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ABSTRACT
Modern information and communication technologies used
by smart grids are subject to cybersecurity threats. This
paper studies the impact of integrity attacks on real-time
pricing (RTP), a key feature of smart grids that uses such
technologies to improve system efficiency. Recent studies
have shown that RTP creates a closed loop formed by the
mutually dependent real-time price signals and price-taking
demand. Such a closed loop can be exploited by an ad-
versary whose objective is to destabilize the pricing system.
Specifically, small malicious modifications to the price sig-
nals can be iteratively amplified by the closed loop, causing
inefficiency and even severe failures such as blackouts. This
paper adopts a control-theoretic approach to deriving the
fundamental conditions of RTP stability under two broad
classes of integrity attacks, namely, the scaling and delay

attacks. We show that the RTP system is at risk of being
destabilized only if the adversary can compromise the price
signals advertised to smart meters by reducing their values
in the scaling attack, or by providing old prices to over half
of all consumers in the delay attack. The results provide use-
ful guidelines for system operators to analyze the impact of
various attack parameters on system stability, so that they
may take adequate measures to secure RTP systems.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; K.6.5 [Management of Computing
and Information Systems]: Security and Protection

Keywords
Smart grid; real-time pricing; stability; cyber security

1. INTRODUCTION
A smart grid is an enhanced electrical grid that uses mod-

ern information and communication technologies to improve
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system reliability and efficiency. However, these comput-
erized and networking technologies are subject to security
threats that range from personal breaches [22] to sophis-
ticated cyber attacks launched by hostile organizations to
cause widespread outages [31]. As a sophisticated cyber-
physical system, a smart grid features complex closed-loop
feedback controls in various physical [18] and economic com-
ponents [7], which maintain desirable system performance
in the presence of dynamics and uncertainties. However,
the impacts of cyber attacks against these closed loops on
smart grids have received limited research attention. With-
out a systematic understanding of these impacts, system
designers and operators will not be able to truly assess how
these attacks may undermine the system’s ability to pro-
vide mission-critical services, and hence take appropriate
defensive measures against the possible threats. This pa-
per makes a step in this direction by quantifying, through
both analysis and simulations, the impact of cyber attacks
on real-time pricing (RTP) in smart grids, which involves
closed-loop controls to stabilize the electricity market.

Dynamic pricing [10] is a widely adopted means to bal-
ance electricity generation and consumption. The electricity
price in the wholesale market is updated periodically (e.g.,
every hour) to match generation with dynamic demand. In
contrast, many current retail markets adopt static pricing
schemes such as fixed and time-of-use tariffs, under which
the consumers have limited incentives to adapt their electric-
ity consumption to market conditions. This lack of incen-
tives results in high peak demands that strain infrastructure
capacities and unnecessarily increase operational costs. By
relaying the real-time wholesale prices to end users, RTP
has been considered a key feature of smart grids, which can
reduce over-provisioning and improve system efficiency. Un-
fortunately, as analyzed in [25], there exists a fundamen-
tal information asymmetry between the system operators
and consumers under RTP. Specifically, a system operator
needs to determine the price, which is supposed to clear the
market, prior to the consumption decisions made by con-
sumers. As the system operator typically has limited knowl-
edge about the consumers, its best practice is to determine
the price based on historical demand. As a result, RTP cre-
ates a closed loop formed by the mutually dependent real-
time prices and price-taking demand [25]. Such a closed loop
can increase the system’s sensitivity to dynamics and lower
its robustness against situational uncertainties. As such, it
can be exploited by an adversary whose objective is to desta-
bilize the RTP system. Specifically, small modifications to
the signals in the closed loop made by the adversary can
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be iteratively amplified by the feedback, causing inefficiency
and significantly fluctuating demand, and possibly leading
to severe failures such as blackouts.

In smart grids, the real-time price signals are exposed
to different security threats at the source, during network
transmissions, and at the consumer-level smart meters. In
particular, recent studies [22, 26] have shown that many
smart meters lack basic security measures to ensure the in-
tegrity and authenticity of their input/output data. In light
of these infrastructure vulnerabilities, imperative questions
regarding RTP security include, “Can the malicious com-
promise of real-time price signals destabilize the system and
cause severe failures such as outages? If so, to what extent
do the price signals need to be compromised?” A main chal-
lenge in answering these questions stems from the complex
coupling between the attacker actions and the closed-loop
RTP system. For instance, an attack against a few smart
meters can cause monetary losses to individual victims, but
it will not be able to destabilize the whole system. But if the
adversary is able to compromise a sufficiently large number
of consumers, the real-time price control mechanisms, which
are designed to stabilize the system, may fail to mitigate the
attack’s impact. This impact may then pervade the whole
system due to the iterative feedback. However, it is challeng-
ing to quantify these critical stability boundaries accurately,
in order to characterize the impact of the attacks.

In this paper, we adopt a control-theoretic approach, which
captures the closed-loop nature of the RTP, to deriving fun-
damental stability conditions under credible integrity at-
tacks. Based on the linearization of general abstract models
of supply and demand, the RTP problem is formulated as
a classical control problem for a linear time-invariant (LTI)
system. We develop a basic pricing algorithm that sets the
price adjustment proportional to the observed error between
supply and demand. It ensures stability and captures the
essence of stability-ensuring RTP systems. Therefore, the
security analysis based on this algorithm provides a baseline
understanding of the security of these systems. We adopt
a control-theoretic metric, namely, the region of stability,
to characterize the security of the closed-loop RTP system
with respect to important and practical adversary models.
Specifically, we consider two common and broad classes of
integrity attacks, which we call the scaling and delay at-
tacks, where the prices advertised to smart meters are com-
promised by a scaling factor (so that the meters will use
the wrong prices) and by corrupted timing information (so
that the meters will use old prices), respectively. In addition
to directly tampering with traffic sent to the smart meters,
these attacks can be accomplished by indirect techniques
that are less effort intensive. For instance, the delay attack
can be realized by compromising the time synchronization
of deployed smart meters. Note that current commercial
smart meters [28] synchronize their clocks by either built-in
GPS receivers or a network time protocol (NTP) supported
by time servers [28]. Both approaches have been shown to
be vulnerable to realistic attack methods [4,23]. As both at-
tacks can be modeled as LTI transfer functions, the security
analysis can be conducted under a LTI setting.

Based on our analytical framework, we derive the region
of stability for both the scaling and delay attacks. In par-
ticular, we show that the RTP system will remain stable
if (i) the compromised prices are amplified versions of the
true prices under the scaling attack (i.e., the scaling fac-

tor exceeds one), or (ii) less than half of the consumers in
the pricing system are compromised in the delay attack.
On the other hand, if the adversary can break either of
these two conditions, the system may experience severely
fluctuating demand arising from the system instability. We
report GridLAB-D [2] simulation results for a distribution
system consisting of 1405 consumers to verify our analysis
and demonstrate possible system emergencies (e.g., line and
transformer overload events) caused by the integrity attacks.
Our results provide insights for securing RTP in smart grids.
For instance, for the adversary to achieve the goal of com-
promising the price signals to at least half of the consumers,
she may focus her efforts on shared support infrastructures
such as the NTP time servers. This highlights the impor-
tance of securing these servers.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 presents the market model.
Section 4 defines the RTP stability problem, and develops
a control-theoretic formulation of the problem. Section 5
analyzes the impact of the scaling and delay attacks on the
RTP system. Section 6 discusses extensions of the analy-
sis framework to address a broader class of attacks that are
combinations of multiple scaling and delay attacks. Sec-
tion 7 presents simulation results. Section 8 concludes.

2. RELATED WORK
The security of smart grids is attracting increasing re-

search attention. In particular, false data injection attacks
against the state estimation of electrical grids have been ex-
tensively studied. In [21], Liu et al. systematically examine
the conditions for bypassing a bad data detection mecha-
nism of state estimation under various adversary capabil-
ity models. Later studies [16, 17, 20, 32, 33] show that the
false data injection attacks can lead to increased system op-
eration costs due to inordinate generation dispatch [33] or
energy routing [20], as well as economic losses due to mis-
conduct of electricity markets [16,17,32]. In particular, the
studies in [16, 17, 32] focus on false data injection attacks
on real-time wholesale markets. They primarily emphasize
attacks on critical measurements, which are often well pro-
tected by system operators. Moreover, they ignore demand
response of end users to prices. In contrast, our work con-
siders integrity attacks that target distributed smart meters
that are much more vulnerable, and also accounts for de-
mand response involving the end users. All these related
studies [16,17,20,21,32,33] analyze attacks on systems using
constrained optimization formulations such as power flow
dispatch. The closed loop characterizing the RTP system in
our work imposes specific challenges in the security analysis
due to its iterative nature.

The security of a broader class of cyber-physical systems
that feature complex closed loops has been studied recently.
In [12], Cárdenas et al. identify challenges in the security
analysis of these systems. In [11], the authors use simula-
tions to study the impacts of integrity and denial-of-service
attacks on a chemical reactor with multiple sensors and con-
trol loops. In [8], the authors perform security threat assess-
ment of supervisory control and data acquisition systems for
water supply. These studies focus on demonstrating the pos-
sibility of pushing the system to a certain state (e.g., unsafe
pressure in a chemical reactor) by tampering with the sen-
sor and/or control signals. They fall short of characterizing
fully the fundamental critical stability conditions.



Table 1: Summary of Notation*
Symbol Definition Unit

T pricing period hour
k index of current pricing period n/a
λk true price signal, λk ∈ [λmin, λmax] $/MWh

λ′

k compromised price signal $/MWh
λ∗

k clearing price $/MWh
bk total baseline demand MW

w(λk) total price-responsive demand MW
d(k, λk) total demand MW

D a constant in the CEO model MW
ǫ price elasticity of demand n/a

s(λk) scheduled total generation MW
ŝ(λk) realized total generation MW

p slope of linear supply model MW/($/MWh)
q intercept of linear supply model MW
ek generation scheduling error MW
η price stabilization gain, η ∈ (0, 1) n/a
λo price stabilization operating point $/MWh
C the set of all consumers n/a
C′ the set of consumers under attack n/a
ρ ≃ |C′|/|C| n/a
γ amplification of scaling attack n/a
τ time delay of delay attack T
h marginal demand-supply ratio n/a

* The unit of a quantity is omitted in the paper if it is specified here.

3. PRELIMINARIES
This section presents the market model adopted in this pa-

per, which comprises an independent system operator (ISO)
(Section 3.1), a set of consumers (Section 3.2), and a set of
suppliers (Section 3.3). For both consumers and suppliers,
we first describe general abstract models, and then discuss
concrete empirical models commonly used in literature. The
analytical results in this paper (i.e., Propositions 1 to 5) are
based on the abstract models, while the empirical models
(i.e., a constant elasticity of own-price demand model and
a linear supply model) are used for the numerical examples
and simulations. The notation used in this paper is sum-
marized in Table 1. We also use the following mathematical
notation: ḟ(x) denotes the first derivative of function f(x);
f−1(x) denotes the inverse of function f(x); R+/R− denotes
the set of positive/negative real numbers; Z+ denotes the set
of positive integers.

3.1 ISO Model and RTP Schemes
The ISO is a profit-neutral agent, which aims to clear the

market, i.e., match supply and demand. It determines a
clearing price every T hours and announces it to the sup-
pliers and end consumers. Specifically, the price for the kth
pricing period [k ·T, (k+1) ·T ], denoted by λk, is announced
at time instant (k − k0) · T , where k0 is a non-negative
integer. Hence, this scheme corresponds to ex-ante pric-
ing. We assume that the price must be within a range, i.e.,
λk ∈ [λmin, λmax], where λmax > λmin ∈ R+. Note that in
many electricity markets, suppliers sell electricity to utilities
in wholesale markets, and utilities sell electricity to end con-
sumers in retail markets. The market model adopted in this
paper directly relays real-time wholesale prices to end con-
sumers, which preserves the principles of RTP and simpli-
fies the analysis. This model has been employed in previous
studies (e.g., [25] and references therein) and is consistent
with the essence of several experimental RTP programs [10]
provided by utilities, which include Board of Public Util-
ities in New Jersey, Baltimore Gas and Electric Company
in Maryland, and Duquesne Light in Pennsylvania. In these

programs, the hourly wholesale prices published by PJM In-
terconnection LLC1 are used directly as retail prices, where
T = 1 and k0 = 0. A few other experimental RTP programs
give customers advance notice of hourly prices. For instance,
k0 = 1 for the RTP-HA-2 program of Georgia Power [6]. To
simplify the discussion, we focus on RTP schemes without
advance notice, i.e., k0 = 0. However, our analysis can be
easily extended to encompass advance notice. In reality, lo-
cational prices can be applied to address location-dependent
transmission costs. In many areas, as generation cost dom-
inates transmission cost, variations of locational prices are
often small. For instance, the relative standard deviation
of the locational prices for 219 locations published by PJM
is often around 5% only [5]. As this paper focuses on the
impact of integrity attacks on RTP systems, we ignore the
small variations in the locational prices. Thus, we assume
that all the suppliers and consumers are subject to the same
real-time price λk.

3.2 Consumers
Abstract demand model: Let C denote the set of con-
sumers in the system. For consumer j ∈ C, let bk,j denote
the baseline demand in the kth pricing period, which is ex-
ogenous, bounded, dependent on time, but independent of
λk. For instance, for a household, the baseline demand can
characterize the minimum necessary power usage, such as
cooking and a minimum level of illumination. Let vj(x−bk,j)
denote the additional value (unit: $/hour) derived from con-
suming a total of x units of power in the kth pricing period,
where x ≥ bk,j . We assume that vj(·) is a strictly increas-
ing and strictly concave function. Let dj(k, λk) denote the
demand of consumer j in the kth pricing period given price
λk. We denote wj(λk) = v̇−1

j (λk), where v̇−1
j (·) represents

the inverse function of v̇j(·). The demand is given by

dj(k, λk) = argmaxx (vj(x−bk,j)−λk · x) = bk,j+wj(λk).

In the above equation, vj(x− bk,j)− λk · x is the additional
utility beyond the baseline by consuming totally x units of
power. The wj(λk) is referred to as price-responsive demand.
It is easy to verify that wj(λk) is a decreasing function of λk.
By denoting bk =

∑
j∈C bk,j and w(λk) =

∑
j∈C wj(λk), the

total demand, denoted by d(k, λk), is given by

d(k, λk) =
∑

j∈C
dj(k, λk) = bk + w(λk). (1)

As there are a large number of consumers, we assume that
bk,j and vj(·) are unknown to the ISO. However, the ISO
knows the historical total demand {d(h, λh)|h ∈ [0, k − 1]}.
The above derivations, which are based on the basic concept
of utility in economics, explain the consumer’s demand re-
sponse to price. Human-induced demand response has been
observed in previous studies [29]. With the increasing adop-
tion of smart appliances and home automation systems, this
demand response will become more automated.

Empirical demand model: The constant elasticity of
own-price (CEO) model [14] is a simple model that can
be used to characterize the total price-responsive demand,
which is defined by w(λk) = D · λǫ

k, where D and ǫ are pos-
itive and negative constants, respectively. The ǫ is referred
to as the price elasticity of demand, which is typically within
(−1, 0) [13,19].
1PJM is a Regional Transmission Organization (RTO). This
paper does not distinguish between ISO and RTO.
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Figure 1: Total supply vs. wholesale price [1].

3.3 Suppliers
Abstract supply model: Each supplier aims to maximize
its profit. Let S denote the set of suppliers in the system.
For any supplier i ∈ S, let the function ci(x) represent the
cost (unit: $/hour [15, p. 534]) of producing and transmit-
ting x units of power. We assume that ci(x) is a strictly
convex and non-negative function over the support x ≥ 0.
Moreover, we assume that ci(x) is an asymptotically increas-
ing function, i.e., ∃x0 ≥ 0, ċi(x) > 0 if x > x0. Let si(λk)
denote the quantity of power that supplier i schedules to
generate in the kth pricing period given price λk, which is
given by si(λk) = argmaxx (λk · x− ci(x)) = ċ−1

i (λk). Note
that λk · x − ci(x) is the profit from generating x units of
power. It is easy to verify that si(λk) is an increasing func-
tion of λk. We assume that the generation capacity of the
supplier i is at least si(λmax). In this paper, we consider
centralized bulk generation rather than distributed genera-
tion. Therefore, an ISO can estimate {ci(·)|∀i ∈ S} as there
are typically a limited number of suppliers. Let s(λk) de-
note the scheduled total supply in the kth pricing period,
i.e., s(λk) =

∑
i∈S si(λk). We note that, in current elec-

tricity wholesale markets, the supply and price are often de-
termined through a bidding process [14], which is generally
governed by the costs of generation and transmission. In a
competitive bidding-based wholesale market, the resultant
supply and price will well reflect the supply model derived
from the cost model. We assume that the realized total gen-
eration in the kth pricing period, denoted by ŝ(λk), is always
equal to the total demand d(k, λk). This is consistent with
the current technologies in power grids. For instance, when
the demand exceeds the scheduled generation, the system
operators will observe a dropping voltage and frequency, and
generation can be increased to meet demand and maintain
the voltage and frequency at their nominal values.

Empirical supply model: Quadratic cost functions have
been widely adopted in the analyses of power generation sys-
tems [15], i.e., ci(x) = αix

2 + βix + δi, where αi > 0. To
make ci(x) non-negative over x ≥ 0, we have a few addi-

tional conditions: δi ≥ 0 if βi ≥ 0, or δi ≥
β2
i

4αi
if βi < 0.

Therefore, if λk ≥ βi, si(λk) = 1
2αi

(λk − βi); otherwise,

si(λk) = 0. To simplify the evaluation based on this empiri-

cal supply model, we assume that βi < 0 and δi ≥
β2
i

4αi
, such

that the total supply can be simplified as s(λk) = p · λk + q,

where p =
∑

i∈S
1

2αi
> 0 and q =

∑
i∈S − βi

2αi
> 0. We

now empirically verify this linear supply model using the
half-hourly total supply data of New South Wales (NSW),
Australia, provided by the Australian Energy Market Op-
erator (AEMO) [1]. Fig. 1 shows the histogram of total
supply versus the wholesale price in January, 2012. We can
see that the relationship between the average supply and
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Figure 2: An example of unstable solution [25] under
the linear supply and CEO demand models. Top fig-
ure: Evolution of price. Bottom figure: Generation
scheduling error in GW. (p=152, q=4503, ǫ = −0.6,
bk=2000, λ∗

k=20, λ0=21, λmin=1, λmax=100)

price is nearly linear. A linear fitting of the total supply
shown in Fig. 1 yields p = 152 and q = 4503. Such a linear
relationship can also be seen in the investigation of the elec-
tricity market of California [29, p. 112], where the demand
does not exceed the generation capacity.

4. THE RTP PROBLEM AND SOLUTIONS
This section formally states the RTP problem, examines

an existing solution, and proposes a new basic control-theoretic
solution with provable bounded-input bounded-output stabil-

ity (referred to as stability for short in this paper). Based on
our solution, the security analysis in Section 5 lays the foun-
dation for understanding the impact of attacks on feedback-
based RTP systems.

4.1 The RTP Problem and Solution Stability
At time instant k·T , the ISO aims to find the clearing price

for the period [k ·T, (k+1) ·T ], denoted by λ∗
k, such that the

scheduled supply matches demand, i.e., s(λ∗
k) = d(k, λ∗

k).
However, as d(k, λk) is unknown, in practice, the ISO sets
the price to match the scheduled supply and predicted de-

mand (denoted by d̃(k, λk)). Formally, we define

RTP Problem: Find λk such that s(λk) = d̃(k, λk).

Straightforward solutions to this problem may lead to sig-
nificantly fluctuating prices. For instance, a direct feedback
approach [25], which uses d(k−1, λk−1) as the predicted de-

mand d̃(k, λk), can yield oscillating prices as shown in Fig. 2.
The root cause of the oscillation is the unstable closed-loop
system formed by the direct feedback. When the system is
unstable, the price set by the ISO will oscillate or diverge,
even if the initial price is very close to the true clearing price.
The oscillations may lead to severe consequences. When
the diverging prices reach low values, the increased demand
may cause overload of the transmission and distribution net-
works. Moreover, as shown in Fig. 2, the unstable system
may experience significant generation scheduling errors (i.e.,
s(λk) − ŝ(λk)). Although reserve generating capacity can
help compensate for the errors, their use may increase the
cost of operating the system.

To study the impact of integrity attacks on the RTP sys-
tems, we should start with RTP schemes that are stable
in the absence of attacks. In Section 4.2, we examine the
stability of an existing RTP scheme [25] in the absence of
attacks. Its poor stability properties motivate us to design a
basic control-theoretic RTP scheme with provable stability
in the absence of attacks. This is the subject of Section 4.3.
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4.2 Direct Feedback Approach
A direct feedback approach to the RTP problem has been

studied in [25]. The conditions for global stability2 of the
approach, i.e., the properties of s(·) and d(·, ·) that ensure
global stability, have also been analyzed in [25]. The ap-
proach is briefly reviewed as follows. It predicts d(k, λk) by
the most recent demands based on an autoregression model,
and determines the price λk accordingly. For instance, the

simplest autoregression model uses d(k−1, λk−1) as d̃(k, λk)
and the closed-loop system is expressed as s(λk) = d(k −
1, λk−1). It is also referred to as the persistence model. Thus,
the price is determined as λk = s−1(d(k−1, λk−1)). If direct
feedback based on the persistence model is not globally sta-
ble, it is difficult to stabilize those systems globally with an
autoregression-based direct feedback approach [25]. Hence,
global stability under the persistence model is particularly
important. By applying Corollary 3 in [25], our analysis [30]
shows that under the linear supply and CEO demand mod-
els, where ǫ ∈ (−1, 0) and bk is a non-negative constant b,
the system λk = s−1(d(k − 1, λk−1)) is not globally stable.

As the direct feedback approach is not globally stable, its
convergence highly depends on the system state. If bk is
time-varying, it can push the system to a state that even-
tually leads to divergence. A few realistic constraints may
affect the system stability. For instance, even if the system
is not globally stable, the system may converge when the
initial price is within the allowed range [λmin, λmax]. More-
over, if a tentative price is out of the range [λmin, λmax], it
will be rounded to λmin or λmax. Hence, we conduct numer-
ical experiments that account for these realistic constraints
for better understanding. The settings of the supply model
are p = 152 and q = 4503, which are obtained in Fig. 1.
Given a clearing price λ∗ ∈ [λmin, λmax], the coefficient D

is set by solving s(λ∗) = d(λ∗), i.e., D = pλ∗+q−b
λ∗ǫ , where

b ∈ [0, pλmin+ q) to ensure D > 0 for any valid λ∗. Fig. 3(a)
shows a map of the probability that the system is converg-
ing when b = 0. To calculate the probability, the initial
price sweeps the range [λmin, λmax] and the probability is
calculated as the fraction of the initial prices that lead to
system convergence. Fig. 3(a) shows that the probability is
mostly either 0 or 1 and the transition region with the prob-
ability within (0, 1) is sharp. Fig. 3(b) plots the boundaries
between the converging and diverging regions under various
settings of b, where its valid range is [0, 4503). For instance,
when b = 4000, the system can be diverging if ǫ = −0.8
and λ∗ < 20. For the data shown in Fig. 1, about 20% of

2The system is globally stable if the price converges to the
clearing price given any positive initial price.
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Figure 4: The control-theoretic price stabilization.
Λ(z) and E(z) are the z-transforms of λk and ek.

the prices are lower than 20. Therefore, the direct feedback
approach can be unstable with significant probabilities.

4.3 Control-Theoretic Price Stabilization
The results in Section 4.2 show the necessity of control

laws for stabilizing the RTP systems. This section devel-
ops a basic control-theoretic price stabilization algorithm
with provable stability. The main objective of this paper
is to identify the fundamental impacts of integrity attacks
against the vulnerable real-time price signals on the stability
of the RTP systems with well designed control laws. More
sophisticated price stabilization algorithms could be devel-
oped. However, our security analysis in Section 5, which is
based on our basic control-theoretic algorithm, provides fun-
damental baselines for understanding the security properties
of RTP systems running such sophisticated algorithms.

The objective of price stabilization is to minimize the gen-
eration scheduling error and adapt to the time-varying base-
line load. We reformulate the RTP problem as a classical
discrete-time feedback control problem. Under this formula-
tion, the ISO observes the generation scheduling error in the
previous pricing period, and then uses it to guide the set-
ting of the price in the next pricing period. Specifically,
let ek denote the generation scheduling error, i.e., ek =
s(λk)− d(k, λk). The objective is to maintain the controlled

variable ek close to its reference, which is zero. The manip-

ulated variable is λk, and s(λk) − d(k, λk) is the controlled

system. The block diagram of the feedback control loop is
shown in Fig. 4. We let Gc(z), Gp(z), and H(z) denote the
transfer functions of the price stabilization algorithm, the
controlled system, and the observation system, which are
expressed in the z-transform domain. The z-transform [24]
provides a compact representation for discrete-time func-
tions, where z represents a time shift operation. As bk is
bounded and independent of λk, it can be modelled as a
disturbance to the system [24].

We now derive the expressions of Gp(z) and H(z). To pre-
serve generality, our design is based on the abstract supply
and demand models s(λ) and w(λ), which can be non-linear
as in the CEO model. In controller design, a common ap-
proach to dealing with non-linear systems is to adopt local
linearization [24]. Specifically, s(λ) ≃ s(λo)+ ṡ(λo) ·(λ−λo)
and w(λ) ≃ w(λo) + ẇ(λo) · (λ − λo), where λo is a fixed

operating point. By denoting sp(λ) = ṡ(λo)λ, so = s(λo) −
ṡ(λo)λo, wp(λ) = ẇ(λo)λ, and wo = w(λo) − ẇ(λo)λo, we
have s(λ) ≃ sp(λ) + so and w(λ) ≃ wp(λ) + wo. As so
and wo are independent of λ, as shown in Fig. 4, we can
collect them with the price-independent bk. The transfer
functions of the proportional models sp(λ) and wp(λ) are
Gs(z) = ṡ(λo) and Gw(z) = ẇ(λo), respectively. Therefore,
Gp(z) = Gs(z) − Gw(z) = ṡ(λo) − ẇ(λo). As the price sta-
bilization algorithm uses the observed generation scheduling
error in the previous pricing period to adjust the price for



the current pricing period, H(z) = z−1, which represents
the delay of one pricing period. Based on the above model-
ing, we have the following proposition, which can be proved
by examining whether the poles of the system are located
within a unit circle centered at the origin of the z-plane. The
details of the proof are omitted due to space constraints and
can be found in [30].

Proposition 1. For the linearized system Gp(z) = ṡ(λo)−
ẇ(λo) with λo fixed and the observation system H(z) = z−1,

the following price stabilization algorithm ensures stability:

λk = λk−1 −
2η

ṡ(λo)−ẇ(λo)
· ek−1, where η ∈ (0, 1).

The transfer function of the above algorithm is Gc(z) =
2η

(ṡ(λo)−ẇ(λo))(1−z−1)
. From control theory, when bk is a con-

stant, the system converges the fastest when η = 0.5, as the
system’s pole is at the origin [24]. The convergence speed
is particularly important for adapting to fast time-varying
baseline load so that the convergence is achieved before a
significant change of baseline load. However, our analysis in
Section 5 shows that we generally need to set a smaller η
to reduce the impact of attacks. In other words, we have to
sacrifice convergence speed for resilience to attacks.

As discussed in Section 3.2, w(·) is unknown to the ISO. In
practice, the ISO can estimate ẇ(λo) based on the history
of price-demand pairs. Our analysis in Section 6.1 shows
that, if the relative error in estimating ẇ(λo) is less than
100×(1−η)%, the algorithm given by Proposition 1 remains
stable. For instance, if η = 0.5, the relative error bound is
50%, which is a tractable requirement for most estimation
algorithms. Moreover, for a smaller η that is set to increase
resilience to attacks, the error bound will be larger. As the
focus of this paper is to analyze the fundamental impact of
integrity attacks on system stability under the control law
in Proposition 1, we do not elaborate on the estimation al-
gorithm, and the analysis in Section 5 assumes that the ISO
can accurately estimate ẇ(λo). Section 6.1 also discusses
the impact of inaccurate ẇ(λo) on the security analysis.

The price stabilization algorithm in Proposition 1 assumes
a fixed operating point λo. However, intuitively, if the oper-
ating point λo adapts to the current price, the linear approxi-
mations to s(λ) and w(λ) can be more accurate. Specifically,
by setting λo = λk−1, we have the following algorithm:

λk = λk−1 −
2η

ṡ(λk−1)− ẇ(λk−1)
· ek−1. (2)

Although there is a lack of rigorous theory to support the
technique of adapting λo to the current price, our numerical
experiments show that the algorithm in Eq. (2) is always
stable under all the settings shown in Fig. 3. The numeri-
cal examples and simulations conducted in the rest of this
paper employ the algorithm in Eq. (2). Fig. 5(a) shows the
evolution of price with fixed baseline load. When η = 0.5,
λk converges to λ∗ after two pricing periods. When η = 0.2,
the system has a longer settling time. When η = 0.8, the
price oscillates but converges. The oscillation is caused by
a negative pole [24]. Fig. 5 will also be used as a running
example in Section 5 to illustrate the impact of attacks.

5. INTEGRITY ATTACKS TO RTP
This section studies the impact of two integrity attacks on

RTP systems under the RTP scheme given by Proposition 1.
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Figure 5: A running example under the linear sup-
ply and CEO demand models (T = 0.5, ǫ = −0.8,
bk = 2000, λ∗ = 20, λ0 = 21). (a) Price stabilization;
(b) Scaling attack (η = 0.8, ρ = 1, γ = 0.57); (c) Delay
attack (η = 0.2, ρ = 1, τ = 12).

5.1 Attack Models and Impact Metrics
We consider integrity attacks on the price signals received

by a subset of consumers. If the price signal received by a
consumer is subject to attack, the price signal applied for
the current pricing period (denoted by λ′

k) is different from
the true price λk. The integrity attacks on the price signals
can be launched in different ways. For instance, once the
adversary has compromised the intermediate nodes in the
communication network of the smart grid (e.g., routers) and
obtained the decryption/encryption keys held by the ISO
and/or smart meters, the adversary can intercept and forge
price data packets. Moreover, recent reverse engineering
and penetration tests [22, 26] have shown that many smart
meters lack basic security measures to ensure integrity and
authenticity of the input/output data. These security vul-
nerabilities can be exploited to maliciously change the price
signals. We would like to point out that the integrity attacks
do pose strong requirements for the adversary. They require
that the adversary is able to modify the price information,
either at the source, during transmissions, or at the smart
meters. However, these attacks in a cyber environment are
certainly feasible and credible, and it would be wrongfully
complacent to ignore their possibility. In this paper, as the
price signals sent to the centralized suppliers are often well
protected, we assume that they are not subject to attacks.
However, our analysis framework can be easily extended to
account for possible attacks on the suppliers.

5.1.1 Attack Models
As the number of consumers in a smart grid is often large,

the number of compromised consumers is an important met-
ric for the adversary’s capability and resource availability.
Let C′ denote the set of consumers whose price signals are
compromised, where C′ ⊆ C, and w′(λk) denote the total
price-responsive demand in the presence of an attack. Thus,
w′(λk) =

∑
j∈C′ wj(λ

′
k) +

∑
j∈C\C′ wj(λk). We define

ρ =

∑
j∈C′ wj(λ

′
k)∑

j∈C wj(λ′
k)

=

∑
j∈C′ wj(λ

′
k)

w(λ′
k)

, (3)

which characterizes the fraction of consumers receiving the
compromised price signals. If the consumers are homoge-



neous (i.e., wj(·) is same for all j), ρ is a constant, i.e.,
ρ = |C′|/|C|. If they are heterogeneous, ρ is a function
of λ′

k. The extensive numerical evaluation in [30] shows
that, if the heterogeneous consumers follow the CEO model,
ρ ≃ |C′|/|C| with a variation of less than 0.003 and hence
can be practically treated as a constant. Moreover, we make
the following approximation:
∑

j∈C\C′

wj(λk) ≃ (1−ρ)
∑

j∈C
wj(λk) = (1−ρ)w(λk).

(4)
The numerical evaluation in [30] shows that relative approx-
imation error of Eq. (4) is less than 1%. Therefore, in the
presence of integrity attacks, we have

w′(λk) ≃ ρw(λ′
k) + (1− ρ)w(λk). (5)

If the price signals can be arbitrarily modified, the capa-
bility requirements of an adversary would be high. In this
paper, we consider“constrained”integrity attacks, where the
malicious modifications follow certain rules and can be real-
ized with lower capability and resource requirements. Note
that the adversary must be able to cause more severe dam-
age to the system if she is assumed to be able to modify
the price signals arbitrarily. An attack can be characterized
by the parameters for the rule, which is denoted by A. We
consider two kinds of integrity attacks:

Scaling attack A = (ρ, γ): The compromised price is a
scaled version of the true price, i.e., λ′

k = γλk, γ ∈ R+.

Delay attack A = (ρ, τ ): The compromised price is an old
price, i.e., λ′

k = λk−τ , τ ∈ Z+.

These two attacks can be launched in various ways. The
price values or time stamps in data packets sent to the smart
meters can be maliciously modified during transmissions in
vulnerable communication networks. Moreover, they can be
launched in indirect ways. For instance, the delay attack can
be launched by modifying the smart meters’ internal clocks.
Smart meters typically assign a memory buffer to store re-
ceived prices. If a smart meter’s clock has a lag, it will store
newly received prices in the buffer and apply an old price
for the present. Furthermore, attacks on the clocks can be
realized by compromising vulnerable time synchronization
protocols or the time servers that provide timing informa-
tion to the smart meters. A few smart meter products [28]
synchronize their clocks via a built-in GPS receiver, which is
vulnerable and subject to remote attacks that are effective
across large geographic areas [23].

In this paper, we assume that at most one kind of at-
tack is in effect. Moreover, we assume that the attack pa-
rameters are the same for all the compromised consumers.
For instance, if a delay attack with τ = 2 is launched, all
the compromised consumers experience the same delay of
two pricing periods. These simplifications allow us to better
understand the impact of each attack on the RTP system,
which is the basis for understanding more complex scenarios
such as heterogeneous attack parameters and combinations
of attack types. In Section 6.2, we will briefly discuss how
to extend our analysis to address these more complex cases.

5.1.2 Attack Impact Metrics
This section defines two metrics for the impact of the

integrity attacks on system stability. We first define the
marginal demand-supply ratio, which is a quantity that can
significantly affect the system stability under attacks.

Definition 1. Marginal demand-supply ratio is h =
∣∣∣ ẇ(λo)
ṡ(λo)

∣∣∣.

From Definition 1, h depends on the operating point λo. As
discussed in Section 4.3, the gain coefficient η of the price
stabilization algorithm affects the system stability in a major
way. Therefore, we define the following metric:

Definition 2. Given attack A, the region of operating
point stability under attack, denoted by ROSλo(A), is

ROSλo(A) = {(h, η)|The system is stable under attack A}.

The above metric depends on λo. We define a second metric
that is independent of λo:

Definition 3. Given attack A, the region of stability un-

der attack, denoted by ROS(A), is

ROS(A) = {η|The system is stable under attack A,∀h > 0}.

The above two metrics are important for understanding
the impact of integrity attacks on the stability of the RTP
system under the price stabilization algorithm in Proposi-
tion 1. In particular, the ROS(A) specifies the range of
η that ensures system stability under attack A. Hence,
the ROS allows us to compare the impacts of different in-
tegrity attacks. For two attacks A1 and A2, if ROS(A1) ⊂
ROS(A2), the ISO has more flexibility in setting η under
A2 than A1, to achieve faster convergence. Thus, the sys-
tem is more resilient to A2 than A1. From the adversary’s
perspective, A1 is more effective than A2. Note that, when
the RTP system with η ∈ ROS(A) is stable under attack A,
the compromised consumers may still experience monetary
losses and the system may run at low efficiency. However,
this paper focuses on the impact of attacks on the system
stability, which is a fundamental system requirement. In
Sections 5.2 and 5.3, we will derive the ROSλo and ROS for
the scaling and delay attacks.

5.2 Impact of Scaling Attack
The local linearization of Eq. (5) with λ′

k = γλk is

w′(λk) ≃ρ · (w(γλo) + ẇ(γλo) · (γλk − γλo))

+ (1− ρ) · (w(λo) + ẇ(λo) · (λk − λo)).

By collecting the price-independent terms with bk, the trans-
fer function of the price-dependent component is Gw(z) =
ργẇ(γλo) + (1 − ρ)ẇ(λo). To make the analysis tractable,
for the scaling attack, we only focus on a class of price-
responsive demand models that satisfy ẇ(γλ) = ẇ(λ)·µ(γ|Θ),
where Θ is the set of model parameters of w(·) and the func-
tion µ(γ|Θ) is independent of λ and always positive. Such
a ẇ(·) is said to be decomposable. For instance, under the
CEO model, Θ = {D, ǫ}, and µ(γ|Θ) = γǫ−1. For simplic-
ity of exposition, we denote µ(γ|Θ) as µ in the rest of this
paper. Therefore, Gw(z) = ργµẇ(λo) + (1 − ρ)ẇ(λo), and
Gp(z) = Gs(z)−Gw(z) = ṡ(λo)− ργµẇ(λo)− (1− ρ)ẇ(λo).
The closed-loop transfer function [24] under the attack is

Tc(z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z)
=

2η(1+ργµh+h−ρh)z

P (z)
,

where the system characteristic function P (z) = (h+1)(z−
1) + 2η(1 + ργµh + h − ρh). Note that Gp(z), H(z), and
Gc(z) have been obtained in Section 4.3.
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Figure 6: Stability boundaries under scaling attack,
abstract supply model, and CEO demand model (ǫ =
−0.8, ROSλo are the regions below the boundaries).

5.2.1 Region of Operating Point Stability

Proposition 2. For the linearized system based on a fixed

operating point λo and a decomposable ẇ(·), ROSλo(ρ, γ) =
{(h, η)|0 < η < min{1, η̄}, ∀h > 0}, where

η̄ =
h+ 1

h+ 1 + ρh(γµ− 1)
. (6)

Proof. If all the poles of Tc(z) (i.e., roots of P (z)) are
within the unit circle centered at the origin of z-plane, the
system is stable [24]. If η < η̄, the pole is within the circle.
As η ∈ (0, 1), η takes the minimum of 1 and η̄.

Remark 1. Under the CEO demand model, by replacing
µ = γǫ−1 in Eq. (6), we have η̄ = h+1

h+1+ρh(γǫ−1)
. Fig. 6 plots

the stability boundaries when ǫ = −0.8, where the ROSλo

are the regions below the boundaries. We can see that the
ROSλo shrinks with increased ρ and decreased γ. This can
be easily proved by the monotonicity of η̄. Moreover, it is
consistent with the intuitions that (i) the system becomes
more unstable when more consumers are compromised, and
(ii) the increased demand due to a decreased γ poses more
challenges to the system.

We now use the numerical example in Fig. 5(b) to verify
our analysis. Fig. 5(b) shows the price signals received by
the suppliers and consumers, respectively, when γ = 0.57.
We can see that the price does not converge. The aver-
age value of h is 0.850, which falls in the unstable region
(h > 0.786) according to the analytical ROSλo . Note that
when γ = 0.59, the price converges and the average value of
h is 0.862, which falls in the stable region (h < 0.908) accord-
ing to the analytical ROSλo . Therefore, Proposition 2 suc-
cessfully characterizes the critical stability boundary. Note
that, as the settings for Fig. 5(b) are close to the stability
boundary, the price oscillates in a small range. For smaller
γ, the price can severely oscillate, as shown in Section 7.

5.2.2 Region of Stability

Proposition 3. For the linearized system based on a de-

composable ẇ(·), when γµ ∈ (0, 1], ROS(ρ, γ) = {η|0 < η <
1}; when γµ > 1, ROS(ρ, γ) = {η |0 < η < infh>0 η̄ }, where
infh>0 η̄ = 1

1+ρ(γµ−1)
.

Proof. When γµ ∈ (0, 1], η̄ ≥ 1. From Proposition 2,
if 0 < η < 1, the system is stable regardless of h. When
γµ > 1, η̄ is a bounded decreasing function of h. Its infimum
infh>0 η̄ = limh→+∞ η̄ = 1

1+ρ(γµ−1)
. Therefore, if 0 < η <

infh>0 η̄, the system is stable regardless of h.
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Figure 7: Stability boundaries under delay attack
and abstract supply/demand models. (In the left
figure, the curve with τ = 1 and γ = 0.6 is for com-
bined attack discussed in Section 6.2.)

Remark 2. Under the CEO demand model, replacing µ =
γǫ−1 in Proposition 3 yields the following result. When γ ≥
1, ROS(ρ, γ) = {η|0 < η < 1}; when γ ∈ (0, 1), ROS(ρ, γ) =
{η |0 < η < infh>0 η̄ }, where infh>0 η̄ = 1

1+ρ(γǫ−1)
. There-

fore, under the CEO model, if the adversary amplifies the
price, the system remains stable. This result is consistent
with the intuition that decreased demand due to the ampli-
fied price poses no challenges to the system. Fig. 8(a) plots
infh>0 η̄ when ǫ = −0.8. We can see that ROS shrinks with
increased ρ and decreased γ. This can be easily proved by
the monotonicity of infh>0 η̄.

5.3 Impact of Delay Attack
The local linearization of Eq. (5) with λ′

k = λk−τ is

w′(λk) ≃ρ · (w(λo) + ẇ(λo) · (λk−τ − λo))

+ (1− ρ) · (w(λo) + ẇ(λo) · (λk − λo)).

By collecting the price-independent terms with bk, the trans-
fer function of the price-dependent component is Gw(z) =
z−τρẇ(λo) − (1 − ρ)ẇ(λo), where z−τ represent a delay of
τ pricing periods. Therefore, Gp(z) = Gs(z) − Gw(z) =
ṡ(λo)− z−τρẇ(λo)− (1− ρ)ẇ(λo). The closed-loop transfer
function under the attack is

Tc(z)=
Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z)
=

2η(1+(1−ρ)h)zτ+1+2ρηhz

P (z)
,

where the system characteristic function is

P (z) = (h+ 1)zτ+1 + (2η + 2η(1− ρ)h− h− 1) zτ + 2ηρh.

5.3.1 Region of Operating Point Stability
As P (z) is a (τ+1)-order polynomial, it is extremely diffi-

cult to derive the closed-form formulas for the poles of Tc(z).
Various methods have been developed to test the stability
without explicitly solving for the poles [24]. Among them,
the Jury test [24, p. 185] is preferred because the coeffi-
cients of P (z) are real numbers. The Jury test constructs a
table based on the coefficients of P (z) and derives the sta-
bility conditions from the table. Given ρ, we can derive the
closed-form ROSλo for different τ from the Jury test. How-
ever, the expressions become more complicated for larger
τ . We numerically compute the ROSλo based on the Jury
test for various settings of τ and ρ. Fig. 7 plots the stabil-
ity boundaries, where the ROSλo are the regions below the
boundaries. From Fig. 7, the ROSλo shrinks with τ and ρ,
which is consistent with intuition. We have the following
proposition. The proof is based on the Jury test, which is
omitted due to space constraints and can be found in [30].



Algorithm 1 Compute ROS(ρ, τ ) when ρ ∈ (0.5, 1]

Input: ρ and τ
Output: limh→+∞ η̄(h|ρ, τ)
1: if τ = 1 then

2: return 1/(2 · ρ)
3: end if

4: X = 1, Y = 2ηρ, Z = 2ηρ(1 − 2η(1 − ρ))
5: for i = 1 to τ do

6: U = X · X − Y · Y, V = Z, W = (X · Z · Z)/Y
7: X = U, Y = V, Z = W

8: end for

9: Q(η|ρ) = X ·X − Y · Y − Z

10: return minimum root of Q(η|ρ) = 0 over η ∈ (0, 1)

Note: Line 4 to Line 9 are symbolic calculation, where the bold cap-
itals are symbolic expressions of η and ρ.

Proposition 4. For the linearized system with a fixed

operating point λo, ROSλo(ρ, τ + 1) ⊆ ROSλo(ρ, τ ).

We now use the numerical example in Fig. 5 to verify our
analysis. Fig. 5(c) shows the price signals received by the
suppliers and consumers, respectively, when η = 0.2, ρ = 1,
τ = 12. We can see that the price diverges. The average
value of h is 1.455390, which falls in the unstable region
(h > 1.447) according to the Jury test. Note that when
τ = 11, the price does converge and the average value of h is
1.455335, which falls in the stable region (h < 1.522) accord-
ing to the Jury test. Therefore, the Jury test successfully
characterizes the critical stability boundary. As the settings
for Fig. 5(c) are close to the stability boundary, the price
diverges slowly. For larger τ , the price can diverge quickly.

5.3.2 Region of Stability
We observe from Fig. 7(b) that, when ρ = 0.5, the system

is stable for η ∈ (0, 1). We have the following proposition.

Proposition 5. For the linearized system, if ρ ∈ (0, 0.5],
∀τ ∈ Z+, ROS(ρ, τ ) = {η|0 < η < 1}.

The proof can be found in the appendix, where we prove
that if ρ ∈ (0, 0.5], all roots of P (z) are within the unit circle
centered at the origin in the z-plane and hence the system
is stable [24]. From Proposition 5, to launch a successful
delay attack that destabilizes the system, the adversary has
to compromise no less than a half of the consumers. The
intuition behind this result is that the compromised price-
responsive load must predominate to affect the operation
of the system. This result poses strong requirements for
the adversary. However, she could accomplish the goal by
targeting shared infrastructures such as the time servers that
provide timing information to all the smart meters. On the
other hand, the need for the adversary to compromise a large
fraction of the meters in order to be effective is indicative
of the resilience of the price stabilization algorithm given by
Proposition 1 to delay attacks.

We now discuss the ROS when ρ ∈ (0.5, 1]. From Fig. 7,
the stability boundary curves are non-increasing and con-
verge to limits when h → +∞. Let η̄(h|ρ, τ ) denote the
stability boundary curve for particular ρ and τ . Therefore,

ROS(ρ, τ ) = {η|0 < η < limh→+∞ η̄(h|ρ, τ )}.

When τ = 1, the limit is simply 1
2ρ
. However, for larger

τ , it is extremely difficult to derive the closed-form formula
for the limit, primarily because of the iterative nature of the
Jury test. Instead, we use an algorithm to define ROS(ρ, τ ),
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Figure 8: Upper bound of ROS.

which is shown in Algorithm 1. This algorithm is devel-
oped based on key observations from the Jury test proce-
dure. Fig. 8(b) plots limh→+∞ η̄(h|ρ, τ ), which is computed
by Algorithm 1, versus τ under various settings of ρ. We
also use the Jury test to compute η̄(h|ρ, τ ) with a large set-
ting for h (specifically, h = 1010). The results are the same
as in Fig. 8(b). From the figure, we can see that the ROS
shrinks with ρ and τ , which is consistent with intuition.

6. DISCUSSIONS
In this section, we discuss the impact of inaccuracy in

estimating ẇ(λo) on the analysis in the previous sections.
We also discuss how to extend our analysis to address more
complicated attack models.

6.1 Impact of Inaccuracy in Estimating ẇ(λo)

As the price-dependent demand model w(·) is unknown
to the ISO, we derive an upper bound for the error in es-
timating ẇ(λo), to ensure the stability of the algorithm in

Proposition 1. Let ˜̇w(λo) denote the estimated ẇ(λo), and

Ew= ẇ(λo)−˜̇w(λo)
ẇ(λo)

denote the relative estimation error. The

stability condition 0 < η < 1 can be rewritten as 0 <
2η

ṡ(λo)−ẇ(λo)
< 2

ṡ(λo)−ẇ(λo)
. As long as 0 < 2η

ṡ(λo)− ˜̇w(λo)
<

2
ṡ(λo)−ẇ(λo)

, the system is stable. This condition can be de-

rived as Ew< (1−η)
(
1− ṡ(λo)

ẇ(λo)

)
. As 1− ṡ(λo)

ẇ(λo)
>1, Ew< (1−η)

is a sufficient condition for stability.

We now discuss the impact of inaccurate ˜̇w(λo) on the
security analysis results in Section 5. From the definition of

Ew, we have ˜̇w(λo) = (1−Ew)ẇ(λo). Note that Ew < 1 since

˜̇w(λo) > 0. By replacing h with |1−Ew| ·h in Proposition 2,
we have a new result in the presence of the estimation error
Ew. From the proofs of Propositions 3, 4, and 5, they are
independent of h. Therefore, these propositions still hold in
the presence of estimation errors.

6.2 Superimposed and Heterogeneous Attacks
In this section, we discuss how to extend our analysis

framework to address a class of integrity attacks that are
the superimposition of scaling and delay attacks. We also
discuss how to adapt our analysis to scenarios in which the
attack models/parameters are different for different compro-
mised consumers.

From discrete-time control theory [24], our analysis frame-
work can be applied to derive the ROSλo and ROS under
any integrity attack that can be modeled as a linear time-



invariant (LTI) system with the transfer function Λ′(z)
Λ(z)

=
∑n

i=0 aiz
−i

∑
m
j=0

bjz
−j , where the Λ(z) and Λ′(z) are the z-transforms

of λk and λ′
k. In the time domain, λ′

k is given by the lin-
ear combination of λk−i and λ′

k−j , where 0 ≤ i ≤ n and
1 ≤ j ≤ m. The scaling and delay attacks studied in Sec-
tion 5 are special cases of this general attack model. For
instance, under the delay attack, b0 = 1, bj = 0 for j ≥ 1,
aτ = 1, ai = 0 for i 6= τ . This general attack model can
also be regarded as the superimposition of scaling and delay
attacks. We now illustrate the enhanced impact of attack
superimposition using a simple example: λ′

k = γ · λk−τ .
Under this attack superimposition, the closed-loop system
characteristic function of Eq. (5) is

P (z) = (h+1)zτ+1 +(2η+2η(1− ρ)h− h− 1)zτ +2ηρhγµ,

where µ is defined in Section 5.2. We can still apply the Jury
test to derive the ROSλo(ρ, γ, τ ) and ROS(ρ, γ, τ ). Fig. 7(a)
shows the stability boundary for this attack superimposition
with ρ = 1, γ = 0.6, and τ = 1. The ROSλo of this attack
superimposition is smaller than the delay attack with ρ = 1
and τ = 1, which means stronger attack impact.

If two subsets of consumers are subject to two different at-
tacks that happen simultaneously in the grid, Eq. (5) can be
rewritten as w′(λk) = ρ1w(λ′

k)+ρ2w(λ′′
k)+(1−ρ1−ρ2)w(λk),

where ρ1 and ρ2 are the fractions of consumers subject to
the two attacks, and λ′

k and λ′′
k are the corresponding com-

promised prices. Our analysis framework still applies once
the models of λ′

k and λ′′
k are specified. The attack with dif-

ferent parameters (e.g., consumers are subject to different
delays) can be treated as simultaneous attacks.

7. TRACE-DRIVEN SIMULATIONS
We use GridLAB-D [2], an electric power distribution sys-

tem simulator, to evaluate the impact of integrity attacks.
GridLAB-D captures many physical characteristics such as
power line capacities and impedances. Hence, we can vali-
date our analysis under the realism provided by GridLAB-D.
Moreover, it can record emergency events that occur when
the current ratings of lines and power ratings of transform-
ers are exceeded. Such events could cause sustained service
interruptions to consumers. These events are of particular
interest to us, because they help us understand the physical
consequences caused by the integrity attacks.

7.1 Simulation Methodology and Settings
We use a distribution feeder specification [27], which cov-

ers a moderately populated urban area and comprises 1405
houses, 2134 buses, 3314 triplex buses, 1944 transformers,
1543 overhead lines, 335 underground lines, and 1631 triplex
lines. For this small-scale distribution feeder, locational
prices are usually not applicable and hence all the houses
are subject to the same price as discussed in Section 3.1.
By leveraging the extensibility of GridLAB-D, we develop
new modules that implement the CEO model for each sin-
gle house, the price stabilization algorithm in Eq. (2), and
the attack strategies. We measure the instantaneous power
of the entire feeder at the root node. Its peak value over the
previous pricing period is used as d(λk−1) in Eq. (2). As we
focus on evaluating the physical consequences of attacks, we
do not simulate the logistics of the attacks and assume that
the adversary can gain access to the meters of his choosing.
Specifically, if a house is not subject to attacks, it directly
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Figure 9: Price stabilization in the absence of attack.

reads the real-time price from the ISO module; otherwise, it
reads the price from an adversary module that modifies the
price according to the attack models. All the attacks are
launched after the system has converged.

We adopt the CEO demand model for each single house,
where the parameters are drawn from normal distributions:
Di ∼ N (7, 3.52) (unit: kW) and ǫi ∼ N (−0.8, 0.12). Un-
der this setting, if the price is within [10, 20], the per-house
price-responsive demand is within [0.65, 1.1] kW. To improve
the realism of the simulations, we use the half-hourly total
demand trace from March 1st to 22nd, 2013, of NSW, Aus-
tralia, provided by AEMO [1] as the baseline load. The
baseline load of a single house is set to be a scaled version
of the real data trace. The resultant range of the per-house
baseline load is [0.276, 0.488] kW. Hence, when the price is
within [10, 20], the demand of a household is within [0.9, 1.6]
kW, which is consistent with the average demand of a house-
hold in reality [3]. In our simulations, the price is updated
every half an hour, to be consistent with the setting of the
demand data traces [1]. In each pricing period, the simulated
demand remains constant. For the supply model, the set-
tings obtained in Fig. 1 (i.e., p = 152 and q = 4503) are for
the whole NSW region. They must be scaled down to fit the
simulated feeder with 1405 houses. From the facts that there
are 2.8 million households in NSW [3] and 57% of AEMO’s
supply is for residential demand [9, p. 15], the two parame-
ters are scaled as follows: p = 57%×152

2800000/1405
= 43.638 × 10−3

and q = 57%×4503
2800000/1405

= 1.287. Other default settings in-

clude: T = 0.5, λmin = 1, λmax = 200, and η = 0.5.

7.2 Simulation Results
Price stabilization: The first set of simulations evaluate
the effectiveness of the direct feedback approach [25] and our
control-theoretic price stabilization algorithm in Eq. (2). In
the simulations, the direct feedback approach is unstable,
where the price oscillates between λmin and λmax. The total
demand reaches 10 MW a few hours after the start of the
simulation, and GridLAB-D reports that four distribution
lines are overloaded. Fig. 9 plots the price and resultant
demands under our price stabilization approach in Eq. (2).
We can see that the price fluctuates slightly for a few hours
after the start of the simulation, due to an inappropriate ini-
tial price. After the system converges, it can well adapt to
the time-varying baseline load. The generation scheduling
error is close to zero, which means that the clearing price is
achieved. We also evaluate the impact of an inaccurate con-

sumer model w(λ) = D̃λǫ̃ on the system performance. The
evaluation results are consistent with our analysis in Sec-
tion 6.1. For instance, when η = 0.5, the system keeps sta-

ble if i) (D−D̃)/D < 0.67 and ǫ̃ = ǫ, or ii) 0.05ǫ < ǫ̃ < 2.15ǫ

and D̃ = D. Therefore, the price stabilization algorithm is
resilient to inaccuracies of the estimated consumer model.

Scaling attack: Fig. 10 plots the true and compromised
prices, as well as the breakdown of demand under the scal-
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Figure 10: Scaling attack (ρ = 65%, γ = 0.1).
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Figure 11: Impact of delay attack (ρ = 100%, τ = 9).
(a) Prices and demands; (b) emergencies.

ing attack. We can see that the price as well as the demand
fluctuates severely. GridLAB-D reports excessive distribu-
tion line overload events after the launch of the attack. We
also extensively evaluate the impact of the scaling attack
with different settings of ρ and γ. We use the standard de-
viation of the generation scheduling error after the launch of
the attack, denoted by σ(e), as the system volatility metric.
A near-zero σ(e) means convergence, while a considerably
large σ(e) means oscillation or divergence. Fig. 13(a) plots
σ(e) versus γ under various settings of ρ. We can see that
the system volatility increases with ρ and decreases with γ.

Delay attack: Fig. 11(a) and Fig. 12(a) show the evolu-
tion of price and the breakdown of demand under the delay
attacks with different parameters. We also investigate the
emergency events reported by GridLAB-D. The overload of
a distribution line or a transformer is defined as the percent-
age of the exceeded current/power with respect to the rated
value. Fig. 11(b) and Fig. 12(b) plot the emergency fre-

quency and maximum overload in each day. The emergency
frequency is defined as the ratio of the number of pricing pe-
riods with reported emergency events to the number of pric-
ing periods per day (i.e., 48). In Fig. 11, a small generation
scheduling error caused by the time-varying baseline load
will be amplified iteratively along the control loops, after
the launch of the attack. The overload can be up to 350%.
In practice, such a high overload will cause circuit break-
ers to open and hence regional blackouts. In Fig. 12, the
system appears to diverge and then converge again without
causing any emergencies. However, it diverges again from
the 12th day due to the changing baseline load, causing ex-
cessive emergencies. This illustrates the stealthiness of the
delay attack that causes marginal system stability. Lastly,
we evaluate the impact of the delay attack with different
settings of ρ and τ . The results are shown in Fig. 13(b).
We can clearly see that when ρ < 0.5, the system remains
stable, which is consistent with Proposition 5.

8. CONCLUSION
This paper systematically investigates the impact of scal-

ing and delay attacks on the stability of RTP systems. We
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Figure 13: System volatility under attacks.

characterize the impact using a control-theoretic metric, re-
gion of stability. We show that, to destabilize the RTP sys-
tem, it is necessary for the adversary to reduce the price in
a scaling attack or compromise more than half of the smart
meters in a delay attack. We conduct trace-driven simu-
lations to validate our analysis. The results of this paper
improve our understanding of the security of RTP systems
so that suitable defensive measures can be taken.

8.1 Limitations and Future Work
In this paper, we have made a few simplifying assump-

tions and have pointed them out. Care is thus required
when applying our results to general real-world settings,
e.g., large-scale smart grids, where locational prices are im-
portant. Particularly, Propositions 1 to 5 are based on the
linearized abstract supply and demand models at a fixed
operating point.3 The security analysis in Propositions 2 to
5 is based on the approximate aggregate demand model in
Eq. (5). These simplifications enable us to study the RTP
susceptibility to malicious attacks under LTI settings. How-
ever, for systems that involve non-linear, time-variant, or
stochastic components and complex market structures, the
LTI assumptions may not hold and our analysis may lead to
inaccuracies in characterizing such systems.

It is interesting for further research to address the follow-
ing issues not considered in this paper. First, our analysis
framework can be extended to address attacks that cannot
be modeled as LTI systems. Second, for large-scale systems
where locational prices are important, the system behavior
may deviate from our analysis when the power network is
congested due to price oscillations. Locational prices can be
considered by integrating economic dispatch into the anal-
ysis. Third, this paper considers simplified system models
while preserving the principles of RTP. Extensions are pos-
sible that consider various practical factors such as suppli-
ers’ ramp constraints, energy storage, load shifting, bidding
markets, and ex-ante RTP with ex-post adjustments.

3The numerical results and simulations use the algorithm in
Eq. (2), which uses the current price as the operating point.
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APPENDIX: PROOF FOR PROPOSITION 5
Denote u1=h+1, u2=2η+2η(1−ρ)h−h−1, u3=2ηρh, and
P (z)=u1z

τ+1+u2z
τ+u3, where u1 > 0 and u3 > 0. Express

any system pole (i.e., root of P (z) = 0) in polar coordinates:
z = A(cos θ+ i sin θ), where A > 0. P (z) = 0 can be rewrit-
ten as two equations: Aτ (u1A cos(τ + 1)θ + u2 cos τθ) =
−u3 and Aτ (u1A sin(τ + 1)θ + u2 sin τθ) = 0. Adding the
squares of the two equations yields g(A)=0, where g(A)=
u2
1A

2τ+2 +2u1u2 cos θA
2τ+1 + u2

2A
2τ − u2

3. Thus, any pole
satisfies g(A) = 0. We can verify that g(1) > 0 when
ρ ∈ (0, 0.5]. Moreover, ġ(A) = A2τm(A), where m(A) =

u2
1(2τ + 2)A + 2u1u2(2τ + 1) cos θ +

2τu2
2

A
is a convex func-

tion with its minimum at A∗ =
∣∣∣u2

u1

∣∣∣
√

τ
τ+1

. We can verify

that
∣∣∣u2

u1

∣∣∣ < 1 if ρ ∈ (0, 0.5]. Thus, A∗ < 1 and the min-

imum of m(A) for A ≥ 1 is m(1), which satisfies m(1) ≥
u2
1(2τ+2)−2u1|u2|(2τ+1)+2τu

2
2=2(u1−|u2|)(τ (u1−|u2|)+u1).

If u2 < 0, u1 − |u2| = 2η + 2η(1 − ρ)h > 0; if u2 ≥ 0,
u1−|u2| = 2(1−η)+2h(1−η(1−ρ)) > 0. Hence, m(A) > 0
and ġ(A) > 0 for A ≥ 1. Recalling g(1) > 0, we have
g(A) > 0 for A ≥ 1. Hence, A < 1 for all poles and the
system is stable.
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