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Visual object tracking is a significant computer vision task which can be applied to many domains such as visual
surveillance, human computer interaction, and video compression. Despite extensive research on this topic, it still
suffers from difficulties in handling complex object appearance changes caused by factors such as illumination vari-
ation, partial occlusion, shape deformation, and camera motion. Therefore, effective modeling of the 2D appearance
of tracked objects is a key issue for the success of a visual tracker. In the literature, researchers have proposed a
variety of 2D appearance models.

To help readers swiftly learn the recent advances in 2D appearance models for visual object tracking, we con-
tribute this survey, which provides a detailed review of the existing 2D appearance models. In particular, this survey
takes a module-based architecture that enables readers to easily grasp the key points of visual object tracking. In this
survey, we first decompose the problem of appearance modeling into two different processing stages: visual represen-
tation and statistical modeling. Then, different 2D appearance models are categorized and discussed with respect
to their composition modules. Finally, we address several issues of interest as well as the remaining challenges for
future research on this topic.

The contributions of this survey are four-fold. First, we review the literature of visual representations according to
their feature-construction mechanisms (i.e., local and global). Second, the existing statistical modeling schemes for
tracking-by-detection are reviewed according to their model-construction mechanisms: generative, discriminative,
and hybrid generative-discriminative. Third, each type of visual representations or statistical modeling techniques
is analyzed and discussed from a theoretical or practical viewpoint. Fourth, the existing benchmark resources (e.g.,
source code and video datasets) are examined in this survey.

Categories and Subject Descriptors: I.4.8 [Image Processing and Computer Vision]: Scene Analysis–Tracking

General Terms: Algorithms, Performances

Additional Key Words and Phrases: Visual object tracking, appearance model, features, statistical modeling

1. INTRODUCTION
One of the main goals of computer vision is to enable computers to replicate the basic func-
tions of human vision such as motion perception and scene understanding. To achieve the
goal of intelligent motion perception, much effort has been spent on visual object tracking,
which is one of the most important and challenging research topics in computer vision. Essen-
tially, the core of visual object tracking is to robustly estimate the motion state (i.e., location,
orientation, size, etc.) of a target object in each frame of an input image sequence.

In recent years, a large body of research on visual object tracking has been published in
the literature. Research interest in visual object tracking comes from the fact that it has a
wide range of real-world applications, including visual surveillance, traffic flow monitoring,
video compression, and human-computer interaction. For example, visual object tracking is
successfully applied to monitor human activities in residential areas, parking lots, and banks
(e.g., W4 system [Haritaoglu et al. 2000] and VSAM project [Collins et al. 2000]). In the
field of traffic transportation, visual object tracking is also widely used to cope with traffic
flow monitoring [Coifman et al. 1998], traffic accident detection [Tai et al. 2004], pedestrian
counting [Masoud and Papanikolopoulos 2001], and so on. Moreover, visual object tracking
is utilized by the MPEG-4 video compression standard [Sikora 1997] to automatically detect
and track moving objects in videos. As a result, more encoding bytes are assigned to moving
objects while fewer encoding bytes are for redundant backgrounds. Visual object tracking
also has several human-computer interaction applications such as hand gesture recognition
[Pavlovie et al. 1997] and mobile video conferencing [Paschalakis and Bober 2004].
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A:2 A Survey of Appearance Models in Visual Object Tracking

Fig. 1: Illustration of complicated appearance changes in visual object tracking.

Note that all the above applications heavily rely on the information provided by a robust
visual object tracking method. If such information is not available, these applications would
be no longer valid. Therefore, robust visual object tracking is a key issue to make these ap-
plications viable.

1.1. Overview of visual object tracking
In general, a typical visual object tracking system is composed of four modules: object initial-
ization, appearance modeling, motion estimation, and object localization.

— Object initialization. This may be manual or automatic. Manual initialization is performed
by users to annotate object locations with bounding boxes or ellipses. In contrast, automatic
initialization is usually achieved by object detectors (e.g., face or human detectors).

— Appearance modeling. This generally consists of two components: visual representation and
statistical modeling. Visual representation focuses on how to construct robust object de-
scriptors using different types of visual features. Statistical modeling concentrates on how
to build effective mathematical models for object identification using statistical learning
techniques.

— Motion estimation. This is formulated as a dynamic state estimation problem: xt =
f(xt−1, vt−1) and zt = h(xt, wt), where xt is the current state, f is the state evolution func-
tion, vt−1 is the evolution process noise, zt is the current observation, h denotes the measure-
ment function, and wt is the measurement noise. The task of motion estimation is usually
completed by utilizing predictors such as linear regression techniques [Ellis et al. 2010],
Kalman filters [Kalman 1960], or particle filters [Isard and Blake 1998; Arulampalam et al.
2002; Shen et al. 2005].

— Object localization. This is performed by a greedy search or maximum a posterior estimation
based on motion estimation.

1.2. Challenges in developing robust appearance models
Many issues have made robust visual object tracking very challenging, including (i) low-
quality camera sensors (e.g., low frame rate, low resolution, low bit-depth, and color distor-
tion); (ii) challenging factors (e.g., non-rigid object tracking, small-size object tracking, track-
ing a varying number of objects, and complicated pose estimation); (iii) real-time processing
requirements; (iv) object tracking across cameras with non-overlapping views [Javed et al.
2008]; and (v) object appearance variations (as shown in Fig. 1) caused by several compli-
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Fig. 2: Illustration of object tracking forms. (a) bounding box, (b) ellipse, (c) contour, (d) artic-
ulation block, (e) interest point, (f) silhouette.

cated factors (e.g., environmental illumination changes, rapid camera motions, full occlusion,
noise disturbance, non-rigid shape deformation, out-of-plane object rotation, and pose varia-
tion). These challenges may cause tracking degradations and even failures.

In order to deal with these challenges, researchers have proposed a wide range of appear-
ance models using different visual representations and/or statistical modeling techniques.
These appearance models usually focus on different problems in visual object tracking, and
thus have different properties and characteristics. Typically, they attempt to answer the fol-
lowing questions:

— What to track (e.g., bounding box, ellipse, contour, articulation block, interest point, and
silhouette, as shown in Fig. 2)?

— What visual representations are appropriate and robust for visual object tracking?
— What are the advantages or disadvantages of different visual representations for different

tracking tasks?
— Which types of statistical learning schemes are suitable for visual object tracking?
— What are the properties or characteristics of these statistical learning schemes during vi-

sual object tracking?
— How should the camera/object motion be modeled in the tracking process?

The answers to these questions rely heavily on the specific context/environment of the track-
ing task and the tracking information available to users. Consequently, it is necessary to
categorize these appearance models into several task-specific categories and discuss in detail
the representative appearance models of each category. Motivated by this consideration, we
provide a survey to help readers acquire valuable tracking knowledge and choose the most
suitable appearance model for their particular tracking tasks. Furthermore, we examine sev-
eral interesting issues for developing new appearance models.

2. ORGANIZATION OF THIS SURVEY
Fig. 3 shows the organization of this survey, which is composed of two modules: visual rep-
resentation and statistical modeling. The visual representation module concentrates on how
to robustly describe the spatio-temporal characteristics of object appearance. In this mod-
ule, a variety of visual representations are discussed, as illustrated by the tree-structured
taxonomy in the left part of Fig. 3. These visual representations can capture various visual
information at different levels (i.e., local and global). Typically, the local visual representa-
tions encode the local statistical information (e.g., interest point) of an image region, while

Appearing in ACM Transactions on Intelligent Systems and Technology, 2013.



A:4 A Survey of Appearance Models in Visual Object Tracking

Fig. 3: The organization of this survey.

Table I: Summary of related literature surveys
Authors Topic Journal/conference title

[Gerónimo et al. 2010] Pedestrian Detection IEEE Trans. on PAMI.
[Candamo et al. 2010] Human Behavior Recognition IEEE Trans. on Intelligent Transportation Systems

[Cannons 2008] Visual Tracking Technical Report
[Zhan et al. 2008] Crowd analysis Machine Vision Application

[Kang and Deng 2007] Intelligent Visual Surveillance IEEE/ACIS Int. Conf. Comput. Inf. Sci.
[Yilmaz et al. 2006] Visual object tracking ACM Computing Survey
[Forsyth et al. 2006] Human Motion Analysis Found. Trends Comput. Graph. Vis.

[Sun et al. 2006] Vehicle Detection IEEE Trans. on PAMI.
[Hu et al. 2004] Object Motion and Behaviors IEEE Trans. on Syst., Man, Cybern. C, Appl. Rev.

[Arulampalam et al. 2002] Bayesian Tracking IEEE Trans. on Signal Processing

the global visual representations reflect the global statistical characteristics (e.g., color his-
togram) of an image region. For a clear illustration of this module, a detailed literature review
of visual representations is given in Sec. 3.

As shown in the right part of Fig. 3, the statistical modeling module is inspired by the
tracking-by-detection idea, and thus focuses on using different types of statistical learning
schemes to learn a robust statistical model for object detection, including generative, dis-
criminative, and hybrid generative-discriminative ones. In this module, various tracking-by-
detection methods based on different statistical modeling techniques are designed to facili-
tate different statistical properties of the object/non-object class. For a clear illustration of this
module, a detailed literature review of statistical modeling schemes for tracking-by-detection
is given in Sec. 4.

Moreover, a number of source codes and video datasets for visual object tracking are exam-
ined to make them easier for readers to conduct tracking experiments in Sec. 5. Finally, the
survey is concluded in Sec. 6. In particular, we additionally address several interesting issues
for the future research in Sec. 6.

2.1. Main differences from other related surveys
In the recent literature, several related surveys (e.g., [Gerónimo et al. 2010; Candamo et al.
2010; Cannons 2008; Zhan et al. 2008; Kang and Deng 2007; Yilmaz et al. 2006; Forsyth et al.
2006; Sun et al. 2006; Hu et al. 2004; Arulampalam et al. 2002]) of visual object tracking have
been made to investigate the state-of-the-art tracking algorithms and their potential appli-
cations, as listed in Tab. I. Among these surveys, the topics of the surveys [Cannons 2008;
Yilmaz et al. 2006] are closely related to this paper. Specifically, both of the surveys [Can-
nons 2008; Yilmaz et al. 2006] focus on low-level tracking techniques using different visual
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Table II: Summary of representative visual representations
Item No. References Global/local Visual representations

1 [Ho et al. 2004; Li et al. 2004; Ross et al. 2008] Global Vector-based raw pixel representation
2 [Li et al. 2007] Global Matrix-based raw pixel representation

3 [Wang et al. 2007] Global Multi-cue raw pixel representation
(i.e., color, position, edge)

4 [Werlberger et al. 2009; Santner et al. 2010] Global Optical flow representation
(constant-brightness-constraint)

5 [Black and Anandan 1996; Wu and Fan 2009] Global Optical flow representation
(non-brightness-constraint)

6 [Bradski 1998]
[Comaniciu et al. 2003; Zhao et al. 2010] Global Color histogram representation

7 [Georgescu and Meer 2004] Global Multi-cue spatial-color histogram representation
(i.e., joint histogram in (x, y, R, G, B))

8 [Adam et al. 2006] Global Multi-cue spatial-color histogram representation
(i.e., patch-division histogram)

9 [Haralick et al. 1973; Gelzinis et al. 2007] Global Multi-cue spatial-texture histogram representation
(i.e., Gray-Level Co-occurrence Matrix)

10 [Haritaoglu and Flickner 2001]
[Ning et al. 2009] Global Multi-cue shape-texture histogram representation

(i.e., color, gradient, texture)

11 [Porikli et al. 2006; Wu et al. 2008] Global Affine-invariant
covariance representation

12 [Li et al. 2008; Hong et al. 2010]
[Wu et al. 2012; Hu et al. 2012] Global Log-Euclidean

covariance representation
13 [He et al. 2002; Li et al. 2009] Global Wavelet filtering-based representation

14 [Paragios and Deriche 2000; Cremers 2006]
[Allili and Ziou 2007; Sun et al. 2011] Global Active contour representation

15 [Lin et al. 2007] Local Local feature-based represnetation
(local templates)

16 [Tang and Tao 2008; Zhou et al. 2009] Local Local feature-based represnetation
(SIFT features)

17 [Donoser and Bischof 2006; Tran and Davis 2007] Local Local feature-based represnetation
(MSER features)

18 [He et al. 2009] Local Local feature-based represnetation
(SURF features)

19 [Grabner et al. 2007; Kim 2008] Local Local feature-based represnetation
(Corner features)

20 [Collins et al. 2005; Grabner and Bischof 2006]
[Yu et al. 2008] Local Local feature-based represnetation

(feature pools of Harr, HOG, LBP etc.)

21
[Toyama and Hager 1996]

[Mahadevan and Vasconcelos 2009]
[Yang et al. 2007; Fan et al. 2010]

Local Local feature-based representations
(Saliency detection-based features)

22 [Ren and Malik 2007; Wang et al. 2011] Local Local feature-based represnetation
(Segmentation-based features)

features or statistical learning techniques, and thereby give very comprehensive and specific
technical contributions.

The main differences between these two surveys [Cannons 2008; Yilmaz et al. 2006] and
this survey are summarized as follows. First, this survey focuses on the 2D appearance mod-
eling for visual object tracking. In comparison, the surveys of [Cannons 2008; Yilmaz et al.
2006] concern all the modules shown in Fig. 3. Hence, this survey is more intensive while the
surveys of [Cannons 2008; Yilmaz et al. 2006] are more comprehensive. Second, this survey
provides a more detailed analysis of various appearance models. Third, the survey of [Yilmaz
et al. 2006] splits visual object tracking into three categories: point tracking, kernel tracking,
and silhouette tracking (see Fig. 7 in [Yilmaz et al. 2006] for details); the survey of [Cannons
2008] gives a very detailed and comprehensive review of each tracking issue in visual object
tracking. In contrast to these two surveys, this survey is formulated as a general module-
based architecture (shown in Fig. 3) that enables readers to easily grasp the key points of
visual object tracking. Fourth, this survey investigates a large number of state-of-the-art ap-
pearance models which make use of novel visual features and statistical learning techniques.
In comparison, the surveys [Cannons 2008; Yilmaz et al. 2006] pay more attention to classic
and fundamental appearance models used for visual object tracking.

2.2. Contributions of this survey
The contributions of this survey are as follows. First, we review the literature of visual rep-
resentations from a feature-construction viewpoint. Specifically, we hierarchically categorize
visual representations into local and global features. Second, we take a tracking-by-detection
criterion for reviewing the existing statistical modeling schemes. According to the model-
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construction mechanisms, these statistical modeling schemes are roughly classified into three
categories: generative, discriminative, and hybrid generative-discriminative. For each cate-
gory, different types of statistical learning techniques for object detection are reviewed and
discussed. Third, we provide a detailed discussion on each type of visual representations or
statistical learning techniques with their properties. Finally, we examine the existing bench-
mark resources for visual object tracking, including source codes and databases.

3. VISUAL REPRESENTATION
3.1. Global visual representation
A global visual representation reflects the global statistical characteristics of object appear-
ance. Typically, it can be investigated in the following main aspects: (i) raw pixel representa-
tion; (ii) optical flow representation; (iii) histogram representation; (iv)covariance representa-
tion; (v) wavelet filtering-based representation; and (vi)active contour representation. Tab. II
lists several representative tracking methods using global visual representations (i.e., Rows
1-14).

— Raw pixel representation. As the most fundamental features in computer vision, raw pixel
values are widely used in visual object tracking because of their simplicity and efficiency.
Raw pixel representation directly utilizes the raw color or intensity values of the image
pixels to represent the object regions. Such a representation is simple and efficient for fast
object tracking. In the literature, raw pixel representations are usually constructed in the
following two forms: vector-based [Silveira and Malis 2007; Ho et al. 2004; Li et al. 2004;
Ross et al. 2008] and matrix-based [Li et al. 2007; Wen et al. 2009; Hu et al. 2010; Wang
et al. 2007; Li et al. 2008]. The vector-based representation directly flattens an image re-
gion into a high-dimensional vector, and often suffers from a small-sample-size problem.
Motivated by attempting to alleviate the small-sample-size problem, the matrix-based rep-
resentation directly utilizes 2D matrices or higher-order tensors as the basic data units for
object description due to its relatively low-dimensional property.

However, raw pixel information alone is not enough for robust visual object tracking.
Researchers attempt to embed other visual cues (e.g., shape or texture) into the raw pixel
representation. Typically, the color features are enriched by fusing other visual information
such as edge [Wang et al. 2007] and texture [Allili and Ziou 2007].

— Optical flow representation. In principle, optical flow represents a dense field of displace-
ment vectors of each pixel inside an image region, and is commonly used to capture the
spatio-temporal motion information of an object. Typically, optical flow has two branches:
constant-brightness-constraint (CBC) optical flow [Lucas and Kanade 1981; Horn and
Schunck 1981; Werlberger et al. 2009; Sethi and Jain 1987; Salari and Sethi 1990; Santner
et al. 2010] and non-brightness-constraint (NBC) optical flow [Black and Anandan 1996;
Sawhney and Ayer 1996; Hager and Belhumeur 1998; Bergen et al. 1992; Irani 1999; Wu
and Fan 2009]. The CBC optical flow has a constraint on brightness constancy while the
NBC optical flow deals with the situations with varying lighting conditions.

— Histogram representation. Histogram representations are popular in visual object tracking
because of their effectiveness and efficiency in capturing the distribution characteristics of
visual features inside the object regions. In general, they have two branches: single-cue and
multi-cue.

(i) A single-cue histogram representation often constructs a histogram to capture the
distribution information inside an object region. For example, Bradski [1998] uses a color
histogram in the Hue Saturation Value (HSV) color space for object representation, and
then embeds the color histogram into a continuously adaptive mean shift (CAMSHIFT)
framework for object tracking. However, the direct use of color histogram may result in the
loss of spatial information. Following the work in [Bradski 1998], Comaniciu et al. [2003]
utilize a spatially weighted color histogram in the RGB color space for visual representation,
and subsequently embed the spatially weighted color histogram into a mean shift-based
tracking framework for object state inference. Zhao et al. [2010] convert the problem of
object tracking into that of matching the RGB color distributions across frames. As a result,
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Fig. 4: Illustration of patch-division visual representation (from [Adam et al. 2006], c©2006
IEEE). The left part shows the previous and current frames, and the right part displays the
patch-wise histogram matching process between two image regions.

the task of object localization is taken by using a fast differential EMD (Earth Mover’s
Distance) to compute the similarity between the color distribution of the learned target and
the color distribution of a candidate region.

(ii) A multi-cue histogram representation aims to encode more information to enhance
the robustness of visual representation. Typically, it contains three main components: a)
spatial-color; b) spatial-texture; c) shape-texture;

For a), two strategies are adopted, including joint spatial-color modeling and patch-
division. The goal of joint spatial-color modeling is to describe the distribution properties
of object appearance in a joint spatial-color space (e.g., (x, y, R, G, B) in [Yang et al. 2005;
Georgescu and Meer 2004; Birchfield and Rangarajan 2005]). The patch-division strategy is
to encode the spatial information into the appearance models by splitting the tracking re-
gion into a set of patches [Adam et al. 2006; Nejhum et al. 2010]. By considering the geomet-
ric relationship between patches, it is capable of capturing the spatial layout information.
For example, Adam et al. [Adam et al. 2006] construct a patch-division visual representa-
tion with a histogram-based feature description for object tracking, as shown in Fig. 4. The
final tracking position is determined by combining the vote maps of all patches (represented
by grayscale histograms). The combination mechanism can eliminate the influence of the
outlier vote maps caused by occlusion. For the computational efficiency, Porikli [2005] in-
troduces a novel concept of an integral histogram to compute the histograms of all possible
target regions in a Cartesian data space. This greatly accelerates the speed of histogram
matching in the process of mean shift tracking.

For b), an estimate of the joint spatial-texture probability is made to capture the dis-
tribution information on object appearance. For example, Haralick et al. [1973] propose a
spatial-texture histogram representation called Gray-Level Co-occurrence Matrix (GLCM),
which encodes the co-occurrence information on pairwise intensities in a specified direction
and distance. Note that the GLCM in [Haralick et al. 1973] needs to tune different distance
parameter values before selecting the best distance parameter value by experimental eval-
uations. Following the work in [Haralick et al. 1973], Gelzinis et al. [Gelzinis et al. 2007]
propose a GLCM-based histogram representation that does not need to carefully select an
appropriate distance parameter value. The proposed histogram representation gathers the
information on the co-occurrence matrices computed for several distance parameter values.
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Image Layer

S1 Layer C1 Layer Output

Gabor filters Max filters

Unfold and
normalize

SBIF vector

Fig. 5: Illustration of three-layer Gabor features (from [Li et al. 2009], c©2009 IEEE). The
first column shows the grayscale face images aligned in a spatial pyramid way (i.e., image
layer); the second column the Gabor energy maps (containing rich orientation and spatial
frequency information in the image pyramid) obtained by Gabor filtering (i.e., S1 layer); the
third column exhibits the response of applying max filtering (returning the maximum value;
and tolerant to local distortions) to the Gabor energy maps; and the last column plots the
final feature vector after unfolding and normalization.

For c), the shape or texture information on object appearance is incorporated into the
histogram representation for robust visual object tracking. For instance, Haritaoglu and
Flickner [2001] incorporate the gradient or edge information into the color histogram-based
visual representation. Similar to [Haritaoglu and Flickner 2001], Wang and Yagi [2008]
construct an visual representation using color and shape cues. The color cues are composed
of color histograms in three different color spaces: RGB, HSV, and normalized rg. The shape
cue is described by gradient orientation histograms. To exploit the textural information of
the object, Ning et al. [2009] propose a joint color-texture histogram for visual represen-
tation. The local binary pattern (LBP) technique is employed to identify the key points in
the object regions. Using the identified key points, they build a confidence mask for joint
color-texture feature selection.

— Covariance representation. In order to capture the correlation information of object appear-
ance, covariance matrix representations are proposed for visual representation in [Porikli
et al. 2006; Tuzel et al. 2006]. According to the Riemannian metrics mentioned in [Li
et al. 2008; Hu et al. 2012], the covariance matrix representations can be divided into
two branches: affine-invariant Riemannian metric-based and Log-Euclidean Riemannian
metric-based.

(i) The Affine-invariant Riemannian metric [Porikli et al. 2006; Tuzel et al. 2006]
is based on the following distance measure: ρ(C1,C2) =

√∑d
j=1 ln2λj(C1,C2), where

{λj(C1,C2)}dj=1 are the generalized eigenvalues of the two covariance matrices C1 and C2:
λjC1xj = C2xj , j ∈ {1, . . . , d}, and xj is the j-th generalized eigenvector. Following the work
in [Porikli et al. 2006; Tuzel et al. 2006], Austvoll and Kwolek [2010] use the covariance ma-
trix inside a region to detect whether the feature occlusion events take place. The detection
task can be completed by comparing the covariance matrix-based distance measures in a
particular window around the occluded key point.

(ii) The Log-Euclidean Riemannian metric [Arsigny et al. 2006] formulates the distance
measure between two covariance matrices in a Euclidean vector space. Mathematically, the
Log-Euclidean Riemannian metric for two covariance matrices Ci and Cj is formulated as:
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d(Ci,Cj) = ‖ log(Ci)− log(Cj)‖ where log is the matrix logarithm operator. For the descrip-
tive convenience, the covariance matrices under the Log-Euclidean Riemannian metric are
referred to as the Log-Euclidean covariance matrices. Inspired by [Arsigny et al. 2006], Li et
al. [2008] employ the Log-Euclidean covariance matrices of image features for visual repre-
sentation. Since the Log-Euclidean covariance matrices lie in a Euclidean vector space, their
mean can be easily computed as the standard arithmetic mean. Due to this linear property,
classic subspace learning techniques (e.g., principal component analysis) can be directly ap-
plied onto the Log-Euclidean covariance matrices. Following the work in [Li et al. 2008; Hu
et al. 2012], Wu et al. [2009; 2012] extend the tracking problem of using 2D Log-Euclidean
covariance matrices to that of using higher-order tensors, and aim to incrementally learn
a low-dimensional covariance tensor representation. Inspired by [Li et al. 2008; Hu et al.
2012], Hong et al. [2010] propose a simplified covariance region descriptor (called Sigma
set), which comprises the lower triangular matrix square root (obtained by Cholesky factor-
ization) of the covariance matrix (used in [Li et al. 2008]). The proposed covariance region
descriptor characterizes the second order statistics of object appearance by a set of vec-
tors. Meanwhile, it retains the advantages of the region covariance descriptor [Porikli et al.
2006], such as low-dimensionality, robustness to noise and illumination variations, and good
discriminative power.

— Wavelet filtering-based representation. In principle, a wavelet filtering-based representa-
tion takes advantage of wavelet transforms to filter the object region in different scales or
directions. For instance, He et al. [2002] utilize a 2D Gabor wavelet transform (GWT) for
visual representation. Specifically, an object is represented by several feature points with
high GWT coefficients. Moreover, Li et al. [2009] propose a tracking algorithm based on
three-layer simplified biologically inspired (SBI) features (i.e., image layer, S1 layer, and C1
layer). Through the flattening operations on the four Gabor energy maps in the C1 layer, a
unified SBI feature vector is returned to encode the rich spatial frequency information, as
shown in Fig. 5.

— Active contour representation. In order to track the nonrigid objects, active contour rep-
resentations have been widely used in recent years [Paragios and Deriche 2000; Cremers
2006; Allili and Ziou 2007; Vaswani et al. 2008; Sun et al. 2011]. Typically, an active contour
representation (shown in Fig. 6) is defined as a signed distance map Φ:

Φ(x, y) =

{
0 (x, y) ∈ C

d(x, y, C) (x, y) ∈ Rout

−d(x, y, C) (x, y) ∈ Rin

(1)

where Rin and Rout respectively denote the regions inside and outside the contour C, and
d(x, y, C) is a function returning the smallest Euclidean distance from point (x, y) to the
contour C. Moreover, an active contour representation is associated with a energy function
which comprises three terms: internal energy, external energy, and shape energy. The inter-
nal energy term reflects the internal constraints on the object contour (e.g., the curvature-
based evolution force), the external energy term measures the likelihood of the image data
belonging to the foreground object class, and the shape energy characterizes the shape prior
constraints on the object contour.

3.1.1. Discussion. Without feature extraction, the raw pixel representation is simple and effi-
cient for visual object tracking. Since only considering the color information on object appear-
ance, the raw pixel representation is susceptible to complicated appearance changes caused
by illumination variation.

The constant-brightness-constraint (CBC) optical flow captures the field information on
the translational vectors of each pixel in a region with the potential assumption of locally
unchanged brightness. However, the CBC assumption is often invalid in the complicated sit-
uations caused by image noise, illumination fluctuation, and local deformation. To address
this issue, the non-brightness-constraint optical flow is developed to introduce more geomet-
ric constraints on the contextual relationship of pixels.
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Signed distance map Contour tracking

Fig. 6: Illustration of an active contour representation. The left part shows the signed dis-
tance map of a human contour; and the right part displays the contour tracking result.

The single-cue histogram representation is capable of efficiently encoding the statistical
distribution information of visual features within the object regions. Due to its weakness in
characterizing the spatial structural information of tracked objects, it is often affected by
background distractions with similar colors to the tracked objects. In order to capture more
spatial information, the spatial-color histogram representation is introduced for visual object
tracking. Usually, it encodes the spatial information by either modeling object appearance
in a joint spatial-color feature space or taking a patch-division strategy. However, the above
histogram representations do not consider the shape or texture information of object appear-
ance. As a consequence, it is difficult to distinguish the object from the background with sim-
ilar color distributions. To alleviate this issue, the shape-texture histogram representation is
proposed to integrate shape or texture information (e.g., gradient or edge) into the histogram
representation, leading to the robustness of object appearance variations in illumination and
pose.

The advantages of using the covariance matrix representation are as follows: (i) it can cap-
ture the intrinsic self-correlation properties of object appearance; (ii) it provides an effective
way of fusing different image features from different modalities; (iii) it is low-dimensional,
leading to the computational efficiency; (iv) it allows for comparing regions of different sizes
or shapes; (v) it is easy to implement; (vi) it is robust to illumination changes, occlusion, and
shape deformations. The disadvantages of using the covariance matrix representation are as
follows: (i) it is sensitive to noisy corruption because of taking pixel-wise statistics; (ii) it loses
much useful information such as texture, shape, and location.

A wavelet filtering-based representation is to encode the local texture information of object
appearance by wavelet transform, which is a convolution with various wavelet filters. As a
result, the wavelet filtering-based representation is capable of characterizing the statistical
properties of object appearance in multiple scales and directions (e.g., Gabor filtering).

An active contour representation is designed to cope with the problem of nonrigid object
tracking. Usually, the active contour representation adopts the signed distance map to im-
plicitly encode the boundary information of an object. On the basis of level set evolution, the
active contour representation can precisely segment the object with a complicated shape.

3.2. Local feature-based visual representation
As shown in Fig. 7, local feature-based visual representations mainly utilize interest points or
saliency detection to encode the object appearance information. In general, the local features
based on the interest points can be mainly categorized into seven classes: local template-
based, segmentation-based, SIFT-based, MSER-based, SURF-based, corner feature-based,
feature pool-based, and saliency detection-based. Several representative tracking methods
using local feature-based visual representations are listed in Rows 15-22 of Tab. II.

— Local template-based. In general, local template-based visual representations are to rep-
resent an object region using a set of part templates. In contrast to the global template-
based visual representation, they are able to cope with partial occlusions effectively and
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Fig. 7: Illustration of several local features (extracted by using the software which can be
downloaded at http://www.robots.ox.ac.uk/~vgg/research/affine/ and http://www.klab.
caltech.edu/~harel/share/gbvs.php).

model shape articulations flexibly. For instance, a hierarchical part-template shape model
is proposed for human detection and segmentation [Lin et al. 2007]. The shape model is
associated with a part-template tree that decomposes a human body into a set of part-
templates. By hierarchically matching the part-templates with a test image, the proposed
part-template shape model can generate a reliable set of detection hypotheses, which are
then put into a global optimization framework for the final human localization.

— Segmentation-based. Typically, a segmentation-based visual representation incorporates
the image segmentation cues (e.g., object boundary [Ren and Malik 2007]) into the process
of object tracking, which leads to reliable tracking results. Another alternative is based on
superpixel segmentation, which aims to group pixels into perceptually meaningful atomic
regions. For example, Wang et al. [2011] construct a local template-based visual represen-
tation with the superpixel segmentation, as shown in Fig. 8. Specifically, the surrounding
region of an object is segmented into several superpixels, each of which corresponds to a
local template. By building a local template dictionary based on the mean shift clustering,
an object state is predicted by associating the superpixels of a candidate sample with the
local templates in the dictionary.

— SIFT-based. Usually, a SIFT-based visual representation directly makes use of the SIFT
features inside an object region to describe the structural information of object appearance.
Usually, there are two types of SIFT-based visual representations: (i) individual SIFT point-
based; and (ii) SIFT graph-based. For (i), Zhou et al. [2009] set up a SIFT point-based visual
representation, and combine this visual representation with the mean shift for object track-
ing. Specifically, SIFT features are used to find the correspondences between the regions
of interest across frames. Meanwhile, the mean shift procedure is implemented to conduct
a similarity search via color histograms. By using a mutual support mechanism between
SIFT and the mean shift, the tracking algorithm is able to achieve a consistent and stable
tracking performance. However, the tracking algorithm may suffer from a background clut-
ter which may lead to a one-to-many SIFT feature matching. In this situation, the mean
shift and SIFT feature matching may make mutually contradictory decisions. For (ii), the
SIFT graph-based visual representations are based on the underlying geometric contextual
relationship among SIFT feature points. For example, Tang and Tao [2008] construct a re-
lational graph using SIFT-based attributes for object representation. The graph is based
on the stable SIFT features which persistently appear in several consecutive frames. How-
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Context region Superpixels Classification

Fig. 8: Illustration of the local template-based visual representation using superpixels.

ever, such stable SIFT features are unlikely to exist in complex situations such as shape
deformation and illumination changes.

— MSER-based. A MSER-based visual representation needs to extract the MSER (maximally
stable extremal region) features for visual representation [Sivic et al. 2006]. Subsequently,
Tran and Davis [2007] construct a probabilistic pixel-wise occupancy map for each MSER
feature, and then perform the MSER feature matching for object tracking. Similar to [Tran
and Davis 2007], Donoser and Bischof [2006] also use MSER features for visual represen-
tation. To improve the stability of MSER features, they take temporal information across
frames into consideration.

— SURF-based. With the scale-invariant and rotation-invariant properties, the SURF
(Speeded Up Robust Feature) is a variant of SIFT [Bay et al. 2006]. It has similar prop-
erties to those of SIFT in terms of repeatability, distinctiveness, and robustness, but its
computational speed is much faster. Inspired by this fact, He et al. [2009] develop a track-
ing algorithm using a SURF-based visual representation. By judging the compatibility of
local SURF features with global object motion, the tracking algorithm is robust to appear-
ance changes and background clutters.

— Corner feature-based. Typically, a corner feature-based visual representation makes use of
corner features inside an object region to describe the structural properties of object ap-
pearance, and then matches these corner features across frames for object localization. For
instance, Kim [2008] utilizes corner features for visual representation, and then perform
dynamic multi-level corner feature grouping to generate a set of corner point trajectories.
As a result, the spatio-temporal characteristics of object appearance can be well captured.
Moreover, Grabner et al. [2007] explore the intrinsic differences between the object and
non-object corner features by building a boosting discriminative model for corner feature
classification.

— Local feature pool based. Recently, local feature pool based visual representations have
been widely used in ensemble learning based object tracking. Usually, they need to set
up a huge feature pool (i.e., a large number of various features) for constructing a set of
weak learners, which are used for discriminative feature selection. Therefore, different
kinds of visual features (e.g., color, local binary pattern [Collins et al. 2005], histogram
of oriented gradients [Collins et al. 2005; Liu and Yu 2007; Yu et al. 2008], Gabor fea-
tures with Gabor wavelets [Nguyen and Smeulders 2004], and Haar-like features with Haar
wavelets [Babenko et al. 2009]) can be used by FSSL in an independent or interleaving man-
ner. For example, Collins et al. [2005] set up a color feature pool whose elements are linear
combinations of the following RGB components: {(α1, β1, γ1)|α1, β1, γ1 ∈ {−2,−1, 0, 1, 2}}. As
a result, an object is localized by selecting the discriminative color features from this pool.
Grabner and Bischof [Grabner and Bischof 2006] construct an ensemble classifier by learn-
ing several weak classifiers trained from the Haar-like features [Viola and Jones 2002],
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histograms of oriented gradient (HOG) [Dalal and Triggs 2005], and local binary patterns
(LBP) [Ojala et al. 2002]. Babenko et al. [2009] utilize the Haar-like features to construct
a weak classifier, and then apply an online multiple instance boosting to learn a strong
ensemble classifier for object tracking.

— Saliency detection-based. In principle, saliency detection is inspired by the focus-of-
attention (FoA) theory [Palmer 1999; Wolfe 1994] to simulate the human perception mecha-
nism for capturing the salient information of an image. Such salient information is helpful
for visual object tracking due to its distinctness and robustness. Based on saliency detec-
tion, researchers apply the biological vision theory to visual object tracking [Toyama and
Hager 1996; Mahadevan and Vasconcelos 2009]. More recently, Yang et al. [2007; 2010]
construct an attentional visual representation method based on the spatial selection. This
visual representation method takes a two-stage strategy for spatial selective attention. At
the first stage, a pool of attentional regions (ARs) are extracted as the salient image regions.
At the second stage, discriminative learning is performed to select several discriminative
attentional regions for visual representation. Finally, the task of object tracking is taken by
matching the ARs between two consecutive frames.

3.2.1. Discussion. The aforementioned local feature-based representations use local tem-
plates, segmentation, SIFT, MSER, SURF, corner points, local feature pools, or saliency de-
tection, respectively. Due to the use of different features, these representations have different
properties and characteristics. By representing an object region using a set of part templates,
the local template-based visual representations are able to encode the local spatial layout
information of object appearance, resulting in the robustness to partial occlusions. With the
power of image segmentation, the segmentation-based visual representations are capable of
well capturing the intrinsic structural information (e.g., object boundaries and superpixels)
of object appearance, leading to reliable tracking results in challenging situations. Since the
SIFT features are invariant to image scaling, partial occlusion, illumination change, and 3D
camera viewpoint change, the SIFT-based representation is robust to appearance changes
in illumination, shape deformation, and partial occlusion. However, it cannot encode pre-
cise information on the objects such as size, orientation, and pose. The MSER-based repre-
sentation attempts to find several maximally stable extremal regions for feature matching
across frames. Hence, it can tolerate pixel noise, but suffers from illumination changes. The
SURF-based representation is on the basis of the “Speeded Up Robust Features”, which has
the properties of scale-invariance, rotation-invariance, and computationally efficiency. The
corner-point representation aims to discover a set of corner features for feature matching.
Therefore, it is suitable for tracking objects (e.g., cars or trucks) with plenty of corner points,
and sensitive to the influence of non-rigid shape deformation and noise. The feature pool-
based representation is strongly correlated with feature selection-based ensemble learning
that needs a number of local features (e.g., color, texture, and shape). Due to the use of many
features, the process of feature extraction and feature selection is computationally slow. The
saliency detection-based representation aims to find a pool of discriminative salient regions
for a particular object. By matching the salient regions across frames, object localization can
be achieved. However, its drawback is to rely heavily on salient region detection, which is
sensitive to noise or drastic illumination variation.

3.3. Discussion on global and local visual representations
In general, the global visual representations are simple and computationally efficient for fast
object tracking. Due to the imposed global geometric constraints, the global visual represen-
tations are susceptible to global appearance changes (e.g., caused by illumination variation or
out-of-plane rotation). To deal with complicated appearance changes, a multi-cue strategy is
taken by the global features to incorporate multiple types of visual information (e.g., position,
shape, texture, and geometric structure) into the appearance models.

In contrast, the local visual representations are able to capture the local structural object
appearance. Consequently, the local visual representations are robust to global appearance
changes caused by illumination variation, shape deformation, rotation, and partial occlusion.
Since they require the keypoint detection, the interest point-based local visual representa-
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Fig. 9: Illustration of tracking-by-detection based on SVM classification (from [Tian et al.
2007], c©2007 Springer). The left subfigure shows the score map of face/non-face classifica-
tion; the middle subfigure displays the search region for object localization and the context
region for selecting face and non-face samples; the right subfigure plots the classification
hyperplane that separates face and non-face classes.

tions often suffer from noise disturbance and background distraction. Moreover, the local
feature pool-based visual representations, which are typically required by discriminative fea-
ture selection, need a huge number of local features (e.g., color, texture, and shape), resulting
in a very high computational cost. Inspired by the biological vision, the local visual rep-
resentations using biological features attempt to capture the salient or intrinsic structural
information inside the object regions. This salient information is relatively stable during the
process of visual object tracking. However, salient region features rely heavily on salient re-
gion detection which may be susceptible to noise or drastic illumination variation, leading to
potentially many feature mismatches across frames.

4. STATISTICAL MODELING FOR TRACKING-BY-DETECTION
Recently, visual object tracking has been posed as a tracking-by-detection problem (shown
in Fig. 9), where statistical modeling is dynamically performed to support object detection.
According to the model-construction mechanism, statistical modeling is classified into three
categories, including generative, discriminative, and hybrid generative-discriminative.

The generative appearance models mainly concentrate on how to accurately fit the data
from the object class. However, it is very difficult to verify the correctness of the specified
model in practice. Besides, the local optima are always obtained during the course of param-
eter estimation (e.g., expectation maximization). By introducing online-update mechanisms,
they incrementally learn visual representations for the foreground object region information
while ignoring the influence of the background. As a result, they often suffer from distrac-
tions caused by the background regions with similar appearance to the object class. Tab. III
lists representative tracking-by-detection methods based on generative learning techniques.

In comparison, discriminative appearance models pose visual object tracking as a binary
classification issue. They aim to maximize the separability between the object and non-object
regions discriminately. Moreover, they focus on discovering highly informative features for
visual object tracking. For the computational consideration, online variants are proposed to
incrementally learn discriminative classification functions for the purpose of object or non-
object predictions. Thus, they can achieve effective and efficient predictive performances.
Nevertheless, a major limitation of the discriminative appearance models is to rely heavily
on training sample selection (e.g., by self-learning or co-learning). Tab. IV lists representative
tracking-by-detection methods based on discriminative learning techniques.

The generative and discriminative appearance models have their own advantages and dis-
advantages, and are complementary to each other to a certain extent. Therefore, researchers
propose hybrid generative-discriminative appearance models (HGDAMs) to fuse the useful
information from the generative and the discriminative models. Due to taking a heuristic
fusion strategy, HGDAMs cannot guarantee that the performance of the hybrid models after
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Table III: Summary of representative tracking-by-detection appearance models based on
generative learning techniques.

Item No. References Mixture
models

Kernel density
estimation

Subspace
learning

Used generative
learning techniques

1 [McKenna et al. 1999] color-based
GMM — — Gaussian mixture model (GMM)

in the hue-saturation color space

2 [Yu and Wu 2006]
[Wang et al. 2007]

Spatio-color
GMM — —

Spatial-color appearance model
using GMM

Spatial-color mixture of
Gaussians (SMOG)

3 [Jepson et al. 2003; Zhou et al. 2004] WSL — — three-component mixture models:
W-component, S-component, L-component

4 [Comaniciu et al. 2003]
[Leichter et al. 2010] — Color-driven —

Mean shift using a spatially weighted
color histogram

Mean shift using multiple reference
color histograms

5 [Leichter et al. 2009] — Shape-integration — Affine kernel fitting
using color and boundary cues

6 [Collins 2003]
[Yang et al. 2005] — Scale-aware — Mean shift considering scale changes

7 [Nguyen et al. 2007] — Scale-aware — EM-based maximum likelihood
estimation for kernel-based tracking

8 [Yilmaz 2007] — Non-symmetric
kernel — Asymmetric kernel mean shift

9 [Shen et al. 2007] — Global
mode seeking — Annealed mean shift

10 [Han et al. 2008] — Sequential kernel
density estimation — Sequential kernel-based tracking

11
[Black and Jepson 1996; Ho et al. 2004]

[Ross et al. 2008; Wen et al. 2012]
[Wang et al. 2012]

— — Vector-based linear
subspace learning

Principal component analysis
Partial least square analysis

12 [Wang et al. 2007; Li et al. 2007]
[Wen et al. 2009; Hu et al. 2010] — — Tensor-based linear

subspace learning
2D principle component analysis

Tensor subspace analysis

13 [Lim et al. 2006; Chin and Suter 2007] — — Nonlinear
subspace learning

Local linear embedding
Kernel principle component analysis

14
[Mei and Ling 2009; Li et al. 2011]
[Zhang et al. 2012; Jia et al. 2012]

[Bao et al. 2012]
— — Sparse representation `1 sparse approximation

15 [Li et al. 2012] — — Non-sparse representation Metric-weighted least-square regression
16 [Li et al. 2013] — — 3D-DCT representation Signal compression

17 [Lee and Kriegman 2005; Fan et al. 2008]
[Kwon and Lee 2010] — — Multiple

subspaces
bi-subspace or

multi-subspace learning

18
[Hou et al. 2001]

[Sclaroff and Isidoro 2003]
[Matthews and Baker 2004]

— — Active appearance models Shape and appearance
3D mesh fitting

information fusion is better than those of the individual models. In addition, HGDAMs may
add more constraints and introduce more parameters, leading to more inflexibility in prac-
tice. Tab. V lists representative tracking-by-detection methods based on hybrid generative-
discriminative learning techniques.

4.1. Mixture generative appearance models
Typically, this type of generative appearance models adaptively learns several components
to capture the spatio-temporal diversity of object appearance. They can be classified into two
categories: WSL mixture models and Gaussian mixture models.

— WSL mixture models. In principle, the WSL mixture model [Jepson et al. 2003] contains the
following three components: W -component, S-component, and L-component. These three
components characterize the inter-frame variations, the stable structure for all past obser-
vations, and outliers such as occluded pixels, respectively. As a variant of [Jepson et al.
2003], another WSL mixture model [Zhou et al. 2004] is proposed to directly employ the
pixel-wise intensities as visual features instead of using the filter responses (e.g. in [Jepson
et al. 2003]). Moreover, the L-component is discarded in modeling the occlusion using robust
statistics, and an F -component is added as a fixed template that is observed most often.

— Gaussian mixture models. In essence, the Gaussian mixture models [McKenna et al. 1999;
Stauffer and Grimson 2000; Han and Davis 2005; Yu and Wu 2006; Wang et al. 2007] uti-
lize a set of Gaussian distributions to approximate the underlying density function of object
appearance, as shown in Fig. 10. For instance, an object appearance model [Han and Davis
2005] using a mixture of Gaussian density functions is proposed to automatically deter-
mine the number of density functions and their associated parameters including mean,
covariance, and weight. Rectangular features are introduced by averaging the correspond-
ing intensities of neighboring pixels (e.g., 3 × 3 or 5 × 5) in each color channel. To capture
a spatial-temporal description of the tracked objects, Wang et al. [2007] present a Spatial-
color Mixture of Gaussians (referred to as SMOG) appearance model, which can simulta-
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Gaussian mixture model

 Object
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Fig. 10: Illustration of Gaussian mixture generative appearance models.

neously encode both spatial layout and color information. To enhance its robustness and
stability, Wang et al. further integrate multiple cues into the SMOG appearance model,
including three features of edge points: their spatial distribution, gradient intensity, and
size. However, it is difficult for the Gaussian mixture models to select the correct number
of components. For example, adaptively determining the component number k in a GMM
is a difficult task in practice. As a result, the mixture models often use ad-hoc or heuristic
criteria for selecting k, leading to the tracking inflexibility.

4.2. Kernel-based generative appearance models (KGAMs)
Kernel-based generative appearance models (KGAMs) utilize kernel density estimation to
construct kernel-based visual representations, and then carry out the mean shift for object
localization, as shown in Fig. 11. According to the mechanisms used for kernel construction or
mode seeking, they may be split into the following six branches: color-driven KGAMs, shape-
integration KGAMs, scale-aware KGAMs, non-symmetric KGAMs, KGAMs by global mode
seeking, and sequential-kernel-learning KGAMs.

— Color-driven KGAMs. Typically, a color-driven KGAM [Comaniciu et al. 2003] builds a color
histogram-based visual representation regularized by a spatially smooth isotropic kernel.
Using the Bhattacharyya coefficient as the similarity metric, a mean shift procedure is
performed for object localization by finding the basin of attraction of the local maxima.
However, the tracker [Comaniciu et al. 2003] only considers color information and therefore
ignores other useful information such as edge and shape, resulting in the sensitivity to
background clutters and occlusions. Another color-driven KGAM [Leichter et al. 2010] is
developed to handle multi-view color variations by constructing the convex hull of multiple
view-specific reference color histograms.

— Shape-integration KGAMs. In general, the shape-integration KGAMs aim to build a kernel
density function in the joint color-shape space. For example, a shape-integration KGAM [Le-
ichter et al. 2009] is proposed to capture the spatio-temporal properties of object appearance
using color and boundary cues. It is based on two spatially normalized and rotationally sym-
metric kernels for describing the information about the color and object boundary.

— Scale-aware KGAMs. In essence, the scale-aware KGAMs are to capture the spatio-temporal
distribution information on object appearance at multiple scales. For instance, a scale-aware
KGAM [Collins 2003] using the difference of Gaussian based mean shift features is pre-
sented to cope with the problem of kernel scale selection by detecting local maxima of the
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Mode seeking

Fig. 11: Illustration of the mode seeking process by mean shift.

Difference-of-Gaussian (DOG) scale-space filters formulated as:

DOG(x;σ) =
1

2πσ2/1.6
exp(− ‖x‖2

2σ2/1.6
)− 1

2πσ2(1.6)
exp(− ‖x‖2

2σ2(1.6)
) (2)

where σ is a scaling factor. Based on a new probabilistic interpretation, another scale-aware
KGAM [Nguyen et al. 2007] is proposed to solve a maximum likelihood problem, which
treats the coordinates for the pixels as random variables. As a result, the problem of kernel
scale selection is converted to that of maximum likelihood optimization in the joint spatial-
color space.

— Non-symmetric KGAMs. The conventional KGAMs use a symmetric kernel (e.g., a circle or
an ellipse), leading to a large estimation bias in the process of estimating the complicated
underlying density function. To address this issue, a non-symmetric KGAM [Yilmaz 2007]
is developed based on the asymmetric kernel mean shift with adaptively varying the scale
and orientation of the kernel. In contrast to the symmetric mean shift (only requiring the
image coordinate estimate), the non-symmetric KGAM needs to simultaneously estimate
the image coordinates, the scales, and the orientations in a few number of mean shift it-
erations. Introducing asymmetric kernels can generate a more accurate representation of
the underlying density so that the estimation bias is reduced. Furthermore, the asymmetric
kernel is just a generalization of the previous radially symmetric and anisotropic kernels.

— KGAMs by global mode seeking. Due to the local optimization property of the mean shift,
large inter-frame object translations lead to tracking degradations or even failures. In or-
der to tackle this problem, Shen et al. [2007] propose an annealed mean shift algorithm
motivated by the success of the annealed importance sampling, which is essentially a way
of assigning the weights to the states obtained by multiple simulated annealing runs [Neal
2001]. Here, the states correspond to the object positions while the simulated annealing
runs are associated with different bandwidths for the kernel density estimation. The pro-
posed annealed mean shift algorithm aims to make a progressive position evolution of the
mean shift as the bandwidths monotonically decrease (i.e., the convergence position of mean
shift with the last bandwidth works as the initial position of the mean shift with the next
bandwidth), and finally seeks the global mode.

— Sequential-kernel-learning KGAMs. Batch-mode kernel density estimation needs to store
the nonparametric representations of the kernel densities, leading to a high computational
and memory complexity. To address this issue, Han et al. [2008] develop a sequential kernel
density approximation (SKDE) algorithm for real-time visual object tracking. The SKDE
algorithm sequentially learns a nonparametric representation of the kernel density and
propagates the density modes over time.

— Discussion. The color-driven kernel-based tracking algorithms mainly take the color in-
formation into consideration. However, complicated factors may give rise to drastic track-
ing degradations, including scale changes, background clutters, occlusions, and rapid object
movements. To address this issue, various algorithmic extensions have been made. The aim
of scale-aware tracking algorithms is to capture the multi-scale spatial layout information
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Fig. 12: Illustration of linear PCA subspace models. The left part shows a candidate sample,
and the right part displays a linear combination of eigenbasis samples.

of object appearance. Thus, they are capable of effectively completing the tracking task un-
der the circumstance of drastic scaling changes. Moreover, the edge or shape information is
very helpful for accurate object localization or resisting background distraction. Motivated
by this consideration, shape-driven kernel-based tracking algorithms have been developed
to integrate the edge or shape information into the kernel design process. Normally, the
kernel-based tracking algorithms utilize symmetric kernels (e.g., a circle or an ellipse) for
object tracking, resulting in a large estimation bias for complicated underlying density func-
tions. To tackle this problem, non-symmetric kernel-based tracking algorithms are proposed
to construct a better representation of the underlying density. Conventional kernel-based
tracking algorithms tend to pursue the local model seeking, resulting in tracking degrada-
tions or even failures due to their local optimization properties. To address this issue, re-
searchers borrow ideas from both simulated annealing and annealed importance sampling
to obtain a feasible solution to global mode seeking. In practice, the factors of computational
complexity and memory consumption have a great effect on real-time kernel-based tracking
algorithms. Thus, sequential techniques for kernel density estimation have been developed
for online kernel-based tracking.

4.3. Subspace learning-based generative appearance models (SLGAMs)
In visual object tracking, a target is usually associated with several underlying subspaces,
each of which is spanned by a set of basis templates. For convenience, let τ denote the target
and (a1 a2 . . .aN ) denote the basis templates of an underlying subspace. Mathematically, the
target τ can be linearly represented in the following form:

τ = c1a1 + c2a2 + · · ·+ cNaN = (a1 a2 . . .aN )(c1 c2 . . . cN )T , (3)

where (c1 c2 . . . cN ) is the coefficient vector. Therefore, subspace learning-based generative
appearance models (SLGAMs) focus on how to effectively obtain these underlying subspaces
and their associated basis templates by using various techniques for subspace analysis. For
instance, some SLGAMs utilize eigenvalue decomposition or linear regression for subspace
analysis, and others construct multiple subspaces to model the distribution characteristics
of object appearance. According to the used techniques for subspace analysis, they can be
categorized into two types: conventional and unconventional SLGAMs.

4.3.1. Conventional subspace models. In general, conventional subspace models can be split
into the following two branches: linear subspace models and non-linear subspace models.

— Linear subspace models. In recent years, linear subspace models (LSMs) have been widely
applied to visual object tracking. According to the dimension of the used feature space,
LSL can be divided into (i) lower-order LSMs and (ii) higher-order LSMs. The lower-order
LSMs [Black and Jepson 1996; Ho et al. 2004; Li et al. 2004; Skocaj and Leonardis 2003;
Wen et al. 2012] needs to construct vector-based subspace models (e.g., eigenspace by prin-
cipal component analysis shown in Fig. 12) while the higher-order LSMs needs to build
matrix-based or tensor-based subspace models (e.g., 2D eigenspace by 2D principal compo-
nent analysis and tensor eigenspace by tensor analysis).
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For (i), several incremental principal component analysis (PCA) algorithms are proposed
to make linear subspace models more efficient. For instance, an incremental robust PCA
algorithm [Li et al. 2004] is developed to incorporate robust analysis into the process of sub-
space learning. Similar to [Li et al. 2004], Skocaj and Leonardis [2003] embed the robust
analysis technique into the incremental subspace learning framework, which makes a se-
quential update of the principal subspace. The learning framework considers the weighted
influence of both individual images and individual pixels within an image. Unlike the afore-
mentioned robust PCA algorithm based on weighted residual errors, the incremental sub-
space learning algorithms in [Levy and Lindenbaum 2000; Brand 2002] utilize incremental
singular value decomposition (SVD) to obtain a closed-form solution to subspace learning.
However, these incremental PCA algorithms cannot update the sample mean during sub-
space learning. To address this issue, a subspace model based on R-SVD (i.e., rank-R singu-
lar value decomposition) is built with a sample mean update [Ross et al. 2008]. Moreover,
Wang et al. [2012] apply partial least square analysis to learn a low-dimensional feature
subspace for object tracking. In theory, the partial least square analysis is capable of mod-
eling relations between sets of variables driven by a small number of latent factors, leading
to robust object tracking results.

For (ii), a set of higher-order LSMs are proposed to address the small-sample-size prob-
lem, where the number of samples is far smaller than the dimension of samples. Therefore,
many researchers begin to build matrix-based or tensor-based subspace models. For in-
stance, Wang et al. [2007] directly analyze the 2D image matrices, and construct a 2DPCA-
based appearance model for object tracking. In addition to the foreground information, they
also consider background information to avoid the distractions from the background clut-
ters. Moreover, Li et al. [2007; 2010] and Wen et al. [2009] take advantage of online tensor
decomposition to construct a tensor-based appearance model for robust visual object track-
ing.

— Nonlinear subspace models. If the training data lie on an underlying nonlinear manifold,
the LSM-based tracking algorithms may fail. Therefore, researchers attempt to employ non-
linear subspace learning to capture the underlying geometric information from target sam-
ples. For the robust human tracking, a nonlinear subspace model [Lim et al. 2006] is built
using nonlinear dimension reduction techniques (i.e., Local Linear Embedding). As a non-
linear generalization of PCA, a nonlinear subspace model [Chin and Suter 2007] based
on kernel principal component analysis (KPCA) is constructed to capture the kernelized
eigenspace information from target samples.

4.3.2. Unconventional subspace models. In general, unconventional subspace models can also
be used for visual object tracking. Roughly, they can be divided into three categories:
sparse/non-sparse representation, autoregressive modeling, and multi-subspace learning.

— Sparse/non-sparse representation. Typically, a set of target samples is associated with an
underlying subspace spanned by several templates. The likelihood of a candidate sample
belonging to the object class is often determined by the residual between the candidate
samples and the reconstructed samples derived from a linear representation. To ensure a
sparse linear representation, an `1-regularized optimization procedure is adopted to obtain
a sparse linear representation solution [Mei and Ling 2009]. Based on the sparse repre-
sentation technique in [Mei and Ling 2009], Jia et al. [2012] propose a tracking method
that further improves the tracking accuracy by using the block-division spatial pooling
schemes (e.g., average pooling, max pooling, and alignment pooling). Moreover, Zhang et
al. [2012] present a multi-task sparse optimization framework based on a `p,q-regularized
least-square minimization cost function. Instead of treating test samples independently,
the framework explores the interdependencies between test samples by solving a `p,q-
regularized group sparsity problem. When p = q = 1, the framework degenerates to the
popular `1 tracker [Mei and Ling 2009].
To achieve a real-time performance of the `1 tracker [Mei and Ling 2009], a subspace

model [Li et al. 2011] based on compressive sensing is built by solving an orthogonal match-
ing pursuit (OMP) optimization problem (i.e., random projections), which is about 6000
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Figure 3: An example of AAM instantiation. The shape parametersp = (p1, p2, . . . , pn)
T are used to

compute the model shapes and the appearance parametersλ = (λ1, λ2, . . . , λm)T are used to compute the
model appearanceA. The model appearance is defined in the base meshs0. The pair of meshess0 ands
define a (piecewise affine) warp froms0 to s which we denoteW(x;p). The final AAM model instance,
denotedM(W(x;p)), is computed by forwards warping the appearanceA from s0 to s usingW(x;p).

parametersλ is then created by warping the appearanceA from the base meshs0 to the model

shapes. This process is illustrated in Figure 3 for concrete valuesof p andλ.

In particular, the pair of meshess0 ands define a piecewise affine warp froms0 to s. For each

triangle ins0 there is a corresponding triangle ins. Any pair of triangles define a unique affine

warp from one to the other such that the vertices of the first triangle map to the vertices of the

second triangle. See Section 4.1.1 for more details. The complete warp is then computed: (1) for

any pixelx in s0 find out which triangle it lies in, and then (2) warpx with the affine warp for that

triangle. We denote this piecewise affine warpW(x;p). The final AAM model instance is then

computed by warping the appearanceA from s0 to s with warpW(x;p). This process is defined

by the following equation:

M(W(x;p)) = A(x) (4)

whereM is a 2D image of the appropriate size and shape that contains the model instance. This

equation, describes a forwards warping that should be interpreted as follows. Given a pixelx in

6

Fig. 13: Illustration of active appearance models (from [Matthews and Baker 2004], c©2004
Springer). The upper part shows that an appearance A is linearly represented by a base
appearance A0 and several appearance images; the middle part displays the piecewise affine
warp W(x;p) that transforms a pixel from a base shape into the active appearance model;
and the lower part exhibits that a shape s is linearly represented by a base shape s0 and
several shapes (si)ni=1.

times faster than [Mei and Ling 2009]. Similar to [Li et al. 2011], Zhang et al. [2012] make
use of compressive sensing (random projections) to generate a low-dimensional compres-
sive feature descriptor, leading to a real-time tracking performance. Alternatively, Bao et
al. [2012] take advantage of the popular accelerated proximal gradient (APG) approach to
optimize the `1-regularized least square minimization problem, which has a quadratic con-
vergence property to ensure the real-time tracking performance. Another way of improving
the efficiency of the `1 tracker [Mei and Ling 2009] is to reduce the number of `1 minimiza-
tions in the process of evaluating test samples [Mei et al. 2011]. This task is accomplished by
estimating the minimal error bound of the likelihood function in particle filtering, resulting
in a moderate improvement in tracking efficiency. From an viewpoint of signal compres-
sion, Li et al. [Li et al. 2013] construct a compact 3D-DCT object representation based on
a DCT subspace spanned by cosine basis functions. With the power of fast Fourier Trans-
form (FFT), the proposed 3D-DCT object representation is capable of efficiently adapting to
spatio-temporal appearance variations during tracking, leading to robust tracking results
in complicated situations.

On the other hand, the sparsity of the linear representation is unnecessary for robust ob-
ject tracking as long as an adequate number of template samples are provided, as pointed
out in [Li et al. 2012]. Therefore, a non-sparse metric weighted linear representation (with
a closed-form solution) is proposed to effectively and efficiently model the intrinsic appear-
ance properties of the tracked object [Li et al. 2012].

— Autoregressive modeling. Since tracking is a time-dependent process, the target samples
from adjacent frames are mutually correlated. To characterize the time dependency across
frames, a variety of appearance models are proposed in recent years. For instance, a dy-
namical statistical shape representation is proposed to capture the temporal correlation
information on human silhouettes from consecutive frames [Cremers 2006]. The proposed
representation learns a linear autoregressive shape model, where the current silhouette is
linearly constrained by the previous silhouettes. The learned shape model is then integrated
into the level-set evolution process, resulting in robust segmentation results.
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— Multi-subspace learning. In order to capture the distribution diversity of target samples,
several efforts establish the double or multiple subspaces for visual representation. For
example, Fan et al. [2008] present a bi-subspace model for visual tracking. The model si-
multaneously considers two visual cues: color appearance and texture appearance. Subse-
quently, the model uses a co-training strategy to exchange information between two visual
cues. For video-based recognition and tracking, Lee and Kriegman [2005] present a generic
appearance model that seeks to set up a face appearance manifold consisting of several sub-
manifolds. Each sub-manifold corresponds to a face pose subspace. Furthermore, Kwon and
Lee [2010] construct a set of basic observation models, each of which is associated with a
specific appearance manifold of a tracked object. By combining these basic observation mod-
els, a compound observation model is obtained, resulting in a robustness to combinatorial
appearance changes.

— Active appearance models (AAMs). Usually, AAMs [Hou et al. 2001; Sclaroff and Isidoro
2003; Matthews and Baker 2004] need to incorporate two components: a) shape and b)
appearance, as shown in Fig. 13. For a), the shape s of an AAM can be expressed as a linear
combination of a base shape s0 and several shape vectors (si)ni=1 such that s = s0+

∑n
i=1 pisi

where the shape s denotes (x1, y1, x2, y2, . . . , xv, yv) that are the coordinates of the v vertices
making up the mesh. For b), the appearance of the AAM can be represented as a linear
combination of a base appearance A0(x) and several appearance images (Ai(x))

m
i=1 such

that A(x) = A0(x) +
∑m

i=1 λiAi(x) where x ∈ s0 is a pixel lying inside the base mesh s0.
Therefore, given a test image, the AAM needs to minimize the following cost function for
the model fitting: ∑

x∈s0

[
A0(x) +

m∑
i=1

λiAi(x)− I(W(x;p))
]
, (4)

where W(x;p) denotes a piecewise affine warp that transforms a pixel x ∈ s0 into AAM.

4.3.3. Discussion. The lower-order linear subspace models (LSMs) usually learn vector-based
visual representations for visual object tracking. For the tracking efficiency, several incremen-
tal LSMs (e.g., incremental PCA) are developed for online visual object tracking. Since the
vector-based visual representations suffer from the small-sample-size problem, researchers
construct higher-order matrix-based or tensor-based visual representations. However, the
above LSMs potentially assume that object appearance samples lie on an underlying linear
manifold. In practice, this assumption is often violated because of complex extrinsic/intrinsic
appearance changes. Motivated by this consideration, non-linear subspace models are devel-
oped for visual representation. However, the problem with these non-linear subspace models
is that they are computationally expensive due to the non-linear subspace learning (e.g., non-
linear dimension reduction).

In recent years, unconventional subspace models have been proposed for visual object
tracking. These models either enforce the sparsity constraints on the linear representa-
tion solution or have different assumptions of subspace properties. However, the sparsity-
constrained linear representation typically induces a high optimization complexity, which
motivates researchers to develop an efficient optimization method (e.g., APG and OMP) for
a real-time tracking performance. Without the conventional single-subspace assumption, bi-
subspace or multi-subspace algorithms are proposed to more precisely model the distribution
diversity of the target samples, but at the cost of an additional computation.

4.4. Boosting-based discriminative appearance models
In the last decade, boosting-based discriminative appearance models (BDAMs) have been
widely used in visual object tracking because of their powerful discriminative learning ca-
pabilities. According to the learning strategies employed, they can be categorized into self-
learning and co-learning BDAMs. Typically, the self-learning BDAMs utilize the discrimina-
tive information from single source to guide the task of object/non-object classification, while
the co-learning BDAMs exploit the multi-source discriminative information for object detec-
tion. More specifically, the self-learning BDAMs first train a classifier over the data from
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Table IV: Summary of representative tracking-by-detection methods based on discriminative
learning techniques

Item No. References Boosting SVM Randomized
learning

Discriminant
analysis

Codebook
learning

Used Discriminative
learning techniques

1
[Grabner et al. 2006]

[Grabner and Bischof 2006]
[Liu and Yu 2007]

Self-learning
single-instance — — — — Boosting with feature

ranking-based feature selection

2 [Avidan 2007] Self-learning
single-instance — — — — Boosting with feature

weighting-based feature selection

3 [Visentini et al. 2008] Self-learning
single-instance — — — — Dynamic ensemble

based boosting

4 [Leistner et al. 2009] Self-learning
single-instance — — — — Noise-insensitive

boosting

5 [Okuma et al. 2004; Wang et al. 2005] Self-learning
single-instance — — — — Particle filtering integration

based boosting

6 [Wu et al. 2012; Luo et al. 2011] Self-learning
single-instance — — — — Transfer learning

based boosting

7 [Levin et al. 2007; Grabner et al. 2008]
[Liu et al. 2009]

Co-learning
single-instance — — — — Semi-supervised

co-learning boosting

8 [Babenko et al. 2009; Li et al. 2010] Self-learning
Multi-instance — — — — Multiple instance

boosting

9 [Zeisl et al. 2010] Co-learning
Multi-instance — — — —

Semi-supervised
Multiple instance

boosting

10 [Avidan 2004; Williams et al. 2005]
[Tian et al. 2007] — Self-learning

single-instance — — — Single SVM classifier
or SVM ensemble classifiers

11 [Bai and Tang 2012] — Self-learning
single-instance — — — Ranking SVM learning

12 [Hare et al. 2011; Yao et al. 2012] — Self-learning
single-instance — — — Structured SVM learning

13 [Tang et al. 2007] — Co-learning
single-instance — — — Semi-supervised

SVM classifiers

14 [Saffari et al. 2009; Godec et al. 2010]
[Leistner et al. 2010] — — Self-learning

single-instance — — Random forests or Random
Naive Bayes classifiers

15 [Lin et al. 2004; Nguyen and Smeulders 2006]
[Li et al. 2008] — —

Single-modal
self-learning

single-instance
— — Fisher Linear

Discriminant Analysis

16 [Wang et al. 2010; Jiang et al. 2011]
[Jiang et al. 2012] — —

Single-modal
self-learning

single-instance
— — Discriminant

metric learning

17 [Zhu and Martinez 2006; Xu et al. 2008] — — —
Multi-modal
self-learning

single-instance
— Subclass

Discriminant Analysis

18 [Zhang et al. 2007; Zha et al. 2010] — — —
Graph-driven
self-learning

single-instance
— Graph embedding

Graph transductive learning

19 [Collins et al. 2005] — — — — Self-learning
single-instance

Feature ranking
based feature selection

20 [Gall et al. 2010] — — — — Instance-specific
codebook

Discriminative
codebook learning

the previous frames, and subsequently use the trained classifier to evaluate possible object
regions at the current frame. After object localization, a set of so-called “positive” and “neg-
ative” samples are selected to update the classifier. These “positive” and “negative” samples
are labeled by the previously trained classifier. Due to tracking errors, the training sam-
ples obtained in the tracking process may be polluted by noise. Therefore, the labels for the
training samples are unreliable. As the tracking process proceeds, the tracking error may be
accumulated, possibly resulting in the “drift” problem. In contrast, the co-learning BDAMs
often takes a semi-supervised strategy for object/non-object classification (e.g., co-training by
building multiple classifiers).

On the other hand, BDAMs also take different strategies for visual representation, i.e.,
single-instance and multi-instance ones. The single-instance BDAMs require precise object
localization. If a precise object localization is not available, these tracking algorithms may
use sub-optimal positive samples to update their corresponding object or non-object discrim-
inative classifiers, which may lead to a model drift problem. Moreover, object detection or
tracking has its own inherent ambiguity, that is, precise object locations may be unknown
even for human labelers. To deal with this ambiguity, the multi-instance BDAMs are pro-
posed to represent an object by a set of image patches around the tracker location. Thus, they
can be further classified into single-instance or multi-instance BDAMs.

4.4.1. Self-learning single-instance BDAMs. Based on online boosting [Oza and Russell 2001],
researchers have developed a variety of computer vision applications such as object detec-
tion [Viola and Jones 2002] and visual object tracking [Grabner et al. 2006; Grabner and
Bischof 2006]. In these applications, the variants of boosting are invented to satisfy different
demands.

— Conventional BDAMs. As shown in Fig. 14, the conventional BDAMs first make a discrim-
inative evaluation of each feature from a candidate feature pool, and then select the top-
ranked features to conduct the tracking process [Grabner et al. 2006; Grabner and Bischof
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Fig. 14: Illustration of online boosting for feature selection.

2006]. To accelerate the feature selection process, Liu and Yu [2007] utilize gradient-based
feature selection to construct a BDAM. But this BDAM requires an initial set of weak clas-
sifiers to be given in advance, leading to difficulty in general object tracking. The above-
mentioned BDAMs often perform poorly in capturing the correlation information between
features, leading to the redundancy of selected features and the failure to compensate for
the tracking error caused by other features.
To address this issue, a feature weighting strategy is adopted to attach all the features from
the feature pool with different weights, and then performs weighted fusion for object track-
ing. For instance, Avidan [2007] constructs a confidence map by pixel classification using an
ensemble of online learned weak classifiers, which are trained by a feature weighting-based
boosting approach. Since needing to store and compute all the features during feature selec-
tion, the feature weighting-based boosting approach is computationally expensive. Further-
more, Parag et al. [2008] build a feature weighting-based BDAM for object tracking, where
the weak classifiers themselves are adaptively modified to adapt to scene changes. Namely,
the parameters of the weak classifiers are adaptively changed instead of replacement when
the new data arrive. The common property of the feature weighting-based BDAMs is that
they depend on a fixed number of weak classifiers. However, this property may restrict the
flexibility of the trackers in practice.

— Dynamic ensemble-based BDAMs. The conventional BDAMs need to construct a fixed num-
ber of weak learners in advance, and select these weak learners iteratively as the boosting
procedure proceeds. However, due to the time-varying property of visual object tracking,
they are incapable of effectively adapting to dynamic object appearance changes. To ad-
dress this problem, a dynamic ensemble-based BDAM [Visentini et al. 2008] is proposed
to dynamically construct and update the set of weak classifiers according to the ensemble
error value.

— Noise-insensitive BDAMs. To make visual object tracking more robust to noise corruption,
a set of BDAMs are proposed in the literature. For instance, Leistner et al. [2009] point
out that the convex loss functions typically used in boosting are highly sensitive to random
noise. To enhance robustness, Leistner et al. [2009] develop a generic BDAM called online
GradientBoost, which contains a set of noise insensitive loss functions. In essence, this
BDAM is an extension of the GradientBoost algorithm [Friedman 2001] and works similarly
to the AnyBoost algorithm [Mason et al. 1999].

— Particle filtering integration-based BDAMs. To make visual object tracking more efficient,
researchers embed feature selection into the particle filtering process. For example, Wang
et al. [2005] and Okuma et al. [2004] propose two online feature selection-based BDAMs
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Fig. 15: Illustration of a typical co-learning problem.

using particle filtering, which generate the candidate state set of a tracked object, and the
classification results of AdaBoost is used to determine the final state.

— Transfer learning-based BDAMs. Typically, most existing BDAMs have an underlying as-
sumption that the training samples collected from the current frame follow a similar dis-
tribution to those from the last frame. However, this assumption is often violated when the
“drift” problem takes place. To address the “drift” problem, a number of novel BDAMs [Wu
et al. 2012; Luo et al. 2011] are proposed to categorize the samples into two classes: aux-
iliary samples (obtained in the last frames) and target samples (generated in the current
frame). By exploring the intrinsic proximity relationships among these samples, the pro-
posed BDAMs are capable of effectively transferring the discriminative information on aux-
iliary samples to the discriminative learning process using the current target samples, lead-
ing to robust tracking results.

4.4.2. Co-learning single-instance BDAMs. In general, the self-learning BDAMs suffer from the
“model drift” problem due to their error accumulation caused by using the self-learning strat-
egy. In order to address this problem, researchers adopt the semi-supervised learning tech-
niques [Zhu 2005] for visual object tracking. For instance, Grabner et al. [2008] develop a
BDAM based on semi-supervised online boosting. Its main idea is to formulate the boosting
update process in a semi-supervised manner as a fused decision of a given prior and an online
classier, as illustrated in Fig. 15. Subsequently, Liu et al. [2009] make use of the co-training
strategy to online learn each weak classifier in boosting instead of only the final strong classi-
fier. The co-training strategy dynamically generates a series of unlabeled samples for progres-
sively modifying the weak classifiers, leading to the robustness to environmental changes. It
is proven that the co-training strategy can minimize the boosting error bound in theory.

4.4.3. Multi-instance BDAMs. To deal with the underlying ambiguity of object localization, mul-
tiple instance learning is used for object tracking, as illustrated in Fig. 16. In principle, it
represents an object by a set of image patches around the tracker location.

— Self-learning multi-instance BDAMs. For example, Babenko et al. [2009] represent an ob-
ject by a set of image patches, which correspond to an instance bag with each instance being
an image patch. Based on online multiple instance boosting, a tracking system is developed
to characterize the ambiguity of object localization in an online manner. The tracking sys-
tem assumes that all positively labelled instances are truly positive, but this assumption
is sometimes violated in practice. Furthermore, the tracking system trains the weak clas-
sifiers based only on the current frame, and is likely to be over-fitting. Instead of equally
treating the samples in each bag [Babenko et al. 2009], Zhang et al. [2012] propose an online
weighted multiple instance tracker, which incorporates the sample importance information
(i.e., the samples closer to the current tracker location are of greater importance) into the
online multi-instance boosting learning process, resulting in robust tracking results. To
characterize the cumulative loss of the weak classifiers across multiple frames instead of
the current frame, Li et al. [2010] propose an online multi-instance BDAM using the strong
convex elastic net regularizer instead of the `1 regularizer, and further prove that the pro-
posed multiple instance learning (MIL) algorithm has a cumulative regret (evaluating the
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Single-instance
learning

Multi-instance learning

Fig. 16: Illustration of single-instance multi-instance learning. The left part shows the track-
ing result; the middle part displays the positive and negative samples used by the single-
instance learning; and the right part exhibits the positive and negative sample bags used by
the multi-instance learning.

cumulative loss of the online algorithm) of O(
√
T ) with T being the number of boosting

iterations.
— Co-learning multi-instance BDAMs. Zeisl et al. [2010] and Li et al. [2013] combine the

advantages of semi-supervised learning and multiple instance learning in the process of
designing a BDAM. Semi-supervised learning can incorporate more prior information, and
multiple instance learning focuses on the uncertainty about where to select positive samples
for model updating.

4.4.4. Discussion. As mentioned previously, BDAMs can be roughly classified into: self-
learning based and co-learning based ones. Self-learning based BDAMs adopt the self-
learning strategy to learn object/non-object classifiers. They utilize previously learnt clas-
sifiers to select “positive” and “negative” training samples, and then update the current clas-
sifiers with the selected training samples. As a result, tracking errors may be gradually accu-
mulated. In order to tackle this problem, co-learning based BDAMs are developed to capture
the discriminative information from many unlabeled samples in each frame. They generally
employ semi-supervised co-learning techniques to update the classifiers with both labeled
and unlabeled samples in an interleaved manner, resulting in more robust tracking results.

On the other hand, conventional BDAMs take a single-instance strategy for visual repre-
sentation, i.e., one image patch for each object. The drawback of this single-instance visual
representation is to rely heavily on exact object localization, without which the tracking per-
formance can be greatly degraded because of the sub-optimal training sample selection. To
address this issue, MIL is introduced to visual object tracking. It takes into account of the
inherent ambiguity of object localization, representing an object by a set of image patches
around the tracker location. As a result, the MIL-based tracking algorithms can achieve ro-
bust tracking results, but may lose accuracy if the image patches do not precisely capture the
object appearance information.

However, all BDAMs need to construct a huge local feature pool for feature selection, lead-
ing to a low computational speed. Additionally, they usually obtain a local optimal solution
to object tracking because of their focus on local features rather than global features.

4.5. SVM-based discriminative appearance models (SDAMs)
SDAMs aim to learn margin-based discriminative SVM classifiers for maximizing inter-class
separability. SDAMs are able to discover and remember informative samples as support vec-
tors for object/non-object classification, resulting in a strong discriminative power. Effective
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kernel selection and efficient kernel computation play an importance role in designing ro-
bust SDAMs. According to the used learning mechanisms, SDAMs are typically based on
self-learning SDAMs and co-learning SDAMs.

— Self-learning SDAMs. In principle, the self-learning SDAMs are to construct SVM classifiers
for object/non-object classification in a self-learning fashion. For example, Avidan [2004]
proposes an offline SDAM for distinguishing a target vehicle from a background. Since the
SDAM needs substantial prior training data in advance, extending the algorithm to gen-
eral object tracking is a difficult task. Following the work in [Avidan 2004], Williams et
al. [2005] propose a probabilistic formulation-based SDAM, which allows for propagating
observation distributions over time. Despite its robustness, the proposed SDAM needs to
fully encode the appearance variation information, which is impractical in the tracking pro-
cess. Tian et al. [2007] utilize an ensemble of linear SVM classifiers to construct a SDAM.
These classifiers can be adaptively weighted according to their discriminative abilities dur-
ing different periods, resulting in the robustness to large appearance variations. The above
SDAMs need to heuristically select positive and negative samples surrounding the current
tracker location to update the object/non-object SVM classifier.
To avoid the heuristic and unreliable step of training sample selection (usually requiring
accurate estimation of object location), two strategies are adopted in the literature. One
is based on structured output support vector machine (SVM) [Hare et al. 2011; Yao et al.
2012], and the other is based on ranking SVM [Bai and Tang 2012]. The key idea of these
two strategies is to integrate the structured constraints (e.g., relative ranking or VOC over-
lap ratio between samples) into the max-margin optimization problem. For instance, Hare
et al. [2011] propose a SDAM based on a kernelized structured SVM, which involves an in-
finite number of structured loss (i.e., VOC overlap ratio) based constraints in the structured
output spaces. In addition, Bai and Tang [2012] therefore pose visual object tracking as a
weakly supervised ranking problem, which captures the relative proximity relationships
between samples towards the true target samples.

— Co-learning SDAMs. In general, the co-learning SDAMs rely on semi-supervised/multi-
kernel learning to construct SVM classifiers for object/non-object classification. For in-
stance, Tang et al. [2007] adopt the co-training SVM technique to design a semi-supervised
tracker. The disadvantage of this tracker is that it requires several initial frames to gen-
erate adequate labeled samples, resulting in the inflexibility in practice. Lu et al. [2010]
and Yang et al. [2010] design SVM classifiers using multi-kernel learning (MKL) for vi-
sual object tracking. MKL aims to learn an optimal linear combination of different kernels
based on different features, including the color information and spatial pyramid histogram
of visual words.

4.5.1. Discussion. With the power of max-margin learning, the SDAMs have a good gener-
alization capability of distinguishing foreground and background, resulting in an effective
SVM classifier for object localization. However, the process of constructing the SDAMs re-
quires a set of reliable labeled training samples, which is a difficult task due to the influence
of some complicated factors such as noisy corruptions, occlusions, illumination changes, etc.
Therefore, most existing SDAMs take a heuristic strategy for training sample collection (e.g.,
spatial distance based or classification score based), which may lead to the instability or even
“drift” of the tracking process. To address this issue, the structured SVM is applied to model
the structural relationships (i.e., VOC overlap ratio) between samples, resulting in a good
tracking performance in terms of generalization and robustness to noise. During tracking, a
hard assignment of a sample to a class label usually leads to the classification error accu-
mulation. To alleviate the issue, the ranking SVM (a weakly supervised learning method) is
also introduced into the tracking process, where the relative ranking information between
samples is incorporated into the constraints of max-margin learning.

The common point of the above SDAMs is to take a self-learning strategy for object/non-
object classification without considering the discriminative information from unlabeled data
or multiple information sources. Motivated by this, the co-learning SDAMs are devel-
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oped to integrate such discriminative information into the SVM learning process by semi-
supervised/multi-kernel learning.

the co-learning SDAMs emerge

4.6. Randomized learning-based discriminative appearance models (RLDAMs)
More recently, randomized learning techniques (e.g., Random Forest [Breiman 2001; Shotton
et al. 2008; Lepetit and Fua 2006] and Ferns [Özuysal et al. 2009]) have been successfully
introduced into the vision community. In principle, randomized learning techniques can build
a diverse classifier ensemble by performing random input selection and random feature se-
lection. In contrast to boosting and SVM, they are more computationally efficient, and easier
to be extended for handling multi-class learning problems. In particular, they can be paral-
lelized so that multi-core and GPU implementations (e.g., [Sharp 2008]) can be performed to
greatly reduce the run time. However, their tracking performance is unstable for different
scenes because of their random feature selection.

Inspired by randomized learning, a variety of RLDAMs are proposed in the field of visual
object tracking, including online random forests [Saffari et al. 2009; Santner et al. 2010],
random naive Bayes classifiers [Godec et al. 2010], and MIForests [Leistner et al. 2010].
For instance, Godec et al. [2010] develop a visual object tracking algorithm based on online
random naive Bayes classifiers. Due to the low computational and memory costs of Random
Naive Bayes classifiers, the developed tracking algorithm has a powerful real-time capability
for processing long-duration video sequences. In contrast to online Random Forests [Saffari
et al. 2009], the random Naive Bayes classifiers have a higher computational efficiency and
faster convergence in the training phase. Moreover, Leistner et al. [2010] present a RLDAM
named MIForests, which uses multiple instance learning to construct randomized trees and
represents the hidden class labels inside target bags as random variables.

4.7. Discriminant analysis-based discriminative appearance models (DADAMs)
Discriminant analysis is a powerful tool for supervised subspace learning. In principle, its
goal is to find a low-dimensional subspace with a high inter-class separability. According to
the learning schemes used, it can be split into two branches: conventional discriminant anal-
ysis and graph-driven discriminant analysis. In general, conventional DADAMs are formu-
lated in a vector space while graph-driven DADAMs utilize graphs for supervised subspace
learning.

4.7.1. Conventional DADAMs. Typically, conventional discriminant analysis techniques can be
divided into one of the following two main branches.

— Uni-modal DADAMs. In principle, uni-modal DADAMs have a potential assumption that
the data for the object class follow a uni-modal Gaussian distribution. For instance, Lin
et al. [2004] build a DADAM based on incremental Fisher linear discriminant analysis
(IFLDA). This DADAM models the object class as a single Gaussian distribution, and mod-
els the background class as a mixture of Gaussian distributions. In [Nguyen and Smeulders
2006], linear discriminant analysis (LDA) is used for discriminative learning in the local
texture feature space obtained by Gabor filtering. However, there is a potential assumption
that the distributions of the object and the background classes are approximately Gaussian
ones with an equal covariance. Li et al. [2008] construct a DADAM using the incremental
2DLDA on the 2D image matrices. Since matrix operations are directly made on these 2D
matrices, the DADAM is computationally efficient. Moreover, another way of constructing
uni-modal DADAMs is by discriminant metric learning, which aims to linearly map the
original feature space to a new metric space by a linear projection [Wang et al. 2010; Jiang
et al. 2011; Jiang et al. 2012]. After discriminant metric learning, the similarity between
intra-class samples are minimized while the distance between inter-class samples are max-
imized, resulting in an effective similarity measure for robust object tracking. Note that the
above DADAMs are incapable of dealing well with the object and background classes having
multi-modal distributions.
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(b)

Positive Negative Unlabeled

(a)

Graph transductive
learning

Conventional 
Supervised learning

Fig. 17: Illustration of transductive learning. (a) shows the decision hyperplane obtained
by the conventional supervised learning; and (b) displays the decision hyperplane (further
adjusted by the unlabeled samples) of transductive learning.

— Multi-modal DADAMs. In essence, multi-modal DADAMs model the object class and the
background class as a mixture of Gaussian distributions. For example, Xu et al. [2008]
take advantage of adaptive subclass discriminant analysis (SDA) (i.e., an extension to the
basic SDA [Zhu and Martinez 2006]) for object tracking. The adaptive SDA first partitions
data samples into several subclasses by a nearest neighbor clustering, and then runs the
traditional LDA for each subclass.

4.7.2. Graph-driven DADAMs. Researchers utilize the generalized graph-based discrimina-
tive learning (i.e., graph embedding and graph transductive learning) to construct a set of
DADAMs for visual object tracking. Typically, these DADAMs mainly have the following two
branches:

— Graph embedding based DADAMs. In principle, the goal of graph embedding based
DADAMs is to set up a graph-based discriminative model, which utilizes the graph-based
techniques to embed the high-dimensional samples into a discriminative low-dimensional
space for the object/non-object classification. For instance, Zhang et al. [2007] design a
DADAM based on graph embedding-based LDA, which makes a basic assumption that the
background class is irregularly distributed with multiple modalities while the object class
follows a single Gaussian distribution. However, this basic assumption does not hold true
in the case of complex intrinsic and extrinsic object appearance changes.

— Graph transductive learning based DADAMs. In general, graph transductive learning
based DADAMs aim to utilize the power of graph-based semi-supervised transductive learn-
ing for the likelihood evaluation of the candidate samples belonging to the object class. They
make use of the intrinsic topological information between the labeled and unlabeled sam-
ples to discover an appropriate decision hyperplane for object/non-object classification, as
shown in Fig. 17. For instance, Zha et al. [2010] develop a tracker based on graph-based
transductive learning. The tracker utilizes the labeled samples to maximize the inter-class
separability, and the unlabeled samples to capture the underlying geometric structure of
the samples.

4.7.3. Discussion. The goal of DADAMs is to learn a decision hyperplane to separate the ob-
ject class from the background class. However, the traditional DADAMs perform poorly when
both the object class and the background class have multi-modal statistical distributions. To
overcome this limitation, multi-modal discriminant analysis is adopted to explore the train-
ing data distributions by data clustering. To make a non-linear extension to the conventional

Appearing in ACM Transactions on Intelligent Systems and Technology, 2013.



X. Li et al. A:29

Table V: Summary of representative tracking-by-detection methods using hybrid generative-
discriminative learning techniques

Item No. References Single-layer
combination

Multi-layer
combination

Used learning
techniques

1 [Kelm et al. 2006]
√ × Multi-conditional learning

2 [Lin et al. 2004]
√ × Combination of PCA

and Fisher LDA

3 [Grabner et al. 2007]
√ × Combination of boosting

and robust PCA

4 [Yang et al. 2009]
√ × Discriminative subspace learning

using positive and negative data

5 [Everingham and Zisserman 2005] × √ Combination of a tree-structured classifier
and a Lambertian lighting model

6 [Shen et al. 2010] × √ Combination of SVM learning
and kernel density estimation

7 [Lei et al. 2008] × √
Three-layer combination of

relevance vector machine and GMM:
learner combination (Layer 1)

classifier combination (Layer 2)
decision combination (Layer 3)

8 [Yu et al. 2008] × √ Combination of the constellation
model and fisher kernels

DADAMs, graph-based DADAMs are proposed. These DADAMs try to formulate the prob-
lem of discriminant analysis as that of graph learning such as graph embedding and graph
transductive learning. However, a drawback is that these algorithms need to retain a large
amount of labeled/unlabeled samples for graph learning, leading to their impracticality for
real tracking applications.

4.8. Codebook learning-based discriminative appearance models (CLDAMs)
In principle, CLDAMs need to construct the foreground and background codebooks to adap-
tively capture the dynamic appearance information from the foreground and background. Re-
cently, Yang et al. [2010a] construct two codebooks of image patches using two different fea-
tures: RGB and LBP features, leading to the robustness in handling occlusion, scaling, and ro-
tation. To capture more discriminative information, an adaptive class-specific codebook [Gall
et al. 2010] is built for instance tracking. The codebook encodes the information on spatial
distribution and appearance of object parts, and can be converted to a more instance-specific
codebook in a probabilistic way (i.e., probabilistic votes for the object instance). Inspired by
the tracking-by-detection idea, Andriluka et al. [2008] establish object-specific codebooks,
which are constructed by clustering local features (i.e., shape context feature descriptors and
Hessian-Laplace interest points) extracted from a set of training images. These codebooks
are then embedded into a part-based model for pedestrian detection.

Therefore, CLDAMs often consider the discriminative information not only from the back-
ground but also from other object instances. However, it is very difficult to construct a uni-
versal codebook for different scenes or objects. As a result, it is necessary to collect different
training samples for different scenes or objects, leading to inflexibility in practice. In addition,
determining the codebook size is a difficult task in practice.

4.9. Hybrid generative-discriminative appearance models (HGDAMs)
As discussed in [Ulusoy and Bishop 2005], the generative and the discriminative models
have their own advantages and disadvantages, and are complementary to each other to some
extent. Consequently, much effort has been made to propose a variety of hybrid generative-
discriminative models for combining the benefits of both the generative and the discrimina-
tive models in visual object tracking. These hybrid generative-discriminative models aim to
combine the generative and the discriminative models in a single-layer or multi-layer man-
ner.

4.9.1. HGDAMs via single-layer combination. HGDAMs via single-layer combination aim to fuse
the generative and the discriminative models at the same layer. They attempt to fuse the
confidence scores of the generative and the discriminative models to generate better track-
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ing results than just using them individually. Typically, they have two kinds of combination
mechanisms: decision-level combination and intermediate-level combination.

— HGDAMs via decision-level combination. In principle, such HGDAMs focus on how to ef-
fectively fuse the confidence scores from the generative and the discriminative models. For
instance, a linear fusion strategy [Kelm et al. 2006] is taken to combine the log-likelihood of
discriminative and generative models for pixel classification. It is pointed out in [Kelm et al.
2006] that the performance of the combined generative-discriminative models is associated
with a balance between the purely generative and purely discriminative ones. In addition,
Lin et al. [Lin et al. 2004] propose a HGDAM that is a generalized version of the Fisher
Linear Discriminant Analysis. This HGDAM consists of two components: the observation
sub-model and the discriminative sub-model.

— HGDAMs via intermediate-level combination. In principle, the HGDAMs via intermediate-
level combination aim to simultaneously utilize both low-level features and high-level con-
fidence scores from the generative and the discriminative models. For instance, Yang et
al. [2009] impose three data-driven constraints on the proposed object appearance model:
(1) negative data; (2) bottom-up pair-wise data constraints; and (3) adaptation dynamics.
As a result, the object appearance model can greatly ameliorate the problem of adaptation
drift and can achieve good tracking performances in various non-stationary scenes. Fur-
thermore, Grabner et al. [2007] propose a HGDAM based on a boosting algorithm called
Eigenboosting, which requires visual features to be discriminative with reconstructive abil-
ities at the same time. In principle, eigenboosting aims to minimize a modified boosting
error-function in which the generative information (i.e., eigenimages generated from Haar-
like binary basis-functions using robust PCA) is integrated as a multiplicative prior.

4.9.2. HGDAMs via multi-layer combination. In principle, the goal of the HGDAMs via multi-layer
combination is to combine the information from the generative and discriminative models at
multiple layers. In general, such HGDAMs can be divided into two classes: HGDAMs via
sequential combination and HGDAMs via interleaving combination.

— HGDAMs via sequential combination. In principle, the HGDAMs via sequential combi-
nation aim to fuse the benefits of the generative and discriminative models in a sequen-
tial manner. Namely, they use the decision output of one model as the input of the other
model. For example, Everingham and Zisserman [Everingham and Zisserman 2005] com-
bine generative and discriminative head models. A discriminative tree-structured classifier
is trained to make efficient detection and pose estimation over a large pose space with three
degrees of freedom. Subsequently, a generative head model is used for the identity verifica-
tion. Moreover, Shen et al. [2010] develop a generalized kernel-based HGDAM which learns
a dynamic visual representation by online SVM learning. Subsequently, the learned visual
representation is incorporated into the standard MS tracking procedure. Furthermore, Lei
et al. [2008] propose a HGDAM using sequential Bayesian learning. The proposed tracking
algorithm consists of three modules. In the first module, a fast relevance vector machine
algorithm is used to learn a discriminative classifier. In the second module, a sequential
Gaussian mixture model is learned for visual representation. In the third module, a model
combination mechanism with a three-level hierarchy is discussed, including the learner
combination (at level one), classifier combination (at level two), and decision combination
(at level three).

— HGDAMs via interleaving combination. In principle, the goal of the HGDAMs via interleav-
ing combination is to combine the discriminative-generative information in a multi-layer
interleaving manner. Namely, the decision output of one model is used to guide the learning
task of the other model and vice versa. For instance, Yu et al. [2008] utilize a co-training
strategy to combine the information from a SVM classifier and a generative multi-subspace
model [Lee and Kriegman 2005] in a multi-layer interleaving manner.
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Table VI: Summary of the publicly available tracking resources
Item No. Name Dataset Ground truth Source code Web link

1 Head track
[Birchfield 1998]

√ × √
www.ces.clemson.edu/∼stb/research/headtracker/seq/

2 Fragment tracker
[Adam et al. 2006]

√ √ √
www.cs.technion.ac.il/∼amita/fragtrack/fragtrack.htm

3 Adaptive tracker
[Jepson et al. 2003]

√ × × www.cs.toronto.edu/vis/projects/adaptiveAppearance.html

4 PCA tracker
[Ross et al. 2008]

√ √ √
www.cs.utoronto.ca/∼dross/ivt/

5 KPCA tracker
[Chin and Suter 2007] × × √

cs.adelaide.edu.au/∼tjchin/

6 `1 tracker
[Mei and Ling 2009] × × √

www.ist.temple.edu/∼hbling/code data.htm

7 Kernel-based tracker
[Shen et al. 2010] × × √

code.google.com/p/detect/

8 Boosting tracker
[Grabner and Bischof 2006]

√ × √
www.vision.ee.ethz.ch/boostingTrackers/

9 MIL tracker
[Babenko et al. 2009]

√ √ √
vision.ucsd.edu/∼bbabenko/project miltrack.shtml

10 MIForests tracker
[Leistner et al. 2010]

√ √ √
www.ymer.org/amir/software/milforests/

11 Boosting+ICA tracker
[Yang et al. 2010b] × × √

ice.dlut.edu.cn/lu/publications.html

12 Appearance-adaptive tracker
[Zhou et al. 2004] × × √

www.umiacs.umd.edu/∼shaohua/sourcecodes.html

13
Tracking with histograms

and articulating blocks
[Nejhum et al. 2010]

√ √ √
www.cise.ufl.edu/∼smshahed/tracking.htm

14 Visual tracking decomposition
[Kwon and Lee 2010]

√ √ √
cv.snu.ac.kr/research/∼vtd/

15 Structural SVM tracker
[Hare et al. 2011] × × √

www.samhare.net/research/struck

16 PROST tracker
[Santner et al. 2010]

√ √ √
gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php

17 Superpixel tracker
[Wang et al. 2011]

√ √ √
faculty.ucmerced.edu/mhyang/papers/iccv11a.html

18 KLT feature tracker
[Lucas and Kanade 1981] × × √

www.ces.clemson.edu/∼stb/klt/

19 Deformable contour tracker
[Vaswani et al. 2008]

√ × √
home.engineering.iastate.edu/∼namrata/research/ContourTrack.html#code

20 Condensation tracker
[Isard and Blake 1998]

√ × √
www.robots.ox.ac.uk/∼misard/condensation.html

21 Motion tracking
[Stauffer and Grimson 2000]

√ × √
www.cs.berkeley.edu/∼flw/tracker/

22 Mean shift tracker × × √
www.cs.bilkent.edu.tr/∼ismaila/MUSCLE/MSTracker.htm

23 Tracking-Learning-Detection Tracker
√ × √

info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
24 CAVIAR sequences

√ √ × homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
25 PETS sequences

√ √ × www.hitech-projects.com/euprojects/cantata/datasets cantata/dataset.html
26 SURF × × √

people.ee.ethz.ch/∼surf/download ac.html
27 XVision visual tracking × × √

peipa.essex.ac.uk/info/software.html
28 The Machine Perception Toolbox × × √

mplab.ucsd.edu/grants/project1/free-software/MPTWebSite/introduction.html
29 Compressive Tracker [Zhang et al. 2012]

√ √ √
www4.comp.polyu.edu.hk/∼cslzhang/CT/CT.htm

30 Structural local sparse tracker
[Jia et al. 2012]

√ √ √
ice.dlut.edu.cn/lu/Project/cvpr12 jia project/cvpr12 jia project.htm

31 Sparsity-based collaborative tracker
[Zhong et al. 2012]

√ √ √
ice.dlut.edu.cn/lu/Project/cvpr12 scm/cvpr12 scm.htm

32 Multi-task sparse tracker
[Zhang et al. 2012] × × √

sites.google.com/site/zhangtianzhu2012/publications

33 APG `1 tracker [Bao et al. 2012]
√ √ √

www.dabi.temple.edu/∼hbling/code data.htm#L1 Tracker

34 Structured keypoint tracker
[Hare et al. 2012]

√ √ √
www.samhare.net/research/keypoints

35 Spatial-weighted MIL tracker
[Zhang and Song 2012] × × √

code.google.com/p/online-weighted-miltracker/

5. BENCHMARK RESOURCES FOR VISUAL OBJECT TRACKING
To evaluate the performance of various tracking algorithms, one needs the same test video
dataset, the ground truth, and the implementation of the competing tracking algorithms.
Tab. VI lists the current major resources available to the public.

Another important issue is how to evaluate tracking algorithms in a qualitative or quan-
titative manner. Typically, qualitative evaluation is based on intuitive perception by human.
Namely, if the calculated target regions cover more true object regions and contain fewer
non-object pixels, the tracking algorithms are considered to achieve better tracking perfor-
mances; otherwise, the tracking algorithms perform worse. For a clear illustration, a qual-
itative comparison of several representative visual representations is provided in Tab. VII
in terms of computational speed as well as handling occlusion, illumination variation, and
shape deformation capabilities. Moreover, Tab. VIII provides a qualitative comparison of sev-
eral representative statistical modeling-based appearance models in terms of computational
speed, memory usage, online adaptability, and discriminability.
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Table VII: Qualitative comparison of visual representations (Symbols
√

and × mean that
the visual representation can or cannot cope with the situations of occlusions, illumination
changes, and shape deformations, respectively.)

Item No. Visual representations What to track Speed Occlusion Illumination Shape deformation

1 Vector-based raw pixel representation
[Ross et al. 2008] rectangle high × × ×

2 Matrix-based raw pixel representation
[Li et al. 2007] rectangle high × × ×

3 Multi-cue raw pixel representation
(i.e., color, position, edge) [Wang et al. 2007] rectangle moderate

√ × ×

4
Multi-cue spatial-color histogram representation

(i.e., joint histogram in (x, y, R, G, B))
[Georgescu and Meer 2004]

rectangle high × × √

5
Multi-cue spatial-color histogram representation

(i.e., patch-division histogram)
[Adam et al. 2006]

rectangle high
√ × √

6
covariance representation

[Porikli et al. 2006; Li et al. 2008]
[Hu et al. 2012; Wu et al. 2012]

rectangle moderate × √ √

7 Wavelet filtering-based representation
[Li et al. 2009] rectangle slow

√ √ √

8 [Cremers 2006; Sun et al. 2011]
Active contour representation contour slow

√ × √

9
Local feature-based represnetation

(local templates)
[Lin et al. 2007]

rectangle moderate
√ √ √

10
Local feature-based represnetation

(MSER features)
[Tran and Davis 2007]

irregular
regions slow

√ × √

11
[Zhou et al. 2009]

Local feature-based represnetation
(SIFT features)

interest
points slow

√ √ √

12
Local feature-based represnetation

(SURF features)
[He et al. 2009]

interest
points moderate

√ √ √

13
Local feature-based represnetation

(Corner features)
[Kim 2008]

interest
points moderate

√ √ √

14
Local feature-based represnetation
(Saliency detection-based features)

[Fan et al. 2010]

saliency
patches slow

√ √ √

Table VIII: Qualitative comparison of representative statistical modeling based appearance
models.

Item No. Statistical modeling-based
appearance models Domain Speed Memory usage Online adaptability Discriminability

1 Linear subspace models manifold
learning fast low strong weak

2 Nonlinear subspace models manifold
learning slow high weak moderate

3 Mixture models Parametric
density estimation moderate low strong moderate

4 Kernel-based models Nonparametric
density estimation fast low weak weak

5 Boosting-based
appearance models ensemble learning moderate low strong strong

6 SVM-based
appearance models

Maximum margin
learning slow high strong strong

7 Randomized learning
based appearance models

classifier ensemble
based on random input selection

and random feature selection
fast high strong weak

8 Discriminant analysis
based appearance models

supervised subspace
learning fast low strong weak

9 Codebook learning
based appearance models Vector quantization slow high strong strong

In contrast, a quantitative evaluation relies heavily on the ground truth annotation. If ob-
jects of interest are annotated with bounding boxes, a quantitative evaluation is performed
by computing the positional errors of four corners between the tracked bounding boxes and
the ground truth. Alternatively, the overlapping ratio between the tracked bounding boxes (or
ellipses) and the ground truth can be calculated for the quantitative evaluation: r =

At

⋂
Ag

At
⋃

Ag
,

where At is the tracked bounding box (or ellipse) and Ag is the ground truth. The task of
ground truth annotation with bounding boxes or ellipses is difficult and time-consuming.
Consequently, researchers take a point-based annotation strategy for the quantitative evalu-
ation. Specifically, they either record object center locations as the ground truth for simplic-
ity and efficiency, or mark several points within the object regions by hand as the ground
truth for accuracy (e.g., seven mark points are used in the dudek face sequence [Ross et al.
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2008]). This way, we can compute the positional residuals between the tracking results and
the ground truth for the quantitative evaluation.

6. CONCLUSION AND FUTURE DIRECTIONS
In this work, we have presented a survey of 2D appearance models for visual object tracking.
The presented survey takes a module-based organization to review the literature of two im-
portant modules in 2D appearance models: visual representations and statistical modeling
schemes for tracking-by-detection, as shown in Fig. 3. The visual representations focus more
on how to robustly describe the spatio-temporal characteristics of object appearance, while
the statistical modeling schemes for tracking-by-detection put more emphasis on how to cap-
ture the generative/discriminative statistical information of the object regions. These two
modules are closely related and interleaved with each other. In practice, powerful appear-
ance models depend on not only effective visual representations but also robust statistical
models.

In spite of a great progress in 2D appearance models in recent years, there are still several
issues remaining to be addressed:

— Balance between tracking robustness and tracking accuracy. Existing appearance models
are incapable of simultaneously guaranteeing tracking robustness and tracking accuracy.
To improve the tracking accuracy, more visual features and geometric constraints are in-
corporated into the appearance models, resulting in a precise object localization in the sit-
uations of particular appearance variations. However, these visual features and geometric
constraints can also lower the generalization capabilities of the appearance models in the
aspect of undergoing other appearance variations. On the other hand, to improve the track-
ing robustness, the appearance models relax some constraints on a precise object localiza-
tion, and thus allow for more ambiguity of the object localization. Thus, balancing tracking
robustness and tracking accuracy is an interesting research topic.

— Balance between simple and robust visual features. In computer vision, designing both sim-
ple and robust visual features is one of the most fundamental and important problems. In
general, simple visual features have a small number of components. As a result, they are
computationally efficient, but have a low discriminability. In contrast, robust visual fea-
tures often have a large number of components. Consequently, they are computationally
expensive, and have sophisticated parameter settings. Therefore, how to keep a good bal-
ance between simplicity and robustness plays an important role in visual object tracking.

— 2D and 3D information fusion. 2D appearance models are computationally efficient and
simple to implement. Due to the information loss of 3D-to-2D projections, 2D appearance
models cannot accurately estimate the poses of the tracked objects, leading to the sensitivity
to occlusion and out-of-plane rotation. In contrast, 3D appearance models are capable of pre-
cisely characterizing the 3D pose of the tracked objects, resulting in the robustness to occlu-
sion and out-of-plane rotation. However, 3D appearance models require a large parameter-
search space for 3D pose estimation, resulting in expensive computational costs. Therefore,
combining the advantages of 2D and 3D appearance models is a challenging research topic.
To accelerate the pose estimation process of the 3D appearance models, a possible solution
is to use the tracking results of the 2D appearance models as the initialization of the 3D
appearance models. However, how to effectively transfer from 2D tracking to 3D tracking is
still an unsolved problem.

— Intelligent vision models. Inspired by the biological vision, a number of high-level salient
region features are proposed to capture the salient semantic information of an input im-
age. These salient region features are relatively stable during the process of tracking, while
they rely heavily on salient region detection which may be affected by noise or drastic illu-
mination variation. Unreliable saliency detection leads to many feature mismatches across
frames. Consequently, it is necessary to build an intelligent vision model that can robustly
track these salient region features across frames like what human vision offers.

— Camera network tracking. Typically, the appearance models are based on a single camera,
which provides a very limited visual information of the tracked objects. In recent years, sev-
eral appearance models using multiple overlapping cameras are proposed to fuse different
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visual information from different viewpoints. These appearance models usually deal with
the problem of object tracking in the same scene monitored by different cameras. Often
they cannot complete the tracking task of the same object in different but adjacent scenes
independently. In this case, tracking in a large camera network needs to be established for
a long-term monitoring of the objects of interest. However, how to transfer the target in-
formation from one camera sub-network to another is a crucial issue that remains to be
solved.

— Low-frame-rate tracking. Due to the hardware limits of processing speed and memory us-
age, mobile devices or micro embedded systems usually produces the video data with a low
frame rate (e.g., abrupt object motion), which makes the tracking job challenging. In this
situation, the appearance models needs to have a good generalization and adaptation capa-
bility of online coping with the object appearance variations during tracking. Therefore, it is
crucial to construct a robust appearance model with efficient visual modeling and effective
statistical modeling for real-time applications.
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