arXiv:1310.0894v1 [csIR] 3 Oct 2013

Differential Data Analysis for Recommender Systems

Extended version of RecSys 2013 paper

Richard Chow

Intel Corporation

Hongxia Jin
Samsung Electronics R&D
richard.chow@intel.com hongxia.jin@samsung.com

Bart Knijnenburg*
UC Irvine
bart.k@uci.edu

Gokay Saldamli
Samsung Electronics R&D

gokay.s@samsung.com

ABSTRACT

We present techniques to characterize which data is impor-
tant to a recommender system and which is not. Impor-
tant data is data that contributes most to the accuracy of
the recommendation algorithm, while less important data
contributes less to the accuracy or even decreases it. Char-
acterizing the importance of data has two potential direct
benefits: (1) increased privacy and (2) reduced data man-
agement costs, including storage. For privacy, we enable
increased recommendation accuracy for comparable privacy
levels using existing data obfuscation techniques. For stor-
age, our results indicate that we can achieve large reductions
in recommendation data and yet maintain recommendation
accuracy.

Our main technique is called differential data analysis.
The name is inspired by other sorts of differential analysis,
such as differential power analysis and differential crypt-
analysis, where insight comes through analysis of slightly
differing inputs. In differential data analysis we chunk the
data and compare results in the presence or absence of each
chunk. We present results applying differential data anal-
ysis to two datasets and three different kinds of attributes.
The first attribute is called user hardship. This is a novel
attribute, particularly relevant to location datasets, that in-
dicates how burdensome a data point was to achieve. The
second and third attributes are more standard: timestamp
and user rating. For user rating, we confirm previous work
concerning the increased importance to the recommender of
data corresponding to high and low user ratings.

Keywords

Recommender Systems, Privacy

1. INTRODUCTION

Cloud services that use recommender systems have be-
come increasingly common and most of these systems ex-
ist by virtue of “big data”: mind-boggling amounts of data
are stored and used for recommendation and personaliza-
tion purposes. One example is location recommender sys-
tems (e.g., recommending nearby points-of-interest), a large
and growing area because of the connection with mobile de-
vices. However, with the increased attention to privacy of
user data, many users are uncomfortable with their data

*Work performed while at Samsung Electronics R&D.

being held in the cloud where it could be sold, stolen, or
misused [2]. User location is particularly sensitive [11].

Even the service providers only reluctantly store this user
data, despite its tremendous business value. One reason is
that the data is a liability: it must be protected and sub-
poenas must be responded to. Inadvertent data leaks, hacks,
or release of data to government agencies can be a public re-
lations problem. Another reason is the volume - “big” data
is increasing 60% or more a year [8]. Storage and manage-
ment costs are encouraging advances in technologies such as
data deduplication, currently a multi-billion dollar market.

This begs the question: Is all this data really necessary
for making good recommendations? If not, what part of
the data can be safely discarded while maintaining recom-
mendation quality? This question is one motivation for this
paper, but another motivation comes from the observation
that reducing the amount of data on the server does not
address user privacy concerns. A natural and well-studied
approach to enhance user privacy is to obfuscate before up-
load. How do we minimize the impact to the recommender
of this obfuscation?

Our approach starts with techniques to rank data accord-
ing to its usefulness to the recommender system. In essence,
we identify attribute values which are associated with the
usefulness of the data to the recommender. We test the
association through what we call differential data analysis:
we select data according to attribute values and observe the
effect of the presence and absence of this data on recommen-
dation accuracy.

Ranking of data has applications on both the client and
server side. On the server side, we present techniques for a
recommender server to filter data by rank. These techniques
reduce the amount of data and yet maintain recommenda-
tion accuracy. Data can be filtered as it arrives, or there
may be initial and periodic training periods, in which some
or all data is kept unfiltered in order to learn or update filter-
ing parameters. After filtering, the remaining data is stored
by the recommender for use. Data that is only marginally
useful to the recommender can be deleted by the system (or
even not uploaded by the client). The main advantage of
our technique is that it can significantly reduce the amount
of data needed by the recommender and yet maintain nearly
the same recommendation accuracy.

On the client side, one key application area for our tech-
niques is user privacy. A system could use our techniques
to enable clients, before uploading, to rank the usefulness of

data to the server and then use standard privacy-enhancing
techniques such as obfuscation by adding fake data and/or
filtering data. These obfuscation techniques are well-studied
in the literature. Manual obfuscation is also popular and in-
tuitive among users. Even in 2000 [9], 24% of Internet users
provided fake information to a Web site. User studies in |3}
20, 5| showed that user filters, for instance turning off upload
of location traces from 10 pm — 6 am or outside of certain
regions, “play an important role in capturing people’s pri-
vacy preferences.” We show how these kinds of techniques
might affect recommendation accuracy, and in general we
show how to optimize the filtering of actual data and/or
adding of fake data so that recommendation accuracy is af-
fected least.

2. DIFFERENTIAL DATA ANALYSIS

Our main experimental technique for characterizing the
data with respect to its effect on recommendation accuracy
is differential data analysis. At a high level, we divide the
data into chunks and compare results in the presence or
absence of each chunk. More specifically, suppose a data
attribute ranks each user’s data in some way, for instance
by time or user rating. One can then divide the data into
chunks based on this ranking. For convenience, we often
divide into 10 chunks, or deciles. We can then examine the
relative effect of a particular decile on recommendation ac-
curacy as follows. We form a training and test set as usual.
We rank each user’s training data by the data attribute un-
der examination. We remove the first decile of each user’s
data from the training set and calculate the recommenda-
tion accuracy (using a fixed algorithm). We continue by
removing the second decile of each user’s data, etc., and we
end up with 10 readings for the accuracy, which can then be
compared. A relatively high accuracy reading implies the
corresponding decile is less important to the recommender;
a low accuracy reading implies the corresponding decile is
more important.

Note that with this method the results may depend on the
particular recommendation algorithm employed. In our ex-
periments we found that results did not change when we used
algorithms from the same algorithm family, for example, ma-
trix factorization algorithms in Section We also do not
expect much change when the algorithms give nearly the
same recommendations, for instance, when both are close to
“optimal.”

Note also that there are other ways to do the differential
data comparison. Rather than removing data deciles from
all users simultaneously, an alternative approach would con-
sider each user in isolation. Deciles would be removed from
one user at a time, the effect on recommendation accuracy
would be measured for that user, and accuracy measure-
ments would be aggregated over all users at the end. For
the experiments described in this paper, we used the former
approach since it is less computationally intensive.

3. DATA ATTRIBUTES

We study three data attributes in this work. The first at-
tribute we examine is a “user hardship” for each data point,
the effort it takes the user to attain the data point. The idea
is that data points which are more or less to achieve a data
point may be more or less indicative of a user’s preferences.
This attribute is most intuitively associated with location

datasets. To compute the user hardship on our location
dataset, a user’s location traces can be clustered according
to surface-of-the-earth distance, and points are ranked ac-
cording to their distance to the set of cluster centroids. We
call this the KMeans user hardship measure. Points fur-
thest away from the cluster centroids have a higher user
hardship score, as these locations are further from a user’s
usual haunts and require more work to get to. Another way
to compute the user hardship measure is to measure the dis-
tance to any other point (rather than the cluster centroid).
We call this the Density user hardship measure. We present
experimental results in Section [I.I] on user hardship for a
location dataset.

Besides location, a recent study [5]| found that the time of
visit to a location was an indication of privacy sensitivity.
Hence, the second attribute we investigate is the timestamp
of the data, for instance the time of a location checkin or the
time a rating is given. We investigate whether certain time
periods of the day might correspond to more or less impor-
tant data. In Sections and we present our results on
filtering by timestamps for a location dataset and a rating
dataset.

Finally, our third attribute is one on which there has been
previous work: the actual user rating, for instance the num-
ber of stars given by a user for a product. Previous work
has recognized that data with high and low ratings are more
important to the user [19] and to the recommender [4].

4. EXPERIMENTAL RESULTS

We experimented with our techniques using two actual
datasets, a location dataset and a movie rating dataset. To
measure the effect of various filters or fake data on recom-
mendation accuracy, we adopt an application-specific defini-
tion of recommendation accuracy, as in |1]. For each dataset,
we use standard recommender algorithms and measure the
effect of the filters on the output of these algorithms. For ex-
ample, for movie ratings prediction, we measure the RMSE
with and without the filter for the same algorithm.

4.1 Location Dataset

We modeled a location recommender service using an ac-
tual database of Gowalla check-ins in the United States col-
lected from June to October 201dﬂ The dataset consisted
of 104,875 users and 4,744,089 total locations visited over all
users. We eliminated infrequent and inactive users and con-
fined ourselves to check-ins in from several cities with high
Gowalla activity. We studied mainly Austin, Texas, which
was Gowalla headquarters and had the highest amount of
activity. We also studied three other cities: Los Angeles,
New York, and Dallas (see Table .

We considered a simple scheme of each user giving a bi-
nary positive rating to each location visited. Locations not
visited were considered unrated. We ignored the number of
visits. In fact, in our dataset, over 80% of the ratings were
the result of a single visit by a user, i.e. checking in multiple
times to the same location was less common than checkin in
once. To give users a realistic chance of checking into any
location, we confined ourselves to one city at a time. For ex-
ample, in Austin, we were left with 4,871 users and 245,153
ratings. The number of locations in Austin was 9,577.

We thank Betim Berjani and Thorsten Strufe for sharing
this dataset.

o088 0.062

orl—— m BE N w W -

0046 | 0056

00ss 0.054
o004 0052
0043 005

0042 0,088

0041 0046

Los Angeles

New York

mKMeans mDensity =—All data —~Random

Figure 1: Recommendation accuracy when each decile (measured by user hardship) is omitted from the training set. Two measures of
user hardship are shown, using distance to a user’s KMeans centroids and using density at the point. Also shown are lines corresponding
to accuracy with the entire training set and with random removal of 10% of the data. The figures show that the most useful data for
recommendation are generally the first few deciles, i.e. the locations not far from where a user usually spends time.

City # Users | # Ratings | # Locations
Austin 4871 245153 9577
Dallas 2991 103569 5473
Los Angeles 2957 61891 10151
New York 3213 106125 16861

Table 1: Gowalla statistics for four cities studied.

We randomly chose 20% of each user’s ratings as a held-
out test set (e.g., 49,008 test ratings for Austin). We trained
a Top-N recommender based on the remaining ratings. The
recommender’s task is to predict the likelihood of the re-
maining (user, location)-pairs. For Austin, this is about
46.5 million possible ratings of which 49,008 are test ratings
(visited locations).

We used the following standard algorithm for computing
recommendations, following . We did not try to optimize
the algorithm; our goal was not to achieve the best possible
accuracy, but to choose a representative algorithm and see
the effect on accuracy of various data attribute values. For
each user, we form a binary vector u where ufi] = 1 if the
user has visited location ¢ and uli] = 0 otherwise. From [23],
we calculate the cosine similarity between any two users u
and v by

u-v
Wo,v

T

The normalized similarity measure cy,; of u to location ¢
is given by the fraction of users who checked into location %
weighted by similarity:

P ZVELi wu,v
u,i Zv Way)

where L; are the users who have rated location 7.

We took the user’s top N predicted locations, as given by
our similarity measure, and calculated the number of hits,
i.e. the number of locations in the test set in this set of
N locations. We measured performance using precision and
recall. Precision is the fraction of recommendations that are
hits; precision@5 means the precision with 5 recommenda-
tions. The recall is the number of hits out of the number of
possible hits (i.e., the size of the test set for the user). We
use the macro-averaged recall, the average over all users of
each user’s recall. As explained in , low precision and re-
call numbers are expected with such a Top-N recommender.
For Austin, our recommendations are an order of magni-
tude better than random recommendations: five random
recommendations would have a precision of approximately
5 % (49008,/46500000) = 0.005.

User Hardship. We considered two measures of user hard-
ship. In the first, we used KMeans (with two centroids, mod-
eling home and work/school) to cluster each user’s training
points. We then ranked each user’s training points accord-
ing to their minimum distance to the centroids. In the sec-
ond, for every point, we calculated the minimum distance
to any of the user’s other training points. We call the two
user hardship measures “KMeans” and “Density”. For each
measure, we used differential data analysis to rank a user’s
training points according to the measure: we divided into
deciles, and omitted each decile in turn to see the effect on
accuracy.

Some of our results are displayed in Figure For clar-
ity and lack of space, we take precision@5 as our proxy for
accuracy. We found that recall and precision behaved very
similarly in our experiments. Also similar were precision and
recall with N = 10 and N = 20 recommendations.

Observe that user hardship segregates the data well with
respect to effect on recommendation accuracy. With the
Austin data, we did 20 trials of randomly removing 10% of
the training data and computed a mean and standard de-
viation. The ten sample values of our precision@5 statistic
ranged from —3.76 to 2.60 standard deviations away from
the mean of the random removals, and only 3 of the 10 sam-
ple values were within one standard deviation. In fact, by
removing some deciles the accuracy actually became signif-
icantly better than with all the data, implying these deciles
have the effect of noise.

The general trend in the four cities we tried was that the
lower hardship deciles (i.e., deciles 2, 3, and 4) were most im-
portant for accuracy and higher hardship deciles (i.e., deciles
8, 9, 10) were least important and even could be considered
noise. One intuitive explanation is that low- to mid-user
hardship is the optimum zone for discovering user prefer-
ences. A user would not usually endure high user hardship
without other reasons besides just his preferences. Austin
is a notable exception for the last decile. The Density user
hardship measure generally spreads data points better than
KMeans, perhaps owing to the fact that location traces are
not defined by only two centroids for many users. We ex-
pect the two measures to become closer as the number of
KMeans centroids increases.

Timestamp. The Gowalla dataset consists of timestamped
checkins, so we also tested whether the timestamp attribute
could be used to predict the importance of data for the rec-
ommender. These timestamps are in local time of the user.
We used our technique of differential data analysis and di-
vided up the day into time intervals so that removal of check-

ins for each interval corresponds to removing about 10-15%
of the data from the training set. We chose this granularity
of time interval so one can easily compare with removing
10% of the data randomly or with removing a decile of data
using some other attribute. Note that in our experiments we
used a binary measure of the user’s preference, so removal
of a checkin from one time interval does not affect the train-
ing set in the case that the user has checked into the same
location in a different time interval. For simplicity, we did
not consider the day of the week.

Our results are shown in Figure Overall, timestamp
seems less predictive of importance than user hardship, al-
though there are some intriguing findings. The most useful
data seems to be around 8 p.m. — midnight, and it appears
that post-2 a.m. data is least useful. In three out of the four
cities, the data from 2 a.m. — 4 a.m. seems to even confuse
the recommender and decreases accuracy. There are also
notable differences in the cities, perhaps related to culture
and geography (at least for Gowalla users). For instance,
the more important and less important data for Los Ange-
les seems to come a few hours later than for the other cities.

4.2 Stability

In this section we examine the stability of our findings, i.e.
whether the relative ranking of deciles will change with new
data. We used the Austin data (the city with the most data)
and the Density user hardship measure. We performed two
experiments, one indicating stability with respect to differ-
ent test and training sets and one indicating stability with
respect to different sets of users. We found that using differ-
ent sets of users was slightly less stable than using different
data sets (from the same set of users), but in either case there
was consistency in the less important and more important
deciles. We did not study stability over time, although that
would be another interesting dimension to study.

In our first experiment, we divided the users into four
disjoint sets (each containing around 1200 users) and plotted
accuracy versus decile removed for each set of users (see
Figure . We show the plots together with a constant shift
for each plot so that they are all approximately centered. We
also show the plot with all users for comparison. With any
of the user sets, we get a similar qualitative ranking of the
deciles: the last and the closer deciles are important, and
the middle deciles through Decile 9 are less important.

In our second experiment, we examined stability with dif-
ferent sets of data by dividing the Austin data into 5 equal
pieces and repeating our experiment 5 times with each piece
serving as part of the test set for one experiment. The result-
ing plots of accuracy versus decile removed all have similar
shapes, but appear to be shifted relative to one another (due
to the differing test sets). We show the plots in Figure
again with a constant shift. We note that for all trials, the
four most important deciles were always deciles 1 through
3 and 10. The five least important deciles were always con-
tained in deciles 4 through 9.

4.3 Movie Ratings Dataset

We consider movie recommendation as another case study.
We used the well-studied MovieLens 1M dataset which
contains 1,000,209 anonymous ratings of 3,952 movies made
by 6,040 users. Ratings in MovieLens range from one star
to five stars. We divided the dataset into a training set and
test set by randomly putting 20% of the ratings for each user

in a held-out test set. The remainder is the training set.

To measure accuracy, we used the common Root Mean
Squared Error (RMSE) and Mean Average Error (MAE)
metrics , which compare the actual values in the test
set with the values predicted by our algorithms. For clar-
ity and space, we present only RMSE results; MAE results
were very similar. We present results with Biased Stochas-
tic Gradient Descent (Biased SGD), a common collaborative
filtering algorithm to predict user ratings for movies in our
dataset. We also used another common collaborative filter-
ing algorithm, Alternating Least Squares (ALS), but results
were again very similar so we do not present them. The al-
gorithms are based on a latent factor model found through
matrix factorization (see for a detailed description). We
used 20 factors, so users and movies are each summarized by
factor vectors of length 20. We did not search for optimal
algorithms or do extensive parameter selection. Again, our
goal was not to reduce error but to see which parts of the
data had the most effect on error. For our algorithms, we
used the implementations from .

Berkovsky et al. showed previously that high/low rat-
ings were most important to the recommender. We vali-
dated their results using our technique of differential data
analysis. We divided each user’s ratings into 10 equal deciles
according to value, so that Decile 1 contains the user’s lowest
ratings and Decile 10 contains the users high ratings. When
necessary, movies with the same rating were split among the
deciles in a random way. For example, if a user has rated
only ten movies and given all the movies 3 stars, which movie
is in Decile 1 and which is in Decile 10 is random. Figure E|
shows some of our results when we remove each decile in
turn. We ordered each user’s ratings in the training set and
examined the effect of removing successive rating deciles.
For example, when we removed the 10% lowest ratings from
each user, we obtained an RMSE of about 0.89. From the
figure, it is clear that the high and low ratings are the most
important for recommendation accuracy. We also observe
that removing deciles 3 or 4 affect recommendation accu-
racy the least.

0.9

0.89 H

Movielens
w ’ W Bias SGD
g Z':Z —All data
e ' L — Random

0.85
0.84

0.83
1 2 3 4 5 6 7 8 9 10

Decile # removed

Figure 4: MovieLens Data. Decile 1 contains the user’s lowest
ratings and Decile 10 contains the user’s highest ratings. If nec-
essary, ratings were split randomly across deciles. For example,
for a particular user, both decile 1 and decile 2 may contain 1-star
ratings; whether a 1-star rating goes in decile 1 or 2 is random.
We also show the results with all data (no deciles deleted) and
random removal of 10% of the data.

4.4 Synthetic Ratings Data

Here we investigate the generality of Berkovsky et al.’s
observation. Are high and low user ratings always com-
paratively most important for recommendation accuracy?
We generated a synthetic rating dataset, assumed to have
the same number of users and movies as the MovieLens

0052
0051

0049
0048
0047
0046
0045
0044
0043

0.0575
0057

0.048

005 |

0.0565
0056
00555
0055
00545
0054
00535
0053
00525

0.045

0.0445
0.044 |

00435
0.043
00425
0.042
00415
0.041
00405

0.047 |

0045 |

0.044

0082

y 0041

M Precision @5

& N S N3 W A < & & 3 » &

& § & § NS & LA (N

P R N A § &0“9 A R
—All data

Figure 2: Recommendation accuracy when distinct time intervals are omitted from the Gowalla training set. Each interval corresponds

to about 10-15% of all data.

—Austin

{

Precision@5

—Austin A
E? ‘% §
:% — }&

(a) Different user sets

(b) Different test and training sets

Figure 3: Stability of Results. For (a), we randomly divided the Austin data into four sets of users, each containing around 1200 users,
and computed accuracy per decile removed for each set. Also shown is the same plot for all users, in bold. Since we were only interested
in relative values, we centered by vertically translating each plot. For (b), we randomly divided each Austin user’s data into 5 equal
pieces and repeated our differential data experiment with the user hardship attribute 5 times, with the test set consisting of one of the
pieces from each user and the training set consisting of the remaining four pieces. The original training and test set is in bold.

14

1.2

' Synthetic

0.8

mmm Bias SGD

0.6

RMSE

0.4
0.2

1 2

3 4 5 6 7
Decile # removed

8 9

10

—All data

Figure 5: Synthetic Data with same number of users and movies
as MovieLens. When we assume a latent factor structure for the
users and movies and use differential data analysis, we also see
the relative importance of high/low ratings.

dataset.

We also assumed 20 latent user factors and 20

latent movie factors. We generated random U = 6040-by-20
and V = 3952-by-20 matrices by selecting entries indepen-
dently from a normal distribution with mean 0 and variance
1. We multiplied UV to get the full synthetic rating matrix
and randomly selected 1,000,209 ratings to get a MovieLens-
like sparse dataset. We applied our technique of differential
data analysis: we selected 20% of the ratings at random as
the test set and calculated recommendation accuracy after
removal of each rating decile. Our results are shown in Fig-
ure[5] The plot suggests that high and low ratings are indeed
most important for the recommender (assuming the validity
of latent factor models for the data) since this result holds
even for randomly generated factor matrices and is thus a
mathematical consequence of a low-dimensional ratings ma-

trix.

S. APPLICATIONS

We discuss here how our techniques might be applied in a

recommender system in two areas: (1) user privacy through
obfuscation and (2) data reduction. We show that data ob-
fuscation or removal can perform significantly better using
our results and attributes such as user hardship (location),
timestamp (location), and/or rating (movies).

5.1 Privacy through Obfuscation

For ease of exposition, we discuss privacy of locations, but
our techniques also apply to general item recommendations.
We take a generic approach to obfuscation, instead of tar-
geting the most sensitive locations only, because we assume
the system does not know the privacy-sensitivity for a given
user of any particular location. There is some experimen-
tal evidence for general trends, such as locations with lower
diversity of visitors might be more sensitive and that loca-
tions visited during work hours might be less sensitive .
Nevertheless, the privacy-sensitivity of locations is highly in-
dividual. It is an interesting question whether one can elicit
a user’s privacy-sensitive locations without overly burden-
ing the user. In this work, for simplicity, we assume the
system lacks any such knowledge and this is the case with
most existing systems today.

Standard obfuscation strategies are adding fake ratings
and suppressing ratings (for instance, see) before send-
ing the data to the server. Fake and suppressed ratings pro-
vide plausible deniability to the user, essentially a variant
on randomized response , a standard technique in sur-
veys to gather statistics and yet protect confidentiality. For
instance, for each unvisited location, with a certain proba-
bility, the user lies and says the location is visited. This way,
the user can claim for any location that she did not visit it,
because any visited location is potentially a lie. Similarly,
suppressed ratings allow the user to claim that she was at a
location even though the system shows no record of it.

10

[Decile1 [2 [3 [4 [5 [6 [7 [8]
[tz 2

9
7 | 1.27 | -1.45 |

Table 2: Austin z-scores for user hardship, Density measure.

The main point of this section is that these standard ob-
fuscation techniques can be enhanced using our results. The
idea is that the obfuscation can be done intelligently in a way
that preserves the more important data when suppressing
data and that does not interfere with the data signal when
adding fake data. More concretely, for suppression we can
measure the relative importance of a data chunk or interval
with a z-score which is then used to guide the obfuscation
process. Fixing a recommendation algorithm, for interval i,
the z-score z; is derived using differential data analysis and
is defined by:

a; —a

Zi = ,
ag

where a; is the accuracy with interval ¢ removed, a is the
average accuracy, and o is the standard deviation of the
accuracies. For instance, analysis on Austin data as in Fig-
ure |1} gives z-scores as shown in Table

We assume these z-scores are considered public data that
is made available to the users. With the z-scores, users can
do a client-side computation to determine which data to
filter or add. Calculating the z-scores of course requires
a certain amount of potentially private data, which seems
counter to the purpose of our approach. However, we note
that this bootstrap data can be collected anonymously, as
we are calculating z-scores for a population as a whole. The
bootstrap data could also come from the portion of users
who are less privacy-sensitive and willing to share their data
with the server.

In the remainder of this section, we give results of experi-
ments on the Gowalla dataset showing how client-side imple-
mentation of standard privacy-enhancing techniques such as
suppression of ratings, adding fake ratings, and both tech-
niques combined can be enhanced using our techniques.

We experimented with standard and well-known obfusca-
tion measures in this paper; our aim is to show how the
efficiency of these standard obfuscation measures might be
improved, not to design new obfuscation measures. For
background, we list some objections to these obfuscation
measures here and note that these objections are still valid
even after incorporating our techniques. First, private data
may still be derivable from obfuscated data, see [24]. Sec-
ond, the technique of fake ratings (like the k-anonymity pri-
vacy measure) suffers from a potential lack of diversity. If
a vegetarian is embarrassed about his visits to steakhouses,
then fake checkins consisting of all barbecue and hamburger
restaurants will not provide the desired plausible deniability.
Third, auxiliary data is not considered: it may be possible,
for instance, to link a user’s obfuscated data to the same
user’s unobfuscated data in another dataset (see [15]). Fi-
nally, these obfuscation measures are meant to obscure data
points considered in isolation and do less well in hiding ag-
gregate statistics across multiple data points; for instance,
the general region where a user lives and works may still be
discernible. Hence, these standard obfuscation measures are
far from perfect, but there is a lack of practical alternatives.
Intelligent Data Suppression. Here we discuss intelli-
gent data suppression using our techniques.In Figure [6] we
show the results of a simple algorithm for optimizing which

0,023

o« AUStin

0021 ‘:ﬁ -
002 \ —
0.019

0018 A%i
0017

~ beta =4.0

w— beta = 0.0
—#— beta=0.4

—¥— beta=0.8

beta=16
beta=2.4

Precision@5

beta=3.2

0016

0,015

Figure 6: Accuracy per percentage of data suppressed. (3 is a
tuning factor that weights the importance of high and low z-scores
in our algorithm. The bold plot corresponds to 8 = 0.0, or even
suppression, where there is a uniform probability of any point
being suppressed. For higher percentages of suppressed data, even
suppression does not do as well as uneven suppression, where the
probability of suppression varies depending on the decile. Note
that precision@5 for no deletion is 0.0216, comparable to 30%
deletion using intelligent data suppression.

data to suppress. We choose an overall suppression level «
and a system parameter 5 which tunes the importance of
high and low z-scores. Then, for a decile with z-score z, let
t = %5 /(eP% 4+ e7P%s). We suppress ratings according to
the following formula:

iz = {

The formula was designed so that p — 1 as zs becomes
large (positive), p — 0 as z; becomes large (negative), and
if z5 is 0, then p has the value «, the overall suppression
level. Finally, we normalize by p = p/k, where the constant
k is chosen so that the average suppression level over all
deciles is a, i.e., %0 > p = a. For each data point in the
decile, we suppress, or delete, the point with probability
p. We call this uneven obfuscation, as the probability of
deletion depends on the decile a point belongs to; deciles
considered less important to the recommender have a higher
suppression probability.

For the experiment in Figure[6] we divided the Austin data
into two halves, Half A and Half B. Half A can be thought of
as training data and Half B as test data. Half A itself was
divided into 80% training and 20% test in order to apply
differential data analysis to calculate z-scores, which were
then used in the suppression experiment on Half B. Figure[f]
shows uneven obfuscation does markedly better than even
obfuscation for overall suppression levels larger than 10%.
Values of 8 around 3 or larger do best. Large values of 3
correspond to a strategy of simply deleting only from the
intervals with positive z-scores.

Fake Data. In addition to suppressing actual data, our
differential data analysis techniques can also be used for ef-
fectively adding fake data. In Figure|7] we took the Gowalla
training data and created random fake data, generating for
each user 10 times the number of his actual checkins. We
applied our differential data analysis technique to determine
which fake data impacts recommendation accuracy most as
follows. We divided each user’s fake data into deciles using
our two user hardship measures, the Density measure (dis-
tance to actual data) and the KMeans measure (distance
to KMeans centroids). We added each decile in turn to see
the effect on recommender accuracy (using our held out test
data). Each decile of a user’s fake data contains the same

2ait
2l —a)t+2a—1

ift<1/2
ift>1/2

Austin

mKMeans mDensity

o0m

. Los Angeles

New York

Random

Figure 7: Recommendation accuracy when adding 100% fake data as a function of decile. We generated fake ratings for each user in an
amount ten times his actual ratings. Ranking these ratings and applying differential data analysis shows that recommendation accuracy

is affected least by the fake data with least user hardship values.

number of data points as all his actual data. Figuremshows
the results for Austin, New York, Dallas, and LA. Dallas,
LA, and New York are consistent. Austin is a little different
(as with data suppression, see Figure, but still similar.

The results say that fake data with small user hardship
values interferes least with recommendation accuracy. This
may be surprising at first, since nearby businesses may be
quite diverse. For instance, fake data near an actual checkin
to a Mexican restaurant may consist of a bike shop, a drug
store, and a flower shop. One intuitive explanation for
our result is that there is a tendency for businesses near
each other to target like-minded consumers, for instance the
“Whole Foods effect,” @ in which an entire shopping center
attracts affluent, health-oriented consumers.

Note that with data suppression of amounts greater than

10% we must spread the suppression across multiple deciles,
hence the intelligent data suppression algorithms in the pre-
vious section. In contrast, there is no need to take fake data
from multiple deciles, since in practice as much fake data
as desired can be generated in any decile. However, if fake
data is all chosen from the same decile, it is possible that
using geometric arguments one can infer some aspects of the
real data. We did not experiment in this direction, but if
this is a concern one can trade some privacy for accuracy by
mixing the deciles and implementing intelligent data faking
algorithms, e.g. half of the fake data from the 9th decile and
half from the other deciles.
Combined data suppression and faking. Finally, we ex-
perimented with a more realistic obfuscation scenario, com-
bining data suppression and fake data. We considered the
case of a replacement strategy where each actual rating re-
moved is replaced with one fake rating. We divided the
Austin Gowalla data into a training half and a test half,
Half A and Half B.

To remove ratings, we used differential data analysis on
Half A to generate z-scores (see Figure for each user
hardship decile (Density measure). We used these z-scores
on Half B (with 8 = 3.0) to reduce data from percentages
ranging from 10% to 50%.

To add fake ratings in the same amounts to Half B, we
generated five times the amount of original data for Half A
and divided into deciles according to user hardship (Density
measure). We obtained a plot as in Figure This data
for Half A suggested that fake data in the 9th decile affects
accuracy the least, so we generated random data for Half B
(one times to five times the original amount) and added the
9th decile of this fake data to Half B. In this way, we have
replaced differing percentages of the original data with fake
data. Our results are shown in Figure[J] We obtain signifi-
cantly higher accuracy compared to random replacement.

0.023

Austin (Half B)

0.022

]

0.019

m |ntelligent
replacement

Random

-

2

10% 20% 30% 40% 50%

0.018

0.017

0.016

0.015

Figure 9: Intelligent replacement for Half A of the Gowalla
dataset, where removal and substitution is done intelligently ac-
cording to differential analysis on Half B. We compare accuracy
to random replacement.

5.2 Data Reduction

Even when users are willing to share data with the server,
our techniques have potential applications in data savings.
Here we are suggesting that a recommender system can use
our techniques to purge data that is less useful or even con-
fusing to the system. In Figure [I0] we show results for an
experiment with the Gowalla dataset for the city of Austin.
Again, we divided the Austin Gowalla data into a training
half and a test half, Half A and Half B. We used Half A
to determine which data to remove from Half B. Consult-
ing Figures and we see the 2 am - 4 am time period
was noise for Austin Half A, so we removed it from Half
B. Then, we successively removed the user hardship deciles
(Density measure) contributing the least to recommendation
accuracy of Half A. We were able to remove approximately
40% of the training data from Half B and still maintain rec-
ommendation accuracy comparable to the accuracy with all

the training data.

oo Austin (Half B)
-
meon

2004:00 200400,
(86%) decies:§ eciles: 67,9 ecles:
(79%) o (61%) (52%) (a3%)

Data Removed
(% remaining)

= Uneven

—All data

Random

Precision

Figure 10: Recommendation accuracy for the Gowalla dataset as
increasing numbers of user hardship deciles are removed from the
training set. The time interval from 2 am — 4 am is removed
initially. Recommendation accuracy can be maintained while re-
moving approximately 40% of the data.

Austin (Half A)

0.0215
0021 4

Austin (Half A)

00205 -

002

00195
0019
00185

0018

(a) User hardship

(b) 50% fake data

(c) Timestamp

Figure 8: Results of differential analysis on Austin Half A. These results were applied to Austin Half B in order to efficiently remove
data and replace with fake, achieving significantly higher recommendation accuracy compared to random suppression and replacement.
These results were also applied to demonstrate data reduction on Austin Half B.

6. RELATED WORK

A natural approach to enhance privacy of recommender
data is to obfuscate data before uploading to the server by
adding noise, e.g. . As shown originally in , collab-
orative filtering algorithms can still work well on obfuscated
data, as the noise effects will go away with a large number of
users. We view obfuscation as complementary to this work -
we illustrate in Section [5.1] how the efficiency of obfuscation
can be improved with the techniques in this paper. This ap-
proach is similar to that in [25], where the server sends the
client a linear mapping to apply to his user ratings vector,
essentially applying uneven obfuscation. Also close to the
spirit of our work and also in the context of obfuscation,
recognized the importance of high and low user ratings for
the recommender system, noting that high and low ratings
were most useful in the sense that their system was less tol-
erant of obfuscating the extreme ratings.

We contrast this previous work with ours in two ways.
First, our techniques apply to not just user rating data. In
particular, location data comes with a distance measure that
is absent from, say, movie ratings data, and we use this dis-
tance measure as an integral part of our technique. Sec-
ond, we give intuitive, easy-to-understand characterizations
of which data is most important to the recommender system,
unlike where the characterization is abstract.

A body of work for location privacy concentrates on lo-
calizing the user at certain points of time, e.g., see for a
survey. The data generally consists of timestamped location
checkins, and the goal is to identify or link these points. For
our problem of privacy-preserving location recommendation,
we consider the location checkins to be sporadic (even with-
out a timestamp), so the privacy concerns are more about
each location in isolation. However, for both this body of
work and ours, the distance metric on location checkins is
of central importance. For this body of work, distance is an
integral part of obfuscation and inference algorithms. For
us, distance is a critical ingredient for evaluating relative
importance of data points to the recommender system.

Differential privacy is a server-side approach to protecting
individual privacy [7] where data is obfuscated by the server
so that the presence or absence of individual records cannot
be inferred. This is a topic unrelated to the subject of this
paper, despite our use of the word “differential” and our
application to privacy.

7. CONCLUSION AND FUTURE WORK

We presented a simple technique called differential data
analysis. Using a dataset of Gowalla checkins and a novel

data attribute called user hardship, we found that locations
closer to a user’s usual haunts were most important and lo-
cations further away were less important: low- to mid-user
hardship is thus the optimum zone for discovering user pref-
erences. We see the concept of user hardship as applying
to other types of data besides location data. For instance,
activity data can be classified according to difficulty or re-
sources required (mountain biking vs. going to a movie),
and it would be interesting to do a similar analysis with
an activity recommender. We also confirmed previous work
with the MovieLens dataset that showed high and low user
ratings are most important to the recommender. For times-
tamp, using the Gowalla checkins, we found that in general
very late-night data is least useful and may even confuse the
recommender. Interestingly, our results differ from city to
city. The root causes for these differences deserve further
study. Many other data attributes are also worth explor-
ing. One example is social network data. Such graph-based
data has become a common ingredient in recommender al-
gorithms, and it would be interesting to explore which part
of the graph is actually important to the recommender.

Our work has applications to user privacy and data reduc-
tion. One of the main challenges of recommender systems
is user privacy, as the data to build a user profile can be
potentially sensitive or embarrassing. Adding fake data and
suppressing actual data are standard tactics to enhance user
privacy, and one consequence of our work is to make these
tactics more efficient. For instance, we proposed removing
locations and adding fake locations selectively to maintain
recommender accuracy.

8. REFERENCES

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. In
SIGMOD Conference, pages 439-450, 2000.

[2] N. F. Awad and M. S. Krishnan. The personalization privacy
paradox: An empirical evaluation of information transparency
and the willingness to be profiled online for personalization.
MIS Quarterly, 30(1):13-28, 2006.

[3] M. Benisch, P. G. Kelley, N. Sadeh, and L. F. Cranor.
Capturing location-privacy preferences: quantifying accuracy
and user-burden tradeoffs. Personal Ubiquitous Comput.,
15(7):679-694, Oct. 2011.

[4] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci. Enhancing
privacy and preserving accuracy of a distributed collaborative
filtering. RecSys ’07, pages 9-16, New York, NY, USA, 2007.

5]
(6]

(7
8l

Carnegie Mellon University. Locaccino. http://locaccino.org/.
W. Doig. Whole Foods is coming? Time to buy. http://www.
salon.com/2012/05/05/whole_foods_is_coming_time_to_buy/.

C. Dwork. A firm foundation for private data analysis.
Commun. ACM, 54(1):86-95, 2011.

K. Fogarty. Big data means big storage choices.
http://www.informationweek.com/storage/systems/
big-data-means-big-storage-choices/240004436.

http://locaccino.org/
http://www.salon.com/2012/05/05/whole_foods_is_coming_time_to_buy/
http://www.salon.com/2012/05/05/whole_foods_is_coming_time_to_buy/
http://www.informationweek.com/storage/systems/big-data-means-big-storage-choices/240004436
http://www.informationweek.com/storage/systems/big-data-means-big-storage-choices/240004436

g

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

(28]

S. Fox. Trust and privacy online: Why americans want to
rewrite the rules. http://www.pewinternet.org/~/media//Files/
Reports/2000/PIP_Trust_Privacy_Report.pdf.pdf, 2000.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM
Trans. Inf. Syst., 22(1):5-53, Jan. 2004.

M. M. Jan Lauren, Aaron Smith. Privacy and data
management on mobile devices. http://pewinternet.org/~/
media//Files/Reports/2012/PIP_MobilePrivacyManagement.pdf,
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30-37,
Aug. 2009.

J. Krumm. A survey of computational location privacy.
Personal Ubiquitous Comput., 13(6):391-399, Aug. 2009.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Graphlab: A new framework for parallel
machine learning. CoRR, abs/1006.4990, 2010.

A. Narayanan and V. Shmatikov. Robust de-anonymization of
large sparse datasets. In IEEE Symposium on Security and
Privacy, pages 111-125, 2008.

J. Parra-Arnau, D. Rebollo-Monedero, and J. Forné. A
privacy-protecting architecture for collaborative filtering via
forgery and suppression of ratings. In DPM/SETOP, pages
42-57, 2011.

H. Polat and W. Du. Privacy-preserving collaborative filtering
using randomized perturbation techniques. ICDM ’03, pages
625—628, Washington, DC, USA, 2003. IEEE Computer Society.
D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and

J. Crowcroft. SpotME If You Can: Randomized Responses for
Location Obfuscation on Mobile Phones. ICDCS, Minneapolis,
USA, June 2011.

U. Shardanand and P. Maes. Social information filtering:
Algorithms for automating "word of mouth”. In CHI, pages
210-217, 1995.

E. Toch, J. Cranshaw, P. H. Drielsma, J. Y. Tsai, P. G. Kelley,
J. Springfield, L. Cranor, J. Hong, and N. Sadeh. Empirical
models of privacy in location sharing. Ubicomp ’10, pages
129-138, New York, NY, USA, 2010. ACM.

University of Minnesota. Movielens. http://movielens.umn.edu/.
S. L. Warner. Randomized response: A survey technique for
eliminating evasive answer bias. In Journal of the American
Statistical Association, volume 60(309), pages 6369, 1965.
M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting
geographical influence for collaborative point-of-interest
recommendation. SIGIR ’11, pages 325-334, New York, NY,
USA, 2011. ACM.

S. Zhang, J. Ford, and F. Makedon. Deriving private
information from randomly perturbed ratings. In Siam
Conference on Data Mining, 2006.

S. Zhang, J. Ford, and F. Makedon. A privacy-preserving
collaborative filtering scheme with two-way communication. In
EC, pages 316-323, 2006.

http://www.pewinternet.org/~/media//Files/Reports/2000/PIP_Trust_Privacy_Report.pdf.pdf
http://www.pewinternet.org/~/media//Files/Reports/2000/PIP_Trust_Privacy_Report.pdf.pdf
http://pewinternet.org/~/media//Files/Reports/2012/PIP_MobilePrivacyManagement.pdf
http://pewinternet.org/~/media//Files/Reports/2012/PIP_MobilePrivacyManagement.pdf
http://movielens.umn.edu/

	1 Introduction
	2 Differential Data Analysis
	3 Data Attributes
	4 Experimental Results
	4.1 Location Dataset
	4.2 Stability
	4.3 Movie Ratings Dataset
	4.4 Synthetic Ratings Data

	5 Applications
	5.1 Privacy through Obfuscation
	5.2 Data Reduction

	6 Related Work
	7 Conclusion and Future Work
	8 References

