
Effective Fusion and Separation of Distribution,
Fault-Tolerance, and Energy-Efficiency Concerns

Young-Woo Kwon

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Application

Eli Tilevich (Chair)

Dennis G. Kafura

Binoy Ravindran

Barbara G. Ryder

Patrick Thomas Eugster

June 3, 2014

Blacksburg, Virginia

Keywords: distributed computing, fault-tolerance, energy-efficiency, middleware,

mobile applications, program transformation, runtime system, dynamic adaptation, refactoring

Copyright 2014 c©, Young-Woo Kwon

Effective Fusion and Separation of
Distribution, Fault-Tolerance, and Energy-Efficiency Concerns

Young-Woo Kwon

ABSTRACT

As software applications are becoming increasingly distributed and mobile, their design and imple-

mentation are characterized by distributed software architectures, possibility of faults, and the need

for energy awareness. Thus, software developers should be able to simultaneously reason about

and handle the concerns of distribution, fault-tolerance, and energy-efficiency. Being closely in-

tertwined, these concerns can introduce significant complexity into the design and implementation

of modern software. In other words, to develop reliable and energy-efficient applications, software

developers must understand how distribution, fault-tolerance, and energy-efficiency interplay with

each other and how to implement these concerns while keeping the complexity in check.

This dissertation addresses five technical issues that stand on the way of engineering reliable and

energy-efficient software: (1) how can developers select and parameterize middleware to achieve

the requisite levels of performance, reliability, and energy-efficiency? (2) how can one streamline

the process of implementing and reusing fault tolerance functionality in distributed applications?

(3) can automated techniques be developed to help transition centralized applications to using

cloud-based services efficiently and reliably? (4) how can one leverage cloud-based resources

to improve the energy-efficiency of mobile applications? (5) how can middleware be adapted

to improve the energy-efficiency of distributed mobile applications operated over heterogeneous

mobile networks?

To address these issues, this research studies the concerns of distribution, fault-tolerance, and

energy-efficiency as well as their interaction. It also develops novel approaches, techniques, and

tools that effectively fuse and separate these concerns as required by particular software develop-

ment scenarios. The specific innovations include (1) a systematic assessment of the performance,

conciseness, complexity, reliability, and energy consumption of middleware mechanisms for ac-

cessing remote functionality, (2) a declarative approach to hardening distributed applications with

resiliency against partial failure, (3) cloud refactoring, a set of automated program transforma-

tions for transitioning to using cloud-based services efficiently and reliably, (4) a cloud offloading

approach that improves the energy-efficiency of mobile applications without compromising their

reliability, (5) a middleware mechanism that optimizes energy consumption by adapting execution

patterns dynamically in response to fluctuations in network conditions.

This dissertation is based on 5 conference papers, presented at Middleware’09 [82], SCC’10 [84],

MESOCA’11 [77], ICDCS’12 [78], and ICSM’13 [80] as well as 4 journal articles, published at

Service Oriented Computing and Applications [83], Information and Software Technology [79],

IEEE Computer [152], and Automated Software Engineering [81].1

1This research received support from the National Science Foundation through the Grant CCF-1116565 (Auto-
mated Refactoring Techniques for Efficient and Reliable Distributed Execution).

iii

To my family:

My wife, Eunmi Kim

My father, Gaphyun Kwon

My mother, Okgeum Bae

My son, Aiden Yoonsang Kwon

iv

ACKNOWLEDGEMENTS

My graduate school experience has been an exciting journey and it has provided me with a won-

derful opportunity to learn. Any accomplishments I have achieved during this long journey would

not have been possible without many individuals. I would like to sincerely thank all those who

have helped me complete my Ph.D.

First, I would like to express my deepest appreciation to my advisor, Dr. Eli Tilevich, for his valu-

able support, prompt guidance, and effective encouragement throughout my graduate program. He

has supported me on every aspects of my Ph.D. dissertation research, in particular with emphasis

on guiding me to the true research process. He always made himself available whenever I needed

his advice, selflessly introducing substantial amount of time guiding this research. I was able to

lean how research ideas should be selected and developed to publish at premier venues. Also, I

would like to thank him for his advice and invaluable feedback to improve my ability to write

research papers. I am very fortunate to have an excellent mentor like him and I would like to thank

him for enriching Ph.D. experience.

I would also like to thank my committee members, Patrick Eugster, Dennis Kafura, Binoy Ravin-

dran, and Barbara Ryder, for carefully reading my dissertation and presenting constructive feed-

backs and valuable insight that made it possible for me to improve the overall quality of the disser-

tation research.

My special thanks go to Barbara Ryder, who took time from her busy schedule to provide me with

constructive advice in improving my presentation skill and enhancing my dissertation research. I

am also thankful to her for her feedback on my dissertation document and my job talk.

During my job search, I greatly thank Eli Tilevich, Binoy Ravindran, and Barbara Ryder, for

their help regarding to their recommendation letters and fruitful advice. Without their invaluable

guidance and supports, I would not be able to start my academic career at Utah State University.

I am grateful to all CS@VT friends, Software Innovations Lab mates, Korean students for their

friendship and countless help. I could develop many research ideas and improve my communica-

v

tion skill based on their comments raised during seminars and technical discussions.

My graduate journey would have not been possible without my family. I would like to thank my

family for their love, support, and encouragement. I would like to thank my wife, Eunmi Kim, for

everything. Her encouragement and supports have helped me overcome many obstacles for the last

6 years. Also, I would like to thank my parents. I probably would not be writing this dissertation

if it were not for my parents who have constantly supported me to complete my Ph.d. Finally, I

thank my son, Aiden, who is the joy of my life.

vi

Contents

1 Introduction 1

1.1 Major Research Contributions and Scope . 3

1.1.1 A Study of Middleware . 4

1.1.2 Declarative Fault Handling Against Partial Failure 5

1.1.3 Automated Refactoring for Reliable Cloud-Based Execution 6

1.1.4 Energy-Efficient Mobile Execution . 7

1.1.5 Energy-Efficient Middleware . 8

1.2 Broader Impact . 10

1.3 Structure . 10

2 An Assessment of Distributed Programming Abstractions 11

2.1 An Assessment of DPAs for Accessing Remote Services 11

2.1.1 Technical Background . 14

2.1.2 OSGi in RBI . 15

2.1.3 Case Study . 18

2.1.4 Discussion . 24

2.1.5 Related Work . 28

2.1.6 Conclusion . 29

2.2 The Impact of DPAs on Application Energy Consumption 30

2.2.1 Technical Background . 32

vii

2.2.2 Measuring Energy Consumption of Distributed Programming Abstractions 34

2.2.3 Result Analysis . 42

2.2.4 Energy Consumption Patterns and Guidelines 43

2.2.5 Related Work . 45

2.2.6 Discussion . 48

2.2.7 Conclusion . 49

3 Hardening Distributed Applications Against Partial Failure 50

3.1 Hardening Distributed Applications with Network Volatility Resiliency 50

3.1.1 Background . 53

3.1.2 DR-OSGi: Treating Symptoms of Network Volatility 57

3.1.3 Evaluation . 63

3.1.4 Discussion . 70

3.1.5 Related Work . 71

3.1.6 Conclusions . 73

3.2 A Declarative Approach to Hardening Services Against QoS Vulnerabilities 73

3.2.1 Background . 75

3.2.2 Declarative Hardening . 80

3.2.3 Evaluation . 90

3.2.4 Discussion . 95

3.2.5 Related Work . 96

3.2.6 Conclusions . 99

viii

4 Enabling Cloud-Based Execution via Cloud Refactoring 100

4.1 Motivation and Technical Background . 102

4.1.1 Motivating Example . 102

4.1.2 Technical Background . 104

4.1.3 OSGi Framework as a Cloud Computing Platform 105

4.2 Our Approach: Cloud Refactoring . 106

4.2.1 Approach Overview . 106

4.2.2 Service Recommendation . 107

4.2.3 Cloud Refactoring—2) Adapt Service Interface 119

4.3 Evaluation . 123

4.3.1 Micro Benchmark: Clustering-Based Recommendation 123

4.3.2 Case Study I—DNA Sequence Alignment—JAligner 125

4.3.3 Case Study II—JNotes . 128

4.3.4 Case Study III: GE Portfolio Analysis Service 128

4.4 Discussion . 130

4.4.1 Advantages . 130

4.4.2 Limitations . 130

4.4.3 Motivation for Cloud Refactoring . 131

4.5 Related Work . 132

4.6 Conclusion . 134

5 Adaptive Cloud Offloading to Improve Energy-Efficiency 135

ix

5.1 Motivation and Research Questions . 137

5.1.1 Motivating Example . 137

5.1.2 Problem Definition and Research Questions 138

5.1.3 Solution Overview . 140

5.2 Technical Background . 140

5.2.1 Distributed Mobile Execution to Save Energy 141

5.2.2 Program Analysis . 142

5.2.3 Program State Synchronization . 142

5.3 Adaptive Cloud Offloading . 143

5.3.1 Approach Overview . 143

5.3.2 Programming Model . 143

5.3.3 Cloud Offloading Analysis . 145

5.3.4 Enhancing Bytecode to Enable Offloading 149

5.3.5 Adaptive Runtime System . 149

5.4 Evaluation . 156

5.4.1 Micro Benchmark . 157

5.4.2 Case Study . 159

5.5 Discussion . 163

5.5.1 Advantages . 163

5.5.2 Limitations . 163

5.6 Related Work . 164

x

5.6.1 Distributed Mobile Execution . 164

5.6.2 Cloud Offloading . 165

5.6.3 Optimizing Energy Consumption . 166

5.7 Conclusions . 166

6 Configurable and Adaptive Middleware for Energy-Efficient Mobile Computing 168

6.1 Problem and Technical Background . 171

6.1.1 Problems and Technical Challenges . 171

6.1.2 Technical Background . 173

6.2 Energy Aware Adaptive Middleware (e-ADAM) 175

6.2.1 Approach Overview . 175

6.2.2 e-ADAM Process Flow . 176

6.2.3 e-ADAM Configuration . 177

6.3 Evaluation . 183

6.3.1 Micro-Benchmarks . 183

6.3.2 Case Study . 187

6.3.3 Threats to Validity . 191

6.4 Discussion . 191

6.5 Related Work . 192

6.6 Conclusions . 193

7 Conclusion and Future Work 194

xi

7.1 Conclusion . 194

7.1.1 Summary of Contributions . 194

7.2 Future Work . 195

7.2.1 Adapting Cloud Offloading via Constraint Solving 196

7.2.2 Holistic Energy Optimization for Distributed Mobile Applications 197

7.2.3 Workflow Based Automated Big Data Analytics 197

Bibliography 199

xii

List of Figures

1.1 Concerns and major research contributions. 2

2.1 Example of batch invocation. 16

2.2 RBI/OSGi Architecture. 17

2.3 Example configuration for exporting remote services. 18

2.4 Example configuration file for importing remote services. 19

2.5 Dictionary system. 20

2.6 Performance Comparison. 21

2.7 Trade-offs between the performance, conciseness, complexity, and reliability levels. 25

2.8 The price (LOC and MCC)/performance ratio comparison. 27

2.9 Considered DPAs and their classification. 31

2.10 Energy consumption—invoking remote functionality. 38

2.11 Energy consumption—CPU and network communication. 39

2.12 Energy consumption of three serialization cases. 40

2.13 Energy consumption per execution phases. 41

3.1 Hardened architecture. 59

3.2 DR-OSGi design. 62

3.3 Distributed lucene. 67

3.4 Binding time comparison. 67

xiii

3.5 DNA Hound system architecture. 69

3.6 Approach overview. 80

3.7 Language constructs. 82

3.8 A script describing service configurations. 83

3.9 Hardening a service against network volatility. 84

3.10 Hardening a service against security vulnerabilities. 86

3.11 Hardening a service against mismanaged service interfaces. 87

3.12 Describing a hardening strategy. 88

3.13 The hardening framework. 89

3.14 Total execution time. 91

3.15 An HPL policy describing OneBusAway configurations. 92

3.16 An HPL policy against network volatility. 92

3.17 An HPL policy against security exploits. 93

3.18 An HPL policy against the mismanaged service. 94

3.19 Describing a caching hardening strategy. 95

4.1 Migrating to Cloud-Based Services via Cloud Refactoring. 107

4.2 Service recommendation process. 108

4.3 Profiling-based service recommendation algorithm 110

4.4 Clustering-based service recommendation algorithm. 112

4.5 Extract Service refactoring—service transformation and client redirection. 113

4.6 Splitting a proxy into two parts. 114

xiv

4.7 Generating a proxy class. 115

4.8 Overview of fault handling. 116

4.9 FTDL constructs. 117

4.10 Automatically generated fault handling code. 118

4.11 Fault tolerant runtime system. 120

4.12 Procedure of service adaptation. 121

4.13 Automatically generated proxy class for service adaptation. 122

4.14 Generating an adapter class from interface differences. 122

4.15 FTDL description to handle network volatility. 126

4.16 WSDL contract of the EBI’s service. 127

4.17 Generated interface and classes. 128

4.18 Generated proxy class. 129

4.19 Service refactoring tool’s components. 131

5.1 Optimizing Mezzofanti with cloud offloading. 138

5.2 Adaptive cloud offloading process. 141

5.3 Motivating example revisited. 144

5.4 Program analysis for adaptive cloud offloading. 145

5.5 Energy consumption call graph. 147

5.6 Algorithm for state selection. 148

5.7 An example of program transformation. 150

5.8 Process details of adaptive cloud offloading. 151

xv

5.9 The procedure to select an offloading unit. 153

5.10 Procedure to synchronize program state. 156

5.11 Overhead comparison. 158

5.12 Energy consumption estimation. 159

5.13 Chess application. 161

5.14 N-Queens solver. 161

5.15 Energy consumption and execution time of Mezzofanti (OCR application). 162

5.16 Energy consumption and execution time of JJIL (face recognition application). . . 163

6.1 Energy consumption comparison showing different thresholds. 170

6.2 e-ADAM component diagram. 176

6.3 e-ADAM process diagram. 177

6.4 Energy optimization configurations. 178

6.5 Measuring communication time. 181

6.6 Estimating communication time. 181

6.7 The procedure to select an optimal strategy. 182

6.8 Performance and energy consumption. 185

6.9 Performance and energy consumption overhead. 185

6.10 Energy consumption prediction. 186

6.11 Configuration file for the case study. 188

6.12 Compression strategy implementation. 189

6.13 Experimental results of the JJIL app. 190

xvi

6.14 Experimental results of the OSMAndroid app. 190

6.15 Experimental results of the Mezzofanti app. 190

xvii

List of Tables

2.1 Conciseness and Complexity Comparison. 22

2.2 Reliability Comparison. 24

2.3 Energy consumption—initializing DPAs. 37

3.1 Message delivery delay under a queuing hardening strategy. 65

4.1 The experimental results. 124

5.1 Manufacturer provided energy profiles . 158

6.1 The evaluation criteria. 187

6.2 Failure rate when triggering the opt. strategy. 187

xviii

Chapter 1

Introduction

The last several years have seen a fundamental shift in how the average user takes advantage of

computing resources. Traditional desktop software applications are being gradually replaced by

a computation model dominated by cloud computing [18, 164, 131, 30, 39, 150]. By embracing

cloud computing, industrial enterprises and research establishments reap tangible benefits, includ-

ing reduced costs, increased automation, greater flexibility, and enhanced mobility [15]. This tran-

sition fundamentally has changed how we develop software. Because traditional software develop-

ment has been tailored toward centralized applications for so long, many centralized applications

need to be adapted for distributed execution.

Because the computing resources offered by cloud infrastructures are typically orders of mag-

nitude more powerful than those of mobile devices, the distributed application is also likely to

execute more performance efficiently. As a result, distribution has become a versatile optimiza-

tion mechanism. Through distribution, programmers can minimize energy consumption, maximize

performance, or maximize both of them as required by particular software development scenarios.

However, a combination of naı̈ve implementation practices and the extreme heterogeneity of mo-

bile computing platforms makes it hard to ensure that distributed applications are always reliable

and energy-efficient.

Centralized and distributed applications have different failure modes, so that simply rendering a

subset of a centralized application remote does not preserve the original semantics. Distributed

applications are subject to partial failure, in which its different components (client, server, or net-

work) may fail independently from each other. Although one cannot handle all the possible failures

in a distributed application, some failures have well-known handling strategies. Thus, to better pre-

serve the original execution semantics, programmers must change code to transition applications

1

Introduction 2

Energy Efficiency

Fault ToleranceDistribution

A Study of
Middleware

Cloud Offloading

Declarative
Fault Handling

Energy-Efficient
Adaptive Middleware

Cloud Refactoring

Figure 1.1: Concerns and major research contributions.

to use cloud-based services and add proper fault handling functionality to any application that

invokes services remotely.

In addition, as mobile devices are rapidly becoming the primary means of accessing computing

resources, energy-efficiency—fitting an energy budget and maximizing the utility of applications

under given battery constraints—has become an important software design consideration. One

can offload a mobile application’s functionality to cloud to reduce its energy consumption. Fur-

thermore, because network communication is one of the largest sources of energy consumption

[118], the choice and parameterization of middleware can reduce the amount of energy consumed

by a distributed application. However, because mobile applications commonly run on a variety of

mobile devices over mobile networks with divergent characteristics, optimizing a mobile applica-

tion to reduce its energy consumption is non-trivial. Thus, to maximize energy savings, mobile

execution should be continuously adapted in response to the fluctuations in the mobile networks.

All in all, to develop reliable and energy-efficient applications, software developers should be

able to simultaneously reason about and handle the concerns of distribution, fault-tolerance, and

energy-efficiency, as well as their interaction. Figure 1.1 shows the relationship of distribution,

fault-tolerance, and energy-efficiency concerns as well as the major research contributions of this

Introduction 3

dissertation. Being closely intertwined, these concerns can introduce significant complexity into

the design, implementation, and maintenance of modern software. In this dissertation, we study

how distribution, fault-tolerance, and energy-efficiency interplay with each other and how to im-

plement these concerns while keeping the complexity in check. In the following discussion, we

briefly introduce this research’s individual parts.

1.1 Major Research Contributions and Scope

This dissertation makes several diverse contributions to address the issues described above. Nev-

ertheless, these contributions form a logical, if not always perfectly chronologically ordered, cohe-

sive narrative. In particular, the first contribution focuses on assessing middleware platforms with

respect to their reliability, energy-efficiency, and performance to determine how they interplay and

affect the quality of service of distributed applications. Based on this assessment, we provided a

set of practical guidelines to help software developers select an appropriate middleware platform.

As discovered by our assessment of middleware platforms, fault-tolerance abstractions constitute

an essential part of a middleware platform. An important open issue in distributed system engi-

neering remains the tailoring of fault-tolerance functionality for individual application scenarios,

without having to reimplement the fault-handling functionality from scratch. Hence, to improve

reliability and facilitate software development, we introduced a declarative fault handling mecha-

nism that is reusable across distributed applications.

Having gained new insights from developing reusable fault-tolerance mechanisms, we then ap-

proached the problem of transforming a centralized application to using cloud-based services reli-

ably. To that end, we introduced new refactoring techniques that transform a centralized applica-

tion into a distributed application. One of these refactoring techniques enhances newly introduced

services with reusable fault-tolerance functionality.

The final contribution of this dissertation uses the insights gained from the research thrusts above

as guidelines and building blocks. It explores how mobile applications can reduce their energy

Introduction 4

consumption through distribution. To that end, we introduced a cloud offloading technique by

innovating in program analysis, program transformation, and runtime systems. We also developed

a new middleware platform that optimizes energy consumption by adapting execution patterns

dynamically in response to fluctuations in network conditions.

In the following discussion, we provide an overview of the major contributions made by this dis-

sertation as well as their scope and applicability.

1.1.1 A Study of Middleware

Due to the shift from software-as-a-product (SaaP) to software-as-a-service (SaaS), software com-

ponents that were developed to run in a single address space must increasingly be accessed re-

motely across the network. Distribution middleware is frequently used to facilitate this transi-

tion. Yet a range of middleware platforms exist, and there are few existing guidelines to help

the programmer choose an appropriate middleware platform to achieve desired goals for perfor-

mance, conciseness, intuitiveness, and reliability. To address this limitation, we first compared

and contrasted five middleware implementations in terms of their respective performance, concise-

ness, complexity, and reliability. Then, as energy-efficiency has become an important software

design consideration, their energy consumption characteristics were assessed to help the program-

mer choose the right abstraction for energy-constrained scenarios.

In Chapter 2, we report on the findings of a systematic study we conducted to compare and contrast

major middleware platforms in terms of their performance, conciseness, intuitiveness, reliability,

and energy consumption patterns. Based on our findings, we present a set of practical guidelines

for the programmer to select an abstraction that satisfies various constraints in place. Our other

guidelines can steer future efforts in creating reliable and energy-efficient middleware platforms.

Introduction 5

1.1.2 Declarative Fault Handling Against Partial Failure

Refactoring an existing centralized program for distributed executions should preserve its original

execution behavior, so that a distributed application would provide the same or equivalent func-

tionality to the user as the original centralized version. In other words, distributing an application

should not only improve its performance, availability, scalability, and energy-efficiency, but also

furnish the original functionality to the user. However, distributed applications are subject to par-

tial failure, where components of a distributed system can fail independently of each other. The

proposed approach focuses on network volatility occurring when a network suffers an outage and

then shortly becomes operational again. Despite its temporary nature, network volatility is dis-

ruptive and detrimental to the user experience. As a result, it is tedious and error-prone to make

distributed applications resilient against network volatility.

To address these challenges, in Chapter 3, we report on enhancing middleware with declarative

fault handling, which is application-level fault handling as compared to the system level ap-

proaches to achieve fault tolerance. Programmers can specify and configure fault tolerance strate-

gies to apply by means of a domain-specific language. To counteract partial failures, an extensible

hardening framework detects failures as they emerge at runtime, and then handles them by apply-

ing dynamically deployed special fault handling components. The framework automatically adds

fault-handling ability to an existing middleware system, so that the enhanced distributed applica-

tion can continue executing in the presence of network volatility without having to change their

source code. The fault handling components can be developed by third-party programmers for a

variety of distributed applications.

Research Scope and Applicability

This approach has specific engineering objectives, creating pragmatic new technologies that can

make distributed service-oriented applications more available, reliable, and secure. One important

question concerns whether availability, reliability, and security can be effectively reasoned about

Introduction 6

and implemented as orthogonal cross-cutting concerns, separate from the core functionality of a

given distributed service-oriented application. The scientific consensus has been that it is impos-

sible to achieve this objective in full generality. However, these concerns can be quite effectively

separated in certain domains and execution environments.

1.1.3 Automated Refactoring for Reliable Cloud-Based Execution

To alleviate the code transformation hurdles involved in adapting existing centralized applications

to take advantage of cloud-based services, we expressed several common program transformations

as refactorings, thereby reducing development efforts/costs and increasing programmer productiv-

ity. Although the approach is not fully automatic, programmers only determine if the source code

should be transformed. The actual transformations are performed by a refactoring engine. How-

ever, because centralized and distributed applications have different failure modes, transformed

applications are subject to partial failure. Thus, the enhanced refactoring adds the ability to handle

partial failures. Then, detected partial failures are handled by fault-tolerant middleware through

our declarative fault handling mechanism.

Specifically, in Chapter 4, we report on common program transformations performed when tran-

sitioning to cloud-based services, well-amenable to be expressed as a refactoring. In particular,

we explored a set of refactoring techniques that facilitate the process of transforming centralized

applications to use cloud-based services. These techniques automate the program transformations

required to 1) rewrite a class making its methods into remote service methods, 2) partition class

methods into service methods and regular methods, rewriting all the communication between the

two into remote service calls, 3) re-target all clients of the original class to access its functionality

in the cloud by means of remote calls, and 4) add fault handling code to the client. This research

introduced Cloud Refactoring as a valuable tool in the toolset of software developers charged with

the challenges of migrating applications to take advantage of cloud resources.

Introduction 7

Research Scope and Applicability

A refactoring may not be a proper approach for transforming all kinds of software applications

to cloud-based services. Transforming tightly coupled applications without incurring a signifi-

cant performance overhead may require deep architectural changes that are not supported by our

refactoring techniques. Ensuring good performance requires that remote communication be crude-

grained and infrequent. In addition, cloud-based communication is inherently unidirectional: client

talks to server but not vice versa. If the original application does not follow this communication

pattern, its architecture needs to be changed before our refactoring techniques can be applied.

Our refactoring techniques do not make any provision for a situation when a newly extracted

cloud service is used by multiple clients. Then the application logic would have to be modified

accordingly to ensure a consistent and efficient access by multiple clients. Furthermore, our fault

handling strategies cannot cover all the possible failure cases. In some scenarios, the programmer

may need to implement some failure handling strategy by hand, outside the framework provided

by our refactoring infrastructure.

1.1.4 Energy-Efficient Mobile Execution

The mobile computing domain is characterized by the applications’ energy demands outpacing the

devices’ battery capacities. Rapid growth in application functionality requires ever greater energy

budgets, thus subsuming any advances in battery capacities. A common energy optimization tech-

nique for mobile applications is Cloud Offloading—placing energy-intensive functionality to run

at a remote, cloud-based server. Executing this functionality at a remote server saves the mobile

device’s battery power.

In Chapter 5, we report on the cloud offloading technique that transforms applications, leveraging

static program analysis and program transformation techniques, without destroying their ability

to execute locally in the case of network disconnection [78]. Our other contribution to cloud

offloading takes advantage of dynamic adaptation by means of a hand-crafted runtime system

Introduction 8

[80, 76]. Specifically, this technique automatically enhances a centralized program with the ability

to execute across the network, while the local/remote parts are determined dynamically at runtime,

as required by the current execution environment.

Research Scope and Applicability

Our approach works with the standard, unmodified hardware/software stack; it employs bytecode

engineering to transform programs and a lightweight runtime system to dynamically steer and

adapt offloading operations. Our approach makes it possible to keep the maintained version of

the mobile application’s source code intact, as only the bytecode version is transformed. Cloud

offloading requires a minimal programming effort, limited to marking methods as energy hotspots.

Our approach makes offloading decisions at runtime by monitoring the execution environment,

thus discovering optimal offloading strategies. Finally, the offloading transformations do not pre-

clude the mobile application from executing locally in the case of the network becoming discon-

nected.

However, our approach is not applicable to all applications. Some mobile applications are written

in a monolithic style, in which functionality cross-cuts through traditional modularization program

constructs such as classes and methods. Without clear offloading program points, our approach,

which operates at the method boundary, would be inapplicable. In addition, we do not take mul-

tiple concurrent threads into consideration when determining whether a method can benefit from

offloading.

1.1.5 Energy-Efficient Middleware

Because network communication incurs high energy costs in mobile applications, middleware

presents a promising target for energy optimizations. Unfortunately, mainstream middleware

mechanisms are oblivious to the highly volatile nature of mobile networks, operating over which

energy efficiently requires aligning the middleware communication patterns with the network con-

Introduction 9

ditions in place.

In Chapter 6, we report on energy-aware adaptive middleware that features dynamic adaptation

capabilities as well as straightforward configurations that enable the programmer to express a rich

set of middleware energy optimizations and the runtime conditions under which these optimiza-

tions should be applied. Our results indicate that the technique represents a promising direction in

improving the energy efficiency of mobile applications.

Research Scope and Applicability

Our approach provides the generality, separation of concerns, and reusability advantages. Our

middleware mechanism is general in that it can be applied to a variety of distributed mobile appli-

cations. The middleware enables a greater separation of concerns in that it can change a mobile

applications’s energy/performance characteristics without affecting its core business logic. The

energy optimization strategies and the configurations to apply them are expressed separately from

the main source code. This degree of separation also makes it possible to effectively reuse energy

optimization strategies and configurations across components and applications.

Although our approach can deliver tangible benefits to the mobile application programmer, it also

has some inherent limitations. In particular, the limitations concern its ranges of applicability and

usability. The overhead imposed by the middleware runtime makes the approach inapplicable to

those distributed mobile applications that use simple, infrequent remote interactions. The runtime

overhead is offset if the optimized application spends a substantial amount of energy on remote

interactions.

Finally, in Chapter 7, we summarize the technical insights gained from carrying out this research

and outline future research directions.

Introduction 10

1.2 Broader Impact

By enabling fusion and separation of distribution, fault-tolerance and energy-efficiency concerns,

this research will enable software developers to effectively develop reliable and energy-efficient ap-

plications. The specific expected broader impacts of this research are as follows. First, the software

innovations introduced by this research can reduce cost and improve programmer productivity in

adapting centralized applications for distributed execution, which has become required for a large

and growing number of application domains. Second, this research can improve the reliability

of real-world applications against partial failure via a reusable framework that will eliminate the

need to reimplement fault handling functionality, thereby increasing programmer productivity. Fi-

nally, this research can help reduce the energy consumption of mobile applications, thus extending

battery lives, helping mobile application developers, and benefiting society at large.

1.3 Structure

The rest of this dissertation is structured as follows. Chapter 2 compares multiple middleware

abstractions and analyzes assessment results. Chapter 3, 4, 5, and 6 covers motivations, design,

implementation, and experimental results of declarative fault handling, cloud refactoring, adaptive

cloud offloading, and energy-efficient middleware, respectively. Chapter 7 presents concluding

remarks, summarizes the contributions of this research, and discusses future work directions.

Chapter 2

An Assessment of Distributed Programming

Abstractions

Due to the shift from software-as-a-product (SaaP) to software-as-a-service (SaaS), software com-

ponents that were developed to run in a single address space must increasingly be accessed re-

motely across the network. Furthermore, with battery capacities remaining a key physical con-

straint for mobile devices, energy-efficiency has become an important software design considera-

tion. However, their energy consumption characteristics are poorly understood. Distributed pro-

gramming abstractions (e.g., sockets, RPC, messages, etc.) are an essential component of modern

software to facilitate this transition. Yet there are few existing guidelines to help the programmer

choose an appropriate abstraction to achieve desired goals for performance, conciseness, reliability,

and energy efficiency. In this chapter, we compare and contrast multiple distributed programming

abstractions and then present a set of practical guidelines for the programmer to select an abstrac-

tion that satisfies various constraints in place. We first discuss experimental results with focuses

on performance, conciseness, and reliability in Section 2.1, and then focus on energy efficiency in

Section 2.2.

2.1 An Assessment of DPAs for Accessing Remote Services

The next couple of years will see a fundamental shift in how the average user takes advantage of

computing resources. Traditional shrink-wrapped software applications will move in the direction

of a computation model dominated by cloud computing [57, 158]. In this shift, the provisioning

of software will evolve from software-as-a-product (SaaP) to software-as-a-service (SaaS). For

11

A Study of Middleware 12

example, a desktop application could be modified so that much of its execution takes place at a

remote server in the cloud, with only the GUI rendered locally. The GUI part is likely to run on a

mobile device, for example a smart phone.

Two levels of infrastructure are needed to realize this vision of software services. Firstly, compo-

nent models are needed to define services and their interfaces. The Open Service Gateway Initiative

(OSGi) [107] provides a platform for defining and managing components that can be used as ser-

vices. It is used by developers to package features as components for separate deployment, and by

end users to select components they need.Secondly, middleware infrastructure is needed to allow

services to be accessed remotely. There are several different kinds of middleware, and each has

different performance, conciseness, complexity, and reliability characteristics. Middleware can be

based on messaging, remote procedure calls, or remote evaluation, with the option of asynchronous

processing. The trade-offs between these approaches have not been properly examined and, as a

result, are poorly understood.

To address this lack of understanding, in this section we describe a case study we have conducted to

examine the trade-offs of using different middleware platforms of accessing services remotely. For

the case study, we chose a realistic OSGi service that has been integrated into several commercial

applications. This service is the Lucene search engine library [145] that provides functionality

to index and search text files in Java. For the case study, we implemented a simple dictionary

application that can search and return definitions, find synonyms, as well as suggest corrections for

misspelled or partially-specified words.

We have implemented three Lucene-based services using five different middleware platforms: TCP

sockets, synchronous and asynchronous remote calls in R-OSGi [120], Message Oriented Middle-

ware (MOM) [9], and Remote Batch Invocation (RBI) [61]. For each implementation, we mea-

sured: (1) the total number of lines of uncommented code and its cyclomatic complexity, (2) the

aggregate latency of invoking remote service methods, and (3) the degree of reliability of remote

service methods in the presence of network volatility. The amount of code and its cyclomatic

complexity are two standard software engineering metrics most commonly used to assess the com-

A Study of Middleware 13

plexity and quality of a software artifact [117]. The aggregate latency of invoking a service is a

performance metrics that indicates how long it takes for the clients to derive the expected benefits

when using the service. This metrics comprehensively assesses the Quality of Service (QoS) from

the end user’s perspective. Finally, the ability of a remote service to cope with network volatility

is critical to maintaining the required QoS in the majority of realistic network environments.

distributed programming abstraction and a middleware system we have recently introduced [61].

In RBI, a batch is a collection of method calls, conditional statements, and loops that is transfered

in bulk to the server, which executes the collection and returns the results to be assigned to lo-

cal variables. Although RBI clients resemble traditional RPC clients, they have a fundamentally

different, service-oriented execution model. As such, our implementation of OSGi in RBI is the

first non-RPC implementation of the OSGi R4.2 specification, which codifies how OSGi bundles

should be accessed remotely.

Based on the results of our case study, the technical contributions of this article are as follows:

• The first non-RPC remote implementation of the OSGi R4.2 specification.

• A comprehensive evaluation of the trade-offs between the performance, conciseness, com-

plexity, and reliability of middleware platforms for accessing services remotely.

• A systematic analysis of the evaluation that can help inform a working programmer about

which middleware platform should be used to access a given service remotely.

The rest of this chapter is structured as follows. Section 2.1.1 introduces the concepts and tech-

nologies used in this work. Section 2.1.2 describes the implementation of OSGi in RBI. Section

2.1.3 describes our case study and its results. Section 2.1.5 discusses related work, and Section

2.1.6 presents future research directions and concluding remarks.

A Study of Middleware 14

2.1.1 Technical Background

We first describe the distributed programming abstractions we have evaluated and then introduce

the issue of measuring energy consumption in software systems.

Distributed Programming Abstractions (DPAs) Distributed computing coordinates the execu-

tion of multiple remote processes. Distributed programming abstractions (DPAs) provide program-

ming and runtime support for one process to execute functionality in a different process. In other

words, by eliminating the need for low-level network programming, programming abstractions

offer convenient building blocks for constructing distributed systems. Major, widely used DPAs

include sockets, messaging, remote procedure/method calls, and remote services.

Remote Procedure Calls Remote Procedure Calls (RPC) serve as a foundation for a wide range

of implementations. In this model, the programmer expresses functionality to be invoked in a

different process as a regular procedure. However, when such a procedure is invoked, the runtime

executes it in a remote process, transferring the parameters and returning the results. RPC has

been extended to support object-oriented programming through Remote Method Invocation (RMI);

object proxies forward invocations across processes. Representative RMI implementations are Java

RMI and XML-RPC.

Message Oriented Middleware To communicate through messages, remote processes can take

advantage of Message Oriented Middleware (MOM). MOM commonly supports synchronous and

asynchronous interactions through two primary message topologies: point-to-point and publish/-

subscribe. With point-to-point, a sender delivers messages to a particular client by depositing them

onto a message queue. With publish/subscribe, a sender publishes messages for multiple clients

through intelligent broadcasting, called a message topic. To communicate through messages, Java

programs can use the standardized API of the Java Message Service (JMS) [100]. In this study, we

use a popular JMS-compliant MOM infrastructure called ActiveMQ [148].

A Study of Middleware 15

Remote Services Service Oriented Architectures (SOA) provide uniform access to a variety of

computing resources in multiple application domains. In SOA, software components are provided

as services, self-encapsulated units of functionality accessed through a public interface. Services

can access each other only via each other’s public interfaces. Remote OSGi (R-OSGi) [120] is

an RPC-based DPA for OSGi. The R-OSGi distribution infrastructure allows accessing OSGi ser-

vices remotely through a proxy-based approach, with proxies exposed as standard OSGi bundles.

R-OSGi is based on RPC, but both synchronous and asynchronous. The OSGi R4.2 specifica-

tion codifies the discovery and usage of remote services [107], with Apache CXF DOSGi [149]

implementing this specification as SOAP-based Web services.

Remote Batch Invocation As an alternative to RPC, whose unit of distribution is a single proce-

dure call, we introduced Remote Batch Invocation (RBI) [61], whose unit of distribution is a block

of code. RBI partitions blocks of code into remote and local parts, while performing all communi-

cations in bulk. Batches are specified using a batch statement, with the body of a batch statement

combining remote and local computation. A batch block looks like a collection of remote method

calls but is executed using remote evaluation [136], in which all the remote calls are transmitted in

a single, compiler-constructed batch script. In addition, data is moved in bulk between client and

server. RBI differs from RPC in that the unit of distribution is a block of code rather than a single

procedure call. The details of RBI are discussed in the following section, which also shows how

RBI can be used to provide remote access to OSGi services.

2.1.2 OSGi in RBI

RBI introduces a batch statement that executes multiple remote calls using a single remote round

trip to the server. Figure 2.1 shows how the Lucene OSGi service can be accessed with RBI. Note

that the batch block includes looping and conditional statements. The batch language extension

is transformed into standard Java.1

1Please refer to our ECOOP 2009 papers for translation details [61].

A Study of Middleware 16

// Get BundleContext object from the Activator class
BundleContext ct = ... ;

// Retrieve the remote service object
ServiceReference sref = ct.getServiceReference(IRSearch.class.getName());
IRSearch rs = context.getService(sref);

// Instantiate Service object for batch
Service service = new Service(rs, IRSearch.class);

// Prepare the search query
Term term = new Term(DEFINITION, word);
Query query = new TermQuery(term);

batch (Lucene ls : service) {
// Invoke the remote search function
final TopDocs topDocs = ls.search(query);
StringBuffer defBuffer = new StringBuffer();

// Retrieve meanings from the search result
for (ScoreDoc hits : topDocs.scoreDocs) {
Document doc = ls.doc(hits.doc);
if (doc != null) {
defBuffer.append(doc.getValues(DEFINITION));
}
}
}

Figure 2.1: Example of batch invocation.

The RBI runtime executes multiple calls (combined with conditional and looping constructs) to a

given remote service. Finally, RBI/OSGi does not require any changes to remote service interfaces,

which are discovered and bound using a standard OSGi registry.

The runtime architecture of RBI, shown in Figure 2.2, consists of a service consumer, service

provider, batch processor, and distribution provider. Once the service provider registers a service in

the OSGi framework, the distribution provider instantiates a server that can be accessed remotely.

The service consumer discovers and retrieves the remote service, and then the distribution provider

creates a proxy for importing the service. Upon the service consumer making remote calls, the

batch processor aggregates them into a single descriptor, which is transmitted across the network

to the service provider. The service provider’s batch processor interprets the descriptor, invoking

A Study of Middleware 17

Distribution
Provider

Service Hook
Service

Discovery

Se
rv

ic
e

RBI-OSGi

OSGi

Proxy

Network
Channel

Client Batch
Processor

Distribution
Provider

Service Listener

Service

RBI-OSGi

Server

Network
Channel

Server Batch
Processor

Service RegistrationService Retrieve OSGi

Service Consumer Service Provider

Figure 2.2: RBI/OSGi Architecture.

the appropriate service methods, and sends the results back to the service consumer.

RBI Runtime System

To integrate OSGi with RBI, we connected RBI to the standard OSGi services, ServiceListener

and ServiceHook. Once a ServiceListener is registered with OSGi, it starts receiving lifecycle

change events for the registered service. The distribution provider uses a ServiceListener to

determine when a server must be instantiated to process remote requests. The ServiceHook ser-

vice, introduced only in the OSGi R4.2 specification, intercepts service events, raised in response

to the service consumer retrieving the remote service, and creates a proxy for accessing services

remotely.

The ServiceHook service makes it possible to treat local and remote services uniformly, with the

only difference concerning their configuration. In other words, switching from using the local ver-

sion of a service to a remote version and vice verse does not require any source code changes, which

are confined to configuration files. Because the OSGi R4.2 specification requires that remote ser-

vice interfaces be decoupled from their implementations, the ServiceHook service accomplishes

that by making it possible to switch implementations through a simple configuration file change.

Figure 2.3 demonstrates how straightforward the RBI/OSGi architecture makes it to export a re-

A Study of Middleware 18

mote service. All it takes to register a remote service is to define its RBI/OSGi properties, including

the remote service’s interface name, the local address, and the local port number. Specifically, the

service.exported.interfaces property defines the exported interfaces. The service.exported.

configs property specifies the available distribution provider such as RBI. Once the local address

and port number are specified, the service can be assessed remotely.

Dictionary props = new Hashtable();
props.put("service.exported.interfaces", *);
props.put("service.exported.configs", "edu.vt.cs.dosgi.rbi.rs");
props.put("edu.vt.cs.dosgi.rbi.rs.url", local_address);
props.put("edu.vt.cs.dosgi.rbi.rs.port", local_port);

context.registerService(IRSearch.class.getName(), new RSearchImpl(), props);

Figure 2.3: Example configuration for exporting remote services.

For a client to import a remote service, an XML configuration file must be provided. Figure

2.4 provides an example of such a configuration file. Mirroring the properties used to export

the remote service, the XML configuration file specifies them in the same order, starting with

service.exported.configs, followed by service.exported.interfaces. We are currently

implementing a design in which RBI/OSGi server and client modules can use either an XML-

based or a hard-coded configuration. This design provides significant flexibility advantages: since

RBI/OSGi can work with regular Java interfaces or classes (also known as Plain Old Java Objects

or POJOs), any standard OSGi service will be able to export and import RBI/OSGi remote services

by means of a configuration file.

2.1.3 Case Study

To compare different middleware platforms, we compared remote access to a set of three services

packaged as an OSGi bundle. We chose the Lucene search engine library, which is distributed as

an OSGi bundle, thus providing a service interface. The Lucene search services have been used

in real-world applications in domains including Web search frameworks (e.g., Nutch [146]) and

enterprise systems (e.g., Solr [147]). Using Lucene, we implemented three services to search for

A Study of Middleware 19

<service-descriptions xmlns= "http://www.osgi.org/xmlns/sd/v1.0.0">
<service-description>
<provide interface=IRSearch/>
<property name=service.exported.interfaces>*
</property>
<property name=service.exported.configs>
edu.vt.cs.dosgi.rbi.rs

</property>
<property name=edu.vt.cs.dosgi.rbi.rs.address>
remote_address

</property>
<property name=edu.vt.cs.dosgi.rbi.rs.port>
remote_port

</property>
</service-description>

</service-descriptions>

Figure 2.4: Example configuration file for importing remote services.

(1) a word’s definition, (2) a word’s list of synonyms, and (3) a list of spelling suggestions for

a misspelled word. Note that service (2) extends the functionality of service (1), and service (3)

extends the functionality of service (2). Thus, service (2) includes all the functionality of service

(1), and service (3) includes that of services (1) and (2).

For our case study, we examined how these services can be accessed remotely using five different

middleware platforms. To that end, we compared each of the five implementations in terms of their

respective performance, conciseness, complexity, and reliability.

For the purposes of this study, we define our metrics as follows:

• Performance: the total execution time it takes to execute a service, including both network

latency and business processing.

• Conciseness: the total of Uncommented Lines of Code (ULOC) it takes to write the service.

• Complexity: the McCabe cyclomatic complexity (MCC) [92].

• Reliability: the ability to withstand temporary network volatility, when the communication

network experiences an outage [82].

A Study of Middleware 20

Dictionary Service

Legacy Search
System

Search Service
Interface

LAN

Dictionary Service Request
(HTTP)

Servlet Engine

Dictionary
Service Interface

OSGi
OSGi

Internet

Results (HTTP)

Search Service
Request (DM 1 … 5)

Results (DM 1 … 5)

Legacy Search SystemDictionary Service ProviderUser

Web
Client

D
M

 1

D
M

 2

D
M

 3

D
M

 4

D
M

 5 D
M

 1

D
M

 2

D
M

 3

D
M

 4

D
M

 5

Figure 2.5: Dictionary system.

In this benchmark, we compare these metrics for five middleware platforms: (1) synchronous R-

OSGi, (2) asynchronous R-OSGi, (3) Message-Oriented Middleware, (4) raw sockets, and (5) our

own RBI implementation to OSGi.

Experimental Setup

All the experiments were conducted on the client machine running 3.0 GHz Intel Dual-Core CPU,

2 GB RAM, Windows XP, JVM 1.6.0 13 (build 1.6.0 13-b03), and the server machine running

1.8 GHz Intel Dual-Core CPU, 2.5 GB RAM, Windows 7, JVM 1.6.0 16 (build 1.6.0 16-b01),

connected via a local area network (LAN) with a 100Mbps bandwidth, and 1ms latency. Our results

may not be applicable for Wide Area Network (WAN) environments, which are characterized by

higher levels of volatility and latency. In fact, some of the middleware mechanisms we have

evaluated (e.g., synchronous RPC) are known to have been ineffective in such environments [37].

Figure 2.5 depicts a diagram describing the specifics of our experimental setup. The Lucene OSGi

bundle is located on a separate node (server) and is accessed remotely from another node (client).

To start the benchmarking of a given setup, we constructed a simple Web client that communicates

with the client node through HTTP. By navigating a Web browser to a URL associated with any

A Study of Middleware 21

0

5

10

15

20

25

1 2 3

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
(m

s)

The number of services

MoM

Sync.
R-OSGi
Async.
R-OSGi
RBI-OSGI

Socket

Figure 2.6: Performance Comparison.

of the five middleware implementations, a servlet at the client node invokes its corresponding

benchmark method.

Performance

Each benchmark method calls three services in sequence, repeating each service call 1,000 times

and then reporting the averaged time. Only the time to invoke the Lucene-based services is taken

into account, while the HTTP communication to trigger different benchmarks is omitted.

Figure 2.6 shows the averaged performance for each service. Because each of the three services

takes an increasing number of remote roundtrips, for each middleware platform, the total execution

time grows for services 2 and 3.

For each service, raw sockets provide the best performance. Asynchronous R-OSGi comes close

second. RBI/OSGi using synchronous communication comes quite close to asynchronous R-OSGi.

Synchronous R-OSGi is always slower than RBI/OSGi, due to the latter middleware platform

aggregating multiple remote calls and invoking them in bulk.

Surprisingly, our MOM-based implementation consistently showed the poorest results across all

benchmarks. The reason is because the implementation we used, ActiveMQ, is based on a publish-

subscribe rather than a point-to-point communication model. Although MOM-based platforms

A Study of Middleware 22

with point-to-point communication models have been described in the literature [100], the com-

mercial MOM implementations tend to communicate through a publish-subscribe mechanism.

While ActiveMQ offers a point-to-point communication option, it is realized as a layer on top

of the publish-subscribe infrastructure, with both options offering the same performance results.

Publish-subscribe models are beneficial when messages have to be broadcast to a large number

of recipients. In our setup, when using MOM for client-server communication, the overhead of

involving a message queue was never amortized.

Conciseness and Complexity

Table 2.1 shows the total uncommented lines of code (ULOC) it takes to implement each of the

three services using different middleware platforms. The ability to express the same functionality

in fewer lines of code has tangible Software Engineering benefits. If the probability of introducing

software defects is proportional to the size of a program, fewer lines of code implies a lower defect

probability.2

Table 2.1: Conciseness and Complexity Comparison.
Middleware Service ULOC Max. Middleware Service ULOC Max.

platform MCC platform MCC

Sync. R-OSGi
Service 1 14 7

MOM
Service 1 1172 8

Service 2 14 10 Service 2 1207 13
Service 3 14 17 Service 3 1231 23

Async. R-OSGi
Service 1 148 8

Sockets
Service 1 2722 8

Service 2 170 12 Service 2 2793 13
Service 3 212 25 Service 3 2839 23

RBI/OSGi
Service 1 23 7
Service 2 27 10
Service 3 33 17

The table also shows their McCabe Cyclomatic metric (MCC).3 The MCC metric is commonly

employed to assess the complexity of a codebase. Intuitively, the MCC is indicative of the pro-

gramming effort required to implement and understand a piece of code. Thus, if a middleware
2Our explicit assumption is that the programmer does not try to artificially reduce the ULOC numbers.
3We used Metric 1.3.6 http://metrics.sourceforge.net/ for the measurements.

A Study of Middleware 23

usage scenario produces a lower MCC metric, the complexity will be reduced, as the program-

mer is likely to exert less effort to produce or modify the code. The ULOC numbers in Table 2.1

combine the client and server portions, while excluding 1918 ULOC that it takes to implement the

functional processing part of all the remotely-accessed services.

As expected, our sockets-based implementation is the longest. A programmer has to design and

express a low-level communication protocol, which also includes the format for each transferred

message. In addition, avoiding deadlocks and ensuring good performance requires that message

sending and receiving be handled by different threads. The MOM implementation is the second

longest. A programmer has to implement a listener interface and register it with the messaging

system and handle messages that arrive out of order. In addition, the programmer must define

the messages and process them at the application level. Asynchronous R-OSGi follows next. A

programmer also has to implement a listener, but R-OSGi eliminates the need for the program-

mer to implement messages and setup the communication. The RBI/OSGi implementation takes

about an order of magnitude fewer lines of code than the asynchronous R-OSGi one. RBI/OSGi

is a method-based middleware mechanisms that does not require the programmer to write any

communication-specific code. The synchronous R-OSGi implementation takes about the same

amount of code as that of RBI/OSGi. RBI adds a couple of lines of code to setup and express a

batch. With respect to complexity, the raw sockets, asynchronouns R-OSGi, and MOM implemen-

tations have high MCC, while synchronous R-OSGi and RBI/OSGi ones have lower MCC.

Reliability

As it turns out, only our MOM-based implementation has built-in fault tolerance capabilities pro-

vided by ActiveMQ. It can operate in what is called “persistent mode” that stores every message

to be sent in stable storage. Upon disconnection, the undelivered messages are rescheduled for

delivery after the network becomes reconnected.

If reliability in the face of network volatility is required, Table 2.2 summarizes how fault handling

mechanisms can be adopted in each middleware platform. Even when a middleware mechanism

A Study of Middleware 24

Table 2.2: Reliability Comparison.
Middleware Fault 3rd party

platform handling solution
Synchronous R-OSGi N/A DR-OSGi

Asynchronous R-OSGi N/A DR-OSGi
RBI/OSGi N/A DR-OSGi

MOM built-in N/A
Sockets N/A N/A

does not have built-in facilities for dealing with network volatility, our recent research [82] has

shown how such facilities can be plugged into a middleware infrastructure, thereby improving

reliability in the face of network volatility.

2.1.4 Discussion

Here we discuss some of the implications of the performance, conciseness, complexity, and reli-

ability measurements presented above. In our discussion, we attempt to provide specific recom-

mendation for the developers of serviceoriented applications.

Figure 2.7 depicts the trade-offs between the performance, conciseness, complexity, and reliability

guarantees offered by each middleware platform. As it turns out, no platform satisfies all four

guarantees. Therefore, programmers should choose an appropriate platform with the immediate

needs of their service applications and their deployment environments in mind.

Threats to Validity

The measurements above are subject to both internal and external validity threats. The internal

validity is threatened by the way in which we chose to implement our subject services by using

different middleware platforms. In our daily programming practices, we do not regularly use all of

the five platforms. Therefore, the way we chose to implement our service may not be fully optimal,

in terms of using the proven design patterns. We believe, however, that our programming practices

are representative of that of the common programmer.

A Study of Middleware 25

Conciseness and Complexity

Performance Reliability

Sync.
R-OSGiRBI-

OSGi

Java
Socket

Async.
R-OSGi

MOM

Local
Service

Figure 2.7: Trade-offs between the performance, conciseness, complexity, and reliability levels.

Despite the established practice of using the MCC metric to measure complexity, some experts

argue whether complexity always positively correlates with programming effort. If such a corre-

lation turns to be low, the internal validity of our measurements would be further threatened. It

is worth noting, however, that defining and measuring programming effort remains hard, as this

metric is highly subjective.

The external validity is threatened by our choice of an existing OSGi bundle to be accessed re-

motely. OSGi public interfaces have been carefully designed to be coarse-grained, and more

naively-designed service interfaces can have finer granularity. In that case, the performance dis-

parities between synchronous R-OSGi and the asynchronous alternatives would be even more pro-

nounced.

The external validity of our study is threatened further, as our experiments are not particularly large

and varied in terms of the actual services used. Even though few real applications are composed

entirely of services, some realistic applications may use more services of different kinds than we

have done in our studies. Since not all services are as carefully designed as that of the Lucene

search engine, using a more diverse set of services would have likely yielded a greater result

A Study of Middleware 26

variability, particularly with respect to performance and reliability.

Performance

Even coarser grained service interfaces cannot completely eliminate latency concerns. As our

measurements show, asynchronous communication leads to better performance. Unfortunately,

business logic may require synchronous service calls. Our RBI/OSGi platform can reduce the

aggregate latency of multiple remote service calls without asynchronous processing.

Conciseness and Complexity

Despite their performance advantages, asynchronous designs tend to be more complicated, taking

more code that is more complex to express. RPC-based abstractions, including our RBI/OSGi, are

more straightforward to implement and understand.

Reliability

The reliability of a distributed application is dependent on the reliability of its constituent com-

ponents, which include both the execution units implementing the application’s functionality and

the network connecting them. One can argue that the ULOC metrics is inversely proportional to

the level of reliability of an individual software component. If the probability of a bug can be

expressed in terms of the lines of code and its complexity (e.g., X% that a software defect exists

within N lines of code), then shorter and less complex implementations are less likely to contain

bugs. In the light, our ULOC and cyclomatic complexity metrics can also serve a double duty as

local reliability metrics.

With respect to distributed execution, the common wisdom of distributed system development sug-

gests that reliability is best implemented on a per-application basis. There is value, however, in

handling system-level errors at the middleware level. In that light, using MOM leads to applica-

tions that can withstand temporary network disconnections. Such fault-tolerance capacities can be

A Study of Middleware 27

factored into existing systems, as we have demonstrated in our recent research [82].

Price/Performance Ratio

So far, we compared our different middleware platforms using a single metrics. To obtain deeper

insights, we introduce a new metrics, price/performance, represented by the following

PP =
(RULOC/LULOC)×MCC

LET/RET

where RULOC and LULOC are local and remote uncommented lines of code, respectively;

MCC is a complexity of code (i.e., McCabe complexity number); and LET and RET are lo-

cal and remote execution times, respectively. The minimum price/performance ratio is 1, which

can only be achieved when no distribution is present. In other words, the price/performance ratio

is minimized when its numerator and denominator are approaching 1. Since LULOC and LET

are fixed, only RET and RULOC can affect the ratio.

Figure 2.8 depicts the price (LOC and MCC)/performance ratio that accounts for both the LOC

and MCC values. When MCC is considered, the order of price/performance is MOM, sockets,

asynchronous R-OSGi, synchronous R-OSGi, and RBI/OSGi, with the smaller value being pre-

ferred. Based on this analysis, RBI/OSGi represents a highly-promising alternative to standard

middleware, offering a low price/performance ratio along with an intuitive programming model.

0

20

40

60

80

100

120

140

MOM Sockets Async.
R-OSGi

Sync.
R-OSGi

RBI/OSGi

Price(LOC and MCC)-Performance

Service 1

Service 2

Service 3

Figure 2.8: The price (LOC and MCC)/performance ratio comparison.

A Study of Middleware 28

2.1.5 Related Work

The related state of the art includes other studies assessing different properties of middleware plat-

forms as well as a critical assessment of middleware platforms. We describe these two directions

next.

Studies of Middleware Platforms

This is not the first effort aimed at comparing and contrasting different middleware platforms.

Gokhale et al. [51] assess how the abstraction level of a middleware platform affects its perfor-

mance. To that end, they measure the overall execution time of micro benchmarks implemented

using different middleware platforms ranging in their abstraction level, with sockets being the low-

est and CORBA the highest. Their findings confirmed that abstractions incur performance costs

in middleware platforms as they do in other computing artifacts. Indeed, lower-level platforms

tend to outperform higher-level ones. Nevertheless, abstractions in middleware are necessary to

successfully cope with the complexities of constructing modern distributed applications.

Demary et al. [31] compare the round-trip latencies of different configurations of RPC-based

middleware platforms, including different versions of CORBA, Java RMI, and XML-RPC imple-

mentations. They have found Java RMI to be most efficient and Web services such as XML-RPC

incurring a considerable overhead. The performance overhead of Web services often stems from

the inefficiencies of XML processing, and various optimization of XML encoding and decoding

have been proposed in the literature [37].

Juric et al. [66] have compared RMI, RMI tunneling, and Web services (i.e., SOAP RPC) in terms

of their performance characteristics. Mirroring the results of other such studies, this study also

found RMI having the best performance in terms of the round-trip latency. Interestingly, this study

also found Web services performance to be comparable to that of RMI. Other efforts focused on

evaluating MOM and JMS implementations in terms of their respective performance, scalability,

and reliability [156, 122].

A Study of Middleware 29

As compared to these studies, this work focuses on middleware platforms for accessing remote

services. In addition to comparing their respective performance, we also investigate their standard

software engineering metrics and reliability. By comparing these platform across multiple axes

of their properties, we aim at obtaining comprehensive guidelines that can guide programmers

needing to satisfy both system and software engineering requirements. These guidelines can help

programmers choose an appropriate middleware platform for accessing services remotely.

Middleware Abstractions and Platforms

Remote Procedure Call (RPC) [143] has been one of the most prevalent communication abstrac-

tions for building distributed systems. To support distributed object-based applications, RPC has

been extended into various distributed object systems, including Common Object Request Broker

Architecture (CORBA) [106], the Distributed Component Object Model (DCOM) [14], and Java

Remote Method Invocation (RMI) [165]. Despite the ubiquity of RPC, its shortcoming and limita-

tions have been continuously highlighted [141, 161, 125]. Some experts even argue that RPC has

been harmful in terms of its influence on distributed systems development [160]. Asynchronous

messaging and events, including publish-subscribe abstractions [29], are frequently mentioned as

better alternatives to RPC in terms of scalability and reliability.

As confirmed by our study, exposing distributed functionality through a familiar procedure call

paradigm of RPC and its object-oriented counterparts provides expressiveness and ease of imple-

mentation advantages. Our RBI/OSGi middleware is an attempt to address some of the limitations

of RPC, while retaining its advantages without incurring the complexities of asynchronous pro-

cessing of message- and event-based abstractions.

2.1.6 Conclusion

Due to the advantages provided by services, SaaS has entered the mainstream of commercial soft-

ware development and a growing percentage of computing functionality is becoming accessible

A Study of Middleware 30

as a service. The programmers who need to access remote services are faced with the challenges

of choosing an appropriate middleware platform for the task at hand. To assist the programmers

in their decision process, we compared the performance, expressiveness, and reliability of five

different middleware platforms for accessing services remotely. Our measurements and analysis

not only help the programmers in choosing between different middleware platforms, but also can

inform the design of new platforms for accessing services remotely.

2.2 The Impact of DPAs on Application Energy Consumption

Mobile devices have been surpassing stationary computers as the primary means of utilizing com-

puting [47]. As a result, several software design assumptions need to be fundamentally reconsid-

ered to produce applications that use the limited resources of a mobile device optimally. One such

resource is energy, provided by constantly improving but always limited batteries. Indeed, energy

efficiency has become an important software design constraint [103].

Network communication constitutes one of the largest sources of energy consumption in a dis-

tributed application [8]. To streamline the implementation of its network-related functionality, a

distributed application can take advantage of programming abstractions (sometimes referred to as

middleware), which can influence its energy consumption profile. To implement the same ap-

plication functionality, a software designer can select from a range of distributed programming

abstractions, a decision that can significantly impact how much energy the application will con-

sume. Unfortunately, this impact on energy efficiency when choosing one distributed programming

abstraction over another has not been studied systematically, thus leaving software designers no

choice but to rely on their intuition when reasoning about application energy efficiency.

Unfortunately, relying on one’s gut feeling [25] about the energy consumption characteristics of

distributed programming abstractions can lead to suboptimal designs that may compromise the

application’s overall business utility. Although some of the results presented here may seem “ob-

vious,” the main contribution of this work is empirical evidence that can support or discredit these

A Study of Middleware 31

Sync.
RPC

RBI

Async.
RPC

RMI

XML-
RPC

DOSGi

Sockets

MOM

XMLBinary

Programming
Abstraction

Network
Communication

Low

High

Figure 2.9: Considered DPAs and their classification.

commonly held beliefs about application energy consumption.

To equip the software designer with an informed understanding of application energy consumption,

we have focused on the Open Service Gateway Initiative (OSGi), an industry standard for deploy-

ing software in multiple domains, including mobile platforms. In particular, we have studied how

OSGi bundles (coarse-grained software components) communicate with each other by means of

distributed programming abstractions, having considered eight abstractions that differ on two axes:

network communication footprint and level of abstraction (See Figure 2.9).

In terms of network communication footprints, we have considered platforms that transfer data

in binary and in XML-based formats. In terms of the level of abstraction, we have considered

socket-, remote method call-, and message-based platforms. Specifically, we have studied TCP

sockets; Message Oriented Middleware (MOM); J2EE RMI; XML-RPC; and OSGi-based remote

methods (synchronous and asynchronous), our own Remote Batch Invocation (RBI), and SOAP-

based services.

For each considered distributed programming abstraction, our experiments assessed the energy

consumption (1) of passing varying volumes of data over networks with different latency/band-

A Study of Middleware 32

width characteristics, (2) of marshaling/unmarshaling complex data, and (3) of staying idle. The

main contributions of this research include:

• A systematic study of energy consumption in distributed programming abstraction

mechanisms: We have systematically compared and contrasted the energy consumption of

eight distributed programming abstraction mechanisms; by varying the mechanisms while

keeping the rest of functionality fixed, we were able to accurately estimate the impact of

programming abstractions on the overall application energy consumption.

• Energy consumption profiles for the aforementioned abstractions: By analyzing the re-

sults of our study, we ranked the abstraction mechanisms by their energy consumption pro-

files, thus informing programmers needing to choose between different mechanisms.

• Guidelines for energy-efficient and -aware distributed programming abstractions: We

put forward several guidelines that can guide software engineering researchers, who strive to

innovate in the distributed programming abstraction space with energy efficiency in mind.

The rest of this chapter is structured as follows. Section 2.2.1 introduces the studied distributed

programming abstractions. Section 2.2.2 describes our experimental study, while Section 2.2.3

analyzes the results. Section 2.2.4 infers energy consumption patterns and proposes new guidelines

for both programmers and distributed system designers. Section 2.2.6 discusses our studies and

Section 2.2.5 discusses related work. Finally, Section 2.2.7 presents concluding remarks.

2.2.1 Technical Background

We first describe the distributed programming abstractions we have evaluated and then introduce

the issue of measuring energy consumption in software systems.

A Study of Middleware 33

Distributed Programming Abstractions (DPAs)

Distributed computing coordinates the execution of multiple remote processes. Distributed pro-

gramming abstractions (DPAs) provide programming and runtime support for one process to ex-

ecute functionality in a different process. In other words, by eliminating the need for low-level

network programming, programming abstractions offer convenient building blocks for construct-

ing distributed systems. Major, widely used DPAs including sockets, messaging, remote proce-

dure/method calls, and remote services, have been described in Section 2.1.1.

Measuring Energy Consumption

To measure energy consumption, two primary approaches have been proposed in the literature.

One approach leverages specialized hardware (e.g., ACPI4 or IPMI5). These hardware solutions

can measure energy consumption quite precisely, but they do not map the consumed energy to the

specific application functions or execution phases.

Another approach leverages energy models. For example, Seo at el. [129] put forward a model

that divides the total energy consumed by an application into the functions of computation, com-

munication, and infrastructure (e.g, JVM garbage collection, implicit OS routines, etc.). Kansal at

el. [68] put forward an alternate model that instead focuses on the phases of waiting, execution,

and idling.

Our measurement model amalgamates features of both of these models. Specifically, we focus on

both application functions and phases by distinguishing between computation and communication,

while also differentiating between the phases at which the energy is consumed. It is the amalga-

mated model that makes it possible for us to infer application energy consumption patterns. By

flexibly adjusting our model for the measurement scenario at hand, we are able to infer general

energy consumption patterns while ignoring the irrelevant factors. For example, our model omits

4Advanced Configuration and Power Interface: http://www.acpi.info
5Intelligent Platform Management Interface: http://www.intel.com/design/servers/ipmi/

index.htm

http://www.acpi.info
http://www.intel.com/design/servers/ipmi/index.htm
http://www.intel.com/design/servers/ipmi/index.htm

A Study of Middleware 34

the energy consumed by the infrastructure (i.e., it assumes that software design does not directly

affect low-level infrastructure functions such as garbage collection and OS calls).

2.2.2 Measuring Energy Consumption of Distributed Programming Abstrac-

tions

In devising our approach to measuring energy consumption of DPAs, we wanted to be able:

1. to understand which components of DPA mechanisms mainly affect their overall energy

consumption.

2. to identify temporal patterns in how DPA mechanisms consume energy; these patterns can

guide the programmer in search of an abstraction delivering an application-specific energy

consumption profile.

3. to infer opportunities for improving the energy efficiency of emerging abstractions.

Next, we first present our energy consumption measurement model. Then we describe our experi-

mental measurements. And finally, discuss the results.

Energy Consumption Model

We estimate total energy consumption by computing the workload incurred by each major piece of

functionality. Specifically, the total energy consumption comprises two components—application

and DPA:

Etotal = EAPP + EDPA = ECPU + Emem + Edisk + Ecomm

where EAPP is the application-specific energy consumption, which includes ECPU—energy con-

sumed by CPU processing,Emem—energy consumed by memory access,Edisk—energy consumed

by I/O operations, Ecomm—energy consumed by network communication.

A Study of Middleware 35

For our experiments, we have excluded both the disk and memory access components from our

measurements. The measured DPAs do not use disk I/O, and one cannot reliably distinguish be-

tween the energy consumption incurred by accessing application vs. DPA-specific memory with-

out specialized hardware. Thus, our model considers the energy consumed by a DPA during CPU

processing and network communication (i.e., EDPA := ECPU + Ecomm).

Furthermore, our measurements are confined to the client side of all distributed interactions; we

assume a client/server communication model, in which server computation and communication

do not exhaust battery power. This assumption makes this work inapplicable to energy-conscious

server environments or peer-to-peer setups, with mobile devices communicating with each other

directly. We plan to extend our measurement model to a broader set of scenarios as a future work

direction.

When an application executes, it goes through several phases: initialization, execution, idling, and

termination, with the resulting energy consumption divided into four processes:

Etotal = Einit + Eexe + Eidle + Eterm

where the energy consumption for each of these phases is denoted as Einit, Eexe, Eidle, and Eterm,

respectively. For systematic evaluation, one must not only measure the energy consumption of a

running application, but also the energy consumption during the application’s initialization, idling,

and termination phases.

Experimental Setup

Our experimental setup comprised a client and a server. The server machine: 3.0 GHz Intel Dual-

Core CPU, 2 GB RAM, Windows 7, and JVM 1.6.0 13 (build 1.6.0 13-b03); the client machine:

2.53 GHz Intel i3 CPU (dual-core), 4 GB RAM, Windows 7, and JVM 1.6.0 16 (build 1.6.0 23-

b05). The client and server were connected via a wireless LAN. To create a controlled networking

environment with delay and bandwidth limitation, we have used Network Emulator for

Windows Toolkit [95], a popular network emulator. To measure energy consumption, we

A Study of Middleware 36

have used pTopW [34], a process-level power profiling tool that measures energy consumption at

the kernel level.

An important goal of this work is to ensure that our results are applicable to distributed applications

running on a broad range of mobile computing devices, ranging from laptops to phones. That is

why although a laptop is a mobile device, whose energy consumption is an essential issue, we chose

our client machine’s setup (the CPU, OS, VM) to be as close as possible to the latest models of

smartphones and tablets. The somewhat high amount of RAM makes it possible to run the emulator

and profiling tools without causing memory paging. Without the RAM taken by our measurement

infrastructure, the client machine has about 1 GB left available for running applications, a typical

setup for a modern hand-held device.

Because our goal is to determine how the choice of a DPA affects application energy consump-

tion, our measurements focus on application-level energy-consumption patterns rather than on the

underlying systems stack (e.g., OS and hardware). We also chose to perform our measurements

over a Wi-Fi connection rather than a cellular network such as 3G. The reason is the increasing

prominence of Wi-Fi networking, even for hand-held mobile devices. According to CISCO, Wi-

Fi networks occupy 36% of the Internet traffic, while cellular networks deliver less than 10 % of

traffic [22]. In fact, major US cities, including San Francisco, Washington D.C., Los Angeles, and

New York City, have started to provide municipal wireless access through Wi-Fi networks [49].

Therefore, our experimental environment is typical for executing a substantial class of modern

distributed applications.

Measurement Methodology

We have based our test suite on the benchmarks originally proposed by the JavaParty project [56]

to measure the efficiency of DPAs. These benchmarks comprise remote invocations with varying

parameter sizes and types. Similarly, our test suite assumes that a client needs to execute some

server methods, each of which takes different parameters. Because the executed server methods

are empty, one can reasonably attribute the measured energy consumption to the underlying DPAs.

A Study of Middleware 37

We have implemented eight versions of the same benchmark that have the same functionality but

communicate through different abstractions. The client and server parts of each version are OSGi

bundles. We do not measure the energy consumed by the server bundle.

Then, we have experimented with three emulated network conditions that have the following re-

spective round trip time (RTT) and bandwidth characteristics: 2 ms and 50 Mbps, typical for a

high-end mobile network; 30 ms and 1 Mbps, typical for a medium-end mobile network; and

30ms and 300 Kbps, typical for a low-end or congested mobile network.

Benchmarks

Benchmark I: Energy Consumed by Initialization

Table 2.3 shows how much energy is consumed by initializing each DPA mechanism, a phase that

also includes the initialization of the OSGi framework. DOSGi incurs the highest initialization

costs; sockets, R-OSGi, RMI, and XML-RPC all initialize more energy efficiently than either RBI

or MOM. DOSGi’s high initialization cost are due to its dependence of a high number of third-

party OSGi services6. The same explanation applies to RBI and MOM, even though their reliance

on third-party OSGi bundles is not as significant as that of DOSGi.

Table 2.3: Energy consumption—initializing DPAs.

Socket R-OSGi R-OSGi RBI DOSGi RMI XML MOM(sync) (async) OSGi (SOAP) RPC

6.5786 7.574 7.574 10.609 72.278 7.395 7.44 11.722

Benchamrk II: Energy Costs of Invoking Remote Functionality

In this experiment, we isolate the energy costs of initiating the execution (i.e., invoking) of various

remote methods (i.e., Einvoke = ECPU +Ecomm −Einit). We measured the aggregate energy con-

sumption of invoking the server method void ping(byte[]) 100 times in a loop; each experiment

was repeated 10 times with the results averaged.
6In case of Apache CXF Distributed OSGi, it loads 52 bundles.

A Study of Middleware 38

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a) 2 ms latency and 50 Mbps bandwidth

0

20

40

60

80

100

120

140

160

180

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b) 30 ms latency and 1 Mbps bandwidth

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)
 Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(c) 30 ms latency and 300 Kbps bandwidth

Figure 2.10: Energy consumption—invoking remote functionality.

Figure 2.10 shows how much energy was consumed by each DPA mechanism. For all platforms,

the energy consumption is directly proportional to the increases in latency and transferred data

sizes. For example, under the emulated high-end mobile network (i.e., 2 ms latency and 50 Mbps

bandwidth), all distributed programming abstractions consume little energy up until the arguments’

size reaches 100 Kbytes. Beyond this argument size, the energy consumption begins to increase

linearly. Similarly, once the latency goes up to 30 ms and limited the bandwidth goes down to

300 Kbps, the energy increases significantly. The effect is particularly pronounced for DOSGi and

XML-RPC, due to their high bandwidth requirements for transferring XML.

Figure 2.11 breaks down the energy consumption between the CPU and network communication

portions. The left three figures depict each DPA mechanism’s overall CPU energy consumption.

The CPU energy consumption is directly proportional to the size of the transferred data. Specif-

ically, when the latency increases and the bandwidth decreases, the energy consumed by CPU

processing remains constant. However, the energy consumed by network processing increases sig-

nificantly, particularly for XML-based DPAs. A surprising result is that asynchronous processing,

be it in asynchronous R-OSGi, MOM, or sockets, does not affect the CPU energy consumption.

This could be due to the fact that idle CPU cores still consume energy. These results indicate

that the network characteristics with respect to the size of the transferred data can significantly

influence the overall energy consumption.

A Study of Middleware 39

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a-1) 2 ms latency and 50 Mbps bandwidth

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a-2) 30 ms latency and 1 Mbps bandwidth

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a-3) 30 ms latency and 300 Kbps bandwidth

(a) Energy consumption—CPU

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b-1) 2 ms latency and 50 Mbps bandwidth

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b-2) 30 ms latency and 1 Mbps bandwidth

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b-3) 30 ms latency and 300 Kbps bandwidth

(b) Energy consumption—network communication

Figure 2.11: Energy consumption—CPU and network communication.

Benchmark III: Data marshaling/unmarshaling

In this experiment, we isolate the energy costs of marshaling/unmarshaling the data sent as param-

eters to the invoked remote methods. We have modified the remote methods instead of taking byte

buffers to take arguments of different types that the DPA mechanism in place has to marshal/un-

marshal. Specifically, we measured the energy consumed by passing (1) an object containing 32

A Study of Middleware 40

0

1

2

3

4

5

6

7

8

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Network

CPU

(a) 2 ms latency and 50 Mbps bandwidth

0

1

2

3

4

5

6

7

8

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Network

CPU

(b) 30 ms latency and 1 Mbps bandwidth

0

1

2

3

4

5

6

7

8

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Network

CPU

(c) 30 ms latency and 300 Kbps bandwidth

Figure 2.12: Energy consumption of three serialization cases.

int fields, (2) 1 non-primitive object which has two other non-primitive objects7, or (3) a binary

tree of 100 nodes, each holding an int value and two child recursive references. Each case’s trans-

ferred data size is as follows: (1) 32 × 4 bytes = 128 bytes, (2) overall objects sizes are estimated

as approximately 420 bytes, and (3) (1 × 4 bytes + 2 × 32 bytes) × 100 = 680 bytes.

Figure 2.12 shows the energy consumed by each DPA. As expected, XML-based DPA mechanisms

consume more energy than those that use either native Java serialization (i.e., RMI, Sockets, and

MOM) or optimized serialization mechanisms (i.e., RBI and R-OSGi). Although the inefficiency

of Java serialization is well known [114], our experiments did not indicate it to consume signifi-

cantly more energy than the optimized serialization mechanisms. At least, the difference was not

nowhere near as large as that between XML-based and binary serialization formats.

When breaking down the consumed energy into CPU and network processing, XML-based DPAs

are particularly vulnerable to limited network conditions, as transferring bulky XML-encoded data

can quickly increase the amount of required network transmissions, thereby raising up the energy

costs of network communication. Thus, energy-sensitive mobile applications should prefer DPAs

that encode data in binary.

7This test case is widely used for assessing the efficiency of Java serialization mechanisms. We used revi-
sion r128 of JVM serialization benchmark: http://code.google.com/p/thrift-protobuf-compare/
source/detail?r=128

http://code.google.com/p/thrift-protobuf-compare/source/detail?r=128
http://code.google.com/p/thrift-protobuf-compare/source/detail?r=128

A Study of Middleware 41

0

5

10

15

20

25

30

35

40

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Socket R-OSGi(sync) R-OSGi(async) RBI MOM

Idling Execution Initilization

(a) Socket, R-OSGi(sync), R-OSGi(async), RBI, and MOM

0

10

20

30

40

50

60

70

80

90

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

l)

Web RMI XML-RPC

Idling Execution Initilization

(b) DOSGi (HTTP/SOAP), RMI, and XMP-RPC

Figure 2.13: Energy consumption per execution phases.

Benchmark IV: Energy Consumption per Execution Phases

In this experiment, we measured the aggregate energy consumption of invoking the server method

void ping (byte[100KB]) 100 times in a loop over the emulated network with 2 ms latency and

50 Mbps bandwidth. The benchmark initializes, executes its functionality, idles for one minute,

and then exits. We measured how much energy is consumed by each of these phases, with Figure

2.13 showing the results.

Despite its name, the idling phase is important: when an application is long-running, the energy

consumed when idling may constitute a significant percentage of the application’s energy budget.

In fact, our measurements indicate that some DPA mechanisms may consume more energy when

idling than when executing remotely, for some application patterns. During idling, it is the open

network connections that consume energy. In other words, keeping a network connection open

indefinitely (i.e., until the application exits or the connection is interrupted) consumes energy at a

constant rate. As we have determined, however, RMI, DOSGi, and XML-RPC consume no energy

when idling. Using these DPAs will save energy for long running applications that experience

prolonged idle periods.

A Study of Middleware 42

2.2.3 Result Analysis

Based on the results obtained from the experiments above, we next analyze the results to infer some

general energy consumption patterns in DPA mechanisms. Even though we infer the following

patterns by analyzing the results obtained from benchmarking the eight DPAs above, we express

these patterns in general terms, making them applicable to a wide variety of DPA mechanisms.

These patterns should inform software designers charged with the challenges of choosing the right

DPA for energy-constrained application scenarios.

Because the same application behavior can be implemented by using any of the equivalent DPAs,

being aware of the application’s energy consumption patterns becomes an important decision sup-

port aid for software designers. By matching these patterns with the intended application behavior,

a software designer can make an informed choice when deciding which of the available DPA

mechanisms should be applied to a given application scenario.

• Transferring increasing volumes of data over limited networks (characterized by diminishing

bandwidths and growing latencies) causes a direct increase in energy consumption. There-

fore, when an application is likely to be executed over a limited network, software designers

should favor binary-based DPA mechanisms over XML-based ones, as the former ones en-

code the transferred data more concisely, which reduces the bandwidth requirements.

• In the case of high latency networks, asynchronous DPA mechanisms should be used to

avoid having to block remote communications while waiting for a response. Our results

indicate that asynchrony does not incur additional energy costs, and as such constitute a

viable software building block in the presence of high latency.

• Even though marshaling/unmarshaling can be computationally complex, these functional-

ities tend to consume more energy on network communication than on CPU processing.

Transferring large, complex object graphs across a network requires high bandwidth. At the

same time, encoding objects into concise binary representations requires substantial CPU

A Study of Middleware 43

processing. Therefore, for high-throughput networks, simple serialization protocols can

yield an acceptable energy consumption, as it would reduce CPU processing and would

transfer larger volumes of data without causing an energy consumption spike due to insuf-

ficient bandwidth. However, if the underlying network is limited (high latency and low

bandwidth as in a congested network), designs that employ CPU-intensive routines to se-

rialize the transferred data concisely should be preferred, as they would reduce the energy

consumed by network processing, a dominant energy consumption ingredient for these types

of network.

• Applications with long idle periods should prefer DPA mechanisms that do not consume

energy when idling. Sophisticated DPA features, such as issuing heartbeat messages and

alternate service discovery, do consume energy even if no core DPA-related functionality is

utilized. Therefore, for applications with prolonged idle cycles the energy costs of idling

DPA mechanism should be taken into account. For example, using DPA mechanisms that

follow stateless communication protocols (e.g., Web services) can reduce the overall energy

consumption, as these mechanisms do not maintain any state between remote interactions.

• When both high performance and low energy consumption are equally at stake, no high-level

DPA can outperform raw sockets, which has the highest energy consumption/performance

ratio. However, asynchronous and batched RPC come close second, while offering con-

venient programming abstractions to the programmer. When large data volumes are to be

transferred across the network, binary DPA mechanisms offer a higher ratio than XML-based

ones.

2.2.4 Energy Consumption Patterns and Guidelines

Based on our results, we next present several guidelines for designing energy efficient DPAs.

A Study of Middleware 44

Energy Consumption Patterns

Designing Energy-Efficient DPAs

Minimize network interactions and transferred data size As network communication incurs the

largest costs in the overall energy budget, an energy efficient DPA mechanism should strive to

transmit small data volumes over high-throughput networks. Because limited network conditions

are hard to avoid, system designs should aim at minimizing the frequency of network interactions

and reducing the transferred data size. To achieve the first objective, energy-sensitive designs

should minimize state exchange messages (e.g., service discovery message, heartbeat, etc.) to

an absolute minimum. To achieve the second objective, binary protocols should be favored over

XML-based ones, data compression and advanced serialization (e.g., kryo, protobuf, etc)8 should

be used, and delta should be applied whenever possible. Because algorithmically intensive data

compression can increase the CPU energy consumption, the right trade-offs should be sought be-

tween transferring smaller data and encoding it into compressed formats.

Share core DPA components across different applications If more than one mobile application

can share the same DPA mechanism, the device’s aggregate energy consumption may be reduced

for two reasons: (1) the initialization phase in a DPA mechanism can consume substantial energy

and should be amortized across multiple applications whenever possible; (2) because when idle, a

DPA mechanism can still incur energy costs, sharing the infrastructure across applications will re-

duce its idling time. In the OSGi framework, multiple applications can share common components,

realizing the benefits outlined above.

Monitor energy consumption levels and handle outliers For controlling fine-grained energy

consumption at the application level, DPA mechanisms should provide energy-monitoring APIs.

Such APIs can monitor energy consumption and report potential usage outliers (e.g., attempting to

8Various versions of serialization tools have been tested and discussed here: https://github.com/eishay/jvm-
serializers/wiki/

A Study of Middleware 45

send a large data volume over a limited network). The programmer can then implement function-

ality to handle such abnormalities by either postponing the remote interaction or even replacing it

with some local computation. Energy monitoring should not, however, consume additional energy.

Estimating energy consumption rather than measuring it directly provides a pragmatic trade-off.

Provide different connection management mechanisms Connection management policies dif-

fer: a connection can be terminated after each remote interaction or reused a varying number of

times. Reusing connections can both waste and save energy, if managed flexibly. To provide such

flexibility, an API can provide methods to select an appropriate connection management policy

for a given application’s characteristics. For example, for an application rarely invoking remote

methods, establishing a connection at every request saves energy. However, for an application fre-

quently invoking remote methods, it is reusing a connection that saves energy. The programmer

should have the flexibility to specify the desired policy on a per-application basis.

Flexibly adapt at runtime Based on our measurements, the underlying network environment

determines whether and after which threshold the transferred data should be compressed to save

energy. A DPA tuned for a particular network through a set of static optimizations is unlikely

to consume an optimal amount of energy when operating over networks with fluctuating band-

width/latency characteristics. An effective energy consumption behavior requires that the DPA

switch optimizations on and off dynamically in response to such fluctuations. Although it is the

application’s business logic that determines what data needs to be transferred across the network,

the DPA in place can cluster, encode, and compress the transferred data by means of adaptive

optimization.

2.2.5 Related Work

To the best of our knowledge, this work is the first attempt to assess the energy consumption

characteristics of DPA mechanisms. However, several prior efforts have informed and inspired

A Study of Middleware 46

this work. These efforts fall into three major categories: studies assessing different properties of

DPAs, measuring software energy consumption, and energy saving strategies for various computer

system layers.

Studies of DPA mechanisms

Different properties of distributed programming abstractions have been assessed, including per-

formance, scalability, reliability, and programming effort. Gokhale et al. [51] assess how the

abstraction level of a distributed programming abstraction affects its performance. Other efforts

focused on evaluating MOM and JMS implementations in terms of their respective performance,

scalability, and reliability [156, 122]. Our prior work [83] compares DPA mechanisms in terms

of performance, reliability, and programming effort. This work complements these studies by

assessing the energy consumption of major DPA mechanisms.

Energy Consumption Measurement

Because energy efficiency has become an important consideration in software design, several re-

cent research efforts have focused on creating effective approaches to measuring energy consump-

tion. Three primary approaches have been described in the literature: at the architecture, network,

and application levels. An example of an architecture level energy measuring approach is Power-

Pack [48], which physically connects to the CPU, disk, memory, and mother board component to

measure and analyze the energy consumption of high-performance applications. Then, it maps the

measured energy consumption patterns to the application’s source code, making it possible to an-

alyze energy consumption both at the hardware and source code levels. An example of a network

level energy measuring approach is described in reference [8], which measures energy consump-

tion of the general network activity for 3G, GSM, and WiFi networks. Examples of an application

level measurement approach are described in reference [54], which measures how VoIP applica-

tions consume energy, and in reference [167], which measures how video streaming applications

consume energy; both of these focus on mobile phones as their execution environment. JALEN

A Study of Middleware 47

monitors runtime energy consumption by injecting the monitoring code into Java bytecode [104].

As compared to the architecture, network, and application levels measurements, the focus of this

work is on DPAs or middleware, a software layer that is situated in between hardware and soft-

ware layers. Nevertheless, our measurement methodology is an example of an application level

approach.

Energy-Saving Techniques

Extending the battery life of mobile devices by reducing the energy consumption of mobile ap-

plications has been the focus of multiple complimentary research efforts: energy-efficient design

patterns and programming languages [103]), offloading energy-intensive functions to a remote

server [78], using specialized-network protocols [8], or switching different algorithms according

to pre-defined energy consumption scenarios [59]. While the majority of these efforts focused on

one particular system layer (i.e., mainly the network), advanced techniques have been proposed to

utilize multiple levels of system information, a technique called a cross-layer approach. A cross-

layer approach can effectively control energy consumption by leveraging the information provided

by multiple system layers. DYNAMO [99] is a middleware platform that adapts power optimiza-

tion strategies across various system layers, including applications, middleware, OS, network, and

hardware, to optimize both performance and energy. The focus of DYNAMO is on reducing en-

ergy consumption for video streaming applications. Our application energy consumption patterns

can provide empirical results to efforts such as DYNAMO, which can interpret and apply them to

specific application domains.

A recent language-based approach to energy-aware programming is ET [24], a new object-oriented

programming language that enables the programmer to write energy-aware code by specifying

phases, which represent distinct program workloads, and modes, which represent required energy

states, such as high and low energy consumption. A language like ET can be a useful tool for

distributed application programmers who want to take advantage of our DPA energy consumption

patterns.

A Study of Middleware 48

2.2.6 Discussion

The benchmark results presented above gave rise to the following two insights: 1) the latency/band-

width characteristics of mobile networks can heavily affect the energy consumption of a mobile

application and 2) adapting the execution behavior of a DPA in response to changes in laten-

cy/bandwidth can reduce the overall energy consumption. Based on these two basic insights and

the presented guidelines, DPA designers should be able to create novel, energy-aware DPAs. In the

following discussion, we give a concrete example of how such an energy-aware DPA can handle

adaptive energy optimization.

Example: Adaptive Data Marshaling

Data marshaling refers to the process of encoding program data into a format that can be transferred

across the network. For example, an integer value can be encoded as a byte buffer. The unmar-

shaling process reverses the marshaling encodings. Multiple marshaling strategies can be applied

to the same program data. With respect to energy consumption, one can consider the trade-off

between CPU processing and network transfer. Marshaling the data into a smaller byte buffer will

reduce network transfer, but will be more computationally intensive, thus requiring additional CPU

processing. Marshalling the data into a larger byte buffer will result in transferring more data over

the network, but it will require less CPU processing. Which of the strategies will consume less

energy depends on the runtime conditions in place.

For example, if the underlying network is limited (high latency and low bandwidth as in a con-

gested network), transferring data concisely should be preferred, as it would reduce the energy

consumed by network processing. In case of high-throughput networks, simple serialization pro-

tocols can reduce the overall energy consumption, as it would require less CPU processing while

transferring larger volumes of data without the energy consumption spikes due to insufficient band-

width. Therefore, the right trade-offs can only be determined at runtime, as it depends on the

current network conditions. Whether to compress the transferred data presents another trade-off

between data size vs. processing overhead. Similar to basic marshaling, algorithmically intensive

A Study of Middleware 49

data compression or delta calculation is computationally intensive, while reducing the amount of

data transferred across the network.

In summary, the discussion above presented several high-level guidelines that can be applied to

designing energy-aware DPAs. A key insight is that because each mobile application has different

execution patterns and environments, applying a single energy-optimization strategy to all execu-

tion patterns for all network conditions is ill-advised. Thus, mobile application programmers must

understand the execution patterns of mobile applications to be able to implement and configure

application-specific, dynamic energy optimization strategies.

2.2.7 Conclusion

Due to the advantages provided by services, SaaS has entered the mainstream of commercial soft-

ware development and a growing percentage of computing functionality is becoming accessible as

a service. The programmers who need to access remote services are faced with the challenges of

choosing an appropriate DPA for the task at hand. To assist the programmers in their decision pro-

cess, in this work, we described a case study that compared the performance, expressiveness, and

reliability of five different middleware platforms for accessing services remotely. Furthermore, we

measured the energy consumption in DPA mechanisms. By systematically measuring and analyz-

ing the constituent parts of major DPA mechanisms, we have identified their energy consumption

patterns. Our measurements and analysis not only help the programmers in choosing between dif-

ferent DPAs, but also can inform the design of new DPAs for software designers and distributed

system researchers.

Chapter 3

Hardening Distributed Applications Against

Partial Failure

Refactoring an existing centralized program for distributed executions should preserve its original

execution behavior, so that a distributed application would provide the same or equivalent func-

tionality to the user as the original centralized version. In other words, distributing an application

should not only improve its performance, availability, scalability, and energy efficiency, but also

furnish the original functionality to the user. However, distributed applications are subject to par-

tial failure, where components of a distributed system can fail independently of each other. In

this chapter, we introduce a novel approach to hardening distributed applications in a disciplined

and systematic fashion. First, in Section 3.1 we present a systematic approach to hardening dis-

tributed components to become resilient against network volatility. Then, in Section 3.2 we present

a declarative approach to improving the reliability of distributed applications.

3.1 Hardening Distributed Applications with Network Volatil-

ity Resiliency

As the world is becoming more interconnected, our daily existence depends on a variety of network-

enabled gadgets. Smart phones, PDAs, GPSs, netbook computers, all run network applications.

Many of these gadgets are connected to a wireless network such as Wi-Fi. Despite the signifi-

cant progress made in improving the reliability of wireless networks in recent years, real-world

wireless environments are still subject to network volatility—a condition arising when a network

50

Declarative Fault Handling Against Partial Failure 51

becomes temporarily unavailable or suffers an outage. Usually the network becomes operational

again within minutes of becoming unavailable.

Volatility is a permanent presence of many network environments for several reasons. For one, Wi-

Fi networks transmit radio signals, which are volatile, often making it impossible to reach a 100%

reliability. Another condition causing network volatility is congestion, which occurs when radio

channels interfere with each other or multiple data is transmitted concurrently over the same radio

link [60]. Furthermore, wireless networks are rapidly becoming available in emerging markets

(e.g., such as in rural or remote areas), which cannot always rely on the existence of an advanced

networking infrastructure [170].

Despite its temporary nature, network volatility can prove extremely disruptive for those distributed

applications that are built under the assumption that the underlying network is highly-reliable, and

network outages are a rare exception rather than a permanent presence. This could happen, for ex-

ample, when a distributed application, built for a LAN, is later executed in a wireless environment.

Distribution middleware provides a set of abstractions through a standardized API that hide away

various complexities of building distributed systems, including the need for low-level network pro-

gramming. Distributed component systems such as DCOM [94], CORBA CC [106], and R-OSGi

[120] expose network volatility as system-level exceptions that are handled by the programmer in

an application-specific fashion. Thus, the programmer writes custom exception-handling code that

is difficult to keep consistent, maintain, and reuse.

If the underlying network is expected to be volatile during the execution of a distributed system, a

consistent strategy can be beneficial for handling the cases of network outages. Manually written

outage handling code makes it difficult to ensure that a consistent strategy be applied throughout

the application. Since the outage handling code is also scattered throughout the application, it can

create a serious maintenance burden. Finally, the expertise developed in handling outages in one

distributed application becomes difficult to apply to another application, with a copy-and-paste

approach being the only option.

This paper argues that it is both possible and useful to handle network outages systematically, in a

Declarative Fault Handling Against Partial Failure 52

consistent and reusable way. Although software architecture researchers have outlined approaches

to continue distributed application execution in the presence of network outages, these approaches

are difficult to implement, apply, and reuse.

This work builds upon these approaches to define hardening strategies, which are exposed as

reusable components that can be seamlessly integrated with an extant distributed component in-

frastructure. These reusable and customizable components can be added to an existing distributed

component application, thereby hardening it against network volatility.

As our experimental platform, we use R-OSGi—a state-of-the-art distributed computing infrastruc-

ture that enables service-oriented computing in Java. We have created an extensible framework—

DR-OSGi—which can harden any R-OSGi application, enabling it to cope with network volatility.

DR-OSGi provides programming abstractions for expressing hardening strategies, which can also

be reused across applications. The programmer selects a hardening strategy that is most appropri-

ate for a given R-OSGi application and its deployment environment. DR-OSGi then handles all

the underlying machinery required to harden the R-OSGi application with the selected strategy.

In our experiments, we have executed several realistic R-OSGi applications in a simulated net-

working environment to which we injected periodic network outages. By comparing the execution

of the original and hardened versions of each application, we have assessed their respective ability

to complete the execution, the total time taken to arrive to a result, and the overhead of the harden-

ing functionality. Our results indicate that it is feasible and useful to systematically harden existing

distributed component applications with the ability to cope with network volatility. Based on our

results, the technical contributions of this paper are as follows:

• A clear exposition of the challenges of treating the ability to cope with network volatility as

a separate concern that can be expressed modularly.

• An approach for hardening distributed component applications with resiliency against net-

work volatility.

• A proof of concept infrastructure implementation—DR-OSGi—which demonstrates how

Declarative Fault Handling Against Partial Failure 53

existing distributed component applications can be hardened against network volatility.

In the following discussion, we first look at network volatility from the networking perspective.

Then we outline the concepts and technologies used in implementing our framework.

3.1.1 Background

Network Volatility

Modern computing networks are sophisticated multi-component systems whose reliability can be

affected by hardware and software failure. These failure conditions include random channel errors,

node mobility, and congestion. The reliability of a wireless network can be additionally afflicted

by the contention from hidden stations and frequency interference [46, 62].

To improve the performance and reliability of modern networks, researchers have investigated var-

ious solutions, including congestion control, error control, and mobile IP. Most of these solutions

improve various parts of the actual networking infrastructure. This work, by contrast, is concerned

with solutions that treat network volatility as an unavoidable presence to be accommodated in

software at the application level.

Software Components

A software component is an abstraction that improves encapsulation and reusability, thus reducing

software construction costs. Typically a component encapsulates some unit of functionality that

is accessed by outside clients through the component’s interface. Component interfaces tend to

remain stable, evolving infrequently and systematically. This reduced coupling between a compo-

nent and its clients makes it possible to change the component’s underlying implementation with-

out having to change its clients. Examples of software component architectures include COM [94],

CORBA CC [106], CCA [1], and OSGi [107].

Declarative Fault Handling Against Partial Failure 54

OSGi For our reference implementation, we have chosen a mature software component plat-

form for implementing service oriented applications called OSGi [107]. Among the reasons for

choosing OSGi is its wide adoption by multiple industry and research stakeholders, organized into

the OSGi Alliance [107]. OSGi is used in large commercial projects such as the Spring frame-

work and Eclipse, which uses this platform to update and manage plug-ins. The OSGi standard

is currently implemented by several open-source projects, including Apache Felix, Knopflerfish,

Eclipse Equinox, and Concierge[119]. OSGi provides a platform for implementing services. It

allows any Java class to be used as a service by publishing it as a service bundle. OSGi manages

published bundles, allowing them to use each other’s services. OSGi manages the lifecycle of a

bundle (i.e., moving between install, start, stop, update, and delete stages) and allows it to be added

and removed at runtime.

R-OSGi Despite its versatility, OSGi only allows inter-bundle communication within a single

host. To support distributed services via OSGi, the R-OSGi distributed component infrastructure

was introduced [120]. R-OSGi enables proxy-based distribution for services, providing proxies

also as standard OSGi bundles. An R-OSGi distribution proxy redirects method calls to a remote

bundle via a TCP channel, supporting both synchronous and asynchronous remote invocations.

R-OSGi also provides a distributed service registry, thus enabling the treatment of remote services

uniformly with local services.

Thus, R-OSGi introduces distribution transparently, without modifying the core OSGi implemen-

tation. It can even enable remote access to an existing regular OSGi bundle, transforming the

bundle into a remote service. The transformation employs the concept of the surrogation bundle,

which registers the service and redirects remote calls to the original bundle.

With respect to network volatility, R-OSGi treats it similarly to other distributed component in-

frastructures. Specifically, in response to a network disconnection, a client accessing a remote

R-OSGi service will receive an exception. The programmer can then write custom code to handle

the exception.

Declarative Fault Handling Against Partial Failure 55

Hardening Strategies to Cope with Network Volatility

When the underlying network fails, a distributed application will typically signal an error to the

end user, who can then decide on how to proceed. The user, for example, could choose to check the

network connection and restart the application. The purpose of hardening strategies is to enable a

distributed application to continue executing when the underlying network becomes unavailable.

In a recent publication, Mikic-Rakic and Medvidovic classify disconnected operation techniques

as well as how they can be applied to improve the overall system dependability [97]. Next we

outline these techniques and discuss how they can be applied to harden a distributed component

application to cope with network volatility.

Caching—This strategy employs caching techniques to store a subset of remote data locally, so

that it could be retrieved and used by remote service requests when the network becomes unavail-

able. The effectiveness of this strategy depends strongly on the hit rate of the caching scheme

in place. That is, since the size of any cache is always limited, the main challenge becomes to

cache the remote data that is most likely to be needed by a service invocation when the network is

unavailable. This strategy can in effect fail completely if there is a cache miss.

Hoarding—This strategy prefetches all the remote data needed for successfully completing any

remote service invocation. It assumes, however, that data alone is sufficient for invoking a remote

service. Unfortunately, this assumption fails for any resource-driven distribution—collocating

hardware resources with the code and data they use. For example, a remote sensor has to operate

at a remote location from which it is collecting data; hoarding any amount of the sensor’s output

data will fail to provide up-to-date sensor information upon disconnection. Thus, a hoarding-based

strategy can be effective only when computation is distributed for performance reasons, and com-

putation with a given data input yields the same results on any network node. These execution

properties are often exhibited by high-performance cluster environments that use distribution to

improve performance.

Queuing—This strategy intercepts and records remote requests made to an unreachable remote

Declarative Fault Handling Against Partial Failure 56

service. The recorded requests are then replayed when the service becomes available. This tech-

nique can only work if the results of a remote call are not immediately needed by the client code

(e.g., to be used in an if statement). Otherwise, the client code will block, not being able to benefit

from this strategy. Queuing is also poorly applicable for realtime applications.

Replication—This strategy maintains a local copy of a remote component. When the remote

component becomes unreachable, the local copy is used. If the replicated component is stateful,

then the states of the local and remote copies have to be kept consistent. When the network is

available, client requests can be multiplexed to both local and remote copies. Alternatively, a

consistency protocol can be used. Upon reconnection, the remote copy has to be synchronized

with the local copy. This strategy has the same applicability preconditions as hoarding.

Multi-modal components—This strategy employs several of the strategies above and can apply

them either individually, based on some runtime condition, or together, combining some features

of individual strategies. For example, both caching and queuing can be used, depending on which

remote service method is invoked. Similarly, replication can be applied to remote components

while hoarding the data used by the replicated components.

Aspect-oriented Programming and JBoss AOP

This work aims at treating network volatility resiliency as a distributed cross-cutting concern. A

powerful methodology for modularizing cross-cutting concerns is aspect oriented programming

(AOP)[71]. We believe that network volatility resiliency is similar to other cross-cutting concerns

such as logging, persistence, and authentication—essential functionality, but not directly related to

the business logic.

AOP modularizes cross-cutting concerns and weaves them into the application at compile-time,

load-time, or runtime. Major AOP infrastructures include AspectJ[70], Spring AOP[134], and

JBoss AOP[64]. Some AOP technologies have even been applied to OSGi, including the Eclipse

Foundation’s AspectJ plug-in and Equinox. For our purposes, we needed to weave in the outage

Declarative Fault Handling Against Partial Failure 57

handling functionality at runtime, which typically requires modifying the JVM or rewriting the

bytecode. We also needed the ability to modify the parameters of a remote service method. Among

the major AOP systems, only JBoss AOP provides all the required capabilities. Another draw of

JBoss AOP is that it does not either introduce a new language, thus flattening the learning curve,

or changes the JVM, thus ensuring portability.

3.1.2 DR-OSGi: Treating Symptoms of Network Volatility

Our reasoning behind the name DR-OSGi—our reference implementation of an infrastructure for

systematic handling of network volatility—is our skeptical view of the power of modern medicine.

Despite all its impressive accomplishments, modern medicine can only treat some of the symptoms

of the majority of known diseases—it cannot eliminate the disease itself. Take common cold as

an example. They say that “If you treat a cold, it takes seven days to recover from it, but if you

do not, it takes a week.” When a cold is concerned, modern medicine can only help eliminate its

symptoms, such as fever, sneezing, and coughing, thereby improving the patient’s quality of life.

By analogy, we treat network volatility as a disease—an annoying but unavoidable condition that

cannot be eliminated. All we want to do is to treat the symptoms of this disease systematically.

By helping the patient (a distributed system) to effectively cope with the symptoms of network

volatility (an inability to make remote service calls), we improve the patient’s quality of life (QoS).

We next demonstrate our approach by showing how our approach can systematically harden dis-

tributed component applications against network volatility. In the following discussion, we first

state our design goals, before presenting the architecture of our reference implementation and its

individual components.

Design Objectives

Can any distributed component architecture be effectively hardened against network volatility? In

other words, are there any special capabilities a distributed component architecture must provide

Declarative Fault Handling Against Partial Failure 58

to make itself amenable to hardening? For our approach to work, we assume that a distributed

component architecture can detect and convey to the distributed application the following two

scenarios:

1. A remote service becomes unavailable—this scenario should be effectively detected by

the underlying distributed component architecture, so that an appropriate exception could be

raised.

2. A temporarily unavailable remote service becomes available again—this scenario as-

sumes that the component architecture does not “give up” trying to reach a remote service,

periodically attempting to access it.

To the best of our knowledge, most distributed component architectures can effectively handle

the first scenario. However, only advanced distributed component architectures can handle the

second one. As a concrete example, R-OSGi employs the Service Discovery Protocol, which

periodically attempts to reconnect to a remote service, if the service were to become unavailable.

If, for example, a remote service becomes unreachable due to a network outage, the R-OSGi

Service Discovery Protocol will keep trying to reach the service until the network connection is

restored. It is these advanced capabilities of R-OSGi that convinced us to use this distributed

component architecture as our experimentation platform.

Our system, called DR-OSGi, can harden existing R-OSGi applications to become resilient against

network volatility. In designing DR-OSGi, we pursued the following goals:

1. Transparency—any hardening strategy should not affect the core functionality of the un-

derlying R-OSGi application.

2. Flexibility—DR-OSGi should be capable of adding or removing the hardening strategies at

any time without having to stop the application.

3. Extensibility—DR-OSGi should provide flexible abstractions, enabling expert program-

mers to easily implement and apply custom hardening strategies.

Declarative Fault Handling Against Partial Failure 59

JBoss AOP

DR-OSGi

Hardening Manager

R-OSGi

Remote OSGi

Proxy

JBoss AOP

DR-OSGi

Hardening Manager

R-OSGi

Remote OSGi
Channel

Hardening Strategy B

Hardening Strategy A

Hardening Strategy B

Hardening Strategy A

Service Service

Figure 3.1: Hardened architecture.

Since the channels to a remote OSGi bundle use TCP, which provides reliable data transport,

packet loss is handled at the transport layer. TCP, however, provides no assistance to deal with

network volatility conditions arising as a result of link failure, node mobility, or high congestion.

Therefore, to detect network instability or disconnection, an R-OSGi channel uses a timer to block

the caller until the service has returned or the timeout has been exceeded. In the case of exceeding

the timeout, an exception is thrown. R-OSGi handles such exceptions by having a remote OSGi

bundle dispose of the channel and remove all proxies, preventing remote service calls while the

network in unavailable. R-OSGi periodically checks whether the network has become available

again and, if so, recreates the remoting proxies and channels.

DR-OSGi intercepts the handling of R-OSGi network-related exceptions and the successful com-

pletions of its reconnection attempts. Specifically, DR-OSGi handles R-OSGi network-related

exceptions by triggering a hardening strategy. The type of the triggered strategy is determined by a

programmer-specified configuration. The hardening strategy stops being applied when DR-OSGi

intercepts a successful R-OSGi reconnection attempt.

Figure 3.1 shows how DR-OSGi is integrated into a typical R-OSGi application. DR-OSGi aug-

ments an R-OSGi application with a hardening manager and a collection of hardening strategies.

The manager and each strategy are encapsulated in separate OSGi bundles. The hardening man-

ager plugs into an R-OSGi application to intercept the handling of network exceptions and of the

Declarative Fault Handling Against Partial Failure 60

successful completions of reconnection attempts. In response to these events, the manager starts

and stops the hardening strategies as configured by the programmer.

To integrate the hardening manager with an R-OSGi application without changing the application’s

source code, we employ Dynamic Aspect Oriented Programming (AOP). Because OSGi bundles

are deployed at runtime, DR-OSGi has to be able to interpose the hardening logic dynamically.

The dynamic AOP technology that fits our design objectives is JBoss AOP.

Programming Model

Next we detail the DR-OSGi programming model and demonstrate how it simplifies the creation

and deployment of custom hardening strategies. To harden an R-OSGi application, the program-

mer has to provide a configuration file that specifies which hardening strategy should be applied

to which application bundle. The following configuration file specifies that the application bun-

dle MyBundle is to be hardened by the strategy implemented in the DR-OSGi-conformant bundle

CachingHardening:

RemoteServiceName=org.mypackage.MyBundle

HardeningServiceName=org.otherpackage.CachingHardening

The simple syntax of the DR-OSGi configuration files is sufficiently expressive and supports wild-

cards which can be used to specify that a hardening strategy be applied to multiple bundles. Several

hardening strategies can be applied to the same application bundle simultaneously. For example,

remote invocations can be both cached and queued when the network is available. The programmer

can specify in the configuration file which strategy bundle should be primary (i.e., to be applied

first). If, when the network becomes unavailable, the first strategy succeeds, DR-OSGi does not

apply the second one.

To implement a hardening strategy, the programmer needs only to implement interface

DisconnectionListener, which is defined as follows:

public interface DisconnectionListener {

Declarative Fault Handling Against Partial Failure 61

public Object disconnectedInvoke(RemoteCallMessage invokeMessage);

public Object reconnected(String uri);

public void remoteInvoke(RemoteCallMessage invokeMessage, Object result);

public void serviceAdded(String uri);

public void serviceRemoved(String uri);

}

Method disconnectedInvoke is called by DR-OSGi, when R-OSGi detects that the network con-

nection has been lost. Method reconnected is called by DR-OSGi, when R-OSGi manages to

successfully reestablish a connection to a remote bundle. Finally, remoteInvoke is called when

a remote service method has been successfully invoked. The implemented class has to be de-

ployed as a regular OSGi bundle, and an entry describing the implementation must be added to the

configuration file.

System Architecture

In the following we discuss the system architecture of DR-OSGi. The key objective of this work is

to explore how network volatility hardening strategies can be implemented modularly and applied

to an existing distributed component application that may have been written without fault-tolerance

capabilities in mind. In other words, we argue that it is possible to treat hardening strategies as

reusable software components, which can be developed by third-party programmers and reused

across multiple applications.

Figure 3.2 shows how we have designed DR-OSGi, so that it could naturally integrate with the

existing OSGi and R-OSGi infrastructures. DR-OSGi makes use of existing OSGi services such as

Service Registration and Service Tracker. Every DR-OSGi component, including

the hardening manager and all hardening strategies, register themselves with OSGi, which man-

ages them as standard registered services. This arrangement makes it possible to locate DR-OSGi

components using the OSGi Service Tracker and load them on demand.

To receive service change events from OSGi, the hardening manager implements the

Declarative Fault Handling Against Partial Failure 62

Hardening Strategy Bundle A

Hardening Manager Bundle

ServiceTracker

Customizer

addingService

removedService

modifiedService

Connection

Handler

DisconnectionListener

remoteInvoke

disconnectedInvoke

reconnected

OSGi

Service Registry

Hardening

Strategy

Activator

Activator

2. Service Registration

1. Service Registration

3
.
S

e
rv

ic
e

 N
o

ti
fi
c
a

ti
o

n

Remote OSGi

Bundle
Proxy Bundle

DR-OSGi

OSGi

R-OSGi

Service

Location

Protocol Bundle

4. Event Monitoring

Service Tracker

Hardening Strategy Bundle B

DisconnectionListener

remoteInvoke

disconnectedInvoke

reconnected

Hardening

Strategy

Activator

5
.
 S

e
n

d
 E

v
e

n
t

Figure 3.2: DR-OSGi design.

ServiceTrackerCustomizer interface, which is discussed below. In turn, to make it possible for

the manager to send the relevant events to hardening strategy bundles, each bundle implements the

DisconnectionListener interface. All the lifecycle events in DR-OSGi are triggered by sending

and receiving events, with Service Tracker and Service Registration enabling the

hardening manager and hardening bundles to be loosely coupled.

When a new hardening strategy is deployed, OSGi sends an event—addingService—to Service

Tracker, which then forwards the event to the hardening manager by calling the corresponding

ServiceTrackerCustomizer interface method.

public interface ServiceTrackerCustomizer {

public Object addingService(ServiceReference reference);

public void modifiedService(ServiceReference reference, Object service);

Declarative Fault Handling Against Partial Failure 63

public void removedService(ServiceReference reference, Object service);

}

The hardening manager keeps track of which hardening strategies have been registered and main-

tains a searchable repository of all the registered strategy bundles.

Weaving in Resiliency Strategies with Aspects

To intercept the disconnection/reconnection procedures of R-OSGi, without changing its source

code, we use dynamic Aspect Oriented Programming technology, JBoss AOP. The ability to apply

aspects dynamically is required due to OSGi loading bundles dynamically at runtime. JBoss AOP

makes use of XML configuration files that specify at which points aspects should be weaved. Using

AOP enables DR-OSGi to keep its implementation modular and avoid having to modify the source

code of R-OSGi.

3.1.3 Evaluation

To evaluate the effectiveness and performance properties of DR-OSGi, we have conducted three

benchmark experiments and a larger case study.

Benchmarks

Since R-OSGi can easily distribute any existing OSGi application, our benchmarks use third-party

OSGi components accessed remotely across the network. As our benchmark applications, we have

used a remote log service, a remote user administration service, and a distributed search engine.

To create a controlled networking environment with predictable network outage rates, we have used

a network emulator—netem [2]—to introduce network volatility conditions, including transmis-

sion delay, packet loss, packet duplication, and packet re-ordering.

Declarative Fault Handling Against Partial Failure 64

In our experimental setup, we have emulated a network with the round trip time (RTT) metrics

equal to 14ms, which is typical for a modern wireless network. To emulate network outages, we

used netem to generate packets losses at the server. Lossy network conditions were emulated by

losing a high number of random packets (i.e., over 30% loss); totally disconnected networks were

emulated by losing all the transmitted packets.

The experimental environment has comprised a Fujitsu S7111 laptop (1.8 GHz Intel Dual-Core

CPU, 2.5 GB RAM) communicating with a Dell XPS M1330 laptop (2.0 GHz Intel Dual-Core

CPU,3 GB RAM) via a IEEE 802.11g wireless LAN, with both laptops running the Sun’s client

JVM, JDK J2SE 1.6.0 13.

Log Service

For this experiment, we used a log service defined by the OSGi specification [107]. The OSGi

log service records standard output and error messages printed during a bundle’s execution. The

service can be configured to log different amounts of messages by calling its setLevel methods

(the higher the level, the more messages are logged).

Imagine needing to log messages generated by a remote service locally. In this experiment, we

have used R-OSGi to access the existing log service of Knopflerfish, a popular, open-source im-

plementation of OSGi. To enable remote access, we have used the surrogation bundle approach to

register the existing log service.

Network volatility should not cause a remote log service to stop functioning. Logs are typically

examined for a postmortem analysis, for which the actual time when the messages are written to a

log file is not important, as long as the messages’ timestamps reflect their actual origination time.

In our experiment, we used the log service to record 10 text messages generated consecutively

without any delay. The network is available during the remote logging of the first 3 messages.

Immediately after logging the third message, the network becomes totally disconnected. Then

after the fifth message, the network connection is restored.

Declarative Fault Handling Against Partial Failure 65

Table 3.1: Message delivery delay under a queuing hardening strategy.
Network condition connection disconnection connection
Message number 1 2 3 4 5 6 7 8 9 10

Sent log time(min:sec) 0:00 1:12 1:21 1:51 2:51 3:19 4:01 4:03 4:42 4:46
Received log time(min:sec) 0:00 1:15 1:21 3:20 3:20 3:20 4:02 4:05 4:42 4:46

We have executed this scenario under two setups: plain R-OSGi and DR-OSGi with a queuing

strategy. Recall that queuing works by recording remote service calls when the network is un-

available and replays the recorded calls once the connection is restored. Under the original setup,

the remote log service recorded only 8 messages (3 before the disconnection and 5 after). Two

messages were lost irretrievably. The hardened version recorded all 10 messages.

Table 3.1 shows the delay for each message delivery. For the queued messages (columns 4 and

5), the delays is significantly higher than for the other messages. Despite the delay of the queued

messages, all the messages are delivered in the order in which they are sent. Since real-time

guarantees are not required, we can conclude that the hardening strategy has provided the requisite

QoS for the remote log service, allowing it to cope with network volatility.

User Admin Service

For this experiment, we used the User Admin Service, which comes as a part of the core OSGi

system services. The service authenticates and authorizes users by running their credentials against

a database. Oftentimes, this service may need to be accessed remotely. To introduce distribution,

we have registered the standard User Admin Service bundle using a surrogation bundle, similar to

the approach we took in distributing the log service.

A network outage should not prevent a client from using the User Admin Service, if the client

has used the service in the past, and the security policy specifies that user credentials change

infrequently and can be cached safely. In other words, the caching hardening strategy must be

coordinated with the security policy in place, lest the system’s security can be compromised. One

way to accomplish this is to avoid caching the authentication data that may change while the

network is temporarily unavailable.

Declarative Fault Handling Against Partial Failure 66

We have emulated a scenario in which 100 remote authentication attempts have been made across

the network, which randomly suffers disconnections with the rate equal to 1 disconnection per 20

authentication attempts. Disconnections always cause the R-OSGi version of the application to

fail. The ability of the DR-OSGi hardened version to continue executing depends on the number

of clients. In this simulation, we assume that all the clients use the service equally. Thus, if for

example, there were n authentication requests made from m users, then the expected number of

authentications performed by a single user is n/m. Since the cache size is set to 5, the hit rate is

negatively correlated with the number of users, standing at 100% for 2 and 4, and going down to

90%, 85%, and 78% for 6, 8, and 10 users, respectively.

Distributed Lucene

For this experiment, we have used Lucene, a widely-used Java search engine library. Among the

capabilities provided by Lucene are indexing files and finding indexes of a given search word.

Because searching is computationally intensive, there is great potential benefit in distributing the

searching tasks across multiple machines, so that they could be performed in parallel.

Despite several known RMI-based Lucene distributions, for our experiments we have created an

R-OSGi distribution, which turned out to be quite straightforward. We have followed a simple

Master Worker model, with the Master assigning search tasks to individual Workers as well as

collecting and filtering search results. This distribution strategy, depicted in Figure 3.3, requires

that only the Master node be hardened against network volatility. This embarrassingly parallel data

distribution arrangement imposes a strict one way communication protocol with the Master always

calling Workers but never vice versa.

Once again, a caching hardening strategy has turned out to be most appropriate for hardening the

distributed Lucene R-OSGi application. Specifically, every work assignment for individual nodes

is used as a key mapped to the returned result. The intuition behind this caching scheme is that files

are read-only and searching a file for the same string multiple times must return identical results.

For writable files, the caching scheme would have to be modified to invalidate all the cached results

Declarative Fault Handling Against Partial Failure 67

OSGi

Framework

Service

R
-O

S
G

i

Lucene

Library

Hardening

Manager

Cache

OSGi Framework

JBoss AOP

P
ro

x
y

S
e

rv
ic

e

R-OSGi

Master

Workers

OSGi

Framework

Service
R

-O
S

G
i

Lucene

Library

Figure 3.3: Distributed lucene.

5.04

5.06

5.08

5.1

5.12

5.14

5.16

5.18

5.2

5.22

R-OSGi DR-OSGi

Th
e

bi
nd

in
g

ti
m

e(
 x

10
00

m
s)

Figure 3.4: Binding time comparison.

for the changed files. As it turns out, the absolute majority of environments that use Lucene feature

read-only files only, including digital books, scientific articles, and news archives.

Since distributed Lucene is representative of a large class of realistic applications, we have used

it to assess the performance overhead imposed by DR-OSGi. The first benchmark has measured

the binding time, which is defined as the total time expended on establishing a remote connection,

requesting the service, receiving the interface, and building the remoting proxy. R-OSGi is quite

efficient, with R-OSGi application consistently outperforming their RMI versions [120]. The pur-

pose of our benchmark was to ensure that DR-OSGi does not impose an unreasonable performance

overhead on top of R-OSGi. As it turns out, there is not a pronounced difference between the bind-

ing time of a plain R-OSGi version of Lucene and its hardened with DR-OSGi version, as shown

in Figure 3.4. One could argue that binding is a one-time expense incurred at the very start of a

service and as such is not critical.

To distill the pure overhead of DR-OSGi, we have measured the total time it took to synchronously

invoke a remote service under three scenarios:

1. Running the original R-RSGi version with no network volatility present

2. Running the hardened with DR-OSGi version with no network volatility present

Declarative Fault Handling Against Partial Failure 68

3. Running the hardened with DR-OSGi version with a randomly introduced complete network

disconnection

The measurements are the result of averaging the total time taken by 1∗103 remote service invoca-

tions. To emulate a complete network disconnection, we have generated a 100% packet loss. While

the original R-OSGi version takes 9043.5 ms to execute, the hardened one takes 9321.9 ms, thus

incurring only 3% overhead when no volatility is present. When the network becomes unavailable,

the DR-OSGi caching strategy improves the performance quite significantly, as it eliminates the

need for any computation to be done by the worker node. While, somewhat unrealistically, we

used the 100% hit rate to isolate the overhead of DR-OSGi, the actual performance is likely to vary

widely depending on the applicaion-specific caching scheme in place.

These performance results indicate that the insignificant performance overhead that DR-OSGi im-

poses on a hardened distributed application can certainly be justified by the added resiliency to

cope with network volatility.

Case Study: Hardening “DNA Hound”

As a larger case study, we have hardened “DNA Hound,” a three-tier R-OSGi application for

assisting detectives conducting a criminal investigation. The application works by automating the

process of analyzing and warehousing DNA evidence, collected at crime scene investigation sites.

Figure 3.5 depicts the architecture of “DNA Hound.” The detective collects DNA evidence using

a hand-held device, and then sends it to a search facility using a mobile data network (or any other

wireless network). The search facility matches the sent DNA evidence against a database of DNA

sequences (via parallel processing) and reports if a match is found. The collected DNA evidence

is then sent to a crime evidence warehouse for storage.

We have implemented a complete working prototype of “DNA Hound,” but in lieu of DNA extract-

ing hardware, we simulated the found DNA evidence by randomly selecting DNA sequences from

a GenBank NCBI database [13]. The search is performed using a parallelization of the Smith-

Declarative Fault Handling Against Partial Failure 69

Portable DNA

Extractor

Replication

Bundle

Replication Assistant

Bundle

Search Bundle

Warehouse Bundle

Synchronization

R-OSGi R-OSGi

R-OSGi

Result

DNA Sequence Evidence

DR-OSGi DR-OSGi

DNA Sequence Search

DNA Evidence Warehouse

Portable DNA Extractor

Queuing

Bundle

S
to

re
 C

olle
ct

ed

D
N
A
 E

vi
den

ce

Figure 3.5: DNA Hound system architecture.

Waterman algorithm [132] on a compute cluster.

Because “DNA Hound” is used in the field, it relies on a wireless network that can be unreliable.

Therefore, to ensure that the application continues to provide service, we have used DR-OSGi to

harden it against network volatility. We have used two hardening strategies implemented as regular

OSGi bundles.

Replication. To harden the application for the network volatility that can occur between the hand-

held DNA extractor and the analyzer, we have used a replication strategy. Although DNA sequence

search is very computationally-intensive, usually requiring parallel processing to shorten the search

time, it can also be done sequentially, albeit much slower. With the advance in data storage tech-

nologies, even a hand-held device can comfortably store a substantial database of DNA sequences.

The DNA search bundle is replicated at the hand-held device. We have used the native OSGi repli-

cation facilities to install the search bundle at both sites. When the network is up, the search is

performed using a compute cluster at the search site, and the index of the most recently searched

Declarative Fault Handling Against Partial Failure 70

database sequence is periodically sent to the search bundle at the hand-held site. Once the network

becomes unavailable, the search bundle at the hand-held site continues the search locally, using

an inefficient sequential algorithm; the search is continued from the index of the last searched

sequence at the cluster. If the index is not up-to-date, then some overlap in the search will oc-

cur. Once the connection goes back up, the cluster could then report any matches found while the

network was not available.

Queuing. To harden the application for the network volatility that can occur between the hand-held

DNA extractor and the criminal evidence warehouse, we have used a queuing strategy. The calls to

store a new piece of DNA evidence are queued up at the hand-held site once the network becomes

unavailable. Then the queued calls are resent to the warehouse once the network connection is

restored.

The original R-OSGi version of the application was written without any functionality enabling it

to cope with network volatility–it thus fails immediately once either network link is lost. DR-

OSGi made it possible to harden this unaware application, so that it can meaningfully continue

its operation in the presence of network volatility, thus improving the application’s utility and

safety. This demonstrates how DR-OSGi makes it possible to treat network volatility resiliency

as a separate concern that can be implemented separately and added to an existing application.

Furthermore, the queuing bundle came from the library of standard hardening strategy bundles

that are part of our DR-OSGi distribution, thus requiring no programmer effort. The replication

bundle was custom tailored for this application, but we are currently working on generalizing the

implementation, so that only the synchronization functionality would require custom coding.

3.1.4 Discussion

The hardening approach of DR-OSGi is quite general and can be applied to a variety of distributed

components. Although our reference implementation is dependent on R-OSGi and JBoss AOP,

DR-OSGi relies only on their core features, which are common in other related technologies.

Specifically, we leverage the ability of R-OSGi to convey network failure as application-level ex-

Declarative Fault Handling Against Partial Failure 71

ceptions and to reestablish connections once the network becomes available. JBoss AOP effec-

tively modularizes hardening strategies. Although our approach delivers tangible benefits to the

distributed component programmers, it also has some inherent limitations.

Advantages DR-OSGi makes it possible to handle network volatility consistently throughout a

distributed component application. This means that the most appropriate hardening strategy can

be applied to any subset of application components, and the strategies can be switched through a

simple change in the configuration file. Furthermore, each strategy is modularized inside a separate

OSGi bundle, thus streamlining maintenance and evolution. Finally, modularized strategies can be

easily reused across different distributed component applications.

Limitations Creating a pragmatic solution that can be implemented straightforwardly required

constraining our design in several respects. For example, we chose to maintain a one-to-one corre-

spondence between application bundles and their hardening strategy bundles. That is, a hardening

strategy for all the services in a bundle must be implemented in a single DR-OSGi strategy bundle.

Strategy bundle implementations, of course, can combine any hardening strategies. We have made

this design choice to simplify the deployment and configuration of strategy bundles. Another lim-

itation is inherited from JBoss AOP, which is loaded by the infrastructure irrespective of whether

a hardening strategy will be applied, thus possibly consuming system resources needlessly. This

may present an issue in a resource-scarce environment such as an embedded system. A possible

solution to this inefficiency would be to extend OSGi with a meta-model that would allow the

programmer to systematically extend services.

3.1.5 Related Work

DR-OSGi derives its hardening strategies from a recent survey of disconnected operation tech-

niques by Mikic-Rakic and Medvidovic [97]. These techniques are used by several systems, in-

cluding the Rover toolkit [65], Mobile Extension [27], Odyssey [102], and FarGo-DA [162]. Un-

Declarative Fault Handling Against Partial Failure 72

like these systems, DR-OSGi enables the programmer to harden distributed applications without

having to modify their source code explicitly. By avoiding ad-hoc modification that can be tedious

and error-prone, DR-OSGi not only hardens applications more systematically, but also enables

greater reuse of the hardening strategies across different applications.

Aldrich et al.’s ArchJava [3] extends Java to integrate architectural specifications with the im-

plementation by providing language support for user-defined connectors. Their techniques bears

similarity to DR-OSGi in separating reusable connection logic from the application logic and inte-

grating them together systematically. ArchJava, however, operates at the source code level, using

its language extension to express different connectors. DR-OSGi is a middleware solution that

does not need to modify the source code.

Sadjadi and McKinley’s adaptive CORBA template (ACT) enables CORBA applications to adapt

to unanticipated changes [123]. To do so, ACT employs a generic interceptor, a type of CORBA

portable request interceptor [106] that works around the constraints of replying to intercepted re-

quests or modifying the invoked method’s parameters. Specifically, a generic interceptor forwards

requests to a proxy, a CORBA object that can reply and modify the requests. Similarly to DR-

OSGi, ACT introduces additional functionality to a distributed application without modifying its

code explicitly. Using ACT to harden against network volatility, however, would require that

portable interceptors be available, which may not be the case for many distributed component

infrastructures including R-OSGi.

A number of techniques for making existing systems fault tolerant [58, 115, 139] are related to

our approach. GRAFT [139] automatically specializes middleware for fault-tolerance. It employs

the Component Availability Modeling Language (CAML) to annotate a distributed application’s

model, and then automatically specializes the application’s middleware for domain-specific fault-

tolerant requirements. While GRAFT requires that the programmer express the requested fault-

tolerance functionality at the model level using a domain-specific language, DR-OSGi provides a

simple Java API for implementing hardening strategies as OSGi bundles, which it then manages at

runtime.

Declarative Fault Handling Against Partial Failure 73

Our idea of hardening against network volatility was inspired by security hardening, a system-

atic approach to making a pre-existing program artifact more secure such as Wuyts et al’s recent

work [166]. Our approach hardens distributed components to become more resilient against net-

work volatility.

3.1.6 Conclusions

In this section, we have presented DR-OSGi, a promising approach for systematically hardening

distributed components to cope with network volatility. The reference implementation features

an extensible framework for deploying hardening strategies, with caching, queuing, and replica-

tion used to demonstrate the effectiveness of our approach. As we rely on greater numbers of

network-enabled devices with network volatility remaining a permanent presence, the importance

of hardening distributed components will only increase, motivating the creation of systematic and

flexible hardening approaches as showcased by DR-OSGi.

3.2 A Declarative Approach to Hardening Services Against QoS

Vulnerabilities

The mainstream software paradigm has been transitioning from software-as-a-product (SaaP) to

software-as-a-service (SaaS). SaaS is a computing modality that comprises a collection of services—

encapsulated units of computing functionality accessed by clients through public interfaces. Dis-

tributed service-oriented applications—accessed remotely across the network—are rapidly becom-

ing the preferred building blocks for the majority of modern computing domains. The popularity

of distributed service-oriented applications stems from the general software engineering benefits

of SaaS, including low coupling, strong encapsulation, ease of discovery, and reduced maintenance

costs.

Despite their numerous benefits, distributed services may not provide the requisite levels of relia-

Declarative Fault Handling Against Partial Failure 74

bility and security, particularly when operated in volatile network environments, attacked by hack-

ers, or not properly maintained and managed. To that end, this paper describes a new approach

that can harden distributed service-oriented applications against three major threats to the QoS:

(1) network volatility—services are often accessed through disconnected and limited networks, for

which the service must be properly adapted; (2) security exploits—a distributed service-oriented

application can be exploited by an adversary for nefarious purposes, and must be protected against

all known and future exploits; (3) administrative mismanagement—a distributed service-oriented

application and its clients may be upgraded according to conflicting schedules, thus requiring run-

time adaptation to avoid service protocol mismatches.

To harden distributed service-oriented applications against the important vulnerability classes de-

scribed above, we propose declarative hardening. Specifically, we design and implement a DSL

for expressing hardening policies. DSL combine high expressiveness, conciseness, and simplicity

by providing constructs that are custom tailored for a given domain. In our case, the target domain

is hardening distributed service-oriented applications. A service compiler translates the policies to

a hardening components for a target service infrastructure in place. Finally, a hardening framework

should be able to integrate the generated hardening components with a distributed service-oriented

application, thereby equipping it with the capacity to counteract the specified vulnerabilities. Thus,

this approach harmoniously combines several state-of-the-art technologies to address an important

set of vulnerabilities that plague distributed service-oriented applications.

The uniqueness of the proposed approach lies in the following advantages over the current state

of the art: (1) a declarative approach—we introduce a domain-specific language for describing

both service vulnerabilities and the hardening strategies to eliminate them; (2) a compilation of

declarative hardening specifications—our compiler is capable of generating working code for Open

Service Gateway Initiative (OSGi) service infrastructure; (3) reusable hardening components—

strategies are reusable across multiple applications and domains; (4) separation of concerns—

reliability/security specialists can focus on their respective areas of expertise.

As our experimental platform, we use a well-known distribution middleware system—CXF-DOSGi—

Declarative Fault Handling Against Partial Failure 75

which enable service-oriented computing in Java. We have created a hardening framework which

can harden any remote OSGi application, enabling it to cope with network volatility, security ex-

ploits, and mismanaged API. We provide a new programming language for expressing hardening

policies and strategies, which can also be reused across applications. The programmer describes

hardening policies and strategies. Then, the hardening framework handles all the underlying ma-

chinery required to harden the remote OSGi application.

In our experiments, we have executed a realistic OSGi application to measure efficiency and per-

formance. By comparing the execution of the original and hardened version, we have assessed

their respective ability to complete the execution, the total time taken to arrive to a result, and the

overhead of the hardening functionality. Our results indicate that it is feasible and useful to system-

atically harden existing service oriented applications with the ability to cope with vulnerabilities.

The rest of this section is structured as follows. Section 3.2.1 introduces the concepts and tech-

nologies used in this work. Section 3.2.2 describes our proposed approach, including the proposed

hardening language and hardening framework. Section 3.2.3 evaluates the utility and efficiency of

the proposed approach through a performance benchmark and a case study. Section 3.2.4 discusses

advantages and limitations of this research. Section 3.2.5 compares our approach to the existing

state of the art. Finally, Section 3.2.6 presents future research directions and concluding remarks.

3.2.1 Background

In the following discussion, we first describe service oriented architectures and their distributed

versions. Then, we introduce the three types of vulnerabilities that can affect the QoS of distributed

service-oriented applications and are addressed by our approach.

Service Oriented Architecture

Service-Oriented Architecture (SOA) has been recently employed as a means of providing uniform

access to a variety of computing resources across multiple application domains. In SOA, software

Declarative Fault Handling Against Partial Failure 76

components are provided as services, self-encapsulated units of functionality accessed through a

public interface. The core principles of SOA can be summarized as follows [38]:

• Loose Coupling: Services minimize dependencies and are aware only of each other.

• Abstraction: Services abstract away their underlying implementation details from their

clients.

• Reusability: Services provide reusable functionality.

• Autonomy: Services control their environment and resources to provide consistency and

reliability during the execution.

• Statelessness: Services avoid maintaining any state to facilitate failure recovery and mini-

mize resource consumption.

• Discoverability: Services can be effectively discovered and interpreted through standard

protocols.

• Composability: Services compose effectively regardless of their size and complexity.

This work uses the following service technologies.

OSGi The Open Service Gateway Initiative (OSGi) provides a platform for implementing ser-

vices [107]. It allows any Java class to be used as a service by publishing it as a service bundle.

OSGi manages published bundles, allowing them to use each other’s services. OSGi manages the

lifecycle of a bundle (i.e., moving between install, start, stop, update, and delete stages) and allows

it to be added and removed at runtime.

OSGi is a mature software component platform. It has been widely adopted by multiple industry

and research stakeholders, organized into the OSGi Alliance. OSGi is used in large commercial

projects, including the Spring framework1 and Eclipse2, which use this platform to update and
1http://www.springsource.org/
2http://www.eclipse.org/

http://www.springsource.org/
http://www.eclipse.org/

Declarative Fault Handling Against Partial Failure 77

manage plug-ins. The OSGi standard is currently implemented by several open-source projects,

including Apache Felix3, and Knopflerfish4. Despite its versatility, OSGi was mainly used for

inter-bundle communication within a single host.

OSGi Remote Services Recently, the OSGi alliance released the OSGi R4.2 specification that

describes how remote OSGi services can be discovered and used [107]. The OSGi R4.2 specifi-

cation does not specify how remote OSGi services should be accessed. Instead, the specification

codifies only how remote service interfaces should be discovered and retrieved. Once a remote ser-

vice interface is obtained, it is up to the implementor of this specification how interface methods

are to be invoked at a remote OSGi framework and how their results are to be transferred back to

the caller. The first reference implementation of R4.2 is Apache CXF-DOSGi5, which implements

the specification as Web services, using SOAP over HTTP for transmission and WSDL contracts

for exposing services. In addition, RBI-OSGi [84] is the first non-RPC implementation of the

OSGi R4.2 specification. RBI-OSGi does not require any changes to remote service interfaces,

which are discovered and bound using a standard OSGi registry. Furthermore, R-OSGi [120] that

was introduced prior to the standard OSGi remote services enables proxy-based distribution for

services, providing proxies as OSGi bundles.

QoS Vulnerabilities

A distributed service-oriented application becomes vulnerable to several threats. Specifically, the

network connecting remote services may be subject to volatility—temporary network outages.

Rendering a service remotely accessible can make it vulnerable to security exploits—although

security is a vast research area, here we focus only on the security issues pertaining to distribution.

A recent study has determined that out of the known 39 OSGi vulnerabilities, as many as 20

vulnerabilities (e.g., exposing internal representation, flaws in parameter validation, and invalid

3http://felix.apache.org/
4http://www.knopflerfish.org/
5http://cxf.apache.org/distributed-osgi.html

http://felix.apache.org/
http://www.knopflerfish.org/
http://cxf.apache.org/distributed-osgi.html

Declarative Fault Handling Against Partial Failure 78

work flow) [110] are specific to accessing services remotely. Finally, when services are remote to

each other, they can evolve independently, thus causing version inconsistency problems.

Network Volatility A remote service can be accessed through various networks, which are sub-

ject to network volatility due to various conditions such as random channel errors, node mobility,

and congestion. For example, WiFi networks transmit radio signals, which are volatile, often

making it impossible to reach a 100% reliability. Another condition causing network volatility is

congestion, which occurs when radio channels interfere with each other or multiple data is trans-

mitted concurrently over the same radio link. When the underlying network fails, a distributed

service-oriented application will typically signal an error to the end user, who can then decide on

how to proceed. The user, for example, could choose to check the network connection and restart

the application. The purpose of hardening strategies is to enable a distributed service-oriented

application to continue executing when the underlying network becomes unavailable. A recent

survey [97] classifies disconnected operation techniques as well as how they can be applied to

improve the overall system dependability. Specifically, the most common disconnected operations

are: caching—that employs caching techniques to store a subset of remote data locally, so that it

could be retrieved and used by remote service requests when the network becomes unavailable;

hoarding—that prefetches all the remote data needed for successfully completing any remote ser-

vice invocation; queuing—that intercepts and records remote requests made to an unreachable

remote service, and the recorded requests are then replayed when the service becomes available;

and replication—that maintains a local copy of a remote component, so that when the remote

component becomes unreachable, the local copy is used.

Security Exploits The openness engendered by SaaS is a double-edged sword. On the one hand,

any client can access a distributed service-oriented application through its public interfaces. On the

other hand, unless a proper authentication scheme is put in place, the distributed service-oriented

application can become exposed to malicious clients. According to the literature [110], distributed

service-oriented applications are particularly vulnerable to the following threats:

Declarative Fault Handling Against Partial Failure 79

• Software Defects can cause faults and failures in distributed service-oriented applications.

For example, a logic bug may allow clients access certain methods without authentication

(i.e., bypassing the invocation of authenticate()). Such bugs expose systems to se-

curity exploits that can render services unavailable. Eventually, the bugs should be fixed

by modifying the source code, but a hardening strategy can also be developed to handle

such software defects. For example, recently proposed approaches accomplish that through

runtime verification which monitor systems and synthesize corrective functionality [19].

• Improper Parameter Validation exposes service methods to malicious clients that can pass

illegal parameters, thus leading to undesirable outcomes. For example, accessing a parameter

exceeding the available memory can render the service unavailable.

• Invalid Access has two types of vulnerability patterns—exposing internal representation and

accessing from malicious clients. Exposed internal representation enables to execute code

that should be hidden, thereby triggering unexpected system behavior or enabling malicious

clients to access sensitive data. In addition, remote services should be protected from ma-

licious clients. To deal with such invalid accesses, authorization and access control are

commonly used techniques.

Service Mismanagement Service-oriented applications rely on loosely-coupled remote inter-

faces, each of which could evolve independently. When the vendor releases a new version of the

application, the users can update different services at different times. As a result, the device can try

to communicate with the old service interface. If the service interface has changed, the requested

service methods may no longer be available.

Domain-Specific Language and Security Policies

A domain-specific language (DSL) is a programming language designed to solve problems in a

particular domain. Compared to general-purpose languages (e.g., C, C++, Java, etc.) DSLs are

custom tailored for the domain at hand, providing expressivenesses and ease of use advantages.

Declarative Fault Handling Against Partial Failure 80

DSL encapsulates its domain expertise, making it easier for non-expert programmers to craft ef-

fective solutions for problems in the target domain.

In security research, domain-specific policy languages have been proposed to describe authoriza-

tion and access control [28, 67]. These languages address the poor fit of general purpose languages

to describe all the numerous low-level security issues that occur at the systems level. Equipped with

such a DSL, programmers can easily express sophisticated security configurations.

3.2.2 Declarative Hardening

Next, we first outline our proposed solution and then describe our hardening language and harden-

ing framework, respectively.

Solution Overview

Vulnerability

Description
HPL

Compiler

Hardening

Framework

Hardening

Strategy

Hardening
Expert

Hardening Policy

Core Strategy
Component

Library

Custom Hardening

Components

Distributed

SOA

Service

Service Service

Service

Figure 3.6: Approach overview.

To harden distributed service-oriented applications against the important vulnerability classes de-

scribed above, we propose declarative hardening. Figure 3.6 depicts how our approach leverages

the expressive power of DSLs, flexibility of the service compilation, and the adaptivity of the

hardening framework. Specifically, we design and implement a DSL for expressing hardening

policies. DSL combine high expressiveness, conciseness, and simplicity by providing constructs

Declarative Fault Handling Against Partial Failure 81

that are custom tailored for a given domain. In our case, the target domain is hardening distributed

service-oriented applications. A service compiler translates the policies to a hardening compo-

nents for a target service infrastructure in place. In our case, the target service infrastructure is the

OSGi framework. Finally, our hardening framework seamlessly integrate the generated hardening

components with a distributed service-oriented application, thereby equipping it with the capac-

ity to counteract the specified vulnerabilities. Thus, our approach harmoniously combines several

state-of-the-art technologies to elegantly address an important set of vulnerabilities that plague

distributed service-oriented applications.

Hardening Policy Language—HPL

One of the key novelties of our approach is using a DSL for describing vulnerabilities and their

hardening strategies. We call our language Hardening Policy Language (HPL). In designing HPL,

we aim at combining both expressiveness and ease of use. The specific design goals include:

• Expressiveness—a reliability/security expert should be able to express any kind of vulnera-

bility easily, with the resulting code being easy to understand, maintain, and evolve.

• Extensibility—it should be possible to integrate existing security and reliability policies with

HPL policies.

• Platform Independence—HPL policies should be platform independent, with the same pol-

icy compilable to any service platform.

Figure 3.7 shows how the HPL is constructed. To provide fault-tolerance and security defense to

distributed service-oriented applications, what the programmer should do is only to write a policy

script in HPL. First of all, hardening policies consist of five types of policy, including Service

Configuration, Network Hardening, Security Hardening, Service API Hardening, and Hardening

Strategy. Each policy mainly consists of a set of conditions which describes specific vulnerable

situations and applicable hardening strategies. In the following sections, we detail how our HPL

can effectively express remote services, vulnerabilities and hardening strategies.

Declarative Fault Handling Against Partial Failure 82

Policy (ServiceConfig | NetworkHardening | SecurityHardening
| ServiceAPIHardening | HardeningStrategy)

Begin
PolicyName => [name] ;
ServiceName => [name] ;
Config => ([config_types] is [type])+ ;

Condition => //Network Volatility
(NetworkEvent([event]))

When (Execution | Call) [From | To] [flow])+ ;
Config => ([config_types] is [type])+ ;
Then => ([strategy]) ;

Condition => //Security Exploits
((Execution | NotExecution | Call | NotCall)

[flow] [From | To] [url])+ ;
((ParamChecking [flow] [From | To] [url]

Using Strategy [strategy])+ ;
(Access From [url])+ ;
Then => ([strategy]) ;

Condition => //Mismanaged Service Interface
(Exception([exception])

When (Execution | Call) ([flow]))+ ;
((Execution | Call) [flow] [From|To] [url])+ ;
Then => ([strategy]) ;

End

Figure 3.7: Language constructs.

An HPL policy can then be compiled to a specific service platform. For example, if the platform

is Java-based, our HPL compiler generates hardening Java components that implement interface

HardeningEventListener:

public interface HardeningEventListener {

public Object eventNotified(HardeningEvent event);

}

The interface is implemented by our core strategy component library (See Figure 3.6), which

supplies OSGi-specific hardening components. Reliability/security experts also is able to extend

the library with new hardening components that handle newly discovered vulnerabilities. The

method eventNotified takes HardeningEvent which contains invocation information, including

a service object, method information, URL, vulnerability type, exception, etc.

Declarative Fault Handling Against Partial Failure 83

Hardening Services with HPL

Service Configurations

Figure 3.8 shows an HPL policy that can configure different operational environments. In particu-

lar, the programmer can specify device types (e.g., mobile, server, etc), network types (e.g., WiFi,

3G, LAN, etc), network conditions (e.g., delay, loss, and jitter), service types (e.g., conversa-

tional, streaming, interactive, background), and a required QoS-level (e.g., best-effort, guaranteed,

etc). Through configuration settings, the programmer can detail characteristics of the remote ser-

vice, thereby making it possible to provide different hardening scenarios according to dynamically

changing environment.

Policy ServiceConfig
Begin
PolicyName => [policy_name] ;
ServiceName => [service_name] ;
Config =>
DeviceType is [mobile | server | ...]
NetworkType is [WiFi | 3G | LAN | ...]
NetworkCondition.{delay,loss,jitter}
is {([high|med|low])+}

ServiceType is
[conversational|streaming|interactive|background]

QoS is [best-effort | guaranteed | ...] ;
End

Figure 3.8: A script describing service configurations.

Network Volatility

Figure 3.9 presents an HPL hardening policy that can make a service resilient network volatility.

The policy is identified by its name and the NetworkHardening type. The same policy can be

applied to multiple services by using different service identifiers. The policy contains vulnerability

conditions and a hardening strategy description. The NetworkEvent keyword describes system

network events such as disconnection, reconnection, packets loss, and normal operation. The

optional When keyword monitors all the exceptions or events related to a specific method. The

programmer specifies the conditions using the Execution and Call keywords. These keywords

Declarative Fault Handling Against Partial Failure 84

specify the execution locations to be monitored. The HPL compiler generates aspects to intercept

application-level exceptions and system events, raised in response to experiencing volatility.

An HPL policy can be configured for different operational environments by specifying the dis-

tributed service-oriented application’s device types, network links (i.e., bandwidth/latency), and

required QoS. A repository of readily-available hardening components for network volatility will

be reusable out-of-the-box and will also serve as building blocks for custom strategies. For network

volatility, the hardening components will be based on widely used disconnected operations.

Policy NetworkHardening
Begin
PolicyName => [policy_name];
ServiceName => [service_name];
Condition => NetworkEvent([event])
When (Execution | Call) [From | To] [flow])+ ;
Config =>
DeviceType is [mobile | server | ...]
NetworkType is [WiFi | 3G | LAN | ...]
NetworkCondition.{delay, loss, jitter} is
{([high | med | low])+}

ServiceType is
[conversational | streaming | interactive | background]

QoS is [best-effort | guaranteed | ...] ;
Then => Apply Strategy([strategy_name]);

End

Figure 3.9: Hardening a service against network volatility.

Security Exploits

Figure 3.10 depicts an HPL policy for hardening a distributed service-oriented application against

security exploits. In particular, we aim at application level security exploits of distributed service-

oriented applications. Defenses against low-level attacks, such as sniffing, spoofing, etc., have

been thoroughly integrated with modern network stacks. To detect software defects, we adopt

the notion of a legitimate program control flow—allowable sequences of service method calls—

expressed through the Execution, NotExecution, Call, NotCall keywords. These key-

words parameterize our HPL compiler to generate runtime monitors that can detect and counteract

exploits.

Declarative Fault Handling Against Partial Failure 85

To defend a distributed service-oriented application against malicious clients, HPL features the

Access, Call, and Execution keywords. By controlling the control flow of a service, our

approach prevents malicious clients from exploiting the openness espoused by SaaS architectures.

After a service’s public interface is published, traditional service platforms exercise little control

over how clients use this interface. Our approach adds auditing capabilities to the execution of a

service by enforcing its control flow and access control.

To guard the execution of a service against improper service method parameters, HPL features the

ParamChecking keyword that can be used to generate parameter inspection components. Pa-

rameters can be verified to hold certain values or not to surpass certain allocated memory thresh-

olds.

In terms of the specific hardening strategies, suspicious clients can be handled by expressing in

HPL a custom written component that will be invoked to counteract the detected exploits. For

example, the client’s connection can be terminated, a security enhancer strategy can be installed to

prevent future exploits, or a service can be registered to be resuscitated if the detected penetration

does end up bringing it down.

Security enhancers strategies encapsulate well-known security mechanisms such as security pro-

tocols, cryptography, authentication, and authorization schemes. Because these schemes incur a

performance cost, one could choose to activate them only if necessary. For example, if unautho-

rized use of a service is detected, the client’s connection will be terminated and an access control

strategy can be deployed to control which clients can use the service in the future.

Finally, service resuscitators attempt to return a service to a clean state before or after encountering

a fault [138]. Among the strategies that can be useful are micro-restart [16] and checkpoint-restart

[73]. Upon detecting a potentially illegal parameter in the example above, a restart strategy can be

installed to restart the service if the illegal parameter does bring down the service.

Declarative Fault Handling Against Partial Failure 86

Policy SecurityHardening
Begin
PolicyName => [policy_name];
ServiceName => [service_name];
Condition =>
((Execution | NotExecution) ([flow]) From [url])+;
Then => Apply Strategy([strategy_name]);

Condition =>
((Call | NotCall) ([flow]) To [url])+;
Then => Apply Strategy([strategy_name]);

Condition =>
ParamChecking([flow]) Using Strategy([strategy_name]);
Then => Apply Strategy([strategy_name]);

Condition =>
Access (From | To) [url]+ ;
Then => Apply Strategy([strategy_name]);

End

Figure 3.10: Hardening a service against security vulnerabilities.

Service Mismanagement

Figure 3.11 shows an HPL policy to harden a distributed service-oriented application against being

mismanaged during upgrades. The Exception keyword adds monitoring capabilities to invoking

a service through an obsolete public interface. In response to detecting such version mismatch, a

hardening strategy can automatically generate a service adapter, initiate a dynamic upgrade, or

schedule an upgrade at a later point. The Execution or Call keywords provide fine-grained

capabilities in monitoring for service mismanagement (e.g., at the method or client location levels).

The problem of mismanaged service interface in distributed service-oriented applications is well-

known [12]. Our approach explores how this vulnerability can be handled systematically. Handling

this problem is closely related to managing API evolution, a highly-active area of recent research.

Recent approaches include explicit documentation, automatic inference and refactorings, compati-

bility layers, etc. These approaches provides valuable insights for the design of hardening strategies

to handle mismanaged service interfaces.

Declarative Fault Handling Against Partial Failure 87

Policy ServiceAPIHardening
Begin
PolicyName => [policy_name];
ServiceName => [service_name];
Condition =>
Exception([exception]
When (Execution|Call) ([flow] (From|To) [url]))+;

Then => Apply Strategy([strategy_name);
Condition =>
((Execution | Call) [flow] (From | To) [url])+ ;
Then => Apply Strategy([strategy_name);

End

Figure 3.11: Hardening a service against mismanaged service interfaces.

Hardening Strategy

Fig 3.12 shows an HPL script that expresses a hardening strategy. To that end, HPL features

several keywords that define basic execution directives—Execute, Reject, Throw, Stop,

Delegate, Replace, etc. The directives constitute atomic operational units and are expected

to be provided as part of the core component library. Using the directives, the programmer can

implement service-specific strategies or extend the existing hardening strategies. A strategy script

starts with the HardeningStrategy keyword, followed by a policy name and service identifier.

Then, the Implements block describes strategy implementations that consist of the predefined

execution directives and custom components that have to be custom implemented for the service

platform in place. Our HPL compiler translates HPL scripts to components and distributed aspects

that is integrated with distributed service-oriented applications.

Dynamically Composable Hardening Framework

In the following section, we discuss the system architecture of the hardening framework. The key

objective of this work is to explore how policies can be interpreted and instantiated in the hardening

framework and applied to an existing distributed service-oriented application that may have been

written without fault-tolerance capabilities in mind.

Declarative Fault Handling Against Partial Failure 88

Policy HardeningStrategy
Begin
PolicyName => [policy_name];
ServiceName => [service_name];

Implements {
Method public Object eventNotified(HardeningEvent event)
{
@Execute(event);
@Reject(event);
@Throw(Exception());
... //Implement custom hardening strategies

} ;
}

End

Figure 3.12: Describing a hardening strategy.

The purpose of the hardening framework is to harden a distributed service-oriented application

with resiliency to cope with vulnerabilities.

In designing the hardening framework, we pursue the following goals:

1. Transparency—any hardening strategy and the hardening framework should not affect the

core functionality of the underlying OSGi framework and applications.

2. Flexibility—the hardening framework should be capable of adding or removing policies at

any time without having to stop the application.

3. Efficiency—the hardening framework should not affect significantly the performance of the

OSGi application .

Next, we discuss the system architecture of the hardening framework. Modern state-of-the-art

middleware infrastructures reports various low-level symptoms of something going wrong in the

execution of remote services (e.g., link failure, node mobility, non-existing service methods, etc.)

by means of application-level exceptions. The hardening framework intercepts such application-

level exceptions as well as the events signaling some changes in low-level service execution (e.g.,

a successful network reconnection). Then, the hardening framework handles application-level

Declarative Fault Handling Against Partial Failure 89

exceptions by triggering a hardening strategy.

OSGi

Distribution Middleware

Distributed Service Application

Hardening
Policy 1

Hardening
Policy 2

Hardening
Policy N

4. Runtime
Trace

3. Hardening-Policy Status Notification

Trace

Analyzer

6
. H

a
rd

en
in

g

O
p

er
a

ti
o

n
s

Runtime Monitor

Policy

Reader

Hardening Framework

Event

Handler

Hardening-Policy Manager

2. Policy
Registration, Removal,

and Modification

5
. E

ve
n

t
N

o
ti

fi
ca

ti
o

n

1
. P

o
lic

y
In

st
a

n
ti

a
ti

o
n

Figure 3.13: The hardening framework.

Figure 3.13 shows how the hardening framework was integrated with the OSGi framework and ex-

isting services. The hardening framework periodically reads hardening policies from the specified

policy repository. Then, our HPL compiler translates hardening policies and strategy descriptions

to XML documents and runtime binaries (e.g., Java bytecode). The hardening policy manager

instantiates vulnerability conditions, so that the hardening framework can detect vulnerabilities by

comparing vulnerability conditions with runtime traces. A hardening strategy is a standard OSGi

service that implements HardeningEventListener interface. Then, the dynamically gener-

ated or pre-deployed hardening strategies are registered to the OSGi framework, and the hardening

policy manager keeps track of their statuses (e.g., registration, unregistration, update, etc) for dy-

namic loading and unloading.

In addition, according to the standard OSGi specification, ServiceHook enables other services

to intercept OSGi framework events. Thus, when a distributed service-oriented application starts

its remote service, the hardening framework creates a runtime monitor which intercepts remote ser-

vice invocations and catches exceptions and events. Such traces are analyzed by the trace analyzer

Declarative Fault Handling Against Partial Failure 90

and forwarded to the registered hardening strategies to counteract the found vulnerabilities.

3.2.3 Evaluation

We evaluated the effectiveness and performance of our hardening framework through a micro

benchmark and a larger case study.

Micro Benchmark

For this experiment, we have used Lucene, a widely-used Java search engine library distributed

as an OSGi bundle. Among the capabilities provided by Lucene are indexing files and retrieving

indexes of a given search word. We used Lucene to implement a dictionary service that given a

word can return its definition, synonyms and neighboring words.

All the experiments were conducted on the client machine running 3.0 GHz Intel Dual-Core CPU,

2 GB RAM, Windows XP, JVM 1.6.0 13 (build 1.6.0 13-b03), and the server machine running

1.8 GHz Intel Dual-Core CPU, 2.5 GB RAM, Windows 7, JVM 1.6.0 16 (build 1.6.0 16-b01,

connected via a local area network (LAN) with a 100Mbps bandwidth, and 1ms latency.

In this benchmark, we measured the performance overhead for CXF-DOSGi middleware platform.

Specifically, we examined how the service can be effectively executed, in terms of the total execu-

tion time when our declarative service hardening module is introduced. Each benchmark method

calls three services in sequence, repeating each service call 100 times, and then reporting the total

execution time. The results show that as the number of policies grows, 30 hardening policies ex-

perience a performance overhead of about 10%, which shows that our approach is practical. If a

service-oriented application can afford to run 10% slower, it can benefit from our approach.

Each benchmark method calls three services in sequence, repeating each service call 100 times,

and then reporting the total execution time. Figure 3.14 shows the averaged performance for each

service according to the number of policies being introduced. As the number of policies grows,

Declarative Fault Handling Against Partial Failure 91

170

175

180

185

190

195

200

205

0 5 10 15 20 25 30To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

The Number of Hardening Policies

Micro Benchmark

2.22%

5.65% 6.22%
8.31% 8.84% 9.84%

Figure 3.14: Total execution time.

we could observe about 10 percent performance overhead for 30 hardening policies. Such a low

overhead shows that our approach is practical and can be applied to the majority of distributed

service-oriented applications.

Case Study: OneBusAway

OneBusAway6 is a bus information system that enables passengers of the local transportation sys-

tem to track the location and movement of commuter buses over the Internet and using mobile

devices [42]. OneBusAway system provides several APIs for different devices, including REST

APIs for web applications, iPhone APIs, and SMS APIs.

Describing OneBusAway Configurations

Figure 3.15 shows how a OneBusAway client service can be configured. The service configurations

are used for both the server and clients to determine an appropriate hardening strategy. In this case

study, since the OneBusAway service aims at providing bus schedule in real time at any location,

we assume that a client is a mobile device using a 3G network. Thus, network conditions such

as delay, loss, and jitters are relatively high. The service type is interactive and the required

6http://www.onebusaway.org/

http://www.onebusaway.org/

Declarative Fault Handling Against Partial Failure 92

Policy ServiceConfig
Begin
PolicyName => onebusaway_configs;
ServiceName => OneBusAway;
Config =>
DeviceType is mobile &&
NetworkCondition.{dealy, loss, jitter} is {high, high, high} &&
NetworkType is 3G &&
ServiceType is interactive &&
QoS is best-effort ;

End

Figure 3.15: An HPL policy describing OneBusAway configurations.

QoS level is best-effort. Of course, the service configuration can be differently set according

to changes of network conditions or types of a client device.

Hardening OneBusAway Against Network Volatility

Policy NetworkHardening
Begin
PolicyName => onebusaway_net_hardening;
ServiceName => OneBusAway;
Condition =>
NetworkEvent(Disconnection && Normal)
When Execution(List<StopBean> StopsForLocation(*));
Config =>
QoS is best-effort &&
DeviceType is mobile &&
NetworkType is 3G &&
ServiceType is interactive &&
NetworkCondition.{delay, loss, jitter}
is {high, high, high} ;

Then => Apply Strategy(Caching);
End

Figure 3.16: An HPL policy against network volatility.

Figure 3.16 depicts an HPL policy to harden the OneBusAway service against network volatility.

We harden the method List<StopBean> StopsForLocation(*), which immediately returns bus

stops’ information for given location. When network events are raised from a distribution middle-

ware system, the Caching strategy will be applied. The caching strategy stores all remote method

Declarative Fault Handling Against Partial Failure 93

invocation requests and results when the network is operating normally. Then, the strategy re-

trieves results from the cache. Thus, NetworkEvent takes two types of events—Disconnection

and Normal.

Hardening OneBusAway Against Security Vulnerabilities

Figure 3.17 shows an HPL policy to harden the OneBusAway service against security exploits.

This policy script describes four types of security vulnerabilities. First, to hide the remote method

CurrentTime(), the remote service rejects all requests. Typically, removing a method from

public service interface requires changing the interface’s source code. Our hardening policy, how-

ever, makes it possible to hide service methods as needed. This is accomplished by declining all

the client calls to the removed methods.

Policy SecurityHardening
Begin
PolicyName => onebusaway_sec_hardening;
ServiceName => OneBusAway;
Condition =>
Execution(TimeBean CurrentTime()) ;
Then => Apply Strategy(Reject);

Condition =>
ParamChecking(List<StopBean> StopsForLocation(*))
Using Strategy(Checker);

Then => Apply Strategy(Reject);
Condition =>
NotExecution(void authenticate(*)) && Execution(*);
Then => Apply Strategy(Reject);

Condition =>
Access From [malicious_url];
Then => Apply Strategy(Reject);

End

Figure 3.17: An HPL policy against security exploits.

Second vulnerability is passing improper parameters to the method List<StopBean> StopsFor

Location(*). Since this method does not validate location data, it throws NullPointerException

in case of that location data (i.e., longitude and latitude) are out of range. To inspect parameters,

we use the Checker strategy.

Declarative Fault Handling Against Partial Failure 94

The third vulnerability is a logic flow that can allow malicious clients to bypass authentication.

For this experiment, we created a new method void authenticate(*) for checking clients’ cre-

dentials. Thus, before calling any method in OneBusAway, clients should first set their user name

that is subsequently used for authenticating all service method invocations from that client. If the

method void authenticate(*) is not invoked, all requests are denied. The last vulnerability sus-

picious clients potentially misusing a service. To counter this vulnerability, the Access keyword

monitors connected clients and can reject all requests from any specified URL.

Hardening OneBusAway Against Mismanaged Service

Policy ServiceAPIHardening
Begin
PolicyName => onebusaway_API_hardening;
ServiceName => OneBusAway;
Condition =>
Exception(NoSuchMethodException)
When Execution(List<StopBean> StopsForLocation(*)) ;

Then => Apply Strategy(Adapter);
End

Figure 3.18: An HPL policy against the mismanaged service.

Figure 3.18 shows an HPL policy to harden the OneBusAway service against mismanaged ser-

vice. For this experiment, we added an integer argument for logging client’s ID to the method

List<StopBean> StopsForLocation(). Thus, when clients request List<StopBean> StopsFor

Location() without specifying their ID, the remote service will throw NoSuchMethodException.

The Adapter strategy supplies the missed parameter and then invokes the updated method.

Describing a Hardening Strategy

Figure 3.19 presents an HPL policy that creates a Caching strategy to be used for network volatility

hardening. In this example, we simply store execution results in a HashTable. This caching

strategy stores all results during normal operations and then retrieves their results when the network

becomes unavailable.

Declarative Fault Handling Against Partial Failure 95

Policy HardeningStrategy
Begin
PolicyName => onebusaway_caching_strategy;

Implements {
Method public Object eventNotified(HardeningEvent event) {
if(@Caching == null) {
@CreateStorage
(@Caching, HashTable<HardeningEvent, Object>);

}
if(event.TYPE == NETWORK_NORMAL) {
Object result = @Execute(event);
@Store(@Caching, event, result);

} else if(event.TYPE == NETWORK_DISCONNECTION) {
Object result = @Retrieve(event);
if(result != null) { return result; }
else { @Throw(Exception("Network Disconnection"));}

}
} ;

}
End

Figure 3.19: Describing a caching hardening strategy.

3.2.4 Discussion

The approach described has specific engineering objectives, creating pragmatic new technologies

that can make distributed service-oriented applications more available, reliable, and secure. One

important question concerns whether availability, reliability, and security can be effectively rea-

soned about and implemented as orthogonal cross-cutting concerns, separate from the core func-

tionality of a given distributed service-oriented application. The scientific consensus has been that

it is impossible to achieve this objective in full generality. However, these concerns can be quite

effectively separated in certain domains and execution environments.

Being specifically tailored to address the problems of a given domain, DSLs can be powerful and

effective tools. However, learning a new DSL takes an additional effort that may negatively affect

programmer productivity. Although we designed HPL to be easy to learn and use, programmers

tend to differ in their ability to learn new languages. As a result, introducing HPL in the program-

mer’s tool chain may initially inconvenience some programmers.

Declarative Fault Handling Against Partial Failure 96

Finally, to yield its intended benefits, our approach relies on the existence of state-of-the art adap-

tation facilities of the underlying middelware infrastructure. Although OSGi has all the facilities

required to support our approach, other middleware platforms may lack some advanced features

such as deploying and undeploying services at runtime. In future work, we plan to explore how

generalizable our approach is.

3.2.5 Related Work

Although modern society intrinsically depends on software systems, all computing systems are

prone to unreliability. Complex distributed systems often fail to deliver the expected quality of

service (QoS), when their constituent components fail. This lack of reliability negatively affect

the overall system’s trustworthiness. Indeed, defects in deployed software systems cost the US

economy billions of dollars annually [128]

Our approach is related to several research domains, which include automated fault tolerance, secu-

rity hardening, adaptive and fault-tolerant middleware, and aspect oriented software construction.

This work synthesizes and enhances some existing common hardening strategies. In the follow-

ing discussion, we outline the main research domains from which this work draws inspiration and

borrows well-established and verified solutions.

DSL for Reliability and Security

Much research explored DSLs to solve reliability problems. In the field of security, policy-based

approach has been widely explored in the last decade. Among recently introduced policy languages

are including Ponder [28] and Rei [67]. Ponder defines authorization and security management

policies. Because policies are separated from a system, it can adapt to changing requirements

by disabling or replacing policies without restarting. Rei can be used to define different kinds of

policies, including security, privacy, management, and conversation. These policy languages have

inspired the design of HPL. However, HPL focuses on application-level security and also aims at

Declarative Fault Handling Against Partial Failure 97

availability and reliability.

GRAFT [139] automatically specializes middleware for fault-tolerance. It employs Component

Availability Modeling Language (CAML) to annotate a distributed application’s model, and then

automatically specializes the application’s middleware for domain-specific fault-tolerant require-

ments. GRAFT also uses a DSL to express the requested fault-tolerance functionality. Although

similar to our approach in terms of adopting domain-specific approach, GRAFT only copes with

reliability problems. On the other hand, our approach counteracts availability and security, as well

as reliability.

Business Process Execution Language (BPEL) is a standard language that defines business pro-

cesses for Web services. A BPEL program can, for example, express that a Web service be com-

posed through a business process involving some existing Web services. To handle failures in

BPEL processes, various monitoring techniques have been proposed [53, 10, 101, 11]. Our ap-

proach shares the same goal with these techniques, but we strive to achieve greater transparency in

detecting anomalies and flexibility in deploying solution components. Unlike the prior state of the

art, our approach does not require any modification to the underlying middleware infrastructure

(e.g., Web service runtime or the BPEL execution engine). Our approach also deploys special-

purpose components to counter the detected vulnerabilities. Furthermore, our approach is flexible

and dynamic: special failure-handling components can be deployed at runtime without having to

interrupt the execution.

Some of recent research has focused on providing failure handling mechanisms at runtime by us-

ing the Aspect-Oriented Programming (AOP) technique, which enables inserting failure handling

modules into an unmodified BPEL. However, whenever weaving occurs at deployment time [10],

new failure types cannot be handled dynamically. Although reference [101, 11] presents a runtime

failure handling mechanism, it can only handle restricted failure types (e.g., service failure) be-

cause they were built on top of the existing BPEL specification. As compared to these approaches,

our framework includes both a dynamically composable failure handling language and its execu-

tion runtime system. Our approach thus equips programmers with the ability to cope with various

Declarative Fault Handling Against Partial Failure 98

service QoS vulnerabilities by simply describing a new policy script and dynamically instantiating

the required hardening strategies. Finally, most BPEL-based approaches have focused on handling

failures at a service provider. However, our approach enables failure handling at both the server

and client parts of an service-based application. Thus, whenever a service provider cannot be mod-

ified, the service can still be hardened by deploying our framework only at the service consumer

side.

Fault-Tolerant Middleware

A number of techniques for making existing systems fault tolerant [58, 115, 82] are related to our

approach. JReplica [58] expresses via AOP how adaptable fault tolerance can be added through

replication. Reference [115] describes how fault tolerance can be added to CORBA components

by automatically instantiating distributed replicated components. DR-OSGi [82] is a component

framework to harden distributed service-oriented applications against network volatility. DR-OSGi

avoids modifying source code explicitly and enables the reuse of disconnected operations across

different applications. Arora and Kulkarni [7] have shown that fault-tolerant systems feature two

types of components that they called detectors and correctors. They have argued that enhancing

a fault-tolerant system with a set of fault-tolerant components will lead to a fault-tolerant system.

They have also suggested that this division can serve as a basis for designing component-based

fault tolerant systems.

Our approach based on above techniques enables the programmer to harden distributed service-

oriented applications without having to modify their source code explicitly. By avoiding ad-hoc

modification that can be tedious and error-prone, our approach not only hardens distributed service-

oriented applications more systematically, but also enables greater reuse of the hardening strategies

across different distributed service-oriented applications.

Declarative Fault Handling Against Partial Failure 99

Security as a Separate Concern

Our approach treats security as a separate concern. A popular technology for modularizing cross-

cutting concerns is AOP [71], which has been successfully used in prior systems for introducing

security-related functionality [159]. In addition, several special security libraries and frameworks

are AOP-based, including Java Security Aspect Library (JSAL) [21], Security Annotation Frame-

work [124], and Spring Security [135]. What makes AOP a promising technology for implement-

ing our approach is its ability to weave in concerns at runtime, without restarting the application.

This runtime adaption ability aligns well with the dynamic nature of the OSGi infrastructure. AOP

is not the only approach for encapsulating security functionality. A middleware-based approach

such as CORBA Security Service [105] has been shown successful for modularizing security func-

tionality, including authentication, authorization, confidentiality, integrity, and auditing.

3.2.6 Conclusions

In this section, we have introduced Declaative Hardening, a promising approach for systemati-

cally hardening service applications to cope with network volatility, security exploits, and service

mismanagement. Our HPL language is an expressive a powerful abstraction for the programmer

to describe various hardening policies. The HPL compiler translates policy scripts to hardening

components, which are applied to distributed service-oriented applications at runtime. The micro

benchmark and case study showed effectiveness of our approach. As we rely on greater numbers

of network-enabled devices with network volatility, security exploits, and service mismanagement

remain a permanent presence. Declarative hardening explores how these vulnerabilities can be

handled declaratively, providing a systematic and reusable solution.

Chapter 4

Enabling Cloud-Based Execution via Cloud

Refactoring

One of the foundations of cloud computing is Software-as-a-Service (SaaS), a computing paradigm

in which clients access a piece of remote, cloud-hosted functionality through a public interface. To

take advantage of cloud-based services, centralized software applications must be re-engineered,

so that a portion of their functionality is hosted in the cloud. One may want to replace an exist-

ing application functionality with an equivalent cloud-based service for a variety of reasons, both

business and technical. Replacing a locally implemented functionality with a remotely maintained

service reduces the maintenance burden. A service provider can more effectively improve quality

and reduce costs by leveraging the economies of scale, when the same service is used by multiple

clients. A service may have access to computing resources that are superior to the resources of a

local machine. Services often conglomerate other services, thus offering additional benefits. For

example, if a service persists user data, it is likely to offer backup and restoration facilities not

common outside of large server infrastructures.

Using cloud-based services has become a common avenue for leveraging remote computing re-

sources, with the benefits that include reduced costs, increased automation, greater flexibility, and

enhanced mobility [15]. Despite all the benefits of leveraging cloud-based resources, transition-

ing a centralized application to effectively use remote services requires extensive changes to the

application’s source code. In addition, the possibility of partial failure requires that proper fault

handling functionality be added to any application that invokes services remotely. As a result,

programmers manually transition applications to use cloud-based services, changing code in dif-

ficult, costly, and error-prone ways. Therefore, there is great potential benefit in automating these

100

Cloud Refactoring 101

changes and making the automation available to the software engineering community.

A popular technique for automating common program transformations is called a refactoring.

Defined generally, a refactoring is a semantics preserving program transformation performed under

programmer control [45]. In other words, refactoring is automated: a programmer determines

if a refactoring should be performed and then engages a refactoring engine that transforms the

code automatically. In this chapter, we advocate the vision of using refactoring as a means of

facilitating the transitioning to cloud-based services. We argue that transitioning an application to

take advantage of cloud-based services preserves the application’s semantics in the sense that the

overall functionality does not change. Executing some functionality in the cloud does not change

the semantics from the end user’s perspective.

We present a set of refactoring techniques that facilitate the process of transforming centralized

applications to use cloud-based services. These techniques automate the program transformations

required to (1) render portions of functionality of a centralized applications as cloud-based ser-

vices and re-target the application to access the services remotely; (2) handle failures that can be

raised in the process of invoking a cloud-based service; and (3) switch a service client to use an al-

ternate, equivalent cloud-based service. These refactoring techniques—collectively named Cloud

Refactoring—have been concretely implemented in the context of the Eclipse IDE and added to its

refactoring engine.

To validate Cloud Refactoring, we applied its constituent refactoring techniques to transform two

centralized, monolithic Java applications to use cloud-based services. We also applied Cloud

Refactoring to re-engineer a commercial application used by General Electric (GE) to use cloud-

based services in an effort to demonstrate how refactoring can help realize the GE strategic vision

to take advantage of cloud computing.

Our results indicate that Cloud Refactoring can be a powerful tool for the programmer charged with

the task of transitioning a centralized application to one that uses cloud-based services. Not only

can Cloud Refactoring transform code with a high degree of automation, but it can also properly

account for the demands of distributed execution. Thus, Cloud Refactoring represents a robust and

Cloud Refactoring 102

pragmatic approach that can reduce maintenance costs and increase programmer productivity.

The rest of this chapter is structured as follows. Section 4.1 motivates our approach and then in-

troduces the main technologies discussed in this chapter. Section 4.2 describes the new refactoring

techniques. Section 4.3 reports our experiences of applying Cloud Refactoring to third-party ap-

plications. Section 4.5 compares our approach to the existing state of the art. Section 4.4 discusses

advantages and limitations of this work. Finally, Section 4.6 presents concluding remarks.

4.1 Motivation and Technical Background

In the following discussion, we introduce an example that motivates this research and then provide

a technical background our approach uses.

4.1.1 Motivating Example

Consider JNotes 1, a third-party diary and project management application written to run on a

single desktop machine. Our goal is to refactor JNotes into a cloud-based application, with the

server part deployed on a remote server and the client part accessed from a mobile device. This

transformation offers several advantages. All the JNotes documents and calendars can be saved

at the remote server, whose file system can be regularly backedup and replicated, so that data

consistency will not suffer from a failure of the client’s file system. Furthermore, through a simple

change in server deployment, JNotes can be made into a collaborative application, with multiple

clients sharing the same server components.

A major technical impediment to realizing the transitioning outlined above is that maintenance

programmers have to change the application’s source code by hand. JNotes is a typical central-

ized application that comprises a collection of Java classes. Splitting JNotes into the service and

client parts, deploying the services in the cloud, and having the parts communicate with each other

1http://memoranda.sourceforge.net

http://memoranda.sourceforge.net

Cloud Refactoring 103

reliably can quickly turn into a complex programming undertaking. Furthermore, the resulting

cloud-based application is likely to contain software imperfections, commonly introduced when

manipulating code by hand.

Although software frameworks have been introduced to ease rendering classes as Web services,

the classes must adhere to a rigid set of architectural conventions. Thus, it is unlikely that these

frameworks can help transition arbitrary classes to Web services. As an example, consider JAX-

WS [63], a framework that represents a significant industry effort to simplify the development

and deployment of Web services. With JAX-WS, a programmer can export a standard Java class

as a Web service by annotating the class with @WebService and the the class’s methods with

@WebMethod. A code generation tool that comes with JAX-WS reads these annotations and

creates all the required supporting harness to exposes and deploy the annotated methods as XML-

based Web services.

However, this service extraction model simply renders existing methods as Web services without

any consideration for the resulting performance and reliability. To ensure good performance and

high reliability, the classes that are to become Web services may need to be restructured first. For

example, a service may need to use only a subset of the class’s fields, thus requiring splitting the

class into client and server partitions.

Consider moving class FileStorage to the cloud as a means of saving all the JNotes documents

in a shared cloud storage. With JAX-WS, the programmer can transform the entire class with all

its methods into a Web service. Unfortunately, this “all or nothing” inflexible distribution model

may fall short of meeting the needs of realistic applications. For example, some functionality in

FileStorage pertains to local file paths, and as such should not be moved to the cloud. That is,

the functionality tied to the client environment cannot be moved. More specifically, the program-

mer needs to split methods storeResourcesList(...) and openResourcesList(..)

from the rest of the class before it is transformed into a remote service.

The refactoring approach that we advocate here enables the required level of flexibility when trans-

forming classes into remote services. Our Extract Service refactoring takes as input a class name

Cloud Refactoring 104

and a set of methods that are to be rendered as a remote service. This refactoring then trans-

forms the given methods into remote service methods, leaves the remaining methods on the client,

rewrites all communication between the original and remote methods into remote service calls.

Because centralized and distributed applications have different failure modes, simply rendering a

subset of a centralized application remote does not preserve the semantics. Distributed applica-

tions are subject to partial failure, in which its different components (client, server, or network)

may fail independently from each other. Although one cannot handle all the possible failures in

a distributed application, some failures have well-known handling strategies. Thus, to better pre-

serve the original execution semantics, the Extract Service refactoring also adds client-side fault

tolerance functionality as specified by the programmer. For example, the programmer may specify

that an unsuccessful attempt to reach a service be repeated a given number of times. In our ap-

proach, the programmer can specify and configure the fault tolerance strategies to apply by means

of an XML-based domain-specific language.

Finally, a service application may need to use more than one service implementation for a given

functionality. For example, in the case when one service implementation is not available, the client

should switch to using a different service, whose method interface is different from that used by

the original service implementation. Thus, the client code will need to be adapted to use different

service interfaces. The Adapt Service Interface refactoring automates the transformations required

to be able to switch the client to using an equivalent service exposed through an incompatible

service interface.

4.1.2 Technical Background

Next, we provide an overview of the cloud and service computing technologies.

Cloud Refactoring 105

Cloud Computing and Services

Cloud computing provisions resources on-demand through three main virtualization approaches:

(1) infrastructure virtualization—provisioning computing power, storage, and machine (e.g., Ama-

zon EC2); (2) platform virtualization—provisioning operating systems, application servers, and

databases (e.g., Amazon S3); (3) software virtualization—provisioning complete Web-based ap-

plications (e.g., Salesforce.com). The main benefits of cloud computing include elasticity,

scalability, and availability. From the software development perspective, however, taking advan-

tage of cloud computing requires that the programmer follow a strict set of architectural and design

guidelines.

Service Oriented Architecture (SOA) provides uniform access to a variety of computing resources

across multiple application domains. Loosely coupled services may be co-located in the same ad-

dress space or be geographically dispersed across the network. Among the software engineering

advantages of services are strong encapsulation, loose coupling, ease of reusability, and standard-

ized discovery. In addition, due to the strong separation between service interfaces and implemen-

tations, service developers have the flexibility to mix any middleware platforms and applications as

well as to switch service infrastructures without affecting service clients. It is these desirable soft-

ware engineering properties that made SOA a widely used paradigm for realizing cloud computing

solutions.

4.1.3 OSGi Framework as a Cloud Computing Platform

Open Service Gateway Initiative (OSGi) [107]—a service implementation and provisioning infrast-

ructure—has been embraced by numerous industry and research stakeholders, organized into the

OSGi Alliance 2. As a service platform, OSGi can render any Java class as a service bundle. OSGi

manages published bundles, allowing them to use each other’s services through public interfaces.

OSGi manages the lifecycle of a bundle (i.e., moving between install, start, stop, update, and delete
2Open-source OSGi implementations include Apache Felix [144] and Knopflerfish [74]. Among large commercial

OSGi projects are Spring Framework [134] and Eclipse Equinox [35].

Salesforce.com

Cloud Refactoring 106

stages) and allows it to be added and removed at runtime.

OSGi has made substantial inroads into the domain of cloud computing. Some enterprises have

adopted OSGi as the platform for realizing their private clouds [109]. In light of these devel-

opments, a consortium of major industry and academia stakeholders has issued the Request for

Proposal (RFP) 133 [108], which codifies how OSGi should be leveraged as a platform for cloud

computing.

4.2 Our Approach: Cloud Refactoring

The goal of our approach is to alleviate the code transformation hurdles involved in adapting ex-

isting applications to take advantage of cloud-based services. To reduce development efforts/costs

and increase programmer productivity, we have expressed as refactorings several common pro-

gram transformations that programmers perform when adapting applications to use cloud-based

resources. Although our approach is not fully automatic, programmers only determine if the source

code should be transformed. The actual transformations are performed by a refactoring engine. In

the following discussion, we first give an overview of our approach and then detail its individual

parts.

4.2.1 Approach Overview

Our approach focuses on those common program transformations occurring when using cloud-

based services that are well-amenable to be expressed as a refactoring. In particular, we focus

on three software re-engineering scenarios. One scenario involves moving some of a centralized

application’s functionality to the cloud. The second scenario involves adding fault tolerance func-

tionality to the client to handle the faults raised during the invocation of a cloud-based service.

The third scenario involves switching an application to use an alternate cloud-based service ex-

posed through a different service interface.

Cloud Refactoring 107

Programmer

Adapt Service
Interface

Adapter

Extract Service

Retarget Client

Cloud-Based
Services

Client Code

Recommendation
Engine

Add Fault
Handling

Refactoring Engine

Figure 4.1: Migrating to Cloud-Based Services via Cloud Refactoring.

Figure 4.1 shows how the constituent components of our approach fit together. The two main

parts of our approach are The Recommendation Engine and The Refactoring Engine. The recom-

mendation engine uses static and dynamic program analysis techniques to infer class coupling;

this optional component can inform the programmer about which classes can be converted into

a cloud-based service. The two refactoring techniques of the refactoring engine are intended be

used à la carte. By integrating the engine with the Eclipse IDE, our approach makes it possible to

use the new refactoring techniques indistinguishably from the existing ones. Furthermore, some

of the existing, widely used refactoring techniques can be quite useful for applications that use

cloud-based services. For example, Extract Service refactoring can be used to move a method to a

class prior to converting that class to a cloud-based service.

4.2.2 Service Recommendation

To make sure that moving functionality to the cloud does not render the application unusable due

to exploding latency costs, programmers should use service components rather than individual ob-

jects as a distribution boundary. Because few existing applications consist of service components,

programmers should first ensure that an intended service is not tightly coupled with the rest of

the application. For example, they can apply a Façade pattern that exposes some tightly coupled

functionality through a crude-grained interface.

Cloud Refactoring 108

Static Program
Analysis

Monolithic
 Application

Modified
Application

Recommended
Cloud-based Services

Service 1

Service 2

Service n

Source Code

Class Relation
Graph

Execution Runtime
Traces

Clustering

1) Profiling-based Recommendation

2) Clustering-based Recommendation

Select

Transform

Figure 4.2: Service recommendation process.

Nevertheless, it may be difficult to determine which functionality is a good candidate to be exposed

as a cloud-based service. To that end, our approach provides a recommender tool that computes

the coupling metrics for all the classes in an application and then displays the classes that are least

tightly coupled. Accessing the functionality represented by these classes from a remote cloud-

based service should impose only a limited performance penalty on the refactored application.

Figure 4.2 shows the process diagram for identifying classes that can be converted into cloud-based

services. Our approach leverages two recommendation mechanisms: profiling- and clustering-

based recommenders. The profiling-based recommender engages a static program analysis and

runtime monitoring to collect program information. By combining the class coupling metrics col-

lected through both static analysis and runtime monitoring, the recommendation algorithm then

suggests a subset of an application that can be transformed to cloud-based services. The profiling-

based recommender sorts application classes based on their execution duration and frequencies,

so that the programmer can know what classes are computation-intensive and how frequently they

are accessed. The clustering-based recommender clusters classes with similar functionality, thus

identifying class clusters whose functionality can be naturally exposed as a cloud-based service.

Cloud Refactoring 109

Because the clustering-based recommender groups classes based on their functionality, the pro-

grammer can avoid duplicating a functionality in the cloud by selecting candidates for cloud-based

service from different clusters.

Note that these recommendation mechanisms are provided as a tool that can inform the program-

mer about the properties of the applications about to undergo a refactoring. The programmer is

ultimately responsible for deciding which classes should be transformed into cloud-based services

and even if the transformation should take place to begin with. This design choice is in line with

the automated nature of our refactoring techniques. In the following discussion, we describe our

two recommendation mechanisms in detail.

Profiling-based Recommendation

In essence, the recommender strives to find a distribution strategy that would not render the ap-

plication unusable due to the drastically increased latencies of invoking tightly coupled methods

across the network. Because the recommender only takes the coupling metrics into consideration,

it cannot produce a recommendation that is guaranteed to always exhibit a superior performance.

Other factors, such as business logic and system resources used, can impact the performance dras-

tically. As a result, the programmer can only use the recommender as a tool to explore the coupling

metrics of the refactored application rather than as an absolute arbiter that determines which func-

tionality is to be extracted into remote services.

Figure 4.3 shows our service recommendation algorithm that operates on a class relation graph.

Given a graph, the algorithm calculates a service utility value for each class in the program, a rank

that expresses how fit a class is to be rendered as a cloud-based service. Specifically, the algorithm

uses the service utility function defined as follows:

F (i) =
∑

i∈edges

{Wα ×
Ti

MAX(T0, .., Tn)
+Wβ ×

Ni
MAX(N0, .., Nn)

}

where N , T , and W denote execution number, execution time, and weight to each measurement

Cloud Refactoring 110

INPUT: A class relation graph, CRG
OUTPUT: A set CS = {c1, c2, . . . , cn} of possible remote classes
classes←− calculateUtility(CRG);
destinations←− edgesOutOf(class);

while (destinations 6= ∅) do
class←− destinations.next();
utility ←− class.getUtility();
coupling ←− class.getCoupling();
if (utility ≥ util threshold && coupling ≤ coup threshold) then
CS.add(class);

end if
destinations←− edgesOutOf(class);

end while

Figure 4.3: Profiling-based service recommendation algorithm

metric, respectively. If Wα is larger than Wβ , classes related to business logic will be suggested.
Conversely, if Wβ is larger than Wα, frequently accessed classes will be suggested. Then, we
defined our own coupling metrics as follows:

CP (i, j) = CC(i, j) + CR(i, j) = 1
#ofhops +

∑
(ei∩ej)∑
ei+

∑
ej

where CP , CC and CR denote coupling, class connectivity, and class relation values. Class

connectivity, CC, denotes how the given two classes are closely connected. If class xi has lower

hops to go class xj , they are strongly connected. If xi and xy are directly connected, CC(i, j) is 1.

Otherwise, CC(i, j) = 1
#ofhops

. Class relation, CR, denotes how the given two classes are related.

If class xi creates, reads, writes, and invokes only class xj , class xi is tightly related to class xj .

CR is computed using the number of in/out edges from the given class to other classes. Then, the

algorithm described traverses the graph from the root to the leaf nodes and then suggests cloud-

based service candidates based on the calculated service utility values. Based on this suggestion,

programmers can then choose classes that are suitable candidates for cloud migration.

Cloud Refactoring 111

Spectral Clustering-based Recommendation

The second recommender clusters related classes together. In recent years, spectral clustering

has become one of the most widely used clustering algorithms. Spectral clustering techniques

make use of the spectrum of the similarity matrix of the data to perform dimensionality reduction

for clustering in fewer dimensions. Given a set of data points x1, . . . , xn and similarity S(i, j)

between all pairs of data points xi and xj , the similarity matrix is defined as S. If the similarity

S(i, j) between the corresponding data points xi and xj is positive, two vertexes are connected.

The similarity matrix is computed as follows:

S(i, j) = CC(i, j) + CR(i, j) +D(i, j) + L(i, j) + T (i, j)

where CC, CR, D, L and T denote class connectivity, class relation, class distance, library usage,

and type similarity, respectively. We use the same formula to compute CC and CR, which are de-

fined above. Class distance, D(i, j) is calculated using the Levenshtein distance algorithm [85]. If

xi and xj have the same package name, these classes are considered more similar to each other that

classes in different packages. With respect to library usage, L shows how the relationship between

two classes in terms of the similarity of the libraries they use. Using the same library indicates a

similarity in functionality. If xi and xj use the same libraries, their L(i, j) is 1. Otherwise, their

L(i, j) is 0. Finally, type similarity, T , denotes the similarity of classes in terms of their types. If

the classes implement the same interfaces or inherit from the same super class, their T (i, j) is 1.

Otherwise, their T (i, j) is 0.

Figure 4.4 shows the clustering-based service recommendation algorithm, which is parameterized

with a class relation graph. First, the graph’s similarity matrix is constructed. Since each node of

the graph has method/class information, the similarity between each pair of classes is calculated

according to their similarity metrics. Then, a recursive spectral clustering algorithm continuously

partitions the similarity matrix until it reaches the base case (the partition size equals 1).

Cloud Refactoring 112

INPUT: A class relation graph, CRG
OUTPUT: A set CS = {c1, c2, . . . , cn} of possible remote classes
clusterNum←− 2; //initialize the number of clusters
while (true) do
SIM ←− constructSimilarityMatrix(CRG);
cluster ←− buildCluster(SIM, clusterNum);

if(cluster = ∅) then exit; end if

while (cluster 6= ∅) do
class←− cluster.next();
if (class is accessed from other clusters) then
CRG.remove(class);
CS.add(class);

end if
end while

clusterNum←− clusterNum+ 1; //increase the number of clusters
end while

Figure 4.4: Clustering-based service recommendation algorithm.

Constraints on Extracting Cloud-Based Services

Not all classes can be easily migrated into remote, cloud-based services. Various constraints make

it impossible to refactor some classes for cloud-based execution. These constraints pertain to

the use of local resources, parameter passing, and serialization. Classes that make use of local

resources, such as databases, disk files, and sensors cannot be moved to be executed by a different

host. In our refactoring approach, we assume that the programmer is aware of such local resource

usage and would not try to migrate the affected classes to the cloud. Our refactoring techniques

can only pass by-copy parameters, which includes primitive and read-only parameters. The classes

whose methods contain other types of parameters cannot be transformed into cloud-based services;

our recommenders identify and exclude such classes. Finally, OSGi requires that non-primitive

remote method parameters be serializable and attempts to automatically serialize them.

Next, we describe two refactoring techniques that form the foundation of Cloud Refactoring: 1)

Extract Service and 2) Adapt Service Interface.

Cloud Refactoring 113

Wrapper
of B

Proxy
of B

Class BClass A

ImplementsHas a

Interface IB Interface IB

Proxy of
Wrapper

B

Client Server

Original invocation pattern between class A and B

Automatically transformed Class A and B

Local

Class A
Class BImplements

Has a

Figure 4.5: Extract Service refactoring—service transformation and client redirection.

Cloud Refactoring—1) Extract Service

Extract Service refactoring automates the program transformations required to transform regular

classes into remote services. A typical Extract Service refactoring performs the following four

program transformations: 1) rewrite a class making all its methods into remote service methods, 2)

partition class methods into service methods and regular methods, rewriting all the communication

between the two into remote service calls, 3) re-target all clients of the original class to access its

functionality in the cloud by means of remote service calls, and 4) add fault handling functionality

to client code.

Transforming Program Code to Extract Services

Figure 4.5 shows local classes A and B can be transformed by means of the Extract Service refac-

toring, so that B becomes a fault tolerant cloud-based service. At the server side, class B is exposed

Cloud Refactoring 114

via a generated interface IB and class B becomes wrapped into an instance of class WrapperB.

The exposed service interface IB can be invoked via standard service protocols (e.g., HTTP-SOAP,

REST, etc). At the client side, class A imports the service via interface IB, with the original class

B at the client being replaced with a generated proxy class. This example demonstrates the trans-

formation of all the methods in a class into cloud-based services. If only a subset of the methods

are to be transformed into services, additional transformations are necessary.

Wrapper
of B

Proxy
of B

ImplementsHas a

Interface IB Interface IB

Proxy of
Wrapper

B

Client Server

Class A
Class BImplements

Has a

Class B
Local
Calls Remote Calls

Figure 4.6: Splitting a proxy into two parts.

To split a class, the refactoring engine takes as input its name and then either a set of fields or

methods to move to the cloud. If the refactoring input is specified by means of fields, the selected

fields and the methods accessing them are moved to the cloud. If the refactoring input is specified

in terms of methods, the selected methods and the fields accessed by them are moved to the cloud.

Figure 4.6 shows how the refactoring engine splits class B to redirect all the invocations to class B

to the cloud-based service interface IB and the local object LB. Figure 4.7 shows an automatically

generated proxy class, which redirects all the invocations to class B to the cloud-based service

interface IB and the local object LB.

Cloud Refactoring 115

public class B {
private IB proxy;
private LB local;

public B() {
proxy = (IB) getService(IB.class);
local = new LB();

}

/∗ Re−targeted methods ∗/
public String foo(int i1, int i2) {
return proxy.foo(i1, i2);

}

/∗ Remaining methods ∗/
public void bar() { local.bar() }

}

Figure 4.7: Generating a proxy class.

Handling Service Faults

Whether some functionality is accessed locally or remotely across the network should not change

the application’s functionality if not for the presence of partial failure. Unlike in a centralized

application, components of cloud-based services can fail independently, making such failures dif-

ficult to diagnose and handle. Such failures must be handled effectively not only to ensure the

overall application utility and safety, but to preserve the semantics of the original centralized appli-

cations. Thus, any refactoring technique that separates any functionality to be accessed remotely

must take the issue of remote failures into consideration. In our approach, the Extract Service

refactoring automatically adds well-known fault tolerance strategies configured through a domain-

specific language.

Because it would be impossible to handle all possible errors, our refactoring approach focuses

on well-known strategies for handling common faults, such as network volatility, service outages,

and internal service errors. The generated fault tolerance functionality includes both detection

and handling. A fault can be detected via timeout mechanism, exception handling, or runtime

execution monitoring. Then, the detected faults should be properly handled to keep continuing

the required functionality. Figure 4.8 shows these fault-handling procedures. First, a service ad-

ministrator needs to provide fault tolerance descriptions written in Fault-Tolerance Description

Language (FTDL) [36, 77], a domain-specific language we have developed earlier for expressing

fault handling strategies. These descriptions parameterize a fault handling component that detects

the specified faults and then counteracts their effect by executing the specified handling strategies.

Cloud Refactoring 116

Interpreter
AOP

Fault Tolerance
Description

Cloud Service
Administrator

Hardening
Components

Fault Tolerance Runtime
System

Fault Diagnosis

Strategy Manager

Application

Hardening
Component

Figure 4.8: Overview of fault handling.

The refactoring engine inserts all the required fault handling code into proxy classes.

Fault Tolerance Description Language

One of the key novelties of our refactoring approach is using a domain-specific language to config-

ure a refactoring engine to synthesize fault tolerance functionality. In our previous work [36, 77],

we explored how remote services can be made resilient against failures using domain-specific

languages—Hardening Policy Language (HPL) [77] and Fault Tolerance Description Language

(FTDL) [36]. In this work, we combined the features of these two languages—language con-

structs from FTDL and a runtime system from HPL— to create a refactoring transformation that

automatically adds fault tolerance functionality. Figure 4.9 shows how FTDL is used by the refac-

toring infrastructure. The FTDL design has striven to combine expressiveness and ease of use.

The specific design goals of FTDL have included: Expressiveness—a programmer should be able

to express any kind of fault easily, with the resulting code being easy to understand, maintain,

and evolve; Extensibility—it should be possible to integrate existing fault tolerance strategies with

FTDL strategies; Platform Independence—FTDL strategies should be service platform indepen-

dent, with the same strategy capable to counteract a fault raised by any service implementation.

Cloud Refactoring 117

<ftdl>
<service uri=[remote address] method=[method name]/>
<condition>
<timeout>[0-9]*</timeout>
<exception>[exception types]</exception>

</condition>
<strategy>
<!- attributions for the retry strategy −−>
<retry numRetries=[0-9]* backoffInterval=[0-9]*

backoffType=["exponential" | "linear"] />

<!- attributions for the sequential strategy −−>
<sequential numRetries=[0-9]* backoffInterval=[0-9]*

backoffType=["exponential" | "linear"] >
<service uri=[http://remote] />

... ...
</sequential>

<!- attributions for the user defined strategy −−>
<defined>
<handling name=[fault handling name] />
... ...

</defined>
</strategy>

</ftdl>

Figure 4.9: FTDL constructs.

Fault Tolerance Strategies

Traditionally, fault handling functionality in services computing tends to follow well-defined pat-

terns. To render services reliable, representative approaches replicate SOAP web services [32, 41,

87], introduce transactional processing [88], and add fault handling code to server and client sides

of a service-oriented application [126, 171]. Our approach focuses on client-side fault handling for

the faults caused by network volatility, service outages, and internal service errors. The first step

in handling a fault is detecting it. The fault conditions can be detected via timeout mechanism, ex-

ception handling, or runtime execution monitoring. In the context of service-oriented applications,

the following fault tolerance strategies are used quite commonly:

• Retry: The strategy that is arguably employed most widely is Retry, which, for a given

number of times, reattempts to invoke a service in response to a failure.

Cloud Refactoring 118

public class B {
...

/∗ Fault handling code ∗/
public String foo(int i1, int i2) {
try {
return proxy.foo(i1, i2);

} catch(CloudServiceException e) {
return FaultHandler.notify(new Fault(...));

}
}

}

public class MyFaultHandling implements FaultListener {
public Object faultNotified(Object service, Method m, Object[] params) {

// retry the failed service invocation
}

}

Figure 4.10: Automatically generated fault handling code.

• Sequential: Another common strategy is Sequential, which is also known as passive repli-

cation. This strategy iterates through different endpoints of a service when encountering a

failure. For instance, when experiencing a timeout in response to invoking the service end-

point at a.com/foo, b.com/foo can be invoked next. This strategy, thus, increases the

probability that some invocation will finally succeed. The term passive replication refers to

the fact that this strategy does not kick in until a failure occurs.

• Parallel: An example of a more complex strategy is Parallel, which actively replicates a

service, to invoke endpoints concurrently as a mechanism to counteract potential service un-

availability. For example, both endpoints a.com/foo and b.com/foo would be invoked

simultaneously. As a form of speculative parallel execution, this strategy proceeds with the

first successfully executed request.

• Composite: Because a single strategy may not be sufficient, software designers often com-

bine multiple strategies. For example, all the heretofore described strategies can be combined

into composite strategies.

Cloud Refactoring 119

Generating Fault Handling Code

Figure 4.10 shows the fault handling functionality in a generated proxy class. Specifically, this

proxy handles all the raised exceptions by passing them to method notify() in class FaultHandler.

The fault handler is our light-weight fault-handling runtime that can execute fault-handling strate-

gies. The runtime can execute both the standard fault tolerance strategies as well as the combi-

nations of thereof. The standard strategies include retry, sequential, and parallel. These strategies

can be combined in arbitrary ways into composite strategies by writing a simple FTDL script. To

specialize fault handling even further, one can implement any required fault-handling strategy by

implementing interface FaultListener. The fault tolerance strategies can be reused across

applications and can serve as building blocks for custom strategies.

The lightweight runtime system depicted in Figure 4.11 consists of a fault diagnosis module and a

strategy manager. The fault diagnosis module catches raised exceptions or failures. The strategy

manager associates exceptions with fault tolerance strategies. In response to detecting an excep-

tion, the manager initiates the handling strategy as configured by a given FTDL script. A strategy

implementation is simply a sequence of corrective actions whose execution counteracts the effect

of experiencing the fault. These actions are implemented as part of a library. In our prior work,

we have demonstrated the effectiveness of this approach to improve the reliability of OSGi-based

systems [77, 82].

4.2.3 Cloud Refactoring—2) Adapt Service Interface

Cloud-based services expose their functionality through a set of public interfaces. It is also com-

mon that the same business functionality is offered by more than one service provider. For vari-

ous business and technical reasons, an application may need to choose between multiple service

providers for the same functionality. For example, multiple services may need to be consulted to

check whether the information they provide is consistent. Multiple service implementation can

also be used for fault-tolerance purposes.

Cloud Refactoring 120

Distribution Middleware

Application

Strategy 1

Strategy 2

Strategy N

3. Exception

Fault Diagnoser

5
. F

a
u

lt
 H

a
n

d
lin

g

Script
Reader

Runtime Library

Fault Handler

Strategy Manager

2. Strategy
Registration, Removal,

and Modification

4
. F

a
u

lt

N
o

ti
fi

ca
ti

o
n

1
. S

tr
a

te
g

y
In

st
a

n
ti

a
ti

o
n

Figure 4.11: Fault tolerant runtime system.

Services providing equivalent functionality are likely to have different service interfaces. One op-

tion is to treat the invocation of different equivalent services as unrelated. This way, the client code

required to invoke the services is replicated for each service. Another option is to systematically

adapt one service’s client-side interface bindings for another service interface. This adaptation is

automated by means of the Adapt Service Interface refactoring.

The Adapt Service Interface refactoring automates the transformations required to apply the adapter

pattern. Figure 4.12 shows how one service’s client bindings can be adapted to use another service.

As the first step, a programmer should specify the differences between the original and adapted

service interfaces. That is, the programmer uses our refactoring browser to map interface method

names to each other. Based on this method name mapping, the refactoring engine generates a

skeletal implementation of the required adapter. The programmer can then fill in this skeletal im-

plementation with the adaptation logic. For example, parameters can be simply reordered, missing

parameters provided, and extra parameters omitted.

As a specific example, consider switching the remote service invocations of interface IB described

Cloud Refactoring 121

New Service
Interface

Old Service
Interface

Service 1

Adapter ClassService 2

Service N

Adaptation
Code

Service
Mapping

Service Retrieval

Mapping
Information

Proxy

Service 1

Service 2

Service N

Service
Description

Figure 4.12: Procedure of service adaptation.

in Section 4.2.2 to interface NewIB:

public interface NewIB {

String newFoo(int, int, int);

}

To switch services, our approach requires that the programmer provides the original and adapted

service interfaces. If the adapted service interface is not available locally, the refactoring engine

can automatically create one from a WSDL document. Because most web services describe their

operations as a WSDL document, a Java interface describing the operations can be retrieved.

As mentioned above, programmers parameterize the refactoring engine by mapping to each other

the original and adapted service interfaces. Figure 4.13 shows how the adaptation code switches

the old service invocations to another service’s implementation. Figure 4.14 shows the automat-

ically generated adapter class. In this example, method foo() is being redirected to method

newFoo(). The refactoring engine generates an adapter class AdapterB which is a singleton.

If the adapted service methods differ in terms of their parameter numbers or types, the program-

mer needs to write code to adapt the parameters and/or return value. This part of the approach is

manual, as parameter adaptation is highly application-specific and thus cannot be automated.

Cloud Refactoring 122

public class B implements IB { // Proxy class
public String foo (int i1, int i2) {
try {
if(AdapterB.v().isAvailable()) { // Redirected service invocation
return AdapterB.v().foo(i1, i2);}

else { // Original service invocation
return rService.foo(i1, i2); }

} catch(CloudServiceException e) {
return FaultHandler.notify(new Fault(...));

}
}

}

Figure 4.13: Automatically generated proxy class for service adaptation.

Implementing Cloud Refactoring

Figure 4.19 shows the main components of the refactoring tool, which were developed using sev-

eral state-of-the-art software tools and libraries such as Eclipse plug-ins, OSGi, and Soot Java

analysis framework. The refactoring tool consists of three components—1) GUI, 2) recommenda-

Foo()

int i1

int i2

newFoo()

int i1

int i2

int i3

Method

Parameters

Return value String int

public class AdapterB extends Adapter {
 NewB rService;
 AdapterB instance; //Singleton

 private AdapterB() {
 //Service retrieval from OSGi remote service.
 rService= …
 }

 public static AdapterB v() {
 if(instance == null) instance = new AdapterB();
 return instance;
 }

 public boolean isAvailable() {
 return (rService != null);
 }

 public String foo(int i1, int i2) {
 int i3; //TODO: provide a value for i3
 Object r1 = rService.newFoo(i2, i1, i3);
 String result = r1; //TODO: provide type cast for r1
 return result;
 }

}

Figure 4.14: Generating an adapter class from interface differences.

Cloud Refactoring 123

tion engine, and 3) refactoring engine. The GUI part was implemented within the Eclipse-IDE’s

refactoring menus, so that a programmer can easily modify our refactoring and extend the refac-

tored application within the Eclipse-IDE. The recommendation engine was implemented using a

static program analysis framework—the Soot Java analysis framework, which manipulates and

optimizes Java bytecode. The static analyzer and trace analyzer compute relationships between

classes and the service recommender suggests service candidates via the editors and wizards of the

eclipse IDE. Lastly, the refactoring engine has a series of code generators including proxy/wrapper

generators for remote communications, interface generator for exposing services, adapter genera-

tor for switching a service interface.

4.3 Evaluation

To evaluate the applicability of our Cloud Refactoring techniques, we applied them to two third-

party applications to help transition them to cloud-based execution.

4.3.1 Micro Benchmark: Clustering-Based Recommendation

To evaluate the effectiveness of our recommendation approach, we applied the clustering-based

recommendation to seven third-party applications and one our own application.

• Crypto [33]: Java implementation of the Unix crypt utility.

• Compress [33]: Java implementation of the Unix compression utility.

• Dictionary: our own application using the Lucene search engine library 3 to search defini-

tions, find synonyms, and suggest corrects for misspelled words.

• JAligner4: an open source Java implementation for biological local pairwise sequence align-

ment.
3http://lucene.apache.org/java/docs/index.html
4http://jaligner.sourceforge.net

http://lucene.apache.org/java/docs/index.html
http://jaligner.sourceforge.net

Cloud Refactoring 124

Table 4.1: The experimental results.

Name # classes
suggested # selected # adaptable

ratioremote remote remote
services services services

Crypto 5 4 4 3 80 %
Compress 7 3 3 0 43 %
Dictionary 7 3 3 1 43 %
JAligner 39 8 5 1 12.8 %
Barecue 56 1 1 0 1.7 %
JNotes 164 9 8 0 4.8 %
PMD 597 27 3 0 0.5 %
Weka 1243 14 7 0 0.5 %

• Barecue5: an open source Java library to create barcodes.

• JNotes: an open source Java management tool for memos, events and projects.

• PMD6: an open source Java program for potential problems like bugs, dead code, suboptimal

code, overcomplicated expressions, and duplicate code.

• Weka [55]: an open source Java data mining software implementing a collection of machine

learning algorithms.

Table 4.1 shows the benchmark results. Each column represents the number classes, the number of

suggested remote services, the number of selected remote services, and the number of adaptable re-

mote services. The first refactoring suggested possible remote services, and we manually selected

appropriate remote services. The all suggested classes can be cloud-based services, however, we

selected appropriate classes for the reason of the performance, call-by-reference, and meaning of

features. Then, the last column shows how many refactored services can be adopted to the third-

party services. We found few public Web services through public Web service repositories and

manually investigated how the refactored services can be adapted to the new services.

Based on the micro benchmark result, we selected two applications to show refactoring procedures.

In the next discussion, we show two case studies—JAligner and JNotes.

5http://barbecue.sourceforge.net
6http://pmd.sourceforge.net

http://barbecue.sourceforge.net
http://pmd.sourceforge.net

Cloud Refactoring 125

4.3.2 Case Study I—DNA Sequence Alignment—JAligner

As the first case study, we applied our refactoring techniques to JAligner—a third-party bioinfor-

matics pairwise sequence alignment tool written to run as a standalone application on a single

machine. JAligner takes as input two DNA sequences and computes their similarity metrics. We

successfully refactored the application to use a fault tolerant cloud-based service and then switched

the alignment functionality to use an equivalent third-party service.

Extracting Remote Service

While the clustering-based recommender suggested 8 classes as potential remote services, the

profiling-based recommender suggested 4 classes:

• Class Commons: returns basic informations about the application.

• Class SequenceParser: parses the given DNA sequence and returns a Sequence

object.

• Class SmithWatermanGotoh: aligns two DNA sequences.

• Class Example: returns example DNA sequences.

Although all the recommended classes can be refactored to cloud-based services, in this study we

selected only one class—class SmithWatermanGotoh, which implements the main function-

ality of JAligner. For performance reasons, classes Commons and SequenceParser should

not be transformed into cloud-based services. Moreover, because class Example forms its own

cluster, it should not be moved to the cloud. As the first step, the refactoring engine generated

interface ISmithWatermanGotoh, which is exposed by underlying middleware, and class

WrapperSmithWatermanGotoh, a wrapper class of SmithWatermanGotoh, as well as

some OSGi specific files. The following code snippet shows the automatically generated Java

Cloud Refactoring 126

<ftdl>
<service uri="http://192.168.0.1/SmithWatermanGotoh" method="align"/>
<condition>
<timeout>1000</timeout>

</condition>
<strategy>
<sequential numRetries="10" backoffInterval="1000"
backoffType="linear">
<service uri="http://192.168.0.2/SmithWatermanGotoh" />

</sequential>
</strategy>

</ftdl>

Figure 4.15: FTDL description to handle network volatility.

interface, which is exposed through remote OSGi services7 After the refactoring engine finishes

transforming all the code, the newly created service implementation can be deployed in the cloud

and accessed remotely.

public interface ISmithWatermanGotoh {

public Alignment align(

Sequence s1, Sequence s2, Matrix m, float o, float e);

}

For the client execution, the refactoring engine re-targets client code to the cloud-based service. To

that end, it generates a proxy class— SmithWatermanGotoh and OSGi specific files such as

remote service configuration files. The generated interface is used for importing the exposed Web

service. Through this refactoring, the client is wrapped into a standard OSGi bundle and then uses

the Smith-Waterman alignment service over the network. Figure 4.15 shows the FTDL description

to handle network volatility.

7The services are exposed through Apache CXF-DOSGi.

Cloud Refactoring 127

Adapt Service Interface

We switched the extracted through refactoring remote service—Smith Waterman alignment

service—to a third-party Web service provided by European Bioinformatics Institute (EBI8). EBI

provides several bioinformatics Web services, including local and global alignment services. We

selected Waterman Eggert algorithm and then adapted the client to use this service.

<portType name="water"> <operation name="runAndWaitFor">
<input message="runAndWaitFor"/>
<output message="runAndWaitForResponse"/>

</operation> </portType>

<complexType name="runAndWaitFor"> <sequence>
<element name="aSequence" type="SeqInput"/>
<element name="bSequence" type="SeqInput"/>
<element name="gapopen" type="float"/>
<element name="gapextend" type="float"/>

</sequence> </complexType>

<complexType name="SeqInput"> <sequence>
<element name="direct_data" type="string"/>
<element name="usa" type="string"/>
<element name="format" type="string"/>

</sequence> </complexType>

Figure 4.16: WSDL contract of the EBI’s service.

Figure 4.16 shows the WSDL document that describes the Web service specification. First, based

on this WSDL document, we created a Java interface Water and its return/argument types such

as class RunAndWaitFor and RunAndWaitForResponse. Figure 4.17 depicts the automat-

ically generated new service interface and other necessary classes. Then, the refactoring generates

the skeleton of adapter classes. The only manual part of this refactoring is for the programmer to

write code that maps different parameters and return values (e.g., class Sequence and class

SeqInput). As a result, when an unchanged existing client invokes the old service interface, the

adapter intercepts the invocation and redirects it to the new service.

8http://www.ebi.ac.uk/soaplab/

http://www.ebi.ac.uk/soaplab/

Cloud Refactoring 128

public interface SmithWaterMan {
public RunAndWaitForResponse runAndWaitFor(RunAndWaitFor msg);

}
public class RunAndWaitFor {
SeqInput aSequence, bSequence;
float gapopen, gapextend;

}
public class SeqInput{
String direct_data, usa, format;

}

Figure 4.17: Generated interface and classes.

4.3.3 Case Study II—JNotes

As the second case study, we selected JNotes, our motivating example application. We refactored

JNotes to used cloud-based services by means of Extract Service. As discussed in Section 4.1,

we moved class FileStorage to the cloud by splitting it into two classes. In this example, we

left resource saving functionality at the local machine and moved other functionality to the server.

Figure 4.18 shows a proxy class that splits the original class into remote and local parts.

4.3.4 Case Study III: GE Portfolio Analysis Service

We demonstrate how our approach can benefit real companies that want to take advantage of cloud

computing. We applied the Extract Service refactoring to Portfolio Analysis Tool, a real-world

application developed by GE Global Research Center and GE Energy to analyze world economy

scenarios and predicts how they may affect their customers’ billing and costs. The application was

developed using standard Web technologies that included the Spring framework and Java servlets.

In particular, Portfolio Analysis Tool 1) calculates billing and costs using hundreds of parameters

that are maintained through a DBMS, 2) provides several complex financial components which

are computation-intensive functionality, and 3) contains several common functionality that can be

reused across multiple applications. Therefore, moving some key components of this application

to the cloud would simplify maintenance—the infrastructure (i.e., a Web server, an application

Cloud Refactoring 129

public class FileStorage implements Storage {
IFileStorage proxy;
LFileStorage local;

public FileStorage() {
proxy = (IFileStorage) Activator.v().getService(IFileStorage.class);
local = new LFileStorage();

}

/∗ Re−targeted methods ∗/
public void openEventsManager() {
try {
proxy.openEventsManager();

} catch(CloudServiceException e) {
return FaultHandler.notify(new Fault(...));

}
}

public void openProjectManager() {
try {
proxy.openProjectManager();

} catch(CloudServiceException e) {
return FaultHandler.notify(new Fault(...));

}
}
// more remote methods

/∗ Remaining methods ∗/
public ResourcesList openResourcesList(Project prj) {
return local.openResourcesList(prj);

}

public void storeResourcesList(ResourcesList rl, Project prj) {
local.storeResourcesList(rl, prj);

}
// more local methods

}

Figure 4.18: Generated proxy class.

server, a DBMS, etc.) does not need to be maintained separately for each installation. Moreover,

commonly accessed services can be effectively reused.

The recommendation tool of the Extract Service refactoring suggested several cloud-based services

that can be extracted from the original application. Then, we used our refactoring engine to extract

cloud-based services, with the server components deployed in a private cloud environment and the

Cloud Refactoring 130

client code transformed to access the cloud-based services remotely.

4.4 Discussion

Next, we discuss some of the advantages and limitations of using refactoring to transition applica-

tions to use cloud-computing resources.

4.4.1 Advantages

By automating the required program transformations, a refactoring is more likely to preserve the

correctness of a modified program than when a programmer modifies the code by hand. Our

cloud refactoring techniques also generate new code used by the modified code. For example, our

refactoring engine generates several kinds of proxy classes used at the client. Generating code

automatically also helps preserve program correctness. Our recommendation engine also informs

the programmer about the parts of the centralized program that can be moved to the cloud while

minimizing the incurred performance overhead. Our runtime library features several fault tolerance

mechanism implementations that can be used out of the box, thereby increasing the probability that

the resulting application will be capable of handling partial failure.

4.4.2 Limitations

A refactoring may not be a proper approach for transforming all kinds of software applications to

cloud-based services. First, transforming tightly coupled applications without incurring a signifi-

cant performance overhead may require deep architectural changes that are not supported by our

refactoring techniques. Ensuring good performance requires that remote communication be crude-

grained and infrequent. In addition, cloud-based communication is inherently unidirectional: client

talks to server but not vice versa. If the original application does not follow this communication

pattern, its architecture needs to be changed before our refactoring techniques can be applied.

Cloud Refactoring 131

Refactoring Engine

Recommendation Engine

Code Generation
Manager

Proxy
Generator

Wrapper
Generator

Interface
Generator

Adapter
Generator

Static
Analyzer

Trace
Analyzer

Service Recommender

Eclipse IDE

Popup Menus

Editor
Bytecode

Manipulator

Figure 4.19: Service refactoring tool’s components.

Second, to improve accuracy, the recommendation systems require special application-specific

parameters. Based on the accuracy of the provided parameters, the recommendation system will

show different results. Therefore, the programmer can experiment with different parameters to

obtain a recommendation that is most aligned with the business requirements in place.

Third, our refactoring techniques do not make any provision for a situation when a newly extracted

cloud service is used by multiple clients. Then the application logic would have to be modified

accordingly to ensure a consistent and efficient access by multiple clients.

Lastly, our fault handling strategies cannot cover all the possible failure cases. In some scenar-

ios, the programmer may need to implement some failure handling strategy by hand, outside the

framework provided by our refactoring infrastructure.

4.4.3 Motivation for Cloud Refactoring

An important question is what motivates enterprises to move software components to execute re-

motely in the cloud, thus necessitating the cloud refactoring techniques presented here. One mo-

Cloud Refactoring 132

tivation for leveraging cloud resources is to improve performance efficiency by processing large

volumes of data in parallel (e.g., using Hadoop). However, this work is motivated by a different

set of business cases for using cloud-based resources.

For many business applications, using remote cloud-based service is inevitable, even if the result-

ing performance efficiency would remain the same or even deteriorate. For example, some shared

functionality may need to be shared between multiple clients (e.g., a local accounting component

that has to be shared between multiple financial applications). As another example, some function-

ality may need to be moved into the cloud to take advantage of the cloud provider’s data backup

and replication services (e.g., a local database-dependent component can be moved to a cloud ser-

vice along with its database files to guarantee long-term data integrity). Finally, companies may

consolidate some replicated functionality and expose it as a cloud service to reduce the software

maintenance efforts. Because services are exposed through a public service interface, the service’s

implementation can change at will without perturbing its clients, as long as the service interface

remains fixed.

All these scenario represent a clear need for the cloud refactoring techniques discussed in this

section, even though the refactored (i.e., cloud-based) versions of these applications are unlikely

to show any increase in performance efficiency. However, unless the invocation of cloud services

is in the critical performance paths of these applications, the overall performance impact of cloud

refactoring is likely to remain insignificant. From the business perspective, migrating services to

the cloud can reduce the overall software development costs and can even enable companies to

break into new markets, as software-as-a-product (SaaP) can be easily reused and repurposed.

4.5 Related Work

The presented Cloud Refactoring techniques are related to program partitioning, software clus-

tering, migrating application to services, and fault handling techniques. Next, we compare and

contrast our techniques to the most relevant approaches in each of these categories.

Cloud Refactoring 133

One line of research has explored coarse grained program partitioning. The programmer, by means

of a GUI, designates different parts of a centralized application, typically at a class or object gran-

ularity, to run on different network nodes. The resulting distribution specification then parame-

terizes a compiler-based tool that automatically rewrites the centralized application for distributed

execution. To introduce distribution, a partitioning tool may need to both change the structure of

the application (e.g., to introduce a proxy indirection) and add middleware functionality (e.g., to

replace local calls with remote ones). In the Java world, recent automatic partitioning tools in-

clude Addistant [142], Pangaea [133], and J-Orchestra [153]. Addistant and J-Orchestra partition

programs at a class granularity; Pangaea can partition at the individual object level. J-Orchestra

addresses the challenges of partitioning programs safely in the presence of unmodifiable code that

comes as part of their runtime systems.

Several prior research efforts aim at decomposing software systems into subsystems using cluster-

ing techniques [98]. The Bunch tool [98] uses a variety of clustering algorithms (e.g., hill climbing,

genetic, etc.) to modularize existing systems; it extracts modules based on their dependence graph

and calculates the resulting modularity quality. Clustering can be based on structural data (e.g., de-

pendence graphs) and non-structural data (e.g., names, comments, behavior, etc.) [6]. Combining

structural and non-structural clustering can improve the resulting modularity [5].

Much research has gone into decomposing the large, legacy systems into sub systems by assistance

of the above clustering techniques. Such decomposition was performed for better understanding

to the systems or maintenance for very large systems. However, in recent research, there was an

attempt to adopt data mining techniques for partitioning into distributed applications or service

oriented applications, including RuggedJ [93]. RuggedJ adopted a classification techniques which

determines classes’ types and locates them distributed nodes such as server/client.

In addition, our approach is related to migrating legacy systems toward objects [90] and services

[17]. The module dependence graph has recently been shown to be effective at guiding the mi-

gration toward services [86]; loosely-coupled modules become service components. In addition,

a model-based approach has been proposed to extract UML from legacy code and to use proxy

Cloud Refactoring 134

wrappers as service interfaces [91].

Commonly used approaches to recover from failure include termination [130], restarting [138],

micro-rebooting [16], and checkpoint-restart [73]. Although traditionally such approaches have

been integrated with system design, our approach can expose them as a fault strategy configured

through FTDL. Therefore our approach can increase the resiliency against faults even further.

4.6 Conclusion

In this chapter, we have presented Cloud Refactoring, a set of semantics preserving transforma-

tions that can help migrate a centralized application to using cloud-based services. We realized

Cloud Refactoring in the context of a modern IDE, enhancing its refactoring engine. Cloud Refac-

toring comprises two main refactoring techniques: Extract Service and Adapt Service Interface.

The Extract Service refactoring renders a portion of a centralized application’s functionality as

a remote cloud-based service, rewriting the client code and enhancing it with the required fault-

tolerance strategies. The Adapt Service Interface refactoring automates the transformations needed

to switch a service client to use an alternate, equivalent cloud-based service. We have evaluated

Cloud Refactoring by transforming third-party applications to cloud-based services, including an

application used by General Electric. Our experiences indicate that refactoring can become a valu-

able tool in the toolset of software developers charged with the challenges of migrating applications

to take advantage of cloud-based resources.

Chapter 5

Adaptive Cloud Offloading to Improve Energy-

Efficiency

The hardware capacities of modern mobile devices are rapidly approaching those of desktops from

the recent past. The majority of today’s smartphones, tablets, and e-readers feature multicore

CPUs, large RAMs, high resolution displays, and fast mobile networks. These powerful hard-

ware capacities, in turn, lead to mobile applications with increasingly complex computation and

communication patterns. Ideally, the growth of application functionality would be matched with

corresponding increases in device battery capacity. Unfortunately, physical constraints stunt the

improvements in battery capacities, which are known to increase quite moderately [116]. As a re-

sult, energy consumption is not only a major resource constraint for modern mobile devices, but it

also impedes the mobile programmer’s creativity and productivity. Indeed, mobile application de-

velopers have no choice but to remain mindful of how computation- and communication-intensive

pieces of functionality would affect the overall battery life.

Cloud offloading has been proposed as a mechanism that reduces the energy consumed by mobile

applications [26, 20, 127]. Cloud offloading partitions a mobile application into local and remote

parts to execute some energy intensive functionality remotely. Thus, cloud offloading leverages

network communication and remote execution to reduce the energy consumed by mobile devices.

The high heterogeneity of mobile hardware and the volatility of mobile networks stand in the way

of efficiency in implementing cloud offloading optimizations. Mobile devices come in numerous

hardware configurations, which vary in terms of their respective CPU, memory, and communica-

tion infrastructure. In addition, as we have discovered, the mobile network’s conditions can affect

the amount of energy spent on transferring the same parameters between the mobile device and the

135

Adaptive Cloud Offloading 136

server [79].

Static cloud offloading techniques first determine which application functionality is energy inten-

sive, and then partition mobile applications accordingly. However, to improve its efficiency, cloud

offloading must also take into account the specific runtime parameters of a given mobile execution,

including the device’s hardware capacities and the network’s type and condition. In other words,

the offloading decisions should be made dynamically at runtime and continuously adjusted as the

mobile execution environment changes. Thus, runtime adaptation is the key for improving the

efficiency of cloud offloading.

This article presents a novel cloud offloading approach that reduces the energy consumption of mo-

bile applications by leveraging automated program transformation and runtime adaptation. First,

a mobile application is transform to make it possible to offload parts of its execution to the server;

then, what gets offloaded is determined at runtime as required by the specifics of the execution

environment. In other words. a mobile application is transformed into a distributed application,

whose local and remote parts are determined at runtime. The flexibility in determining the distri-

bution patterns at runtime is enabled through an elaborate checkpointing mechanism. Depending

on the runtime execution environment, different portions of a program’s state can be checkpointed

and transferred across the network as required by the offloading strategy in place. An adaptive run-

time system efficiently switches between local and remote executions, both to reduce client energy

consumption and to tolerate network volatility.

Applying our approach to third-party, real-world Android applications has reduced their energy

consumption while improving their performance characteristics. Based on these results, the tech-

nical contributions of this article are as follows:

1. Adaptive cloud offloading—a novel energy optimization mechanism for mobile applica-

tions whose operation is driven by the actual runtime parameters.

2. Cloud offloading analysis—a new program analysis technique that safely identifies the ex-

act program state that must be transferred across the network during cloud offloading.

Adaptive Cloud Offloading 137

3. Cloud offloading program transformation—a technique for enhancing a mobile applica-

tion with optional checkpoints that enable the adaptive offloading.

4. Adaptive runtime system—a middleware mechanism that efficiently monitors the environ-

ment to determine optimal offloading strategies at runtime.

5. Empirical evaluation—a set of benchmarks and case studies that demonstrate the effec-

tiveness of adaptive cloud offloading as a powerful mechanism for reducing the energy con-

sumed by real-world, third-party mobile applications.

The rest of this chapter is structured as follows. Section 5.1 motivates this work, while Section 5.2

introduces the technologies used to implement our approach. Section 5.3 describes our approach

and reference implementation. Section 5.4 evaluates our approach with third-party applications.

Section 5.5 discusses advantages and limitations of our approach. Section 5.6 compares our ap-

proach to the existing state of the art. Finally, Section 5.7 presents concluding remarks.

5.1 Motivation and Research Questions

In this section, we first present a motivating example and then discuss the technical problems

addressed in this work.

5.1.1 Motivating Example

Consider Mezzofanti—a third-party, augmented reality application that runs on the Android plat-

form. This application guides travelers visiting foreign countries. When traveling internationally,

language differences often become a major source of inconvenience particularly in the locales

with writing systems unfamiliar to the traveler. Mezzofanti enables the traveler to use a camera

to capture the image of printed text in any language and obtain an automated translation. Mezzo-

fanti uses optical character recognition (OCR) and automatic language translation. Unfortunately,

Adaptive Cloud Offloading 138

recognizing characters optically is a computationally intensive task, known to heavily consume

battery power. Therefore, a foreign visitor using Mezzofanti frequently is likely to quickly run out

of battery power, rendering this electronic translation aid unusable.

To reduce the amount of energy consumed by Mezzofanti, one can execute its OCR functionality

at a remote server, with the mobile device only showing the results computed and returned by

the server as shown in Figure 5.1. To put this energy optimization into effect, one can partition

the application into local and remote parts, communicating with each other across the network.

However, the heterogeneity of mobile hardware and the dissimilarities of execution environments

can quickly render such a static optimization ineffective. For example, the mobile network may

be unavailable or limited, making it impossible for the client and server parts to communicate.

Thus, maximizing energy savings requires that cloud offloading decisions be made dynamically at

runtime. Realizing this dynamic optimization presents a number of technical challenges that we

discuss next.

Camera Image

Extracted Text

OCR

Figure 5.1: Optimizing Mezzofanti with cloud offloading.

5.1.2 Problem Definition and Research Questions

Applying cloud offloading optimizations is hard due to the high heterogeneity of mobile hardware

and the diversity of mobile networks. The hardware setups of mobile devices have different CPU,

memory, and communication capacities. For example, Facebook reports that the mobile version of

their application is accessed from more than 2,500 varieties of mobile devices [40]. At any given

time, a mobile device can be connected to the cloud by means of mobile networks whose quality

and capacities differ by a wide margin (e.g., WiFi, 3G, 4G, etc.). Indeed, as we have discovered

Adaptive Cloud Offloading 139

in a recent study, the mobile network characteristics in place determine how much energy will

be spent to transfer the same amount of data across the network [79]. The net effect of these

dissimilarities is that a mobile application running on different devices connected to the cloud by

different networks consume different amounts of energy.

To optimize energy consumption, cloud offloading mechanisms must be implemented efficiently,

which requires transferring only the needed program state and aligning the offloading operations

with the current runtime conditions. Transferring data over a mobile network also incurs energy

costs for mobile devices. Indeed, transferring large data volumes across the network can quickly

negate the energy saving benefits afforded by offloading. The research literature shows that the av-

erage size of a Java heap commonly exceeds hundreds of MBs [33]. Therefore, one must strive to

transfer only the portion of program state that will be used by an offloaded functionality. Because

it takes more energy to transfer data across limited networks, an optimal offloading strategy needs

to trade the energy potentially saved by moving the execution to the cloud with the energy con-

sumed by transferring the program state to support the offloading. All in all, effective offloading

mechanisms should be efficient and adaptive.

The approach described in this article enables adaptive cloud offloading as a means of reducing

energy consumption of mobile applications by attacking the following fundamental questions:

1. How can one determine optimal program units that can be offloaded to reduce the energy

consumed by mobile devices with dissimilar hardware setups connected by diverse net-

works?

2. How can one reduce the program state’s size to make state transfer a pragmatic energy con-

sumption optimization technique?

3. What kind of adaptation strategies should be put in place to drive offloading operations in

heterogeneous hardware and network environments?

Adaptive Cloud Offloading 140

5.1.3 Solution Overview

To address the first research question, we introduced the Energy Consumption Call Graph (ECG),

a novel program analysis data structure that models how much energy will be consumed under

different offloading scenarios. The nodes of ECG represent program components, encapsulated

units of functionality that can be offloaded to the cloud. Each node is labeled with an approximate

amount of energy consumed by the CPU to execute the functionality of the component and its suc-

cessor components in the graph. The edges represent the communication between the components,

with the labels showing how much energy will be consumed by the mobile device to transmit the

data between the connected components.

To address the second research question, we created a program analysis technique that precisely

computes the program state that needs to be transferred across the network during offloading op-

erations. The technique leverages forward dataflow and side effect analyses to reduce the check-

pointed program state by orders of magnitude, thus rendering state transfer practical for energy

optimization. The computed state is then efficiently checkpointed and synchronized upon the

completion of offloading operations.

To address the third research question, we introduced an adaptive runtime system that drives of-

floading operations dynamically by continuously monitoring the runtime environments and esti-

mating the energy saving benefits of offloading operations. As an example of adaptivity, an of-

floading operation would take place only when a device is connected to the cloud over a WiFi or a

4G, but not a 3G network.

5.2 Technical Background

Our approach combines distributed mobile execution, program analysis, program state synchro-

nization. We describe these technologies in turn next.

Adaptive Cloud Offloading 141

Runtime System

Annotation Validation
State

Selection

Program
Transformation

Deployment

Environment
Monitor

Offloading
Unit Manager

Energy
Estimator

Figure 5.2: Adaptive cloud offloading process.

5.2.1 Distributed Mobile Execution to Save Energy

Distributed mobile execution can save energy by executing a mobile application’s energy inten-

sive functionality in the cloud, without draining the mobile device’s battery. This optimization

is typically implemented as a program partitioning transformation that splits a mobile application

into two parts: client running on a mobile device and server running in the cloud; all the commu-

nication between the parts is conducted via a middleware mechanism such as XML-RPC. Thus,

distributed mobile execution to save energy can be enabled via automated program partitioning—

distributing a centralized program to run across the network using a compiler-based tool transform

a centralized program [155] or migrating execution between different application images at the OS

level [127, 23]. The promise of this technique is demonstrated by the proliferation of competing

approaches in the literature. CloneCloud [20] offloads execution at the thread level, while Cloudlet

[127] offload at the VM level. MAUI [26] offloads through application partitioning at the method

level. In our prior work on cloud offloading [78, 80], we partition applications without destroying

their ability to execute locally. All of these prior cloud offloading techniques share the goal of

reducing the energy consumed by mobile devices.

Adaptive Cloud Offloading 142

5.2.2 Program Analysis

Static program analysis examines a program’s code to infer useful facts that inform a variety of

tasks, including program testing, optimization, and transformation. Points-to analysis constructs

a call graph in object-oriented languages. A control flow graph (CFG) models possible execution

paths of a program based on its conditional and looping constructs. Side-effect free analysis [121]

determines whether a method changes the program’s heap. Dataflow analyses determine which

particular program variable is assigned to which variables [69]. Dataflow analyses operate on

a method’s CFG to calculate reachable variables at each statement. Because dataflow analysis

algorithms are inter-procedural, a whole program must be analyzed to calculate a single variable’s

flow.

We combine dataflow and side-effect analyses to compute the program state that needs to be trans-

ferred across the network during offloading operations. The computed state is then checkpointed

by directly modifying programs at the bytecode level. For both program analysis and transforma-

tion, we used the popular Soot [157] framework.

5.2.3 Program State Synchronization

To allocate objects dynamically, runtime systems of object-oriented languages use the memory

region referred to as the heap. In a distributed environment, multiple heaps or their portions can be

synchronized across nodes. When synchronizing heaps, aliasing—pointing to the same object by

different references—complicates the process, as all the aliases to the synchronized objects must

remain in place. An effective approach to synchronizing linked data structures (e.g., linked lists,

trees, and maps) is to use the copy-restore semantics for remote parameters [154]. This semantics

copies all reachable data to the server and then overwrites the client copy of the parameter with the

server modified data in-place (i.e., while preserving the client-side aliases).

Adaptive Cloud Offloading 143

5.3 Adaptive Cloud Offloading

In this section, we present our approach by giving an overview of the approach and then describe

its major parts in turn.

5.3.1 Approach Overview

Figure 5.2 shows the main workflow of adaptive cloud offloading. The programmer is only re-

sponsible for annotating those program methods that are known to consume energy heavily. The

question of how such methods are identified is orthogonal to our approach: energy profiling can be

used or domain knowledge can be leveraged. The cloud offloading analyzer first checks whether

the annotated methods can be offloaded and then determines which portion of the program’s state

would need to be sent to the server. Based on the computed transferred state information, the code

enhancer inserts the checkpoint (at the bytecode level) that captures the state that is updated on

both the local and remote heaps. The adaptive runtime system continuously monitors the energy

consumed by each offloading candidate component and estimates their energy consumption. Based

on the estimated energy consumption, the runtime offloads those components whose cloud-based

execution would yield energy savings or performance benefits for the given network conditions

rather than executing them locally. The runtime also synchronizes remote and local states in place.

Yet another responsibility of the runtime system is fault tolerance—handling temporary network

disconnection and volatility. In the following discussion, we describe the aforementioned compo-

nents in turn next.

5.3.2 Programming Model

Our programming model is straightforward: the programmer marks the components suspected

of being energy hotspots. To mark hotspot components, we provide a special Java annotation

@OffloadingCandidate. Based on this input, an analysis engine first checks whether the spec-

Adaptive Cloud Offloading 144

public class OCR {
// member fields
...
OCRConfig ocrConf;
SpannableString ssResult;

public void init() { ocrConf = new OCRConfig(); }

@OffloadCandidate
public void imgOCRAndFilter(Image img) {
String ocrResult = process(img);
ssResult = new SpannableString(ocrResult);

}

public SpannableString getParsedResult() {
return ssResult;

}

private String process(Image img) {
// process img using ocrConf

}
}

Figure 5.3: Motivating example revisited.

ified component can be offloaded as well as any of its subcomponents (i.e., successors in the call

graph). The engine also calculates the program state, to be transferred between the remote and local

partitions, that would need to be transferred to offload the execution of both the entire component

or of any of its subcomponents.

To demonstrate our programming model, we revisit the Mezzofanti application first introduced

in Section 5.1.1. Figure 5.3 partially lists class OCR that recognizes the textual representation of

a given image. Method imgOCRAndFilter() extracts text from its Image parameter, storing it

in member variable ssResult. Having identified this methods as energy intensive, the program-

mer annotates it with @OffloadCandidate. To run correctly, ImgOCRAndFilter() needs to have

member field ocrConf properly initialized, an operation performed in method init(). Notice that

ImgOCRAndFilter() accesses ocrConf indirectly by calling method process().

Because method imgOCRAndFilter does not use any client hardware-specific API, it can be of-

floaded. To execute this method at the server, we need an instance of class OCR whose member

Adaptive Cloud Offloading 145

variable ocrConf is initialized. No other member variables are accessed by imgOCRAndFilter, so

that transferring them to the sever would be wasteful. When method imgOCRAndFilter completes

its energy intensive execution on the server, member variable ssResult will be modified, so that

it contains the method’s result. Only this member variable needs to transferred back to the client

and integrated into the client heap.

5.3.3 Cloud Offloading Analysis

To compute the program state that needs to be transferred during future offloading operations, we

analyze target application in a two-step procedure that includes a pre-analysis and a state-selection

analysis, as depicted in Figure 5.4. The pre-analysis step determines whether the marked methods

can be offloaded. Then, the state-selection analysis identifies the state that needs to be transferred

between the client and the server and vice versa.

Component 1 Component N

Pre-Analysis

Whole
Program

Offloading
Candidate 1

Offloading
Candidate N

Adaptive Cloud Offloading Analysis
(Forward Data Flow Analysis +

Side Effect Analysis)

Figure 5.4: Program analysis for adaptive cloud offloading.

Our validation algorithm takes as input a call graph and the client-only API information. Only

the methods that do not contain any client-only APIs (e.g., those controlling the GPS, camera,

microphone, etc.) can be offloaded. This check simply traverses the program’s call graph and

Adaptive Cloud Offloading 146

checks the reachable statements for the presence of the known libraries that control the mobile

device’s hardware components (e.g., android.hardware.Camera.* controlling the camera on

Android-based devices). This simple heuristic turned out to be quite effective in identifying the

methods that cannot be offloaded.

Energy Consumption Call Graph

Once offloading candidates are identified, an energy consumption call graph (ECG) is constructed.

As a specific example, component A of Figure 5.5 consumes approximately 100 joules during a

typical execution, thus becoming a viable candidate to be offloaded to the cloud. Because compo-

nent A calls components C and B, which in turn calls components D and E, its energy consumption

is the sum of the energy consumed by all the successor components in the graph. We assume

that the energy spent on executing the offloaded functionality in the cloud is free, as it does not

exhaust any battery power of the mobile device. If component A is offloaded, then transmitting the

necessary data to it across the network enabling it to execute remotely would consume between

30 and 150 Joules depending on the type of the network available to transmit the data. In other

words, under some network conditions, offloaded execution will end up using more energy than

executing component A on the mobile device. As a specific example of using the ECG above, when

operating over a 3G network, components C and D can be offloaded, while when operating over a

4G network, only component E can be offloaded. Finally, when operating over WiFi, components

A or B can be offloaded. Because the type of network available is only known at runtime, the of-

floading decisions must be dynamic to be able to optimize the amount of consumed energy under

all runtime conditions.

State-Selection Analysis

Next, the state-selection analysis identifies the state that needs to be transmitted across nodes. The

purpose of this analysis is to reduce the size of the transferred program state, lest the transfer costs

negate the energy savings afforded by offloading. Figure 5.6 shows our state selection algorithm

Adaptive Cloud Offloading 147

30 J

100 J

70 J

40 J30 J

10 – 50 J20 –
 1

00 J

5 – 25 J10 –
 5

0 J

A

B

D

C

E

3
0

 –
 1

5
0

 J

Figure 5.5: Energy consumption call graph.

that identifies those member variables that have to be passed to an offloaded method and back to the

mobile device. The algorithm combines forward dataflow and side-effect analyses. The forward

data-flow analysis keeps track of local variables of the offloaded methods by calculating the entry

and exit of each analyzed statement in the control-flow graph. The analysis examines assignment

and invocation statements to determine whether local variables are changed. For each assignment

statement, the following cases are considered:

• If the left value is a class member variable, it is marked as required for the client.

• If the right value is a class member variable, it is marked as required for the remote server.

Member variables read directly are marked as required for the remote server. However, member

variables aliased via local variables are analyzed transitively. To that end, a special variable rela-

tionship graph is consulted to identify the member variables reachable from the local variables. In

addition, because our forward dataflow analysis is inter-procedural analysis, it is applied to all the

methods in the call graph reachable from the offloaded method.

In addition to the assignment statements, invocation statements are considered to determine the

required state. Invocation statements can be categorized as follows:

Adaptive Cloud Offloading 148

SelectState(method) {
readV alues, writtenV alues← ∅

allStmts← getAllStmts(method);
objGraph← constructObjectGraph();

FOREACH stmt ∈ allStmts DO
IF stmt is an assignment statement THEN
lV alue← getLeftOp(stmt);

IF lV alue is a member variable THEN
writtenV alues.add(lV alue);

ELSE IF lV alue is a transitional variable THEN
root← variableGraph.getRoot(lV alue);
variableGraph.add(root, lV alue);

END IF

IF rV alue is a member variable AND
variableGraph contains rV alue THEN
readV alues.add(rV alue);

END IF

ELSE IF stmt is an invocation statement THEN
target← stmt.getInvocationTarget();
m← target.getMethod();

/* recursive call */
values← SelectState(m);

END IF
END FOREACH

Figure 5.6: Algorithm for state selection.

• If an invocation is on a member variable, it is marked as needed for the remote server.

• If an invocation on a member variable changes any member variables, the changed variables

are marked as need for both the client and the remote server (i.e., need to be transfered in

both directions).

If an invocation is on indirectly accessed member variables, the algorithm determines the root

member variable by traversing the variable’s relationship graph. To determine whether the invoca-

tion target changes the heap, we employ a side-effect free analysis [121]. If the invocation changes

the heap, we mark the invocation’s receiver object as needed for both the client and the remote

Adaptive Cloud Offloading 149

server. For example, if an invocation target method is java.utils.HashMap.put(), we ana-

lyze it for the absence of side-effects. Because method put() changes the heap, we determine that

the entire HashMap member field needs to be transfered in both directions.

The analysis is conservative—it may mark a variable as needed for the server, even though at

runtime the variable would not be used. In other words, the algorithm can produce false positives,

but never false negatives. Thus, the algorithm is sound. Nevertheless, a high level of false positives

can hinder the adaptive runtime system’s effectiveness. When predicting whether an offloading

would be beneficial, the runtime system uses the analysis’s results.

5.3.4 Enhancing Bytecode to Enable Offloading

Based on the selected program state, the potentially offloaded methods are then transformed to

make it possible to run them on the server, with the results transferred back to the mobile device. To

that end, the bytecode enhancer transforms the offloaded methods into cloud and server versions.

Specifically, the code to checkpoint and restore the necessary program state is inserted at the entry

and exit points of the offloaded methods, respectively. Figure 5.7 shows how the original code of a

centralized mobile application is transformed. The inserted checkpoints are executed conditionally,

as driven by the runtime system, which transfers the checkpointed data between the mobile device

and the server and vice versa.

5.3.5 Adaptive Runtime System

Figure 5.8 shows the design of the runtime system that comprises three main components: (1) en-

ergy consumption estimation, (2) cloud offloading steering for adaptation, and (3) cloud offloading

engine. In the following discussion, we describe each process in detail.

Adaptive Cloud Offloading 150

public class A {
 public Object foo() {

//Original code

 }

}

public class B {
 public Object goo() {

//Original code

 }

}

OffloadingManager.addObject(…);

OffloadingManager.execute(…);

OffloadingManager.migrate(…);

At entry

At exit

OffloadingManager.addObject(…);

OffloadingManager.execute(…);

OffloadingManager.migrate(…);

At entry

At exit

Offloading Candidate 1

Offloading Candidate 2

Original Code Inserted Code

Figure 5.7: An example of program transformation.

Energy Consumption Estimation

The energy consumption estimation module computes the future energy consumption by analyzing

the collected runtime execution environment and then makes a cloud offloading decision when the

current cloud offloading is beneficial. First, to compute the amount of energy consumed by cloud

offloading, we take system parameters and measured runtime parameters as follows:

E = Ecpu + Enet = (Pcpu × Tcpu + Pnet × Tnet)

= {Σ(Cact
cpuf
× T (u+s)

cpu) + (Cact
net × T actnet) + (Cidle

net × T idlenet)} × V

where Cact
cpuf

is the electric current of the CPU at a particular clock speed. Modern CPUs feature

speed-step, a facility that allows the clock speed of a processor to be dynamically changed by

the operating system, with different levels of power consumed at each clock speed. For example,

Samsung Galaxy S III’s AP provides five steps, ranging from 302.4MHz to 1512MHz, and the

required electric current at each speed ranges from 55mA to 577mA. T ucpu and T scpu are user and

Adaptive Cloud Offloading 151

Adaptive Execution Offloading Runtime System

Energy Consumption Estimation

Read CPU Frequency

Process Remote Call

Read CPU Frequency

Read CPU Usage and
Network Info.

Compute Total Energy
Consumption

Offloading Engine

Start Execution Offloading

Store Current State

Restore Local State

Wait for Result

Cloud Offloading Adaptation

New Offloading? Offloading
Log Data

Calculate Energy Consumption

Estimated Energy
Consumption

Calculate Check Point Size &
Measure Network Delay

No

2. Start Energy Measurement

3
. S

ta
rt

 R
em

o
te

 C
a

ll
P

ro
ce

ss

4. Compute Total Energy Consumption

1. Request Execution Offloading

Select an Optimal Offloading

Figure 5.8: Process details of adaptive cloud offloading.

system times taken by the offloading operation, and they are obtained by consulting the statistics

provided by the operating system (e.g., /proc/[pid]/stat). V is current voltage, which is

also obtained from the operating system (/sys/class/..../voltage now). Cact
net and Cidle

net

are the electric current required by the network processor during the active and idle phases, re-

spectively. For example, the active/idle electric current for Samsung Galaxy S III is 96mA/0.3mA

during WiFi communication, and 250mA/3.4mA during mobile communication (e.g., 4G). Finally,

T actnet and T idlenet are active and idle time periods during the cloud offloading operation, measured at

runtime. These device- and execution-specific values are used to measure the amount of energy

consumed during each offloading optimization.

Another important responsibility of the energy estimation module is to predict future energy con-

sumption. To predict the energy that is likely to be consumed during an offloading optimization,

it correlates the previously measured energy consumption and the current execution environment.

Having obtained the current values of network delay, network connection type, CPU frequency,

and voltage, the future energy consumption is computed as follows:

Adaptive Cloud Offloading 152

Eprd = {Eavg
cpu + (Cact

net × T
prd act
net) + (Cidle

net × T
prd idle
net)} × V

where Eprd is the predicted future energy consumption, Eavg
cpu is the average energy consumption

of the given remote communication, and T prd actnet is the predicted communication time, which are

computed by using the transferred data size and delay, respectively. To avoid a delay spike, the

current delay value is then recomputed by weighting the most recently obtained value (i.e., delay =

delay × α + delay × (1 − α). α was set to 0.3 in our reference implementation). The computed

energy consumption value is used as a parameter for selecting the energy optimization strategy for

a given execution environment.

Cloud Offloading Steering

The cloud offloading steering module decides whether a given method shoudl be offloaded by

comparing offloading candidates’ energy consumption and execution time. Figure 5.9 shows the

procedure for selecting offloading units at runtime. To select a unit to offload, the module uses

the future energy consumption and the future execution time predicted by analyzing the collected

runtime execution values and cached prior executions. Then, the module selects an offloading unit

that would be expected to consume the lowest amount of energy.

In some cases, offloading energy-intensive functionality can both increase performance and save

energy. However, in other cases, cloud offloading can decrease performance, but save energy

consumption, and vice versa. The runtime system drives offloading operations by considering both

performance improvement and energy savings. To that end, we introduce cloud offloading index

(COI) as follows:

COI =
OET

ET
× α +

OEC

EC
× (1− α)

where EC and OEC are original and optimized energy consumption, respectively; ET and OET

are original and optimized execution times, respectively. If ET/OET is less than 1, the offloading

optimization will increase the application’s performance. Similarly, ifEC/OEC is less than 1, the

Adaptive Cloud Offloading 153

/∗∗ Find a best candidate ∗/
FOREACH candidate ∈ ∀Candidates DO
Ep ← predictEnergy(candidate);
Tp ← predictExecTime(candidate);
coi← getCOI(Ep, Tp, α)

IF coi is the smallest among all candidates THEN
bestCandidate← candidate END IF

END FOREACH

/∗∗ Offload the selected offloading candidate ∗/
IF current execution path is bestCandidate THEN
newState← offload(bestCandidate, state);
stateMigration(newState, state);
Em ← getConsumedEnergy(bestCandidate);
updateHistory(Em, bestCandidate);

CASE Succeed
result← executionCompleted()

CASE Fail
result← executionFailed()

return result
END IF

Figure 5.9: The procedure to select an offloading unit.

offloading optimization will reduce the application’s energy consumption. The programmer can

use the α parameter (ranging between 0 and 1) to express whether the optimization should favor

performance or energy. To consider performance for offloading operations, the α parameter should

be greater than 0. When α is exactly 0.5, the focus is on both increasing performance and reducing

energy consumption. Finally, if the computed COI value is smaller than 1, which means remote

execution is more beneficial than local execution, the runtime system executes the marked energy

hotspot remotely.

Additional Optimization via Flexible Configurability

To save even more energy, one can tailor cloud offloading for specific applications and users, so

that the runtime system can take these contextual details into account when dynamically adapting

its execution patterns. To that end, we enable advanced users to configure the runtime system

Adaptive Cloud Offloading 154

to specify how state-of-the-art, fine-grained optimization strategies can be applied to offloading

network communication.

hotspot=[methodName]

host=[url]+

strategy=[name]

weight=[0...1]

A configuration file contains a set of key/value pairs, with the keys of hotspot, host, strategy,

and weight. The hotspot key points to the method identified as an energy hotspot. The host

key points to the locations of the available offloading servers. The strategy key points to well-

known energy optimization techniques, including data compression, reducing image quality, and

redirecting to an easier-to-reach remote server. Finally, the weight key points to the W value of

COI to express whether the optimization should favor performance or energy.

Next, we give specific examples of optimization strategies—1) data compression and 2) redirect-

ing to an easier-to-reach remote server. Data compression can reduce network transfer, but will

be more computationally intensive, thus requiring additional CPU processing. Transmitting raw

data increases network transfer, but requires less CPU processing. Which of the strategies will

consume less energy depends on the runtime conditions in place. Another optimization technique

is redirection. This strategy iterates through different endpoints of a distributed execution in the

case of experiencing poor network conditions. For instance, when experiencing a network con-

gestion at a.com/foo, alt.a.com/foo can be invoked instead. This strategy, thus, will find

an optimal execution path, as operating over a congested network is likely to require additional

energy resources. In addition to the aforementioned general optimization strategies, one can also

apply application-specific optimizations, tailored for particular application scenarios.

Efficient State Synchronization

The cloud offloading engine manages remote connections between the offload server and the mo-

bile client, synchronizes the program state, and provides resilience in the presence of failure due

to network volatility. The stored program state is synchronized by means of copy-restore, an

Adaptive Cloud Offloading 155

advanced semantics introduced into remote method call middleware with the goal of passing as

parameters liked data structures (e.g., linked lists, trees, and maps) [154]. Copy-restore efficiently

copies all reachable state to the server and then overwrites the client’s state with the server modified

data in-place. To adapt to operating over cellular networks with limited bandwidth, we modified

the original copy-restore implementation to use sparse arrays, which encode null values space

efficiently. Our implementation uses null values to mark the portion of the transferred state that

has not been mutated during the offloaded operations.

Figure 5.10 demonstrates how the runtime system synchronizes the checkpointed state. Graph (a)

depicts the mobile device’s state to be transferred to the server. The runtime system transfers only

the nodes that the analysis identified as being used by the server (nodes 2, 3, 4, and 7). Graph

(b) depicts the server’s state before it is synchronized with the transferred state. Nodes 2, 4, and

5 are updated with new values; node 3 is reassigned to point to node 7. Graph (c) shows the

synchronized server state. In this example, the offloaded server execution assigns a new instance,

node 8 to node 3, modifies nodes 3 and 5, and assigns the null value to node 6, with Graph (d)

depicting the results. The mutated state is then transferred to the client and synchronized with its

state depicted in Graph (e). Specifically, node 6 is removed, node 3 is reassigned to point to node

8, and nodes 3 and 5 are overwritten with new values. Graph (f) shows the client state after the

synchronization.

Handling Failure during Offloading

To handle network outages, the inserted offloading functionality is surrounded by a try-catch

block that catches and handles network-related exceptions. They are handled by restarting the local

computation from the latest checkpoint, thus aborting the current offloading operation without

perturbing the application’s execution. In other words, network volatility disables the intended

optimization of cloud offloading, but it does not render the application unusable, as is the case

with the cloud offloading mechanisms that lack such a checkpoint-and-restart functionality.

Adaptive Cloud Offloading 156

1

2 3 (W)

4 5 (W) 7

1

2 (U) 3 (U)

4 (U) 5 (U) 6

1

2 3 (W)

4 5 (W) 7 8 (W)6 (W)7 (U)

1

2 3

4 5 6

1

2 (R) 3 (R)

4 (R) 5 (R) 6 7 (R)

1.2 1.2.4 1.2.5 1.3 1.3.7

8 (W)

1. Send State to Server

2. S
yn

ch
ro

nize
 St

at
e

3. Execution

1

2 3

4 5 6 7

4. S
end St

at
e to

 C
lie

nt

5. Synchronize State

1.2
.5

1.2
.6

1.3
1.3

.8

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Procedure to synchronize program state.

5.4 Evaluation

We have evaluated the effectiveness of our approach in reducing energy consumption and improv-

ing performance by applying it to four third-party mobile applications running on the Android

platform. We have also evaluated our approach through a series of micro benchmarks and a larger

Adaptive Cloud Offloading 157

case study. The evaluation has shown that our overall approach can effectively reduce the amount

of consumed energy for well-engineered applications, with the introduced program transforma-

tions and runtime execution never causing the enhanced applications to exceed their original levels

of energy consumption. The results also show that our runtime system can efficiently collect run-

time parameters and predict advantageous offloading scenarios without imposing unreasonable

performance and energy overheads.

5.4.1 Micro Benchmark

The purpose of this micro benchmark is to understand the overhead imposed by the runtime system,

whose responsibilities include monitoring the relevant fluctuations in the environment, estimating

potential energy savings due to the possible offloading steps, and synchronizing heaps during the

offloading.

Experimental Setup

The experimental setup includes a Motorola Droid (600MHz CPU, 256MB RAM, 802.11g) (a low-

end mobile device) and a Samsung Galaxy III (1.5GHz dual-core CPU, 2GB RAM, 802.11n) (a

high-end mobile device), and desktop (3.0GHz quad-core CPU, 8GB RAM) as the offloaded server.

The mobile device has communicated with the server through a WiFi. For the WiFi connection, we

have experimented with two emulated network conditions that have the following respective round

trip time (RTT) and bandwidth characteristics: 20ms and 50Mbps, typical for a WiFi network and

50ms and 1Mbps, typical for a mobile network. Table 5.1 shows the energy profiles, which are

used to parameterize the runtime system.

Overhead

In this benchmark, we compared the total execution time and energy consumption of the baseline

versions of the benchmarks with that of in the presence of the adaptive runtime system. The

Adaptive Cloud Offloading 158

Table 5.1: Manufacturer provided energy profiles

CPU

1512.0MHz: 577mA
WiFi

96mA
1209.6MHz: 408mA 0.3mA
907.2MHz: 249mA

Mobile
250mA

604.8MHz: 148mA 3.4mA
302.4MHz: 55mA

first graph of Figure 5.11 shows execution time and energy consumption. As one can see, both

overheads are quite insignificant. In particular, the performance overhead never exceeds 100ms

and remains constant for all the measured data transfer sizes, and the energy consumption overhead

never exceeds 50mJ, which is insignificant as compared to a typical total energy budget.

0

200

400

600

800

1000

1200

1400

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

W/O Adaptation W Adaptation

(a) Performance overhead.

0

100

200

300

400

500

600

700

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
m

J)

W/O Adaptation W Adaptation

(b) Energy consumption overhead.

Figure 5.11: Overhead comparison.

Energy Consumption Estimation

Then, we evaluated how accurately the runtime system can predict how much energy will be con-

sumed in a given time interval. Figure 5.12 compares the energy consumption predicted by the

runtime system and that estimated by our model based on the actual resource usage. The aver-

age error is 10.6% and standard deviation is 21.3%. When considering only 90% data removing

outliers, the average error is 8.5% and standard deviation is 6.8%. These results indicate that

the runtime system can predict the future energy consumption accurately, with the discrepancies

averaging 6-7%.

Adaptive Cloud Offloading 159

0

100

200

300

400

500

600

700

800

900

1000

En
er

gy
 C

o
n

su
m

p
ti

o
n

(m

J)

Predicted Energy
Consumption
Measured Energy
Consumption

High-end Network Low-end Network

Figure 5.12: Energy consumption estimation.

5.4.2 Case Study

To ensure that our approach is applicable to real-world mobile applications, we chose experimental

subjects from the list of open source projects hosted by Google Code and SourceForge. In the

following discussion, we discuss how our approach improved the energy efficiency of real-world

mobile applications.

Subject Applications

First, we analyzed mobile application domains to identify those ones that can benefit from cloud

offloading. Based on this analysis, we found the following domains being most applicable for this

optimization:

• Games containing artificial intelligence engines (e.g., Chess, Sudoku, Go, etc.)

• Algorithms involving heavy computation on large data sets (e.g., graph search, shortest path,

backtracking, etc.)

• Image processing (e.g., optical character recognition, face detection, object recognition, etc.)

• Security operations (e.g., taint analysis, virus scans, etc.)

Adaptive Cloud Offloading 160

To show that our approach is generally applicable, we selected four computation intensive appli-

cations from different domains: (1) Pocket chess1 is a mobile chess game, whose AI engine con-

tained in SimpleEngine.go() is offloaded. (2) The N-queens problem solver offloads an algo-

rithm contained in Solver.enumerate(). (3) Mezzofanti2—used as our motivating example—

offloads its OCR functionality, contained in OCR.ImgOCRAndFilter(). (4) JJIL 3 detects faces

from a picture and offloads its face recognition functionality, contained in DetectHaarParam.push().

Experimental Results

In the following discussion, we show how our approach proved effective in saving the energy con-

sumed by and reducing the execution time of subject applications. First, we applied our approach

to the Pocket Chess application. For this benchmark, we created a scenario of randomly selecting

and moving a chess piece (i.e., emulating the actions of a human player) and the AI engine comput-

ing and making its own move. Figure 5.13 shows the amount of energy consumed by the high-end

mobile device connected to two different WiFi networks. The optimized version of the subject

application consumed less energy than its original version. It offloads to the cloud the heavy CPU

processing required to calculate the next move, and transfer back only the new position for the

piece to move. As the game proceeds, the optimized version exhibits a constant rate of energy

consumption, while the original version consumes an increasing amount of energy as the required

AI processing intensifies. Based on these results, one may benefit from applying our approach

to any game application (e.g., Sudoku, Go, etc.) that comes with a computationally intensive AI

engine.

Then, we applied our approach to the N-Queens problem solver and measured the amount of en-

ergy consumed by two different mobile devices. Figure 5.14 show the amount of energy consumed.

In particular, the original application consumes more energy when executing on the low-end mo-

bile device than executing on the high-end mobile device, while the optimized version executing

1http://code.google.com/p/pocket-chess-for-android/
2http://code.google.com/p/mezzofanti/
3http://code.google.com/p/jjil/

http://code.google.com/p/pocket-chess-for-android/
http://code.google.com/p/mezzofanti/
http://code.google.com/p/jjil/

Adaptive Cloud Offloading 161

0

1000

2000

3000

4000

5000

6000

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
J)

Local

Cloud Offloading

High-end Network Low-end Network

Figure 5.13: Chess application.

115 37 188 36

553

38

989

35

3443

36

5860

37
0

1000

2000

3000

4000

5000

6000

7000

Local Cloud Offloading Local Cloud Offloading

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
m

J)

High-end Device Low-end Device

10 11 12 Queens

10 11 12 Queens

Figure 5.14: N-Queens solver.

on both mobile devices only consumes 0.6% - 50% of the amount of energy consumed by the

original application. Furthermore, as the number of queens increases, the original version con-

sumes an increasing amount of energy, while the optimized version consumes energy at a constant

rate. These experiments indicate that cloud offloading can be benificial for such computationally

intensive applications.

To evaluate the adaptive capabilities of our approach, we evaluated its effectiveness in optimizing

the image processing applications (Mezzofanti and JJIL), running on two different mobile de-

vices in two different network conditions. For Mezzofanti, the benchmark measured the energy

consumed and time taken by examining one image file containing 200 characters; for JJIL, the

benchmark measured the same parameters when examining a single image file for the presence of

human faces. The network conditions (delay/bandwidth) were emulated for the high-end network

as 20ms/50Mbps (favorable conditions) and for the low-end network as 50ms/1Mbps (poor con-

ditions). For Mezzofanti, Figure 5.15’s left graph shows the amount of energy consumed by the

original and optimized versions, while Figure 5.15’s right graph shows the total execution time. For

the majority of measured setups, the optimized version consumed less energy than their original

local version, while also outperforming the original local version in terms of total execution time.

However, when executed on the high-end device connected to the low-end network, the optimized

version took more time than the local version, while still consuming less energy.

For JJIL, we evaluated our approach’s adaptive capabilities by studying the impact of changes in

network conditions on the energy savings and execution time improvements afforded by offloading.

Adaptive Cloud Offloading 162

24.8

4.6

10.4

35.7

6.7

13.6

0

5

10

15

20

25

30

35

40

Local Cloud Offloading
(High-end
Network)

Cloud Offloading
(Low-end
Network)

Local Cloud Offloading
(High-end
Network)

Cloud Offloading
(Low-end
Network)

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

High-end Device Low-end Device

15.4

5.9

20.2

43.6

13.3

25.4

0

5

10

15

20

25

30

35

40

45

50

Local Cloud Offloading
(High-end
Network)

Cloud Offloading
(Low-end
Network)

Local Cloud Offloading
(High-end
Network)

Cloud Offloading
(Low-end
Network)

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

) High-end Device Low-end Device

Figure 5.15: Energy consumption and execution time of Mezzofanti (OCR application).

To that end, we compared the respective effectiveness of the plain and adaptive offloading mech-

anisms. The plain mechanism offloads methods marked with @OffloadCandidate on every

invocation, without considering runtime conditions; the adaptive mechanism determines whether

such methods should be offloaded based on the current runtime conditions.

The network conditions (delay/bandwidth) were emulated for the high-end network as 20ms/50Mbps

(favorable conditions) and for the low-end network as 50ms/1Mbps (poor conditions). As shown

in Figure 5.16, for the favorable conditions, both plain and adaptive offloading mechanisms per-

formed equally effectively on both high- and low-end devices. However, for the poor conditions,

the plain offloading mechanism running on the high-end device consumed more energy and took

longer than the original version.

For the poor conditions, the adaptive mechanism on the high-end device chose not to offload,

executing locally. Finally, for the poor conditions, the adaptive mechanism on the low-end device

consumed less energy, but took longer to run than did the original local version. Our optimization

approach is amenable to additional steering from the programmer. For example, the programmer

can specify if the runtime should favor execution performance over energy efficiency. To that end,

our approach features a simple configuration mechanism described in Section 5.3.

Adaptive Cloud Offloading 163

7.28

5.6

8.2
7.47

17.3

10.6

17.1

0

2

4

6

8

10

12

14

16

18

20

Local Cloud
Offloading
(High-end
Network)

Plain Offloading
(Low-end
Network)

Adaptive
Offloading
(Low-end
Network)

Local Cloud
Offloading
(High-end
Network)

Cloud
Offloading
(Low-end
Network)

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

High-end Device Low-end Device

Low-end Network

High-end
Network

Low-end
Network

High-end
 Network

2.9
4.5

14.2

3.4

16.6

12.4

24.1

0

5

10

15

20

25

30

Local Cloud
Offloading
(High-end
Network)

Plain Offloading
(Low-end
Network)

Adaptive
Offloading
(Low-end
Network)

Local Cloud
Offloading
(High-end
Network)

Cloud
Offloading
(Low-end
Network)

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

High-end Device Low-end Device

Low-end Network

High-end
Network

Low-end
Network

High-end
Network

Figure 5.16: Energy consumption and execution time of JJIL (face recognition application).

5.5 Discussion

In this section, we discuss advantages and limitations of our approach.

5.5.1 Advantages

Our approach works with the standard, unmodified hardware/software stack; it employs bytecode

engineering to transform programs and a lightweight runtime system to dynamically steer and

adapt offloading operations. Our approach makes it possible to keep the maintained version of

the mobile application’s source code intact, as only the bytecode version is transformed. Cloud

offloading requires a minimal programming effort, limited to marking methods as energy hotspots.

Our approach makes offloading decisions at runtime by monitoring the execution environment,

thus discovering optimal offloading strategies. Finally, the offloading transformations do not pre-

clude the mobile application from executing locally in the case of the network becoming discon-

nected.

5.5.2 Limitations

Despite its benefits, our approach is not applicable to all applications. Some mobile applications

are written in a monolithic style, in which functionality cross-cuts through traditional modulariza-

tion program constructs such as classes and methods. Without clear offloading program points, our

Adaptive Cloud Offloading 164

approach, which operates at the method boundary, would be inapplicable. Another limitation of

our approach is that we do not take multiple concurrent threads into consideration when determin-

ing whether a method can benefit from offloading. If an offloaded method can be simultaneously

invoked by multiple concurrent threads, our approach currently does not ensure that the program’s

state remains consistent. However, extending our program analysis heuristics to work with mul-

tiple threads is a matter of engineering. Similarly, our runtime can be easily enhanced to become

thread-aware. We plan to investigate how our approach can support concurrency as a future work

direction.

5.6 Related Work

In the following discussion, we compare our approach with distributed mobile execution, multi-

ple representative offloading mechanisms, and then discuss approaches to optimizing energy effi-

ciency.

5.6.1 Distributed Mobile Execution

The approach presented in this article adopts many of the techniques above to automatically trans-

form mobile applications without any changes to their source code and to synchronize program

states between partitions. The approaches that can distribute a program to run across the network

include automated partitioning, replication, and migration. Automated program partitioning uses

a compiler-based tool to introduce distribution to a centralized program [155]. To that end, the

tool changes the application’s structure (e.g., introducing proxies) and inserts middleware calls.

As an alternative to partitioning, a centralized program can be replicated on remote nodes, with the

replicas’ states synchronized according to a given consistency protocol [65, 72]. The advantage of

replication is that the application’s structure does not need to change, but synchronizing replicas

may cause high network traffic. Finally, migration leverages mobile computing to move execution

between remote nodes. Unlike replication, migration moves around a single copy of the executed

Adaptive Cloud Offloading 165

application’s image. Because efficient migration requires runtime system support, a customized

runtime environment must be provided for each participating node. Applications, however, can

migrate without any changes to their source code [127, 23].

5.6.2 Cloud Offloading

Spectra [43] monitors resource usage and availability to determine whether the mobile applica-

tion’s energy consumption can be optimized through cloud offloading. To that end, Spectra re-

quires that the programmer manually partition the application to create a proxy for calling remote

functions. By contrast, our approach does not introduce remote proxies and modifies the program

automatically through bytecode engineering.

Slingshot [137] leverages state replication, so that the replicas can be deployed on remote servers

to increase performance. Although Slingshot shares similarity with our approach by relying on

synchronizing distributed state, our approach does not require any changes to the runtime system

and is portable across any JVMs. Furthermore, while Slingshot optimizes the offloading efficiency

by locating the closest surrogate server, our approach relies on program analysis to reduce the size

of the program’s state that needs to be transferred across the network.

CloneCloud [20] leverages thread-level offloading to optimize mobile execution. Cloudlet [127]

migrates the VM. These approaches require a custom runtime system. By contrast, our approach

does not change the runtime system but rewrites the program instead to introduce fault-tolreant

offloading. As a result, our approach works with standard systems and runtime environments and

is easily portable across platforms.

MAUI [26] offloads resource-intensive functionality to remote servers through program partition-

ing. While MAUI, similarly to our approach, relies on the programmer annotating the source code

to which methods to offload, XRay [112] partitions applications automatically.

ThinkAir [75] offloads energy intensive methods to the cloud, so that the resulting cloud-based

execution can be scaled up by running the offloaded methods in parallel on dynamically allocated

Adaptive Cloud Offloading 166

VMs. COMET [52] offloads computation at the thread level by means of a distributed transaction

memory and VM synchronization techniques.

5.6.3 Optimizing Energy Consumption

In addition to cloud offloading mechanisms, reducing the energy consumed by mobile applications

has been the focus of multiple complimentary research efforts at the level of operating systems

(e.g., energy-efficient CPU scheduling [169], disk power management [163], network protocols

[168]). While much research has focused on system-level solutions, programming-level solutions

(e.g., energy saving algorithms [103], design patterns for energy efficient computing [89], software

models for energy efficient software [151], and programming languages for energy efficiency [24])

have also been advocated in the literature.

While most of these efforts have focused on one particular system layer (i.e., mainly the network),

cross-layer approaches control energy consumption by leveraging the information provided by

multiple system layers [44, 99]. We see our approach as lying on the intersection of system- and

program-level solutions. Our system architecture and programming model enable the creation of

powerful system-level cloud offloading optimization by providing convenient software abstractions

exposed as a library.

5.7 Conclusions

In this section, we presented adaptive cloud offloading, a technique for optimizing the energy

consumption of mobile applications. To maximize efficiency, adaptive offloaded determines the

functionality to offload at runtime, via automated program transformation as well as efficient run-

time monitoring and adaptation. Most offloading schemes fail to consider the energy required for

network transfer, which can sometimes negate any energy savings gained from offloading. Because

mobile network conditions vary, the decision whether or not offloading will save energy must oc-

Adaptive Cloud Offloading 167

cur dynamically at runtime and requires an immediate cost-benefit analysis to determine whether

the energy saved by reducing local processing exceeds the overhead required for distributed pro-

cessing. This analysis is far from trivial due to mobile hardware heterogeneity and execution

environment volatility. The presented approach reduces the energy consumed by mobile applica-

tions without changing their source code. We have evaluated our approach by reducing the energy

consumed by micro benchmarks and third-party applications in different execution environments.

These results indicate that our approach represents a promising direction in optimizing the energy

efficiency of mobile applications.

Chapter 6

Configurable and Adaptive Middleware for

Energy-Efficient Mobile Computing

Energy efficiency is rapidly becoming a key software design consideration [103], as mobile devices

are steadily replacing desktop computers as the dominant computing platform. The increasingly

feature-rich nature of mobile applications renders battery capacities a key limiting factor in the

design of mobile applications [113]. To reduce the energy consumed by modern mobile applica-

tions, system designers must consider all the constituent parts of a distributed mobile execution.

Although communication middleware has become an essential component of modern mobile soft-

ware, existing communication mainstream middleware mechanisms were designed with the pri-

mary focus of facilitating distributed communication and improving performance rather than on

reducing energy consumption.

Network communication commonly constitutes one of the largest sources of energy consumption

in mobile applications. According to a recent study, network communication consumes between

10% and 50% of the total energy budget of a typical mobile application [111]. Many mobile ap-

plications are designed with the assumption that they will be operated over some mobile networks

with a certain fixed bandwidth/latency ratio. However, this assumption will not hold if an applica-

tion is operated across a variety of mobile networks (WiFi, 3G, and 4G), whose conditions (e.g.,

bandwidth, delay, packet loss, etc) often fluctuate continuously. As an example, during the same

execution, the application can be accessing a remote service using either the 3G network (low

bandwidth, long delay) or the WiFi (high bandwidth, short delay). Furthermore, the conditions of

either network can be fluctuating at runtime. Networks and their conditions can significantly affect

how much energy is consumed by a mobile application.

168

Energy-Aware Dynamic Adaptive Middleware 169

Since communication middleware defines the patterns through which a distributed application

transmits data across the network, the choice of middleware can heavily impact the amount of

energy consumed by mobile applications. However, the execution patterns in mainstream middle-

ware mechanisms are fixed; they cannot be flexibly adapted to reduce energy consumption when

mobile applications switch between mobile networks with different conditions [96]. Furthermore,

to maximize energy savings, the middleware execution patterns must be individually tailored for

specific applications, so as to take into consideration their application logic. To support that kind

of customization, middleware must be equipped with appropriate programming abstractions that

can express how energy optimization strategies should be triggered and parameterized.

In this research, we introduce a new communication middleware architecture, which equips mo-

bile application developers with pragmatic tools and methodologies to engineer energy-efficient

distributed mobile software. Our middleware architecture employs dynamic, adaptive optimiza-

tion as a mechanism to minimize the amount of energy consumed by mobile applications to per-

form distributed interactions. We call our novel middleware mechanism e-ADAM (energy-Aware

Dynamic Adaptive Middleware). e-ADAM enables the programmer to express a rich set of mid-

dleware energy optimizations and the runtime conditions under which these optimizations should

be applied. The e-ADAM runtime system then dynamically applies the expressed optimizations as

specified for the network conditions in place.

For the thoughtful system designer, e-ADAM opens up new energy optimization opportunities

at the cost of slightly increasing the programming effort: specialized optimization strategies are

crafted for individual runtime conditions. However, the e-ADAM continuous dynamic adaptation

makes it possible to reach the middleware energy efficiency levels that cannot be achieved via

automatic optimizations performed outside of the programmer’s purview.

Our experiments have demonstrated the effectiveness of the e-ADAM approach to reduce the

amount of energy consumed by a set of benchmarks and third-party Android applications exe-

cuted across volatile mobile networks. By presenting e-ADAM, this research makes the following

technical contributions:

Energy-Aware Dynamic Adaptive Middleware 170

0

100

200

300

400

500

600

700

800

900

1000

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
J)

Galaxy III (Uncomp)

Droid (Uncomp)

Galaxy III (Comp)

Droid (Comp)

Thresholds

(a) Mobile network.

0

100

200

300

400

500

600

700

800

900

1000

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
J)

Galaxy III (Uncomp)

Droid (Uncomp)

Galaxy III (Comp)

Droid (Comp)
Thresholds

(b) WiFi network.

Figure 6.1: Energy consumption comparison showing different thresholds.

• A communication middleware architecture that enables dynamic, application-specific

energy consumption optimization: e-ADAM features configurable energy optimization

that effectively addresses the execution volatility common in modern mobile networks.

• Application-specific energy consumption estimation: e-ADAM features an application-

level energy model that enables the e-ADAM runtime system to accurately measure and

predict the energy consumption levels experienced by mobile applications under fluctuating

runtime conditions.

• Systematic evaluation: e-ADAM optimized the amount of energy consumed by a set of

benchmarks and third-party mobile applications, with the resulting energy savings as high

as 30% in some cases.

The rest of this chapter is structured as follows. Section 6.1 defines the problem that our approach

aims at solving and introduces the concepts and technologies used in this work. Section 6.2 details

our technical approach. Section 6.3 discusses how we evaluated our approach. Section 6.5 com-

pares our approach to the related state of the art. Section 6.6 concludes and presents future work

directions.

Energy-Aware Dynamic Adaptive Middleware 171

6.1 Problem and Technical Background

In this section, we outline the problem that our approach is intended to solve and the major tech-

nologies it uses.

6.1.1 Problems and Technical Challenges

Dissimilar networks are known to consume different amounts of energy to transmit the same data

[79]. Consequently, the amount of energy consumed on a network transmission can be minimized

by employing the communication patterns tailored for a given network. In other words, commu-

nication adaptation in response to changes of network conditions can reduce the overall energy

consumption.

To elaborate on our prior results, we measured the amount of energy that can be saved by applying

the common energy optimization technique of data compression. In this experiment, we used TCP

sockets to transfer simple data buffers between a mobile device and a remote server. Figure 6.1

shows the impact of compressing the transferred data on the mobile device’s energy consumption

for the WiFi and two typical cellular networks. We experimented with two mobile devices that

differed vastly in their respective hardware setups (i.e., Motorola Droid (low-end) and Samsung

Galaxy S3 (high-end)) to ensure that the observed energy consumption differences are due to the

network transmission rather than any other execution parameters.

When executing over the WiFi network using a high-end device, data compression does not seem

to affect the amount of consumed energy. When executing over the WiFi network using a low-

end device, data compression does not affect the amount of consumed energy until the 400kB

data transfer threshold has been reached. Starting from that threshold, data compression ends up

reducing the overall energy consumption. When executing over the 3G network and 4G network

using either low-end or high-end device, data compression does not affect the amount of consumed

energy until the 10kB and 300kB data transfer thresholds have been reached, respectively. Starting

Energy-Aware Dynamic Adaptive Middleware 172

from that thresholds up, data compression ends up reducing the overall energy consumption.

The specific thresholds, devices, and network types used in this experiment are immaterial and only

prove the point that compression must be applied in a device- and network-specific fashion, so as

to maximize the potential energy savings. Because the network environment and device in place

determine the thresholds at which compression should be engaged to reduce energy consumption,

middleware should be able to turn this and other optimizations on and off at runtime as needed.

This experiment demonstrates the need for adaptivity in middleware to be able to transfer data

using the communication and execution patterns that match the execution environment in place.

At the same time, the middleware adaptations should be sufficiently general to benefit users using

a variety of mobile devices. For example, Facebook reports that the mobile version of their ap-

plication is accessed by 2,500 varieties of mobile devices [40]. Each of these devices is likely to

exhibit different energy consumption patterns due to the hardware differences of the devices. Since

it would be unrealistic to statically specify adaptations for each mobile device and application, we

designed our approach to rely on runtime monitoring that can trigger the available adaptations as

required by a given execution environment.

In this section, we present a middleware architecture that realizes the vision outlined above as

energy-aware dynamic, adaptive middleware (e-ADAM). Enabling effective runtime adaptations

with the goal of saving energy requires innovation in programming abstraction expressiveness and

sophisticated runtime support. Specifically, our approach enables the programmer to implement

multiple strategies for the same middleware functionality, each of which is deployed as dictated by

the runtime changes in the execution environment. At execution time, e-ADAM monitors runtime

network conditions and then automatically selects an appropriate energy optimization strategy pro-

vided by the programmer. Furthermore, in response to the changes of runtime network conditions,

e-ADAM dynamically switches between the provided strategies.

Energy-Aware Dynamic Adaptive Middleware 173

6.1.2 Technical Background

Our middleware architecture combines dynamic adaptation and runtime energy consumption mon-

itoring.

Middleware for Distributed Execution

Our middleware architecture uses features from mainstream middleware mechanisms for dis-

tributed execution as building blocks. To facilitate effective reuse, we classify existing middleware

architectures on two main axes: level of abstraction and network communication footprint. In

terms of the level of abstraction, there are socket-, remote procedure call-, message-, and service-

based platforms. In terms of the network communication footprints, they transfer data across

the network in binary and text (primarily XML)-based formats. Major, widely used middleware

architectures include sockets, Message Oriented Middleware (MOM), remote method invocation

(RMI), and Web services. Our middleware architecture uses a proxy-based distributed execution

mechanism and encodes the transferred data in binary.

Transport Layer Energy Saving Provisions

The IEEE 802.11 standard codifies a power saving mode (PSM), under which the wireless net-

work interface enters the sleep mode when idle. Other approaches have leveraged this mode to

save energy. For example, reference [140] describes one such energy saving strategy that takes

advantage of the prior knowledge of the application’s communication patterns. This strategy em-

ploys a bandwidth throttling mechanism, implemented via a custom network protocol stack, to

control the network transmission rate. Thus, adjusting application communication patterns can

lengthen the wireless network interface’s sleep time, thereby saving energy. This strategy has been

shown effective in media streaming or large data transfer applications. The goal of our approach

is to achieve similar energy saving benefits, but without modifying the standard protocol stack.

By operating at the application level, our approach adapts crude-grained communication patterns,

Energy-Aware Dynamic Adaptive Middleware 174

providing comparable energy saving benefits. For example, application communication patterns

can be adapted to be periodic and predictable by breaking down large transmitted data into blocks

or by reshaping the TCP traffic into bursts.

Dynamic Middleware Adaptation

Dynamic middleware adaptations change the execution strategies at runtime to optimize the over-

all execution by leveraging the information provided by various system components. Dynamic

adaptation has been also used to optimize energy consumption [44, 99]. The Odyssey platform

[44] adapts data or computational quality to save energy consumption, so as not to exceed the

available system resources. DYNAMO [99] is an another middleware platform that adapts en-

ergy optimizations across various system layers, including applications, middleware, OS, network,

and hardware, to optimize both performance and energy. These energy-aware adaptations identify

possible trade-offs between energy consumption and quality of service and then choose optimal

energy optimizations based on runtime conditions.

e-ADAM shares the same vision with these approaches. However, as compared to these ap-

proaches, our approach aims at providing a high degree of customizability. It provides a pro-

gramming model that enables programmers to implement application-specific energy optimization

strategies as well as to express how these strategies should be applied at runtime.

Energy Consumption Measurement

To optimize energy consumption, first one must be able to accurately measure how much and

how an application consumes energy. That is why in recent years several research efforts have

focused on creating effective approaches to measuring energy consumption in mobile applications.

Three primary approaches have been described in the literature: at the architecture, network, and

application levels.

An example of an architecture level energy measuring approach is PowerPack [48], which physi-

Energy-Aware Dynamic Adaptive Middleware 175

cally connects to hardware resources (e.g., CPU, disk, memory, and mother board component) and

then maps the measured energy consumption patterns to the application’s source code, making it

possible to analyze energy consumption both at the hardware and source code levels. An example

of a network level energy measuring approach is described in reference [8], which measures energy

consumption of the general network activity for 3G, GSM, and WiFi networks. Examples of an

application level measurement approach are described in reference [54]. Another application level

approach [129] puts forward a model that divides the total energy consumed by an application into

the functions of computation, communication, and infrastructure (e.g, JVM garbage collection,

implicit OS routines, etc.). The focus of this work is on middleware, whose energy consumption

is measured by an application level measurement methodology.

6.2 Energy Aware Adaptive Middleware (e-ADAM)

Next, we present e-ADAM by giving an overview of the approach and describing its major parts.

6.2.1 Approach Overview

The e-ADAM approach hinges on the concept of configurable energy optimization strategies. e-

ADAM provides a Java API for implementing the strategies, whose triggering and operation is

specified using simple key-value configuration files (for an example, see Figure 6.4). By con-

tinuously monitoring the execution environment, the e-ADAM runtime system dynamically loads

and applies the strategies as specified in the provided configurations. By selecting the strategies

to apply at runtime in accordance with the environment in place, e-ADAM can optimize energy

efficiency more effectively than static approaches.

Figure 6.2 presents the architectural design of e-ADAM that comprises three main components: a

strategy manager, a runtime monitor, and an adaptation manager. First, the policy handler parses

configuration files and maps the parsed parameters to the available strategy implementations. Sec-

Energy-Aware Dynamic Adaptive Middleware 176

Mobile Application

Interpreter

Energy Policy

e-ADAM

Monitor

Adaptive Optimization

Strategy Strategy

Policy
Handler

Strategy 1

Strategy N

Strategy 2

P
o

licy 1

P
o

licy N

P
o

licy 2

Adaptation
Algorithm

ApplicationSystem

Strategy

Network

Figure 6.2: e-ADAM component diagram.

ond, the monitor module continuously collects runtime information that includes network and

hardware characteristics (e.g., delay, network connection type, CPU frequency, etc.) by leverag-

ing the Android system monitoring API. Third, the adaptive optimization module correlates the

collected execution data with the configuration parameters. If the resulting correlation indicates

that a different energy optimization strategy should be triggered, the adaptive optimization module

dynamically locates, loads, and executes the triggered strategy.

6.2.2 e-ADAM Process Flow

Having described the individual components of e-ADAM, we now explain how they interact with

each other. The e-ADAM process flow in Figure 6.3 comprises three main processes: (1) energy

consumption prediction, (2) communication monitoring, and (3) distributed communication.

The energy consumption prediction process estimates future energy consumption levels and com-

munication latencies to select the specified energy optimization strategy. To that end, the adapta-

tion manager requests snapshots of the current and prior execution environment (e.g., CPU, delay,

transferred data size, execution time, etc.) from the runtime monitor and the execution history

Energy-Aware Dynamic Adaptive Middleware 177

e-ADAM

Distributed Execution Monitoring

Read CPU Frequency

Process Distributed
Execution

Read CPU Frequency

Read CPU Usage and
Network Info.

Compute Total Energy
Consumption

Process Distributed Execution

Start Distributed Execution

Send Message

Receive Message and Notifty

Async. Mode?

Wait for Execution Result and
Receive Message

Energy Consumption Prediction

New Execution?

Calculate Energy Consumption

Predicted Energy
Consumption

Calculate
Transferred Data Size &
Measure Network Delay

No

No

2. Start Energy Monitoring

St
a

rt
 D

is
tr

ib
u

te
d

 E
xe

cu
ti

o
n

3. Compute Total Energy Consumption

1. Initiate Distributed Execution

Select Optimal Energy
Optimization Strategy

Yes

Train e-ADAM
for the New Execution

Execution
History

N
o

Yes

Figure 6.3: e-ADAM process diagram.

(cache), respectively. Based on these parameters, the adaptation manager estimates the energy and

latency to be incurred by a given communication operation and applies the energy optimization

strategy as guided by the configuration in place.

The distributed communication monitoring process continuously collects runtime data and creates

an execution history cache to consult when estimating the energy consumption and latency of

future communication operations. This process dispatches remote operations in accordance with

the applied energy optimization strategy. Next, we describe each process of e-ADAM in detail.

6.2.3 e-ADAM Configuration

As shown in Figure 6.4-(a), the e-ADAM energy optimization configuration files follow a simple

key-value format, thus making it straightforward for programmers to compose and understand.

Each set of configuration settings is identified by a unique name followed by a collection of key-

value pairs. Configurations are demarcated by an empty line.

Energy-Aware Dynamic Adaptive Middleware 178

The three configuration keys are execution, strategy, and criteria. The execution pair identifies a

remote server by means of a URL or an IP address. The strategy pair identifies the adaptation

strategies to be applied for this communication. If a configuration file has multiple strategies, the

runtime adaptation module then makes use of the selection criteria values. Recall that the runtime

continuously applies policies speculatively, so as to evaluate their effectiveness.

The criteria pair defines which notion of effectiveness should be used with a given configuration.

The criteria value of energy indicates the effectiveness to reduce energy consumption, while that

of performance to speed up performance. The value of epr indicates the effectiveness to increase

the energy/performance ratio. The value of never disables the configuration from being applied,

while the value of always applies the configuration irrespective of its effectiveness.

configuration = [name]
execution = [remote API]@[address]
strategy = [name] ((and|or) [name])*
criteria = (energy|performance|epr|never|always)

(b) Configuration file format.

public enum Pointcut {Before, After, Around;}

public class Invocation {
public Method getMethod() {...}
public Object[] getParams() {...}
public Object getResult() {...}

public void setParams(Object[] params) {...}
public void setResult(Object result) {...}

public Object proceed(int blocking) {...}
}

public class [name] extends Strategy {
public Pointcut getPointcut() {...}
public Object invoke(Invocation invocation) {...}

}

(b) Strategy API class.

Figure 6.4: Energy optimization configurations.

Adaptation strategies are implemented by extending class Strategy, which provides a single

method invoke. To enable the programmer to control at which execution point a strategy should

Energy-Aware Dynamic Adaptive Middleware 179

be applied, e-ADAM features an Aspect Oriented Programming [71] abstraction to specify whether

the implemented strategy is to be invoked before, after or around (instead of) a given remote

communication.

The components implementing the strategies referenced in configuration files follow the Java nam-

ing convention, in which class names are prefixed with their full package names (e.g., edu.vt.

eadam.Compression). The e-ADAM runtime calls method invoke(...) at the specified

pointcut when both the specified remote API is invoked and the energy optimization strategy is

activated. A typical adaptation strategy makes use of common energy optimizations, including

data compression, reducing image quality, and redirecting to an easier-to-reach remote server as

discussed in Section 6.2.3.

Energy Consumption Estimation

The energy consumption estimation module predicts how much energy will be consumed by a

given remote communication by computing the workload expected to be carried out by the com-

munication. Specifically, e-ADAM only computes the energy consumed by the CPU and network

communication as follows:

E = Ecpu + Enet = (Ccpu × Tcpu + Cnet × Tnet)× V

= {Σ(Cact
cpuf
× T (u+s)

cpu) + (Cact
net × T actnet) + (Cidle

net × T idlenet)} × V

where Cact
cpuf

is the electric current of the CPU at a particular clock speed. Modern CPUs feature

speed-step, a facility that allows the clock speed of a processor to be dynamically changed by the

operating system, with different levels of power consumed at each clock speed. T ucpu and T scpu are

user and system times taken by the distributed execution, and they are obtained by consulting the

statistics provided by the operating system (e.g., /proc/[pid]/stat). V is current voltage,

which is also obtained from the operating system (/sys/class/..../voltage now). Cact
net

and Cidle
net are the electric current of the network processor required during the active and idle

phases, respectively. T actnet and T idlenet are the active and idle runtime periods during the remote

Energy-Aware Dynamic Adaptive Middleware 180

communication, respectively. These device- and execution-specific values are cached to compute

the predicted amount of energy to be consumed during future remote communications.

Training-Based Energy Consumption Prediction

To predict the amount of energy that is likely to be consumed during remote communications,

e-ADAM correlates the device- and execution-specific values that were previously measured and

cached. These measured values are cached and used for predicting the future energy consumption

and execution time. Then, using the cached prior execution parameters (e.g., delay, communication

time, transferred data size, total execution time, etc.) and the current measured execution param-

eters, e-ADAM predicts the communication latency. During the initialization phase, e-ADAM

bootstraps the training process by executing all the strategies specified in the input configuration

file and persists the obtained results to permanent storage. Based on the estimated communication

latencies, as observed from prior executions, the e-ADAM runtime system predicts the expected

energy consumption for a given remote communication as follows:

Eprd = {Eavg
cpu + (Cact

net × T
prd act
net) + (Cidle

net × T
prd idle
net)} × V

where Eprd is the predicted future energy consumption, Eavg
cpu is the average energy consumption

of the given remote communication, and T prd actnet is the predicted communication time, which are

computed by using the transferred data size and delay, respectively. To avoid a delay spike, the

current delay value is then recomputed by weighting the most recently obtained value (i.e., delay =

delay × α + delay × (1− α)). α was set to 0.3 in our reference implementation). The computed

energy consumption value is used as a parameter for selecting the optimal energy optimization

strategy for a given scenario.

Figure 6.5 shows how we measure the delay and each time taken during the idling, sending and

receiving phases. These times are averaged in a given measurement window to estimate the ex-

pected communication time as depicted in Fig 6.6. The estimates are cached to be used to predict

the communication time and execution time.

Energy-Aware Dynamic Adaptive Middleware 181

Delay

Sending
Time

Idle
Time

Mobile Device Remote Server

Syn. for Distributed Execution

Ack

Syn. for Execution Result

Ack

Ack

Receiving
Time

Request Distributed Execution

Execution Result

Execution
Time

Ack

Figure 6.5: Measuring communication time.

Tr
an

sm
is

si
o

n
 T

im
e

Data Size II

Delay

Data Size II

P
re

d
ic

te
d

Tr
a

n
sm

is
si

o
n

 T
im

e
Figure 6.6: Estimating communication time.

Energy Optimization Strategy Selection

Figure 6.7 shows the procedure for selecting the provided energy optimization strategies at run-

time. To select an appropriate energy optimization strategy, the adaptation module predicts the

future energy consumption and the future execution time by analyzing the collected runtime ex-

ecution values and cached prior executions. Then, the module selects the optimization strategy

that would yield either the lowest expected energy consumption, or the shortest expected execu-

tion time, or the highest expected energy/performance, as specified by given selection criteria—

energy, performance epr, etc. While the first two parameters are self-explanatory, epr

(the energy/performance ratio) is a parameter that we have formulated in our prior research [79].

This ratio correlates performance and energy consumption values so as to maximize the resulting

correlation. The energy/performance ratio is computed as follows:

EPR(x) =
MIN(Tprd(1),...,Tprd(n))/Tprd(x)

Eprd(x)/MIN(Eprd(1),...,Eprd(n))
× 100

Energy-Aware Dynamic Adaptive Middleware 182

/∗∗ Find an optimal strategy ∗/
FOREACH strategy ∈ ∀Strategies DO
CASE Energy
Eexptd ← estimateEnergy(..., strategy)
IF Eexptd is the smallest THEN
bestStrategy ← strategy END IF

CASE Performance
Texptd ← estimateExecTime(..., strategy)
IF Texptd is the smallest THEN
bestStrategy ← strategy END IF

CASE EPR
Eexptd ← estimateEnergy(..., strategy)
Texptd ← estimateExecTime(..., strategy)
epr ← getEPR(Eexptd, Texpted)
IF epr is the smallest THEN
bestStrategy ← strategy END IF

END FOREACH

/∗∗ Redirect the curent execution path to the strategy ∗/
bestStrategy.invoke(...);

/∗∗ Receive result or exception and update execution history ∗/
CASE Succeed
result← executionCompleted()

CASE Fail
result← executionFailed()

update(result)

Figure 6.7: The procedure to select an optimal strategy.

where, Tprd and Eprd are the expected execution time and energy consumption values, respec-

tively. A higher EPR represents a condition under which the energy optimization strategy in place

consumes less energy while retaining high performance as compared to other strategies.

Energy Optimization Strategies

Recall that the observation that underlies the design of e-ADAM is that certain pieces of middle-

ware functionality can be implemented differently. In the following discussion, we give specific

examples of middleware functionality and the alternatives for their implementations.

Data compression: Data compression will reduce network transfer, but will be more computa-

Energy-Aware Dynamic Adaptive Middleware 183

tionally intensive, thus requiring additional CPU processing. Transmitting raw data will increase

network transfer, but will require less CPU processing. Which of the strategies will consume less

energy depends on the runtime conditions in place.

Redirection: Another optimization is redirection. This strategy iterates through different end-

points of a distributed execution in the case of experiencing poor network conditions. For instance,

when experiencing a network congestion at a.com/foo, alt.a.com/foo can be invoked in-

stead.

Batching: A common middleware optimization is batching multiple distributed communications

into a single bulk communication. For modern networks, whose bandwidth improvements surpass

that of their latencies, transmitting data in bulk can reduce the aggregate latency. However, the

degree of batching should be determined by the network conditions in place.

In addition to the aforementioned general optimization strategies, one can also apply application-

specific optimizations, tailored for particular application scenarios. For example, in a video confer-

encing application, the QoS can be traded for energy efficiency when the battery level gets below

a certain threshold.

6.3 Evaluation

We have evaluated the effectiveness of e-ADAM by applying it to benchmarks and third-party

applications.

6.3.1 Micro-Benchmarks

In this micro-benchmark, we compared the performance and energy consumption characteristics of

XML-RPC and e-ADAM in executing a collection of remote invocations with different parameter

sizes. In this benchmark, the client executes empty server methods with different parameters. This

strategy isolates the energy consumed by the underlying middleware mechanism.

Energy-Aware Dynamic Adaptive Middleware 184

Experimental Setup

The experimental setup includes a Motorola Droid (600 MHz CPU, 256 MB RAM, 802.11g, 3G)

(a low-end mobile device), a Samsung Galaxy III (1.5 GHz 2-core CPU, 2 GB RAM, 802.11n,

4G) (a high-end mobile device), and a Dell PC (3.0 GHz 4-core CPU, 8 GB RAM) (the remote

server). The network types are WiFi, 3G network, and 4G. For the WiFi, the following two network

conditions were emulated: high-end (2ms round trip time and 50Mbps bandwidth) and medium-

end (50ms and 1Mbps). The Droid used a 3G network (70ms and 500Kbps), while the Galaxy III

used a 4G network (70ms and 1Mbps). We used the same energy profiles described in Table 5.1 of

Chapter 5.4.

Benchmark I: Performance and Energy Consumption Comparison

In this benchmark, we compared the total execution time and energy consumption of two middle-

ware mechanisms (XML-RPC and sockets) with e-ADAM. Figure 6.8 shows the total execution

time and the energy consumed by each middleware mechanism on the high-end device, respec-

tively. As expected, XML-RPC has the poorest performance and consumes the largest amount of

energy to perform the same functionality. The socket implementation shows the highest perfor-

mance and the smallest energy consumption. The e-ADAM energy consumption and performance

are close to those of the socket mechanism. XML-RPC performed closely to the other mechanisms

until the transferred data’s volume reaches 1kB. Thus, the benefits of e-ADAM are particularly

pronounced when in the presence of volatile networks and large fluctuating data volumes.

Benchmark II: Performance and Energy Consumption Overhead

In this benchmark, we compared the total execution time and energy consumption of the baseline

versions of the benchmarks with that using an adaptation strategy. Figure 6.9 (top) shows the total

execution time measured on each device. As one can see, the performance overhead is quite in-

significant. In particular, the overhead for both devices never exceeds 100ms and remains constant

Energy-Aware Dynamic Adaptive Middleware 185

0

500

1000

1500

2000

2500

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

 XML-RPC (Galaxy)

Socket (Galaxy III)

e-ADAM (Galaxy III)

0

500

1000

1500

2000

2500

3000

3500

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
J)

XML-RPC (Galaxy)

Socket (Galaxy III)

e-ADAM (Galaxy III)

Figure 6.8: Performance and energy consumption.

for all the measured data transfer sizes. Figure 6.9 (bottom) shows the amount of energy consumed

by each device. As expected, the high-end device (Samsung Galaxy) consumes less energy than

the low-end device (Motorola Droid). In particular, the overhead for both devices never exceeds

50mJ, which is insignificant as compared to a typical total energy budget.

0

200

400

600

800

1000

1200

1400

1600

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

 W/O Adaptation (Galaxy III)

W Adaptation (Galaxy III)

W/O Adaptation (Droid)

W Adaptation (Droid)

0

50

100

150

200

250

300

350

400

450

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
J)

W/O Adaptation (Galaxy III)

W Adaptation (Galaxy III)

W/O Adaptation (Droid)

W Adaptation (Droid)

Figure 6.9: Performance and energy consumption overhead.

Benchmark III: Adapting Energy Optimizations

In this benchmark, we evaluated how the runtime system can adapt its middleware functionality

between no optimization and a compression optimization in response to changes in network con-

ditions on the high-end device. First, we evaluated how accurately the runtime system can predict

how much energy will be consumed when using two different optimization strategy on the high-

end device. Figure 6.10 shows both the predicted and the consumed energy by e-ADAM with

no optimization vs. a compression optimization. In this benchmark, the average error was 23.09

Energy-Aware Dynamic Adaptive Middleware 186

% and standard deviation was 10.74 %, which is higher than in other benchmarks, whose error

rates are 6-7 %). This is because when an application consumes a small amount of energy, small

changes in the execution environment, such as delay or CPU frequency, can significantly affect the

predicted energy consumption. (e.g., when the transferred data size increases, the average error

decreases.).

0

500

1000

1500

2000

2500

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
J)

 Estimated Energy Consumption

Measured Energy Consumption

Figure 6.10: Energy consumption prediction.

Then, we evaluated the effectiveness of the e-ADAM runtime system in selecting the energy opti-

mization strategies that would be optimal for different execution environments. As an optimization

strategy we chose data compression, which trades CPU processing for network transfer. Com-

pressing the data reduces its size, thus reducing the workload of the remote operation transferring

the data. However, running the compression algorithm uses up additional CPU cycles. First, we

measured the actual amount of energy used by the same remote operation, with and without the

compression strategy applied. To obtain statistically relevant measurements, each pair of remote

operations (compressed and uncompressed) was repeated a 100 times under the 3 simulated net-

works whose parameters are explained above. After we measured the concrete amount of energy

consumed under compression and without compression, we queried the e-ADAM runtime system

whether it would trigger the compression optimization strategy. Furthermore, to evaluate the im-

pact of the training process, we compared the effectiveness of the untrained and trained states of

the runtime system (for 10 consecutive execution cycles). Table 6.1 shows the evaluation criteria

for this experiment.

Energy-Aware Dynamic Adaptive Middleware 187

Table 6.1: The evaluation criteria.
Compression causes→ Less Energy More Energy
Trigger compression Success Failure
Not Trigger compression Failure Success

Table 6.2 shows the failure rates for each network type and data size. As expected, when trans-

ferring small data volumes, compression creates some noise. Because the runtime system uses

a moving average to estimate future energy consumption, it continuously reacts to the relevant

changes in the execution environment. Because the runtime does not respond instantaneously, e-

ADAM does not suffer from the noise that can arise due to sudden fluctuations, such as a delay

spike. However, in the cases of low energy consumption (e.g. the test case with network type I and

10kB consumes only 15-100mJ.), frequent fluctuations make noise unavoidable, thus increasing

the failure rate of the runtime system. However, the programmer can configure e-ADAM not to en-

gage any optimizations when the average energy consumption level is already low. In all other test

cases, nevertheless, the e-ADAM runtime system showed itself quite effective, with the training

decreasing the failure rate across the board.

Table 6.2: Failure rate when triggering the opt. strategy.

Data size Network I Network II Network III
No Training/Training No Training/Training No Training/Training

10 kB 18 % / 12 % 9 % / 7 % 3 % / 2 %
100 kB 7 % / 2 % 3 % / 0 % 1 % / 0 %
1000 kB 3 % / 0 % 1 % / 0 % 0 % / 0 %

6.3.2 Case Study

To determine how well our approach works with real-world mobile applications, we experimented

with open source projects, used as experimental subjects in our prior research on cloud offload-

ing [78]. JJIL1 is a face recognition application; its recognition functionality executes remotely in

class DetectHaarParam. OSMAndroid2 is a navigation application; its shortest path calcula-
1http://code.google.com/p/jjil/
2https://code.google.com/p/osm-android

http://code.google.com/p/jjil/
https://code.google.com/p/osm-android

Energy-Aware Dynamic Adaptive Middleware 188

configuration = JJIL
execution = DetectHaarParam.push(*)@[*:*]
strategy = edu.vt.eadam.Compression
criteria = energy

configuration = OSMAndroid
execution = ShortestPath.execute(*)@[cs.vt.edu:*]
strategy = edu.vt.eadam.Redirection;
criteria = epr

configuration = Mezzofanti
execution = OCR.ImgOCRAndFilter(*)@[cs.vt.edu:9999]
strategy = edu.vt.eadam.Batching and edu.vt.eadam.Compression
criteria = energy

Figure 6.11: Configuration file for the case study.

tion functionality executes remotely in class ShortestPathAlgorithm. Mezzofanti3 is a text

recognition application; its OCR functionality executes remotely in class OCR.

For each subject, we measured the amount of the energy consumed and the execution time by

typical, simple use cases. Specifically, for OSMAndroid, we selected two locations and the re-

quested route between them. For the face recognition application, we examined one image file for

the presence of human faces. Then, we selected the compression strategy for the face recognition

application because it transfers a large amount of data; we selected the redirection strategy for OS-

MAndroid. The use cases were executed under two optimization modes: (1) original distributed

execution without an energy optimization and (2) the e-ADAM approach with either the epr or

energy criteria. Figure 6.11 shows the configurations used in this case study, and Figure 6.12

shows code snippet of the compression strategy.

Figure 6.13’s upper graph shows how the e-ADAM approach has reduced the amount of energy

consumed by the face recognition application. Because in a high-end mobile network (i.e., Net-

work I) the compression strategy incurs additional processing overhead, e-ADAM does not apply

this strategy. However, in other networks (i.e., Network II and III), the compression strategy re-

duced the amount of energy consumed by 30%. Figure 6.13’s lower graph shows the total exe-

3https://code.google.com/p/mezzofanti

https://code.google.com/p/mezzofanti

Energy-Aware Dynamic Adaptive Middleware 189

public class Compression extends Strategy {
public Pointcut getPointcut() { return Pointcut.Around; }

public Object invoke(Invocation invocation) {
Object[] params = invocation.getParams();
/∗∗ compress parameters ∗/
loop(parameters) {
ByteArrayOutputStream baos = ... ;
GZIPOutputStream gzipOut = ... ;
ObjectOutputStream objectOut = ... ;

objectOut.writeObject(params[i]);
params[i] = baos.toByteArray();

}
point.setParams(params)

/∗∗ Carry out the remote invocation , blocking for result ∗/
Object result = invocation.proceed(Proxy.MODE_BLOCK);

return result ;
}

}

Figure 6.12: Compression strategy implementation.

cution time taken by the face recognition application. Similarly, e-ADAM improved the overall

performance.

For the OSMAndroid application, we used a different scenario. Because the application transfers

less data than the first subject application, we selected a redirection strategy. Figure 6.14 shows

the total execution time and total execution time for the subject application. At the first phase,

two remote servers (i.e., Server I and II) have the same execution environments (e.g., network

condition), but at the second phase, we injected network delay to both remote servers and injected

500 ms processing delay at the Server I. With the epr criteria, while e-ADAM selects Server I

during the first phase, it selects Server II during the second phase, as it considers both energy

consumption and performance metrics when selecting an optimal strategy.

For the OCR application, we used two strategies—Batching and Compression—to optimize

the transfer of the fragments of a large (∼6MB) image file. The strategies are applied sequentially

in the order of appearance in the configurations, Batching followed by Compression. Figure

Energy-Aware Dynamic Adaptive Middleware 190

3.05 3.46 3.07

11.36
7.9 7.97

47.19
36.29 36.29

0
10
20
30
40
50

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Network I Network II Network III

4.57 5.67 4.69

31.73
21.75 21.75

61.01
43.03

43.03

0

20

40

60

80

Ex
ec

u
ti

o
n

 T
im

e
 (

Se
c.

)

Network I Network II Network III

Figure 6.13: Experimental results of the JJIL app.

439.6 458.3
428.7 428.7 488.9 528.1 503 519.3

0
100
200
300
400
500
600

En
er

gy
 C

o
n

su
m

p
ti

o
n

(m

J)

2.351
2.185

2.172 2.551

16.166

10.837

15.859
10.514

0

5

10

15

20

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

x
1

0
0

Figure 6.14: Experimental results of the OSMAndroid app.

3.03 2.44
8.19

22.44 20.3 18.09

0
5

10
15
20
25

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Network I Network II

5.28 3.49
10.35

52.36 49.08 45.09

0
10
20
30
40
50
60

Ex
ec

u
ti

o
n

 T
im

e
 (

Se
c.

)

Network I Network II

Figure 6.15: Experimental results of the Mezzofanti app.

6.15 shows the results of e-ADAM applying these strategies: first, Batching alone and then

combined with Compression. In a high-end mobile network (i.e., Network I) compressing

data incurs additional processing overhead, whose energy costs are not offset by the resulting

reductions in bandwidth utilization. Thus, for these networks, the Batching strategy should be

the only one applied. However, in limited networks, adding the Compression strategy causes

the overall energy consumption to be reduced by 20%. Figure 6.15’s lower graph shows the total

execution time and total execution time for the same OCR application. Energy consumption and

total execution time are positively correlated. Indeed, e-ADAM reduced the total runtime by 6%

and 14%, when the Batching and the (Batching + Compression) strategies were applied,

respectively. Furthermore, reusing the Compression strategy has reduced the implementaiton

burden of this case study.

Energy-Aware Dynamic Adaptive Middleware 191

6.3.3 Threats to Validity

The results presented above are subject to internal and external validity threats. The internal valid-

ity is threatened by how the interactive subject applications were exercised. The performance and

energy consumption of interaction applications depend on how the user chooses to use them. To

minimize this threat, the benchmarked use cases were fixed to using the same media (i.e., picture

file) and location (i.e., GPS coordinates). Another internal validity threat is the fashion in which

we implemented the benchmarked optimization strategies (e.g., compression and redirection).

The external validity is threatened by the accuracy of our energy and performance models. Since

relying on models always provides approximated values, the question is how accurate our energy

and performance profiles are. To minimize this threat, we adopted commonly used models parame-

terized with the energy profiles provided by the manufactures of the devices used in the evaluation.

6.4 Discussion

The e-ADAM approach provides the generality, separation of concerns, and reusability advantages.

e-ADAM is general in that it can be applied to a variety of distributed mobile applications. By

leveraging a proxy-based implementation, e-ADAM can serve as a drop-in replacement for main-

stream mechanisms structured around the RPC paradigm, both synchronous and asynchronous.

Mimicking asynchronous communication may require writing additional glue code to emulate the

original order of response messages. e-ADAM enables a greater separation of concerns in that it

can change a mobile applications’s energy/performance characteristics without affecting its core

business logic. The energy optimization strategies and the configurations to apply them are ex-

pressed separately from the main source code. This degree of separation also makes it possible to

effectively reuse energy optimization strategies and configurations across components and appli-

cations.

Although e-ADAM can deliver tangible benefits to the mobile application programmer, it also has

Energy-Aware Dynamic Adaptive Middleware 192

some inherent limitations. In particular, the limitations concern its ranges of applicability and

usability. The overhead imposed by the e-ADAM runtime makes the approach inapplicable to

those distributed mobile applications that use simple, infrequent remote interactions. The runtime

overhead is offset if the optimized application spends a substantial amount of energy on remote in-

teractions. Thus, application designers have to decide whether using e-ADAM would be beneficial

for each application. Another limitation of e-ADAM is that the approach is automated rather than

automatic. The programmer is responsible for implementing energy optimization strategies using

the provided API and for expressing how the strategies should be applied. Although implementing

common optimization strategies is facilitated by the presence of multiple third-party libraries and

frameworks, the programmer must be aware of which predefined building blocks they have at their

disposal.

6.5 Related Work

Reducing the energy consumption of mobile applications to extend the battery life of mobile

devices has been the focus of multiple complimentary research efforts, including system- and

application-level optimizations. The system-level optimizations include CPU scheduling algo-

rithms [169], disk power managements [163], network interfaces [4], specialized-network proto-

cols [8], and process migration [20]. Although these system-level optimizations have proven quite

effective in extending the battery lives of mobile devices, the system changes these optimization

require complicate their deployment to heterogeneous mobile devices.

In contrast to system-level optimizations, application-level optimizations provide pragmatic, auto-

matic tools or guidelines to the programmer [78, 103, 50]. The effectiveness of application-level

optimizations hinges on the accuracy of the information provided by the underlying system and

execution environments.

Cross layer optimizations leverage the information provided by multiple system layers. The Odyssey

platform orchestrates the interactions between the OS and applications [44]. Similarly to our ap-

Energy-Aware Dynamic Adaptive Middleware 193

proach, Spectra [43] provides a specialized APIs for the mobile programmer. By monitoring mul-

tiple execution environments, Spectra selects an optimal communication path to a remote server.

While Spectra only provides a single fixed optimization, e-ADAM enables the programmer to im-

plement multiple application-specific optimizations. The e-ADAM approach makes it possible to

reuse known energy optimization techniques to design application-specific energy optimizations.

6.6 Conclusions

In this research, we introduced e-ADAM, a novel communication middleware architecture that

employs dynamic adaptation to reduce the energy consumption of mobile applications. e-ADAM

features a sophisticated runtime system that predicts and regulates the energy consumed during re-

mote interactions. By means of configuration files, the runtime can deploy programmer-provided

optimization strategies. Our evaluation comprised applying e-ADAM to reduce the energy con-

sumed by benchmarks and third-party applications under different execution environments. These

results indicate that the e-ADAM approach represents a promising direction in developing energy

efficient mobile applications.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation have explored novel solutions to the problem of improving the quality of service

of mobile applications by leveraging advanced software engineering techniques (e.g., program

analysis, automated program transformation, distributed programming abstractions, etc.). Also,

we discussed how a combination of novel software system architectures, automated software tools,

and empirically derived programming guidelines can assist the programmer in developing and

optimizing modern software, especially in the area of distributed and mobile computing. The

focus on distributed/mobile applications and state-of-the-art software technologies increases the

potential impact on real-world software systems and development practices. Next, we present

major contributions of this dissertation research and future work plans.

7.1.1 Summary of Contributions

The research presented in this dissertation was published in the proceedings of Middleware’09

[82], SCC’10 [84], MESOCA’11 [77], ICDCS’12 [78], and ICSM’13 [80] and in the journals of

Service Oriented Computing and Applications [83], Information and Software Technology [79],

IEEE Computer [152], and Automated Software Engineering [81]. Major contributions of this

research include:

1. Automated program transformations for the transitioning to distributed applications

[81]: A set of refactoring techniques facilitate the process of transforming centralized ap-

194

Conclusion and Future Work 195

plications to use remote services. These techniques automate the program transformations

required to render portions of functionality of a centralized applications as remote services

and re-target the application to access the remote functionality.

2. Hardening distributed applications with resiliency against partial failures [82, 77]: A

declarative approach for hardening distributed applications with resiliency against partial

failures—we introduce a domain-specific language for describing both failures and the hard-

ening strategies to eliminate them.

3. Energy-efficient distributed execution through offloading [78, 80, 152]: An effective en-

ergy consumption optimization approach efficiently and fault-tolerantly synchronizes exe-

cution state between the mobile device and remote server to provide energy-efficient and

reliable mobile execution.

4. Middleware with dynamic adaptation capabilities: Energy-aware adaptive middleware

enables the programmer to express how to dynamically adapt middleware execution patterns

in the presence of volatile mobile networks, so as to reduce the mobile application’s energy

consumption.

5. Systematic assessment of distributed applications across middleware [84, 83, 79]: A

novel mechanism can accurately assess the performance, conciseness, complexity, reliability,

and energy consumption of distributed applications across middleware for accessing remote

functionality.

7.2 Future Work

In the near future, we will continue the work on improving the energy efficiency of mobile applica-

tions by leveraging advanced software technologies. In the longer term, we will look at the issue of

energy consumption holistically, considering all the constituent components of a distributed sys-

tem. Finally, our long term vision is to apply the lessons learned improving the QoS of mobile

Conclusion and Future Work 196

applications to orchestrating and adapting big data workflows.

7.2.1 Adapting Cloud Offloading via Constraint Solving

Offloading a mobile application’s functionality via a remote server has become an important en-

ergy and performance optimization technique. Adaptive offloading determines the functionality

to offload and the offloading server at runtime. Mobile applications, executed over networks with

dissimilar latency/bandwidth characteristics, access cloud-based servers that offer different levels

of performance, availability, and trust. An effective adaptive offloading mechanism must consider

all these factors when determining which functionality should be offloaded to which server. Imple-

menting an adaptive offloading mechanism driven by both runtime conditions and user preferences

is non-trivial.

By directly following upon this dissertation research, we will explore how mobile applications can

be optimized for energy and performance efficiency by using constraint solving to dynamically

adapt cloud offloading. The main idea is to express the optimization priorities of cloud offloading

as a constraint satisfaction problem (CSP). A CSP computes the values that a set of variables

must take in order to satisfy a set of conditions imposed on the variables. One can map variables

to offloading optimization criteria (e.g., energy savings, performance efficiency, server availability,

server trustworthiness, etc.); values to the actual runtime parameters of the criteria (e.g., the amount

energy consumed by a method, the time taken to execute a method, the average failure rate for an

offload server, and the user-specified degree of trust for a server); conditions to the end user’s

specified optimization priorities (e.g., minimize energy consumption, minimize execution time,

maximize a given energy/performance ratio, prefer offload servers with higher trust levels). By

expressing cloud offloading in terms of constraint solving that drives an adaptive runtime system,

this research direction can provide an expressive and efficient solution to the problem of adaptively

leveraging cloud computing resources to optimize mobile applications.

Conclusion and Future Work 197

7.2.2 Holistic Energy Optimization for Distributed Mobile Applications

Mobile computing is characterized by a high heterogeneity of the hardware/software stack and

network environments. A mobile application is executed on devices with dissimilar CPU, memory,

and network card capacities [79]. Server execution environments also exhibit high heterogeneity,

with job scheduling policies impacting server energy consumption. Mobile networks differ widely

in their respective latencies, bandwidths, congestion, packet loss, and interference. Looking at

energy optimization holistically requires considering the mobile device, the offloading server, and

the network connecting the two.

Because using remote, cloud-based resources can impose additional costs on the user, new energy

optimizations are needed to be able to offload mobile functionality while being mindful of the

overall server workload. A holistic energy optimization will coordinate the executions at both the

mobile device and the server. To realize this level of coordination would require innovation in

the middleware space. Equipped with the new middleware mechanism, system designers will be

able to engineer highly energy efficient mobile applications that not only save the mobile device’s

battery power, but also use cloud-based offloading servers energy efficiently.

7.2.3 Workflow Based Automated Big Data Analytics

As huge amounts of data are being continuously produced, data scientists without CS expertise

need intuitive but powerful tools to effectively analyze the available data. Although there are

numerous data analytics tools, a typical data analytics procedure requires that multiple tools be

combined into a workflow. For example, a big data workload may need to be preprocessed, passed

to a data mining routine, visualized, etc, while running these tools on different systems such as a

data center, analytics servers, and large displays. Moreover, each data analytics procedure should

be tailored for specific data or user scenarios. As a result, orchestrating all these tools into coherent

workflows is non-trivial.

Our vision is to explore how automated code generation and middleware can help data scientists

Conclusion and Future Work 198

in integrating analytics tools into data analytics workflows. To that end, data scientists must be

equipped with powerful expression media, with domain specific languages offering an attractive

possibility; generating connectors automatically will seamlessly combine tools with dissimilar in-

put/output formats into a workflow; advanced middleware mechanisms will drive the workflows’

execution. Easily constructing data analytics workflows will not only improve the productivity of

data scientists, but will democratize the access to big data analytics for the average user.

Bibliography

[1] CCA-Forum. http://www.cca-forum.org/.

[2] Net:Netem. http://www.linuxfoundation.org/en/Net:Netem/.

[3] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Language support for connector ab-

stractions. In Proceedings of the European Conference on Object-Oriented Programming

(ECOOP’03), July 2003.

[4] M. Anand, E. Nightingale, and J. Flinn. Self-tuning wireless network power management.

Wireless Networks, 11(4):451–469, 2005.

[5] B. Andreopoulos, A. An, V. Tzerpos, and X. Wang. Clustering large software systems at

multiple layers. Inf. Softw. Technol., 49(3):244–254, 2007.

[6] P. Andritsos and V. Tzerpos. Information-theoretic software clustering. IEEE Trans. Softw.

Eng., 31(2):150–165, 2005.

[7] A. Arora and S. Kulkarni. Detectors and correctors: a theory of fault-tolerance components.

In The 1998 18 th International Conference on Distributed Computing Systems, pages 436–

443, 1998.

[8] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consumption in

mobile phones: a measurement study and implications for network applications. In Proceed-

ings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, 2009.

[9] G. Banavar, T. Chandra, R. Strom, and D. Sturman. A case for message oriented middle-

ware. In Proceedings of the 13th International Symposium on Distributed Computing, pages

1–18. Springer-Verlag London, UK, 1999.

[10] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. In B. Be-

natallah, F. Casati, and P. Traverso, editors, Service-Oriented Computing - ICSOC 2005,

volume 3826 of Lecture Notes in Computer Science, pages 269–282, 2005.

199

http://www.cca-forum.org/
http://www.linuxfoundation.org/en/Net:Netem/

Bibliography 200

[11] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti. Dynamo + Astro: An integrated approach

for BPEL monitoring. volume 0, pages 230–237, Los Alamitos, CA, 2009.

[12] K. Becker, A. Lopes, D. S. Milojicic, J. Pruyne, and S. Singhal. Automatically determining

compatibility of evolving services. In ICWS ’08: Proceedings of the 2008 IEEE Interna-

tional Conference on Web Services, pages 161–168, Washington, DC, USA, 2008. IEEE

Computer Society.

[13] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and D. L. Wheeler.

Genbank. Nucleic Acids Res., 30:17–20, 2002.

[14] N. Brown and C. Kindel. Distributed Component Object Model Protocol–DCOM/1.0, 1998.

Redmond, WA, 1996.

[15] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerging

IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future

Generation Computer Systems, 25(6):599–616, 2009.

[16] G. Candea and A. Fox. Recursive restartability: turning the reboot sledgehammer into a

scalpel. In Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on,

pages 125–130, May 2001.

[17] G. Canfora, A. Fasolino, G. Frattolillo, and P. Tramontana. A wrapping approach for mi-

grating legacy system interactive functionalities to service oriented architectures. Journal

of Systems and Software, 81(4):463–480, 2008.

[18] N. Carr. The big switch: Rewiring the world, from Edison to Google. WW Norton &

Company, 2008.

[19] F. Chen and G. Roşu. Mop: an efficient and generic runtime verification framework. In Pro-

ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming

systems and applications, OOPSLA ’07, pages 569–588, New York, NY, USA, 2007. ACM.

Bibliography 201

[20] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud: elastic execution

between mobile device and cloud. In Proceedings of the 6th ACM European Conference on

Computer Systems (EuroSys), 2011.

[21] M. H. Chunlei, C. Wang, and L. Zhang. Toward a reusable and generic security aspect

library. In AOSD Technology for Application-level Security, 2004.

[22] Cisco Market Trends. Cisco service provider: Wi-Fi: Offload mobile data and create new

services, 2012.

[23] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.

Live migration of virtual machines. In Proceedings of the 2nd conference on Symposium on

Networked Systems Design & Implementation, 2005.

[24] M. Cohen, H. S. Zhu, S. E. Emgin, and Y. D. Liu. Energy types. In Proceedings of the

ACM International Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA), Oct 2012.

[25] S. Colbert. Speech at the White House Correspondents’ Association dinner. Transcript,

April 26 2006.

[26] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.

MAUI: making smartphones last longer with code offload. In Proceedings of the 8th Inter-

national Conference on Mobile Systems, Applications, and Services (MobiSys), 2010.

[27] M. Dahlin, B. Chandra, L. Gao, A. Khoja, A. Nayate, A. Razzaq, and A. Sewani. Us-

ing mobile extensions to support disconnected services. Technical Report CS-TR-00-20,

University of Texas at Austin, 2000.

[28] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. A language for specifying security and

management policies for distributed systems. Imperial College Research Report DoC, 1,

2000.

Bibliography 202

[29] C. Damm, P. Eugster, and R. Guerraoui. Linguistic support for distributed programming

abstractions. In Proceedings of the 24th International Conference on Distributed Computing

Systems, 2004.

[30] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science

on the cloud: the montage example. In Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, 2008.

[31] C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle. Benchmarking the round-trip latency

of various Java-based middleware platforms. Studia Informatica Universalis Regular Issue,

4(1):7–24, 2005.

[32] V. Dialani, S. Miles, L. Moreau, D. De Roure, and M. Luck. Transparent fault tolerance

for web services based architectures. Euro-Par 2002 Parallel Processing, pages 107–201,

2002.

[33] S. Dieckmann and U. Hölzle. A study of the allocation behavior of the SPECjvm98 java

benchmark. In Proceedings of the 13th European Conference on Object-Oriented Program-

ming, 1999.

[34] T. Do, S. Rawshdeh, and W. Shi. pTop: A process-level power profiling tool. In Proceedings

of the 2nd Workshop on Power Aware Computing and Systems (HotPower’09), 2009.

[35] Eclipse Equinox. http://www.eclipse.org/equinox/.

[36] J. Edstrom and E. Tilevich. Reusable and extensible fault tolerance for restful applications.

In Proceedings of the 11th IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, 2012.

[37] R. Elfwing, U. Paulsson, and L. Lundberg. Performance of soap in web service environment

compared to corba. Asia-Pacific Software Engineering Conference, 0:84, 2002.

[38] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2005.

http://www.eclipse.org/equinox/

Bibliography 203

[39] J. Erlichman. Special report: Cloud computing. Government Computer News, 2009.

[40] Facebook Mobile. Facebook for every phone, July 2011.

[41] C. Fang, D. Liang, F. Lin, and C. Lin. Fault tolerant web services. Journal of Systems

Architecture, 53(1):21–38, 2007.

[42] B. Ferris, K. Watkins, and A. Borning. OneBusAway: results from providing real-time

arrival information for public transit. In Proceedings of the 28th International Conference

on Human Factors in Computing Systems (CHI ’10), 2010.

[43] J. Flinn, S. Park, and M. Satyanarayanan. Balancing performance, energy, and quality in

pervasive computing. In Proceedings of the 22nd International Conference on Distributed

Computing Systems (ICDCS), 2002.

[44] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. ACM

SIGOPS Operating Systems Review, 33(5):48–63, 1999.

[45] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston,

MA, USA, 1999.

[46] C. L. Fullmer and J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in wireless

networks. In Proceedings ACM SIGCOMM, pages 39–49, 1997.

[47] Gartner, Inc. Gartner highlights key predictions for IT organizations and users in 2010 and

beyond, Jan. 2010.

[48] R. Ge, X. Feng, S. Song, H. Chang, D. Li, and K. Cameron. Powerpack: Energy profiling

and analysis of high-performance systems and applications. IEEE Transactions on Parallel

and Distributed Systems, 21(5):658–671, 2010.

[49] J. Gibbons and S. Ruth. Municipal Wi-Fi: big wave or wipeout. Internet Computing, IEEE,

10(61):107–125, 2006.

Bibliography 204

[50] I. Giurgiu, O. Riva, and G. Alonso. Dynamic software deployment from clouds to mobile

devices. In Proceedings of the ACM/IFIP/USENIX International Middleware Conference,

2012.

[51] A. Gokhale and D. C. Schmidt. Measuring the performance of communication middleware

on high-speed networks. In Proceedings on Applications, technologies, architectures, and

protocols for computer communications (SIGCOMM ’96), 1996.

[52] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen. COMET: code offload

by migrating execution transparently. In Proceedings of the 10th USENIX conference on

Operating Systems Design and Implementation, volume 12, pages 93–106, 2012.

[53] S. Guinea, L. Baresi, G. Spanoudakis, and O. Nano. Comprehensive monitoring of bpel

processes. IEEE Internet Computing, 99, 2009.

[54] A. Gupta and P. Mohapatra. Energy consumption and conservation in wifi based phones: A

measurement-based study. In Proceedings of the 4th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2007.

[55] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka

data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18, 2009.

[56] B. Haumacher, T. Moschny, and M. Philippsen. The JavaParty project. www.ipd.uka.

de/JavaParty, 2007.

[57] B. Hayes. Cloud computing. Commun. ACM, 51(7):9–11, 2008.

[58] J. L. Herrero, F. Sanchez, O. Sanchez, and M. Toro. Fault tolerance AOP approach. In

Workshop on AOP and Separation of Concerns, pages 44–52, 2001.

[59] Y. Huang, S. Mohapatra, and N. Venkatasubramanian. An energy-efficient middleware for

supporting multimedia services in mobile grid environments. In Proceedings of Interna-

tional Conference on Information Technology: Coding and Computing, 2005., volume 2,

April 2005.

www.ipd.uka.de/JavaParty
www.ipd.uka.de/JavaParty

Bibliography 205

[60] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in wireless sensor net-

works. In ACM SenSys 2004, Baltimore, MD, November 2004.

[61] A. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook. Remote batch invocation for composi-

tional object services. In Proceedings of the 23rd European Conference on Object-Oriented

Programming (ECOOP), 2009.

[62] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on multi-hop

wireless network performance. In Proceedings of the 9th annual international conference

on Mobile computing and networking, pages 66–80, 2003.

[63] JAX-WS Expert Group. JSR-224 Java API for XML-based Web services 2.0. Technical

report, Java Community Process, 2006.

[64] JBoss AOP. http://www.jboss.org/jbossaop.

[65] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. . Gifford, and M. F. Kaashoek. Rover: A

toolkit for mobile information access. In Proceedings of the 15th Symposium on Operating

Systems Principles, December 1995.

[66] M. B. Juric, B. Kezmah, M. Hericko, I. Rozman, and I. Vezocnik. Java rmi, rmi tunneling

and web services comparison and performance analysis. SIGPLAN Not., 39(5):58–65, 2004.

[67] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing environment.

In Proceedings of IEEE International Workshop on Policies for Distributed Systems and

Networks.

[68] A. Kansal and F. Zhao. Fine-grained energy profiling for power-aware application design.

SIGMETRICS Perform. Eval. Rev., 36(2):26–31, Aug. 2008.

[69] U. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and Practice. CRC

Press, Inc., Boca Raton, FL, USA, 1st edition, 2009.

http://www.jboss.org/jbossaop

Bibliography 206

[70] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview

of AspectJ. In Proceedings of the 15th European Conference on Object-Oriented Program-

ming (ECOOP), pages 327–353, 2001.

[71] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Ir-

win. Aspect-oriented programming. In Proceedings of the European Conference on Object-

Oriented Programming(ECOOP), pages 220–242, 1997.

[72] M. Kim, L. P. Cox, and B. D. Noble. Safety, visibility, and performance in a wide-area

file system. In Proceedings of the 1st USENIX conference on File and storage technologies

(FAST ’02), 2002.

[73] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems with time-traveling

virtual machines. In Proceedings of the annual conference on USENIX Annual Technical

Conference (ATC), pages 1–1, Berkeley, CA, USA, 2005. USENIX Association.

[74] Knopflerfish - open source OSGi. http://www.knopflerfish.org.

[75] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. ThinkAir: Dynamic resource

allocation and parallel execution in the cloud for mobile code offloading. In Proceedings

of the IEEE Annual Joint Conference of the IEEE Computer and Communications Societies

(Infocom), 2012.

[76] Y.-W. Kwon. Orchestrating mobile application execution for performance and energy effi-

ciency. In Proceedings of the ACM SIGPLAN Conference on Systems, Programming, Lan-

guages and Applications (SPLASH), Student Research Competition, 2013.

[77] Y.-W. Kwon and E. Tilevich. A declarative approach to hardening services against QoS vul-

nerabilities. In Proceedings of the 2011 IEEE International Workshop on the Maintenance

and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2011.

http://www.knopflerfish.org

Bibliography 207

[78] Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant distributed mobile exe-

cution. In Proceedings of the 32nd International Conference on Distributed Computing

Systems (ICDCS), 2012.

[79] Y.-W. Kwon and E. Tilevich. The impact of distributed programming abstractions on appli-

cation energy consumption. Information and Software Technology, 55(9), 2013.

[80] Y.-W. Kwon and E. Tilevich. Reducing the energy consumption of mobile applications

behind the scenes. In Proceedings of the 29th IEEE International Conference on Software

Maintenance (ICSM), 2013.

[81] Y.-W. Kwon and E. Tilevich. Cloud refactoring: Automated transitioning to cloud-based

services. Automated Software Engineering Journal, 2014.

[82] Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong. DR-OSGi: Hardening distributed com-

ponents with network volatility resiliency. In Proceedings of the ACM/IFIP/USENIX 10th

International Middleware Conference, 2009.

[83] Y.-W. Kwon, E. Tilevich, and W. Cook. Which middleware platform should you choose for

your next remote service? Service Oriented Computing and Applications, 5:61–70, 2011.

[84] Y.-W. Kwon, E. Tilevich, and W. R. Cook. An assessment of middleware platforms for

accessing remote services. In Proceedings of the 2010 IEEE International Conference on

Services Computing (SCC), 2010.

[85] V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In

Soviet Physics Doklady, volume 10, pages 707–710, 1966.

[86] S. Li and L. Tahvildari. A service-oriented componentization framework for java software

systems. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineer-

ing, 2006.

[87] D. Liang, C. Fang, and C. Chen. FT-SOAP: A fault-tolerant web service. In Tenth Asia-

Pacific Software Engineering Conference, Chiang Mai, Thailand, 2003.

Bibliography 208

[88] A. Liu, Q. Li, L. Huang, and M. Xiao. FACTS: A framework for fault-tolerant composition

of transactional web services. IEEE Transactions on Services Computing, 3(1):46–59, 2010.

[89] Y. Liu. Energy-efficient synchronization through program patterns. In Proceedings of the

1st International Workshop on Green and Sustainable Software (GREENS), 2012.

[90] G. A. D. Lucca, A. R. Fasolino, P. Guerra, and S. Petruzzelli. Migrating legacy systems

towards object-oriented platforms. In Proceedings of the International Conference on Soft-

ware Maintenance (ICSM), pages 122–129, Washington, DC, USA, 1997. IEEE Computer

Society.

[91] A. Marchetto and F. Ricca. From objects to services: toward a stepwise migration approach

for Java applications. Int. J. Softw. Tools Technol. Transf., 11(6):427–440, 2009.

[92] T. J. McCabe. A complexity measure. In Proceedings of the 2nd International Conference

on Software Engineering, Los Alamitos, CA, USA, 1976.

[93] P. McGachey, A. L. Hosking, and J. E. B. Moss. Pervasive load-time transformation for

transparently distributed Java. Electron. Notes Theor. Comput. Sci., 253:47–64, December

2009.

[94] Microsoft. Component Object Model (COM).

[95] Microsoft Research. Network Emulator for Windows Toolkit (NEWT) version 2.1, 2010.

[96] A. Miettinen and J. Nurminen. Energy efficiency of mobile clients in cloud computing. In

Proceedings of the 2nd USENIX conference on Hot Topics in Cloud Computing, 2010.

[97] M. Mikic-Rakic and N. Medvidovic. A classification of disconnected operation techniques.

In Proceedings of the 32nd EUROMICRO Conference on Software engineering and Ad-

vanced Applications (EUROMICRO-SEAA’06), 2006.

[98] B. Mitchell and S. Mancoridis. On the automatic modularization of software systems using

the bunch tool. IEEE Transactions on Software Engineering, 32(3):193–208, 2006.

Bibliography 209

[99] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian. DYNAMO: A cross-layer

framework for end-to-end QoS and energy optimization in mobile handheld devices. IEEE

Journal on Selected Areas in Communications, 25(4):722 –737, 2007.

[100] R. Monson-Haefel and D. Chappell. Java Message Service. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 2000.

[101] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service adaptation

for ws-bpel. In Proceeding of the 17th international conference on World Wide Web (WWW

’08), 2008.

[102] B. D. Noble, M. Sayanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker. Agile

application-aware adaptation for mobility. In Proceedings of the 16th ACM Symposium on

Operating Systems Principles, 1997.

[103] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. A preliminary study of the impact

of software engineering on greenIT. In Proceedings of the 1st International Workshop on

Green and Sustainable Software, 2012.

[104] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. Runtime monitoring of soft-

ware energy hotspots. In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’12), 2012.

[105] Object Management Group. The CORBA security service specification. Specification,

Object Management Group, 2002.

[106] Object Management Group. The CORBA component model specification. Specification,

Object Management Group, 2006.

[107] OSGi Alliance. OSGi release 4.1 specification. Specification, 2007.

[108] OSGi Alliance. RFP 133 cloud computing. 2010.

[109] Paremus Ldt. The Paremus service fabric - a technical overview, 2008.

Bibliography 210

[110] P. Parrend and S. Frénot. Classification of component vulnerabilities in java service ori-

ented programming (sop) platforms. In Proceedings of the 11th International Symposium

on Component-Based Software Engineering (CBSE ’08), pages 80–96, Berlin, Heidelberg,

2008. Springer-Verlag.

[111] A. Pathak, Y. Hu, and M. Zhang. Where is the energy spent inside my app?: fine grained

energy accounting on smartphones with eprof. In Proceedings of the 7th ACM European

Conference on Computer Systems (EuroSys), 2012.

[112] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Enabling automatic offloading

of resource intensive smartphone applications. Technical Report ECE-TR-11-3, Purdue

University, 2011.

[113] K. Pentikousis. In search of energy-efficient mobile networking. Communications Maga-

zine, IEEE, 48(1):95–103, January 2010.

[114] M. Philippsen, B. Haumacher, and C. Nester. More efficient serialization and RMI for Java.

Concurrency: Practice and Experience, 12(7):495–518, 2000.

[115] A. Polze, J. Schwarz, and M. Malek. Automatic generation of fault-tolerant CORBA-

services. In Proceedings of the Technology of Object-Oriented Languages and Systems

(TOOLS 2000), 2000.

[116] R. Powers. Batteries for low power electronics. Proceedings of the IEEE, 83(4):687 –693,

apr 1995.

[117] R. Pressman. Software engineering: a practitioner’s approach. McGraw-Hill Higher Edu-

cation, 2005.

[118] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. Profiling resource usage

for mobile applications: a cross-layer approach. In Proceedings of the 9th International

Conference on Mobile Systems, Applications, and Services (MobiSys). ACM, 2011.

Bibliography 211

[119] J. S. Rellermeyer and G. Alonso. Concierge: a service platform for resource-constrained

devices. In the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, pages 245 – 258, 2007.

[120] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi: Distributed applications through

software modularization. In Proceedings of the ACM/IFIP/USENIX 8th International Mid-

dleware Conference (Middleware), November 2007.

[121] A. Rountev. Precise identification of side-effect-free methods in Java. In Proceedings of the

20th IEEE International Conference on Software Maintenance, 2004.

[122] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Performance evaluation of message-

oriented middleware using the SPECjms2007 benchmark. Performance Evaluation,

66(8):410 – 434, 2009.

[123] S. M. Sadjadi and P. K. McKinley. ACT: An adaptive CORBA template to support unan-

ticipated adaptation. In Proceedings of the 24th International Conference on Distributed

Computing Systems (ICDCS ’04), pages 74 – 83, 2004.

[124] Security Annotation Framework. http://safr.sourceforge.net/.

[125] U. Saif and D. Greaves. Communication primitives for ubiquitous systems or RPC consid-

ered harmful. In Proceedings of the 21st International Conference Distributed Computing

Systems Workshop, 2001.

[126] G. T. Santos, L. C. Lung, and C. Montez. FTWeb: A fault tolerant infrastructure for web

services. Enterprise Distributed Object Computing Conference, IEEE International, 0:95–

105, 2005.

[127] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies. The case for VM-based cloudlets

in mobile computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

[128] D. Scott. Assessing the costs of application downtime. Technical report, Gartner Group,

1998. www.gartner.com.

http://safr.sourceforge.net/
www.gartner.com

Bibliography 212

[129] C. Seo, S. Malek, and N. Medvidovic. An energy consumption framework for distributed

Java-based systems. In Proceedings of the 22nd IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2007.

[130] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis. A dynamic mechanism for recovering

from buffer overflow attacks. In Proceedings of the 8th Information Security Conference,

2005.

[131] L. Siegele. Let it rise: A special report on corporate IT. The Economist (October 2008).

[132] T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol.

Biol., 147:195–197, 1981.

[133] A. Spiegel. Automatic Distribution of Object Oriented Programs. PhD thesis, FU Berlin,

FB Mathematik und Informatik, 2002.

[134] Spring Framework. http://www.springsource.org/.

[135] Spring Security. http://static.springsource.org/spring-security/

site/.

[136] J. W. Stamos and D. K. Gifford. Remote evaluation. ACM Trans. Program. Lang. Syst.,

12(4):537–564, 1990.

[137] Y.-Y. Su and J. Flinn. Slingshot: Deploying stateful services in wireless hotspots. In Mo-

biSys ’05: Proceedings of the 3rd international conference on Mobile systems, applications,

and services, 2005.

[138] M. Sullivan and R. Chillarege. Software defects and their impact on system availability-

a study of field failures in operating systems. In Proceedings of the 21st International

Symposium on Fault-Tolerant Computing,, year=1991,.

[139] S. Tambe, A. Dabholkar, J. Balasubramanian, and A. Gokhale. Automating middleware

specializations for fault tolerance. In Proceedings of the International Symposium on

http://www.springsource.org/
http://static.springsource.org/spring-security/site/
http://static.springsource.org/spring-security/site/

Bibliography 213

Object/component/service-oriented Real-time distributed Computing (ISORC 2009), March

2009.

[140] E. Tan, L. Guo, S. Chen, and X. Zhang. PSM-throttling: Minimizing energy consump-

tion for bulk data communications in WLANs. In Proceedings of the IEEE International

Conference on Network Protocols, 2007.

[141] A. S. Tanenbaum and R. v. Renesse. A critique of the remote procedure call paradigm. In

EUTECO 88, 1988.

[142] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A Bytecode Translator for Distributed

Execution of ”Legacy” Java Software. In European Conference on Object-Oriented Pro-

gramming (ECOOP), 2001.

[143] B. Tay and A. Ananda. A survey of remote procedure calls. Operating Systems Review,

24(3):68–79, 1990.

[144] The Apache Software Foundation. Felix. http://felix.apache.org/site/

index.html.

[145] The Apache Software Foundation. Lucene. http://lucene.apache.org/.

[146] The Apache Software Foundation. Nutch. http://wiki.apache.org/nutch/

NutchOSGi/.

[147] The Apache Software Foundation. Solr. http://lucene.apache.org/solr.

[148] The Apache Software Foundation. ActiveMQ. http://activemq.apache.org/,

2010.

[149] The Apache Software Foundation. Apache CXF Distributed OSGi. http://cxf.

apache.org/distributed-osgi.html, 2010.

[150] The Economist Editorial Staff. Creating the cumulus: Software will be transformed into a

combination of services. The Economist, 2008.

http://felix.apache.org/site/index.html
http://felix.apache.org/site/index.html
http://lucene.apache.org/
http://wiki.apache.org/nutch/NutchOSGi/
http://wiki.apache.org/nutch/NutchOSGi/
http://lucene.apache.org/solr
http://activemq.apache.org/
http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi.html

Bibliography 214

[151] C. Thompson, H. Turner, J. White, and D. Schmidt. Analyzing mobile application software

power consumption via model-driven engineering. In Proceedings of the 1st International

Conference on Pervasive and Embedded Computing and Communication Systems, 2011.

[152] E. Tilevich and Y.-W. Kwon. Cloud-based execution to improve mobile application energy

efficiency. IEEE Computer, 47(1), 2014.

[153] E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java application partitioning. In

Proceedings of the 16th European Conference on Object-Oriented Programming (ECOOP

’02), 2002.

[154] E. Tilevich and Y. Smaragdakis. NRMI: Natural and efficient middleware. IEEE Transac-

tions on Parallel and Distributed Systems, 19(2):174–187, 2008.

[155] E. Tilevich and Y. Smaragdakis. J-orchestra: Enhancing java programs with distribution

capabilities. ACM Trans. Softw. Eng. Methodol., 19(1):1–40, 2009.

[156] P. Tran, P. Greenfield, and I. Gorton. Behavior and performance of message-oriented mid-

dleware systems. In Proceedings of the 22nd International Conference on Distributed Com-

puting Systems (ICDCS ’02), 2002.

[157] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a Java byte-

code optimization framework. In Proceedings of the conference of the Centre for Advanced

Studies on Collaborative research (CASCON ’99), 1999.

[158] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds:

towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–55, 2009.

[159] J. Viega, J. T. Bloch, and P. Ch. Applying aspect-oriented programming to security. Cutter

IT Journal, 14:31–39, 2001.

[160] S. Vinoski. RPC under fire. IEEE Internet Computing, pages 93–95, 2005.

Bibliography 215

[161] J. Waldo, A. Wollrath, G. Wyant, and S. Kendall. A note on distributed computing. Techni-

cal report, Sun Microsystems, Inc. Mountain View, CA, USA, 1994.

[162] Y. Weinsberg and I. Ben-Shaul. A programming model and system support for

disconnected-aware applications on resource-constrained devices. In Proceedings of the

24th International Conference on Software Engineering, pages 374 – 384, Orlando, Florida,

May 2002.

[163] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O: A novel I/O semantics for energy-

aware applications. ACM SIGOPS Operating Systems Review, 36(SI):117–129, 2002.

[164] D. West. Saving money through cloud computing. Technical report, Governance Studies at

the Brookings Institution, 2010.

[165] A. Wollrath, R. Riggs, J. Waldo, et al. A distributed object model for the Java system.

Computing Systems, 9(4):265–290, 1996.

[166] K. Wuyts, R. Scandariato, G. Claeys, and W. Joosen. Hardening XDS-based architectures.

In Proceedings of the 3rd International Conference on Availability, Reliability and Security

(ARES ’08), pages 18–25, Washington, DC, USA, 2008. IEEE Computer Society.

[167] Y. Xiao, R. Kalyanaraman, and A. Yla-Jaaski. Energy consumption of mobile YouTube:

Quantitative measurement and analysis. In Proceedings of the 2ndInternational Conference

on Next Generation Mobile Applications, Services and Technologies (NGMAST ’08), 2008.

[168] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless sensor

networks. In Proceedings of the 21st IEEE Computer and Communications (INFOCOM

’02), volume 3. IEEE, 2002.

[169] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU scheduling for mobile mul-

timedia systems. ACM SIGOPS Operating Systems Review, 37(5):149–163, 2003.

Bibliography 216

[170] M. Zhang and R. Wolff. Crossing the digital divide: cost-effective broadband wireless

access for rural and remote areas. Communications Magazine, IEEE, 42(2):99–105, Feb

2004.

[171] Z. Zheng and M. Lyu. Optimal fault tolerance strategy selection for web services. Interna-

tional Journal of Web Services Research, 7(4):21–40, 2010.

	Introduction
	Major Research Contributions and Scope
	A Study of Middleware
	Declarative Fault Handling Against Partial Failure
	Automated Refactoring for Reliable Cloud-Based Execution
	Energy-Efficient Mobile Execution
	Energy-Efficient Middleware

	Broader Impact
	Structure

	An Assessment of Distributed Programming Abstractions
	An Assessment of DPAs for Accessing Remote Services
	Technical Background
	OSGi in RBI
	Case Study
	Discussion
	Related Work
	Conclusion

	The Impact of DPAs on Application Energy Consumption
	Technical Background
	Measuring Energy Consumption of Distributed Programming Abstractions
	Result Analysis
	Energy Consumption Patterns and Guidelines
	Related Work
	Discussion
	Conclusion

	Hardening Distributed Applications Against Partial Failure
	Hardening Distributed Applications with Network Volatility Resiliency
	Background
	DR-OSGi: Treating Symptoms of Network Volatility
	Evaluation
	Discussion
	Related Work
	Conclusions

	A Declarative Approach to Hardening Services Against QoS Vulnerabilities
	Background
	Declarative Hardening
	Evaluation
	Discussion
	Related Work
	Conclusions

	Enabling Cloud-Based Execution via Cloud Refactoring
	Motivation and Technical Background
	Motivating Example
	Technical Background
	OSGi Framework as a Cloud Computing Platform

	Our Approach: Cloud Refactoring
	Approach Overview
	Service Recommendation
	Cloud Refactoring—2) Adapt Service Interface

	Evaluation
	Micro Benchmark: Clustering-Based Recommendation
	Case Study I—DNA Sequence Alignment—JAligner
	Case Study II—JNotes
	Case Study III: GE Portfolio Analysis Service

	Discussion
	Advantages
	Limitations
	Motivation for Cloud Refactoring

	Related Work
	Conclusion

	Adaptive Cloud Offloading to Improve Energy-Efficiency
	Motivation and Research Questions
	Motivating Example
	Problem Definition and Research Questions
	Solution Overview

	Technical Background
	Distributed Mobile Execution to Save Energy
	Program Analysis
	Program State Synchronization

	Adaptive Cloud Offloading
	Approach Overview
	Programming Model
	Cloud Offloading Analysis
	Enhancing Bytecode to Enable Offloading
	Adaptive Runtime System

	Evaluation
	Micro Benchmark
	Case Study

	Discussion
	Advantages
	Limitations

	Related Work
	Distributed Mobile Execution
	Cloud Offloading
	Optimizing Energy Consumption

	Conclusions

	Configurable and Adaptive Middleware for Energy-Efficient Mobile Computing
	Problem and Technical Background
	Problems and Technical Challenges
	Technical Background

	Energy Aware Adaptive Middleware (e-ADAM)
	Approach Overview
	e-ADAM Process Flow
	e-ADAM Configuration

	Evaluation
	Micro-Benchmarks
	Case Study
	Threats to Validity

	Discussion
	Related Work
	Conclusions

	Conclusion and Future Work
	Conclusion
	Summary of Contributions

	Future Work
	Adapting Cloud Offloading via Constraint Solving
	Holistic Energy Optimization for Distributed Mobile Applications
	Workflow Based Automated Big Data Analytics

	Bibliography

