some measures, such@€DE by demonstrating that our 10% highest-scoring predictians
KC, and GDC, or CLOSEC and ECC (Fig. 3 (a) and Supplementartatistically significantly enriched in genes that are eneé$n more

Section S2.1). Thus, some centralities appear to be redurida
others.
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than one “ground truth” data set-¢/alue of 0.003), whereas thisis — PPIs. (But by no means do we claim to ident&jl aging-
not the case for the lower-scoring predictions. related genes.) Hence, since “ground truth” data sets adigbed
computationally, they could be noisy. Also, different “gral
truth” sets could be biased towards different data types fndich

ke Ke the predictions have been made, be it expression, sequence,
epc 05 epe & PPI data. Since different data types could be capturingereifft
D:;z . D:gz 60 functional slices of the cell (Memi3eviét al, 2010; Przytycka
cLusc cLuse % and Kim, 2010), it might not be alarming if the intersections
CLOSEC 05 CLOSEC 2 between the different “ground truth” sets are not very large
BETWC . BETWC . However, since all the sets are aiming to capture the sanegial
289 g 38 o 2 g 8903 phenomenc_m (aging), some_ov_erlap V\_/ou_lc_i be encouragingllyde
b3 AL Ge = bogauwe = we would like to see a statistically significant overlap. Hoer,

) the existence of some overlap would be encouraging evereif th
overlap was not significant, since: (1) the overlap could de |
T Forgenes redicted by 1 node centraliy due to the noisiness of each of the “ground truth” sets, and (2
0 e ey o e ot statistically non-significant results may be biologicailiyportant,
whereas statistically significant results may not be (Mzkyl 1995;
Milenkovic et al, 2010a; Heet al, 2010).
w0 '\\ R R We measure the overlap of DyNetAge with five “ground truth”
cLOSEC » SN e D data sets: BrainExpression2004Age, BrainExpression20€8
BETWC ADExpressionAge, HGPSExpressionAge, and SequenceAge
‘ 5888 (Section 2.1.4). Of the five, BrainExpression2004Age and
5 < BrainExpression2008Age are the most likely to be similar to
DyNetAge (as all three are based brain-related data, brain-
© & related gene expressiondata, and brainaging-related gene
Fig. 3. Relationships between different centralities (BETWC, GQET, expression data; Supplementary Section S2.2), followed by
CLUSC, DEGC, ECC, GDC and KCJa) Spearman correlation between  aApeypressionAge (as our predictions as well as this data are
each pair of centralities averaged over the 30 age-specétwanks, both based oibrain-relateddata and brain-relategkene expression

(b) pairwise overlap of aging-related genes predicted by tHterdit . s
centralities; (c) percentage of genes predicted as aging-relaedalue data), followed by HGPSExpressionAge (as our pr.edlctlms a
well as this data are both based @ene expressiordata),

< 0.01) by exactly one centrality (listed in a given row), whibave a 2 -
“marginal” p-value between 0.01 and 0.05 with respect to one of the sixfollowed by SequenceAge (as our predictions and this data
remaining centralities (listed in a given column), gol distributions ofp- both capture aging-related information but from differetsta
values of our predicted aging-related genes. Panel (c) ednterpreted as  types) (Section 2.1.4). Therefore, a high overlap of DyN®A
follows. For example, many of the predictions identifiedyony CLOSEC  with BrainExpression2004Age or BrainExpression2008Ageiied
(the second last row) are marginally significant with resplecDEGC,  validate our method. A high overlap with ADExpressionAgewdo
ECC, GDC, and KC (intensive color), while almost none of thedictions suggest that our method could capture not only brain agtaed
ide”“ﬁ‘f‘: only bg;] BETV\:CI_(tth‘Z_'T]Stt rOIW)) a;e marﬁim?ig‘ﬁm (‘j"’itg genes but also brain aging-relatdibeasegenes. A high overlap
respect to any otner centrality (lignt color). nence, l1ons maade by . .
CLOSEC only may be more credible than the predictions madgE)WC with HGPSExpressionAge med suggest that our methc.)d (_:Ould
only, as the former are marginally supported by additioritilities, but cap.ture genes rglated to a tissue different from the brasue.
the latter are not. A high overlap with SequenceAge would suggest that our nietho
could capture genes identified from a different data typenain
sequence data.

As hypothesized, DyNetAge overlaps the most (as indicated
Dynamic network analysis gives meaningful and statisticdy by the lowest p-values) with BrainExpression2004Age and
significant aging-related predictions. The number of aging-  BrainExpression2008Age, followed by ADExpressionAge REEXpressionAge
related genes in DyNetAge is statistically significantlygler than  gng SequenceAge, respectively (Supplementary Fig. S8 and
the number _of aging-related genes that we can predict fro”"SuppIementary Table S3). The overlap is statistically ifigamt
the ‘randomized” data 4-score= 7.42, pvalue < 10719 o BrainExpression2004Age, BrainExpression2008Age, d an
Section 2.3.3). ADExpressionAge, marginally significant for HGPSExpressige,
Overlap of our predictions with “ground truth” aging-relat ed and non-significant for SequenceAge (Table 1). The (maligina
genes is statistically significant.Human aging is hard to study significant overlap between DyNetAge and four out of the
experimentally due to long life span and ethical constgailmistead,  five “ground truth” data sets is encouraging. Importantlyere
human aging-related “ground truth” knowledge has bpelicted  though most of the overlaps are statistically significan?%68
more or lesscomputationally by studying gene expression data 31%, 74%, 87%, and 96% of our DyNetAge predictions
or by transferring aging-related knowledge from model sgeto  are not in BrainExpression2004Age, BrainExpression2@@8A
human via sequence comparison. (We intentionally use guote ADExpressionAge, HGPSExpressionAge, and SequenceAge,
as we arenot dealing with true, experimentally obtained ground respectively, and 19% of our predictions are notaimy of the
truth data.) Similarly, here, we aim to computationally gice  five data sets (Supplementary Table S4). This confirms thiz da
new “ground truth” aging-related data from an additionabdgpe
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3.2.3 Validation of predicted aging-related genes
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integration can reveadditionalbiological knowledge compared to performance is typically comparable to that of the “groundgh’
studying individual data types. data, especially when using only gene-GO term associations

Some overlap between DyNetAge and SequenceAge is alsobtained byexperimentalevidence codes (Supplementary Section
encouraging, even though the overlap is non-significanafgsed  S2.3).

above). Further, the overlap @ronger between DyNetAge and GO overlap. Our predictions are further validated byt) high
the other four “ground truth” data sets (BrainExpressidiiZige, overlaps between GO terms from DyNetAge and GO terms
BrainExpression2008Age, ADExpressionAge, and HGPSEswaAd&hm the “ground truth” data sets?) low overlaps between
than between SequenceAge and these four “ground truth” datgo terms from DyNetAge and GO terms from complements
sets. In particular, whereas DyNetAge overlaps signifigantth of the “ground truth” sets, 3) low overlaps between GO
three of the four data sets and marginally significantly with tarms from DyNetComplement and GO terms from the “ground
respect to the fourth data set (see above), SequenceAgs/er tth" sets, and4) high overlaps between GO terms from
significantly with just one of the four data sets (ADExpresgige), DyNetComplement and GO terms from complements of the
almost marginally significantly with respect to two of theufo “ground truth” sets (Table 1 and Supplementary Table S5).
data sets (HGPSExpressionAge and BrainExpression2004Ageror example, when considering gene-GO term associations of
and non-significantly with respect to the remaining data Sefany evidence code, GO terms from DyNetAge significantly
(BrainExpression2008Age) (Supplementary Table S3). &fbeg,  gyerlap with GO terms from three of the five “ground truth”
our DyNetAge appears to be more relevant than SequenceAfe wi gata sets (BrainExpression2004Age, BrainExpression®gegand
respect to the other “ground truth” data sets. The non-Sagmit ADExpressionAge), and some (though non-significant) ayerl
overlaps could be due to potential complementarity of tifleint  \yith GO terms from HGPSExpressionAge and SequenceAge is
types of biological data, noisiness of the “ground truthtada 450 encouraging (Table 1). Equivalent results when cenisig
or some of the “ground truth” data sets being biased towardgene-GO term associations ekperimentalevidence codesnly
brain-related genes. are shown in Supplementary Table S6. Importantly, in thiseca
Recall that the complement of each “ground truth” data setSequenceAge fails to significantly overlap with any otherotgd
(including DyNetAge) is the set of genes not predicted asggi tyth” set, whereas DyNetAge still significantly overlapstiw

related by the given study (Section 2.1.5). Hence, it would b grainExpression2008Age. For details, see Supplementactich
encouraging to seel) low (non-significant) overlaps between go 4.

DyNetAge and complements of the “ground truth” data seéfs,
low (non-significant) overlaps between DyNetComplemendl an DyNetAge (-values betweer.041 and 6 x 10—2), while 14

grﬁue?got:tremseerf' a?]r:jcg)c:r;?hleﬁg:tlzci?t)“ Or\éirrl]a:jpstrsﬁfxvesﬂs diseases are enriched in DyNetComplemepvdlues between
y P P 9 '0.049 and 2.9 x 1073) (Section 2.3.3). Importantly, there is

Indeed, this is what we typically observe in all three casesno overlap between diseases from DyNetAge and those from
(Supplementary Table S3).

DyNetComplement.

Table 1. Overlap and its statistical significance (i.p-value) between The eight diseases in DyNetAge are: brain disease, brain
aging-related genes (ARG), GO terms (GO), and DO terms (DO)tumor, bipolar disorder, connective tissue disease, raallar

in DyNetAge and those in the five “ground truth” aging-rethte acidosis, leukodystrophy, neuroblastoma, and demyéimat
data sets (BrainExpression2004Age (BE4A), BrainExpoee)08Age  disease.Brain diseaseand renal tubular acidosisare enriched
(BE8A), ADExpressionAge (ADEA), HGPSExpressionAge (HEANd  in SequenceAge as welhrain diseaseand bipolar disorder are

DO enrichment. Eight diseases are significantly enriched in

SequenceAge (SA))- enriched in BrainExpression2004Age as well, amdin tumor
BE4A | BESA | ADEA | HEA | SA and neuroblastomaare enriched in BrainExpression2008Age as
ARG | Overlap| 20% 69% 26% | 13% | 9% well. All of these overlaps are encouraging. (We quantifg th
p-value | 5.5E-13| <1E-15| 4.3E-7| 0.06 | 0.39 significance of the overlaps in the following section.) Imtjzalar,
GO | Overlap| 20% 21% 12% | 6% | 17% renal tubular acidosis whose aging-related evidence is supported
p-value | 1.2E-10| 2.5E-14| 2.8E-6| 0.28 | 0.33 by SequenceAge, is kidney-related, whereas DyNetAge has be
DO | Overlap| 25% 25% 0% 0% | 25% predicted from the brain-related data. Capturing this biin-
p-value | 0.03 72E-31 N/A | N/A | 0.70 related disease in DyNetAge is encouraging, especiallyaume

BrainExpression2004Age and BrainExpression2008Agetdaio

so. Further aging-related evidence for these five diseasas c
"be found in the following references denoted by their PubMed
IDs (PMIDs): 11256685, 8040891, 21197651, and 21031036.
Supplementary Table S7 maps PMIDs to full paper references.
Importantly, even three diseases from DyNetAge that aresedis
by all “ground truth” sets caall be linked to aging in the literature
as well (Supplementary Section S2.5).

GO enrichment. When analyzing all gene-GO term associations
146 GO terms are significantly enriched in DyNetAgevalues
between0.047 and 1.5 x 107°), while only 14 GO terms are
enriched in DyNetComplemenp{values betweef.043 and5.1 x
10~°) (Section 2.3.3). Importantly, there is no overlap between
the GO terms from DyNetAge and those from DyNetComplement.
Hence, our aging-related predictions group by functioret re
different than functions of genes that we do not predict dsgag DO overlap. We further validate our predictions by demonstrating:
related. 1) high overlaps between DO terms from DyNetAge and DO
When we focus oaging-relatedGO terms only, itis encouraging terms from the “ground truth” data set8) low overlaps between
that DyNetAge contains genes annotated witfing cell aging DO terms from DyNetAge and DO terms from complements of
and cellular senescenc&0 terms, as well as that DyNetAge's the “ground truth” sets3) low overlaps between DO terms from
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DyNetComplement and DO terms from the “groung truth” sets,

Bioinformatics 25, i63—68.

and4) high overlaps between DO terms from DyNetComplementDyer, M., Murali, T. and Sobral, B. (2008) The landscape ahaa proteins interacting

and DO terms from complements of the “ground truth” sets

(Supplementary Table S8). For example, DO terms from DyjetA
statistically significantly overlap with DO terms from twadf o
the five “ground truth” data sets (BrainExpression2004Age a
BrainExpression2008Age) (Table 1).
DyNetAge does not significantly overlap with ADExpressigei

It is not alarming that

with viruses and other pathogerBLoS Pathog4, e32+.

Ferrarini, L., Bertelli, L., Feala, J., McCulloch, A. D. aRdternostro, G. (2005) A more
efficient search strategy for aging genes based on conitgcBioinformatics 21,
338-348.

Fortney, K., Kotlyar, M. and Jurisica, I. (2010) Inferringet functions of longevity
genes with modular subnetwork biomarkers of Caenorhabditegans aging.
Genome Biologyll, R13+.

Goh, K.et al. (2007) The human disease netwoRNAS 104, 8685-8690.

HGPSEXxpressionAge, or SequenceAge, since none of the threg, H. et al. (2010) Protein interaction network uncovers melanogenesjulatory

overlaps significantly with more than one of the five “groundh”

data sets (Supplementary Table S8). Hence, DyNetAge isrbett

supported by the “ground truth” data than any of these thega d
sets. For details, see Supplementary Sections S2.6 and S2.7

Literature validation.
2.3.3) is prone to errors: we “validate” in this manner equation

of both the “ground truth” aging-related setsd their complements.
Therefore, we aim to validate our predictions manually (®ec
2.3.3). Since manual validation is laborious, we focus om ou
10% highest-scoring predictions (Section 2.3.2). Of these
study predictions that are absent from all “ground truthtsse
namely DVL1, ACACA, HOMER3, GJB1, FKBP8, and H1FO.
We successfully validatall of these genes. DVL1 has been
linked to Alzheimer’s disease (PMID: 11803455), which hasiib
linked to aging itself (PMID: 21197651, 21031036). Expiess
level of ACACA in rat changes with age (PMID: 11044254), and

network components within functional genomics datasBSIC Systems Biology
4.

Janjic, V. and Przulj, N. (2012) The core diseasoMelecular bioSystem$, 2614—25.
Jeong, H., Mason, S. P., Barabasi, A. L. and Oltvai, Z. NO@QQ ethality and centrality

in protein networksNature 411, 41-2.

Automatic literature validation (Section Jonsson, P.F. and Bates, P. A. (2006) Lobal topologicalifeatof cancer proteins in

the human interactoméioinformatics 22, 2291-2297.

Kitsak, M. et al. (2010) Identification of influential spreaders in complexwaks.
Nature Physics6, 888—893.

Koschutzki, D. and Schreiber, F. (2008) Centrality anialysethods for biological
networks and their application to gene regulatory netwo®ene Regulation and
Systems Biology, 193-201.

Kriete, A., Lechner, M., Clearfield, D. and Bohmann, D. (2DCbmputational systems
biology of aging.Wiley Interdiscip Rev Syst Biol Mg8| 414-28.

Kuchaiev, O., Stevanovit, A., Hayes, W. and Przulj, N.120GraphCrunch 2:
Software tool for network modeling, alignment and clustgrBMC Bioinformatics
12.

Liu, G.-H. et al. (2011) Recapitulation of premature ageing with ipscs from
hutchinsongilford progeria syndromBature 472, 221-5.

Lu, T. et al. (2004) Gene regulation and DNA damage in the ageing humain.bra

so its human ortholog is an aging-related candidate. HOMER- Nature 429, 883-891.
1A, a member of the same family as HOMERS, affects theMemisevic, V., Milenkovic, T. and Przulj, N. (2010) An tigrative approach to

level of cognitive performance during aging (PMID: 2305882

The expression of GJB1 is down-regulated with aging (PMID:

22337502). Drug targeting of FKBP38 might successfullginéne
with FKBP38-dependent processes such as programmed el de
in cancer or neurodegenerative diseases (PMID: 21514222¢h
have been linked to aging (PMID: 21197651, 21031036). H14%0 h
been linked to age-related macular degeneration (PMID184G3),
and its rat ortholog causes aging-related alterationyvér (PMID:
8114518).

4 CONCLUSION

Together, our results confirm that dynamic PPl network asigly
via integration of static PPl network data with aging-rethgene
expression data can reveal meaningful key players in aging.
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