
Efficient Concurrency-Bug Detection Across Inputs

Dongdong Deng Wei Zhang Shan Lu
University of Wisconsin, Madison

dongdong@cs.wisc.edu, wzh@cs.wisc.edu, shanlu@cs.wisc.edu

Abstract
In the multi-core era, it is critical to efficiently test multi-
threaded software and expose concurrency bugs before soft-
ware release. Previous work has made significant progress
in detecting and validating concurrency bugs under a given
input. Unfortunately, software testing always faces large sets
of test inputs, and existing techniques are still too expensive
to be applied to every test input in practice.

In this paper, we use open-source software to study how
existing concurrency-bug detection tools work for a set
of inputs. The study shows that an interleaving pattern,
such as a data race or an atomicity violation, can often be
exposed by many inputs. Consequently, existing bug detectors
would inevitably waste their bug detection effort to generate
duplicate bug reports, when applied to a set of inputs.

Guided by the above study, we propose a coverage metric,
Concurrent Function Pairs (CFP), to efficiently approximate
how interleavings overlap across inputs. Using CFP, we
have designed a new approach to detecting data races and
atomicity-violation bugs for a set of inputs.

Our evaluation on open-source C/C++ applications shows
that our CFP-guided approach can effectively accelerate
concurrency-bug detection for a set of inputs by reducing
redundant detection effort across inputs.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging; D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords multi-threaded software, software testing, con-
currency bugs, bug detection
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1. Introduction
1.1 Motivation
The rise of the multi-core era dictates the prevalence of multi-
threaded software. Unfortunately, concurrency bugs widely
exist in multi-threaded software [20] and have caused severe
damages in the real world [28, 45, 52]. Therefore, effective
bug-detection and testing techniques are needed to expose
concurrency bugs before software release.

Exposing concurrency bugs is challenging, requiring not
only bug-triggering inputs but also special orders of shared-
memory accesses (i.e., interleavings). A multi-threaded pro-
gram can take many different inputs, and follow many differ-
ent interleavings while executing each input. Facing the huge
input space and the even bigger interleaving space, it is im-
practical for in-house testing to expose all hidden bugs. How
to expose as many bugs as possible given the time pressure
and resource budget is a critical and open question.

The state-of-the-art techniques for in-house concurrency-
bug detection and testing often involve three steps:

1. Input Design: a set of test inputs are designed to provide
code coverage;

2. Bug Detection: for each test input, the program is exe-
cuted and analyzed by a dynamic bug-detection tool that
identifies potentially buggy interleavings;

3. Bug Validation: for each test input, the program is exe-
cuted for several more times to exercise suspicious inter-
leavings identified above.

Ideally, the second and third steps are repeated for every
test input to provide interleaving coverage, so that concur-
rency bugs can be thoroughly detected and validated.

Much research has been done to improve each individual
step mentioned above. For the first step, many techniques
are developed to automatically generate inputs that provide
good code coverage for single-threaded and multi-threaded
programs [19, 54, 55]. For the second step, many tools are
proposed to detect various types of buggy interleavings, in-
cluding data races [7, 15, 29, 42, 50, 69], atomicity violations
[6, 14, 31, 32, 61, 65], abnormal data-communication pat-
terns [33, 59, 67, 70], and others. For the third step, different



schemes are designed to efficiently exercise suspicious inter-
leavings [37, 38, 43, 44, 53].

Unfortunately, even with state-of-the-art techniques, bug
detection (the second step) and bug validation (the third
step) still each introduces 10X – 100X slowdown for each
input. Applying them to every test input hence becomes
unacceptably expensive, as software companies already spend
more than 30% of their development resources in testing
[51]. As a result, a lot of concurrency bugs inevitably escape
into production runs, with concurrency-bug detection and
validation techniques only applied to few inputs.

Recent work, MAPLE [68], speeds up the above process
by looking at a set of inputs altogether, rather than one input
at a time. Specifically, MAPLE speeds up the bug validation
step (the third step) by exercising each suspicious interleaving
only once across different inputs. For example, once a data
race is exercised under input A, it will not be exercised again
under input B. Although inspiring and promising, MAPLE
does not change the bug detection step (the second step),
still requiring 10X – 100X slow down to identify suspicious
interleavings for each input.

Clearly, better techniques are needed to detect concur-
rency bugs for a set of inputs with limited in-house testing
resources.

1.2 Contribution
This paper proposes a new approach to concurrency-bug
detection for a set of inputs. This approach reduces redundant
analysis that is repeated under different inputs and generates
duplicate bug reports, and hence significantly improves the
bug-detection performance for a set of inputs.

Our approach is based on the following observation:
existing concurrency-bug detectors are inefficient for a set
of inputs, because they tend to report the same suspicious
interleaving under different inputs. This observation applies
to race detectors, atomicity-violation detectors, and others.
It is also consistent with previous work [68]: MAPLE is
effective in speeding up the bug validation step largely
because there are many duplicate reports across inputs.

This observation implies both opportunities and chal-
lenges. If we could reduce the redundant effort that produces
duplicate bug reports, bug-detection efficiency could improve
significantly for a set of inputs. Unfortunately, which bug
report has duplicates across inputs is easy to check after the
expensive bug-detection process, yet is very difficult to pre-
dict beforehand.

To address the challenge and exploit the opportunity, we
need an easy-to-measure metric to characterize a program’s
interleaving space under a given input. That is, the metric
should be able to approximate what sequences of shared-
memory accesses could occur during the program’s execution
under certain input. Such a metric can approximate how
interleaving spaces overlap across inputs and guide bug
detection to reduce redundant analysis.

Overall, this paper makes the following contributions:

1. Identifying the inefficiency of existing concurrency-bug
detectors on a set of inputs. Section 2 will discuss this
observation in detail using representative real-world soft-
ware and test-input sets.

2. Proposing a new interleaving-coverage metric, Concurrent
Function Pair (CFP), to guide concurrency-bug detection,
as well as a carefully designed algorithm to efficiently
measure this metric. The CFP metric measures which
functions can be executed concurrently under a given
input. It strikes a nice balance between measurement com-
plexity and interleaving-space characterization accuracy.
It will be presented in detail in Section 3.

3. Designing and implementing a new data-race and
atomicity-violation detection framework based on CFP.
This new framework applies bug detection for a set of
inputs in three steps. At Step 1, the CFP for each input is
measured and the aggregated CFP for all the test inputs is
calculated. At Step 2, selected inputs and selected func-
tions under each selected input are identified so that they
provide a complete coverage for the aggregated CFP. At
Step 3, existing data-race and atomicity-violation detec-
tors are applied to only the selected inputs and selected
functions. The details will be presented in Section 4.

We have evaluated the new bug-detection framework on
five representative open-source applications and their test
input sets. The evaluation shows that our framework can
effectively reduce the bug-report duplication rate1 from 3.6–
4.5 to 1.0– 2.2 for data races, and from 2.7– 5.4 to 1.1– 2.8 for
atomicity violations. Overall, the speedup of bug-detection
time is 1.5X– 6.2X for race detection and 1.6X– 5.6X for
atomicity violation detection, with no false negatives among
failure-inducing bugs.

2. Inefficiency of Cross-Input Bug Detection
In this section, we apply common concurrency-bug detection
algorithms to representative multi-threaded software, and
compare the bug reports generated across test inputs.

2.1 Methodology
Applications As shown in Table 1, this study uses 5 open-
source applications that represent different types of software.
All applications are written in C/C++ and use pthread library
as the underlying concurrency framework.

Test inputs Click and Mozilla-js have test inputs written by
their developers and released together with their source code.
For Click, we use all its test inputs that do not require OS-
kernel changes. For Mozilla-js, we randomly group the 20
single-threaded JavaScript requests provided by developers
into 7 multi-threaded inputs.

FFT, LU, and PBZIP2 do not have publicly available test
inputs. We have designed test inputs for them based on their

1 Measured by the average number of inputs that report each bug.



App. Description LOC Test Input Set

# Inputs #Threads Description

Click 1.8.0 A software router [8] 290K 6 2 Designed by Click developers
FFT A scientific computing program 1.2K 8 4 Designed based on command-line options

from SPLASH2 [64]
LU A scientific computing program 1.1K 8 4 Designed based on command-line options

from SPLASH2 [64]
Mozilla-JS m10 A JavaScript engine [36] 87K 7 4 Designed by Mozilla-JS developers
PBZIP2 0.9.4 A parallel-compression application [16] 2.0K 8 4 Designed based on command-line options

Table 1: Applications and test inputs in study

command-line options. FFT, LU, and PBZIP2 each have 8
non-trivial command-line configuration options. Therefore,
we write 8 test inputs for each of them, with each input spec-
ifying a unique command-line option not specified by any
other inputs. For example, our 8 FFT test inputs exercise
different computation settings, such as normal FFT, inverse
FFT, printing per-thread statistics, and others. As another
example, our PBZIP2 inputs exercise compression, decom-
pression, error-message suppression, compression-integrity
testing, and other configurations.

To assess the quality of our test inputs, we measure
their statement coverage using gcov [17]. The result shows
that for each program, every test input covers some unique
statements that are not covered by any other inputs in the test
set.

Bug Detectors Our study focuses on the two most common
types of concurrency bugs: data races [42, 50] and single-
variable atomicity violations [14, 32, 44, 61]. A data race
occurs when two threads can simultaneously access a shared
variable, with at least one access being a write [50]. A single-
variable atomicity violation occurs when two consecutive
accesses to a shared variable from one thread is unserializably
interleaved by a third access from another thread, as shown
in Figure 1.

To detect these two types of bugs, we first use a run-time
tool implemented in Pin [34] to collect per-thread execution
traces of global/heap memory accesses and synchronization
operations. We then analyze traces to detect bugs. Both
detectors were implemented and used in our previous work
[44, 70].

Our race detection uses a lock-set/happens-before hybrid
algorithm, similar to those in many open-source race de-
tectors [41, 56]. Specifically, two instructions are reported
as a data race, if they satisfy three conditions: (1) they ac-
cess the same memory location from different threads; (2)
they are not protected by any common lock; and (3) they
have concurrent vector timestamps calculated based on order-
enforcing synchronization operations such as barrier,
pthread join, and pthread create.

Our atomicity-violation detection follows an algorithm
described in CTrigger [44]. Specifically, an atomicity viola-

Thread 1 Thread 2

p : read m

r : write m

c : read m

Thread 1 Thread 2

p : write m

r : write m

c : read m

Thread 1 Thread 2

p : read m

r : write m

c : write m

Thread 1 Thread 2

p : write m

r : read m

c : write m

Figure 1: Four scenarios of single-variable atomicity viola-
tions that CTrigger [44] detects. “ ” shows execution order.
“m” is a shared memory location.



# All Race Pairs # All Atom. Vio. # Buggy Race Pairs # Buggy Atom. Vio.

App. Total Unique DupRate Total Unique DupRate Total Unique DupRate Total Unique DupRate

Click 3114 848 3.6 6145 2298 2.7 6 1 6.0 6 1 6.0
FFT 300 66 4.5 1423 369 3.8 28 4 7.0 35 5 7.0
LU 238 58 4.1 874 163 5.4 28 4 7.0 21 3 7.0
Mozilla 1991 481 4.1 2459 723 3.4 42 6 7.0 42 7 6.0
PBZIP2 293 65 4.5 499 143 3.5 32 8 4.0 39 11 3.5

Table 2: Inefficiency in data-race and atomicity-violation detection across inputs (DupRate measures the average number of inputs that expose
the same data race or atomicity violation)

tion is reported, if three instructions p, c, and r satisfy three
conditions: (1) p and c consecutively access a memory lo-
cation m from one thread, while r accesses m from another
thread; (2) neither locks nor order-enforcing synchronization
operations can prevent r from executing between p and c; (3)
the read/write access types of p, c, and r fall into one of the
four scenarios shown in Figure 1.

To carry out the above bug-detection algorithms, our
detectors recognize the following synchronization opera-
tions in C/C++ programs: pthread mutex (un)lock,
pthread create, pthread join, and the barrier
macro in SPLASH2 benchmarks (FFT and LU) [64]. Like
almost all other detectors, our detectors do not recognize
custom synchronization operations. This can lead to false
positives.

The above data-race and atomicity-violation detection
algorithms are designed so that their bug-detection results are
fairly stable across runs under one input. That is, executing
a program once is sufficient to obtain most, if not all, of
the bug reports under one input. Executing the program
under the same input for more times could occasionally
produce more bug reports, but the marginal benefit is usually
too small to justify the huge extra overhead in practical
software testing. In our experiments, the bug detection results
rarely change across runs under one input. Therefore, in
this section, we only show the results obtained by executing
each application once under each test input for data-race or
atomicity-violation detection. We will discuss the impact of
multiple bug-detection runs in Section 5.

We count each unique pair of static race instructions as one
unique data race, and each unique triplet of static instructions
that compose a single-variable atomicity violation as one
unique atomicity violation. We tried our best to eliminate the
background noise effect. For example, for Click, under each
test input, we conducted our experiment using its previously
stored workload trace.

2.2 Observations
Table 2 summarizes the result of applying race detection and
atomicity-violation detection to 5 benchmarks. We use “All
Race Pairs” and “All Atom. Vio.” to represent the raw results
from the two detectors. Since many races and atomicity

violations do not lead to externally visible failures [4, 40], we
use “Buggy Race Pairs” and “Buggy Atom. Vio.” to represent
failure-inducing reports from the two detectors. These would
be the final results presented to the developers after the bug-
validation step discussed in Section 1.

As shown in Table 2, each data race or atomicity viola-
tion is reported by 2.7 – 5.4 inputs on average across all
benchmarks. The duplication rates for truly buggy reports are
similar, ranging from 4 to 7 for data races and 3.5 to 7 for
atomicity violations. These duplication rates could get even
larger with larger test-input sets.

Theoretically, a race or an atomicity violation may lead to
failures under one input and remain benign under another
input. Therefore, we further investigate which races and
atomicity violations could lead to software failures under
which inputs. We found that the goodness/badness of a
race/atomicity-violation is always the same under different
inputs in the studied applications and test sets.

In conclusion, interleaving patterns, such as races and
atomicity violations, overlap significantly across inputs.
Concurrency-bug detection would waste substantial effort, if
the detection process is not coordinated across inputs. If we
have an ideal scheme that can eliminate bug-detection effort
spent identifying duplicate bug reports, we can potentially
speed up existing bug detection by up to 6 times for even a
small set of inputs, with little or no harm to the bug-exposing
capability.

3. Concurrent Function Pairs (CFP)
Terminology The interleaving space S of a program P in-
cludes all run-time instruction permutations that are possible
for P under all possible inputs. The interleaving space of P
under an input i includes those instruction permutations that
are possible when P executes i.

Section 2 demonstrates the inefficiency of applying exist-
ing concurrency-bug detectors to a set of inputs. To avoid
redundant analysis and reduce duplicate bug reports across
inputs, we need to predict how different inputs’ interleaving
spaces overlap, so that heavy-weight bug detection can be
guided to focus on unique interleavings.



/∗Thread 1∗/
foo1(){

lock(L);
foo2();
unlock(L);
...
...
}

/∗Thread 2∗/
lock(L);
bar();
unlock(L);

Figure 2: An example of concurrent functions (For illustration
purpose, the vertical position of each code statement in the
figure represents when the statement is executed)

Section 3.1 will introduce a metric, CFP, designed to char-
acterize the interleaving space and approximate interleaving-
space overlap with low cost. Section 3.2 will describe the
CFP-measurement algorithm, followed by a qualitative dis-
cussion about how CFP can guide concurrency-bug detection
in Section 3.3.

3.1 Definition of CFP
Our metric design follows two principles:

1. Characterization Accuracy: it has to characterize the
interleaving space with decent accuracy, so that it can
guide concurrency-bug detection to reduce redundant
analysis without missing many bugs.

2. Measurement Complexity: it has to be relatively cheap
to measure. Otherwise, its measurement cost would out-
weigh its benefit in concurrency-bug detection.

Following these two principles, we have designed Con-
current Function Pairs, short as CFP. The CFP of a program
P includes all unique pairs of functions that can execute in
parallel with each other (i.e., concurrent), denoted as CFPP.
The CFP of a program P under a specific input i includes all
unique pairs of functions that can execute in parallel with
each other under input i (i.e., concurrent in i), denoted as
CFPP

i or simply CFPi.
In the definition above, we say a pair of functions f1 and

f2 can execute in parallel with each other, if and only if
the following scenario can occur at run time: a thread t1
is executing f1 or a callee of f1, while another thread t2 is
executing f2 or a callee of f2. For example, foo1() and
bar() in Figure 2 are executing in parallel, while foo2()
and bar() can never execute in parallel.

Note that CFP addresses which functions can execute in
parallel. Whether the functions did execute in parallel in a
particular run does not matter.

We believe CFP strikes a good balance between charac-
terization accuracy and measurement complexity. Roughly
speaking, CFP should be much cheaper to measure than data
races and atomicity violations, because the number of func-
tions is much smaller than that of memory accesses in a

/∗ .ent, .exi: function entrance, exit;
.ent exi.lockset: lockset protecting the critical

section that holds both entrance and exit;
.vec time: vector timestamps calculated using

order−enforcing synchronization. ∗/
Bool concurrentFunction(f1, f2)
{

if(f1.thread id == f2.thread id) return false;

/∗Can f1 start between f2’s entrance and exit?∗/
if ((f1.ent.lockset ∩ f2.ent exi.lockset) != /0) return false;
if (f1.ent.vec time < f2.ent.vec time) return false;
if (f1.ent.vec time > f2.exi.vec time) return false;

/∗Can f2 start between f1’s entrance and exit?∗/
if ((f2.ent.lockset ∩ f1.ent exi.lockset) != /0) return false;
if (f2.ent.vec time < f1.ent.vec time) return false;
if (f2.ent.vec time > f1.exi.vec time) return false;

return true; /∗f1 and f2 are concurrent∗/
}

Figure 3: Pseudo code that judges concurrent functions

program. CFP should also provide a decent accuracy in char-
acterizing the interleaving space. The content of P’s interleav-
ing space under an input i is determined by which instructions
can be executed by P under i and which instructions can be
executed concurrently. Since a function is a natural unit of
instructions in a program, intuitively, CFP provides a decent
characterization of the interleaving space. We will elaborate
on these in the next two sub-sections.

3.2 How to measure CFP?
3.2.1 When are two functions concurrent?
To measure CFP, we should first figure out whether two given
functions, f1 and f2, can execute in parallel.

A naı̈ve solution is to compare every instruction in f1 or
f1’s callees with every instruction in f2 or f2’s callees, and
see whether two instructions could execute in parallel. This
is clearly too expensive.

A simpler solution, which we use in this paper, is to
compare the entrances and exits of functions: if one function’s
entrance can execute in between the other’s entrance and exit,
these two functions can execute in parallel.

Clearly, to know whether a function’s entrance f1ent can
potentially execute in between another function’s entrance
and exit, f2ent and f2exi, we need to check the synchronization
operations in the program. Mutual-exclusion synchroniza-
tion, such as pthread (un)lock, can prevent f1ent from
executing between f2ent and f2exi, if and only if f2ent and
f2exi are inside a critical section of lock l that also protects
f1ent. In addition, order-enforcing synchronization, such as
pthread create, pthread join, and barrier, can
prevent f1ent from executing between f2ent and f2exi, if and



only if it forces f1ent to happen before f2ent or happen after
f2exi. Figure 3 illustrates the above algorithm.

3.2.2 The basic CFP-measurement algorithm
To compute the CFP of a program under input i, we simply
need to check every pair of functions that can be executed
under i to see whether they are concurrent, using the algo-
rithm shown in Figure 3. This analysis can be conducted
either statically or dynamically. In this paper, we calculate
CFPi by analyzing the run-time trace. Run-time information,
such as which thread executes which functions and which
instruction accesses which memory location, will allow our
trace analysis to make more informed decision than static
analysis.

An instrumentation tool in LLVM [27] is implemented to
log the execution behavior of each thread. Each trace is a list
of run-time events following a thread’s execution order. There
are two types of events in our trace: function entrance/exit
and synchronization operation. Whenever the program enters
or exits a function at run time, the corresponding thread’s
trace is appended with a record that specifies the unique
ID of this function and whether this is an entrance or an
exit. Whenever the program executes a synchronization
operation, the corresponding trace is appended with a record
that specifies the type of synchronization operation and some
extra information. For pthread (un)lock, the address
of the lock variable is recorded. For pthread create
and pthread join, the thread IDs of participating threads
are recorded. For the barrier macro in FFT and LU, the
address of the barrier variable is recorded.

Our basic trace-analysis tool computes CFP in two steps.
First, for every function entrance/exit record, we calculate the
set of locks protecting it, as well as its vector timestamp. The
vector timestamp is calculated using only order-enforcing
synchronization operations, including pthread create,
pthread join and barrier in our implementation, and
not mutual-exclusion operations like pthread (un)lock,
which do not force any specific order between two events.
We also pay special attention to computing the locks that
protect a function’s entrance and exit in one critical section
(i.e., .ent exi.lockset in Figure 3). Specifically, we
pair each function-entrance record in the trace with its cor-
responding exit record, which is referred to as one function
instance. We then look for locks that are acquired before the
entrance and not released until after the exit. The complexity
of this step is linear to the total number of function instances.

The second step identifies all pairs of concurrent functions
using the lockset and vector-timestamp information calcu-
lated above and the algorithm shown in Figure 3. To conduct
this computation efficiently, our analysis first groups similar
function instances together. Specifically, we consider two
function instances to be similar, if they share the same (1)
function ID, (2) thread ID, (3) the lockset protecting its en-
trance, (4) the lockset protecting both its entrance and exit
in one critical section, and (5) the vector-timestamps of its

void lu0(double∗ a, int n)
{

int j, k;
for (k=0; k<n; k++) {

for (j=k+1; j<n; j++) {
daxpy(...,...,...,...);
/∗Parameters omitted for presentation simplicity∗/
}
}
}

Figure 4: Functions concurrent with lu0 must be concurrent
with daxpy (n is a positive integer).

entrance and exit. Based on the algorithm shown in Figure 3,
two similar function instances have exactly the same set of
concurrent functions and hence only need to be processed
once. After grouping similar function instances, we simply
go through every pair of functions and check whether they
have at least one pair of instances that are concurrent with
each other. The complexity of the last step is quadratic to the
number of unique static functions in the trace.

3.2.3 Optimization for CFP measurement
Although CFP measurement is much cheaper than
concurrency-bug detection, it could still take time for large
long-running programs with many function calls. Therefore,
we further optimize the basic algorithm in two ways.

Optimization 1: skip functions that only access stack vari-
ables. This is a generic optimization that is also conducted by
our concurrency-bug detectors discussed in Section 2.1. If f
only accesses stack variables,2 there is no chance it will help
guide concurrency-bug detection.

Optimization 2: skip functions that inherit their callers’
concurrent functions. This is an optimization specially de-
signed for CFP measurement. It does not work for generic
concurrency bug detection. This optimization can be demon-
strated by a real example from LU shown in Figure 4. In this
example, we can guarantee that every function concurrent
with lu0 is also concurrent with daxpy for two reasons: (1)
whenever lu0 is executed, it invokes daxpy; and (2) lu0
does not contain any synchronization operations. Therefore,
there is no need to record or analyze the entrance/exit of
daxpy inside lu0 for CFP-measurement. We simply need
to append the set of functions that are concurrent with lu0
to that of daxpy at the end of our analysis.

Formally speaking, suppose function f1 calls function f2
through instruction i. We can guarantee that every function
concurrent with f1 is also concurrent with f2, if f1 and i
satisfy two conditions: (1) i post-dominates the entrance
instruction of f1, which guarantees that f1 always invokes

2 Theoretically, developers could make a stack variable shared among
threads. Since it is rare and not recommended, it is not considered here.



Figure 5: f can execute in parallel with f2 in another run

f2; (2) no synchronization operation is executed by f1 or its
callees, except for f2 through the call-site i.

We briefly prove this concurrency-inheritance relationship
as follows. Suppose a function f is concurrent with f1. By
definition, there exists a run, during which an instruction of f
or f ’s callees is executed simultaneously with an instruction,
denoted as j, of f1 or f1’s callees (shown in Figure 5). If j is
an instruction inside f2, f must be concurrent with f2. If j
is outside f2, the two conditions mentioned in the previous
paragraph imply that there exists an invocation or a return
of f2, so that no synchronization operations are executed
between it and that particular instance of j. Therefore, any
code region (e.g., f ) that can execute simultaneously with the
latter can also execute simultaneously with the former, which
proves that f is also concurrent with f2. The high-level idea
of this proof is depicted in Figure 5.

Given the above proof, how to conduct Optimization 2 is
straightforward. Our static analysis goes through a program’s
call graph for several passes. It identifies every pair of caller
f1 and callee f2 that satisfy the two optimization conditions
mentioned above. In our current algorithm, we further check
whether the callee f2 satisfies the optimization conditions
with all its caller functions. If so, we remove all LLVM
instrumentation described in Section 3.2.2 that logs the
entrance and the exit of f2. Consequently, not only the tracing
time is shortened, the trace size and trace-analysis time are
also reduced.

Our current algorithm does not apply any optimization to a
function that only has some, but not all, of its caller functions
satisfying the optimization conditions. This design can be
changed in the future by differentiating different callers of
a function. That is, as long as f2 satisfies the optimization
conditions with one of its caller f1, we can skip the logging
and trace analysis discussed in Section 3.2.2 for dynamic
instances of f2 that are invoked by f1. More performance
improvement will be achieved in that way.

There are some caveats in our optimization.
First, we assume that every loop in a program will execute

at least one iteration. Take Figure 4 as an example. Without
any knowledge about the input range, static analysis cannot
determine whether the loops will always execute at least one
iteration, and hence cannot guarantee that every instance of

lu0 would invoke daxpy. Therefore, unless we use this
at-least-one-iteration heuristic, static analysis will lose the op-
portunity to optimize the daxpy instrumentation. Of course,
this heuristic could lead to CFP false positives: some concur-
rent function pairs may never execute in parallel. However,
we believe the optimization benefit of this heuristic signifi-
cantly outweighs any potential negative impact, because in
our experience the chance of CFP false positives is rare. In
addition, false positives in CFP measurement would at worst
cause unnecessary and redundant bug detection, and hence
slow down our CFP-guided bug detection. It would not di-
rectly lead to false positives or negatives in concurrency-bug
detection.

Second, our analysis only considers pthread-related
operations and the barrier macro as synchronization
operations. As most existing tools, we do not consider custom
synchronization, which could again lead to false positives in
CFP measurement.

The above optimization is useful for many programs,
because many functions in multi-threaded programs do not
contain synchronization operations. In addition, some utility
functions like daxpy in LU are major sources of dynamic
function instances. Section 5.8 will evaluate the impact of
this optimization in detail.

There are other optimization opportunities for CFP mea-
surement. For example, some functions, such as those exe-
cuted by the main thread before any child thread is created,
are not concurrent with any functions. Future work can try
using static analysis to identify these functions, and then skip
these functions during logging and CFP-trace analysis. This
will lead to smaller CFP traces and faster CFP measurement.
We leave further optimization to future work.

3.3 Can CFP guide bug detection?
As discussed earlier, CFPP

i can characterize the interleaving
space of program P under input i to some extent. In the
following, we discuss in detail the relationship between CFPP

i
and the set of concurrency bugs reported from P under i.

3.3.1 Data races and CFP
A data race occurs when two memory accesses, with at least
one write, to the same memory location from two threads
could occur concurrently without synchronization in between.

If two functions f1 and f2 are not concurrent, such as
foo2 and bar in Figure 2, no data race can be found
between instructions from them, because no instruction in
f1 can execute in parallel with instructions in f2. On the
other hand, if f1 and f2 are concurrent, such as main
and SlaveStart in Figure 6, they likely contain data
races when they read and write the same memory locations.
Furthermore, when a concurrent function pair is in multiple
inputs’ CFPs, applying race detection on these inputs is at a
high risk of generating duplicate race reports. For example, 7
out of 8 test inputs of FFT contain {main, SlaveStart}



/∗Thread 1∗/
void main(...){

...
printf(”End at %f”, Gend);
...
}

/∗Thread 2∗/
void SlaveStart(...){

...
Gend = time();
...
}

Figure 6: A data-race example from FFT

/∗Thread 1∗/
js InitAtomState(...){

state−>table = ...;
if(!state−>table)

return false;
}

/∗Thread 2∗/
js FreeAtomState(...){

...;
state−>table = NULL;
...;
}

Figure 7: An atomicity-violation example from Mozilla

in their CFPs. Consequently, the data race shown in Figure 6
is repeatedly reported under 7 inputs.

Clearly, CFP is useful in coordinating race detection across
inputs. For example, if we select inputs so that their CFPs do
not overlap, applying race detection to them can guarantee
not to generate duplicate bug reports. However, this could
cause too few inputs to be selected and hence miss bugs. For
example, suppose the test-input set contains only two inputs
with overlapped CFPs. If we select both inputs, duplicate bug
reports could occur due to the CFP overlap; if we only select
one input, the concurrent function pairs uniquely covered
by the other input will be missed in bug detection. We will
discuss better ways to use CFP in Section 4.

3.3.2 Atomicity violations and CFP
Atomicity violation occurs when a sequence of memory
accesses from one thread is unserializably interleaved by
memory accesses from another thread [6, 14, 31, 32, 61, 65].

Similar to that in data-race detection, if two functions f1
and f2 are not concurrent, no atomicity violation can be found
between instructions from them, because no instruction in f1
(or f2) can execute between a sequence of instructions from
f2 (or f1). On the other hand, if f1 and f2 are concurrent,
such as js InitAtomState and js FreeAtomState
in Figure 7, they may contain atomicity violations. Further-
more, when a concurrent function pair is in multiple inputs’
CFPs, applying atomicity-violation detection on these in-
puts risks generating duplicate atomicity-violation reports.
For example, 7 out of 7 test inputs of Mozilla contain
{js InitAtomState, js FreeAtomState} in their
CFPs. Consequently, the atomicity violation shown in Fig-
ure 7 is repeatedly reported under 7 inputs.

4. CFP-Guided Bug Detection
4.1 Overview
Our CFP-guided bug detection aims to improve the detection
efficiency over a set of inputs by eliminating redundant
analysis. At a high level, this is achieved by turning on bug
detection only when the program executes selected functions
under selected inputs. The process of input selection and
function selection is guided by CFP and has two goals for a
set of inputs I:

1. Lower the chance of missing bugs: the bug detection
process should provide a complete coverage of the CFPI ,
the union of all test inputs’ CFPs. We will refer to CFPI
as aggregated CFP.

2. Lower the chance of duplicate bug reports: the bug detec-
tion process should avoid repeatedly analyzing the same
pair of concurrent functions across inputs, as long as this
does not prevent us from achieving the first goal.

Consequently, the principle of our input and function
selection is to skip the bug detection over a function f , if
f does not contribute to previously unanalyzed concurrent
function pairs. As a simple example, suppose there are two
inputs in the test set, i1 and i2. Suppose CFPi1 is {{ f1, f2}}
and CFPi2 is {{ f1, f2},{ f2, f3}}. If bug detection is applied
to i1 first, it should then skip f1 under i2, because f1 does not
contribute to any unanalyzed concurrent function pair. On the
other hand, if bug detection is applied to i2 first, it could then
completely skip i1 following the above principle.

Specifically, our CFP-guided concurrency-bug detection
includes three steps for a set of inputs:

1. Compute the CFP of each input and get the aggregated
CFP of the whole input set.

2. Select inputs and select functions for each selected input.

3. Apply a race detector or an atomicity-violation detector
to selected functions under each selected input.

Next, we discuss these three steps one by one.

4.2 Step 1: CFP measurement
As discussed in Section 3.2, our CFP measurement contains
several phases. The first phase is static analysis. We use static
analysis to identify functions that are guaranteed to have the
same concurrency property with their caller functions, as
discussed in Section 3.2.3. We then statically instrument the
program using LLVM to log the entrance/exit of every func-
tion, except those identified above, and every synchronization
operation. This static analysis phase is conducted only once
for all inputs.

The second phase calculates the CFP for each test input.
As discussed in Section 3.2.2, we execute the instrumented
program under an input once, and then analyze the run-time
trace to identify concurrent function pairs. Note that, what
we get from the trace analysis is not the final CFP yet. Since



Input1: CFP1={{ f1, f2}, { f2, f3}, { f2, f4}, { f4, f5}}
Input2: CFP2={{ f1, f2}, { f3, f4}, { f3, f5}}
Input3: CFP3={{ f2, f3}, { f3, f4}}
CFPAggregated ={{ f1, f2}, { f2, f3}, { f2, f4}, { f4, f5},
{ f3, f4}, { f3, f5}}

Step 1:
Selected input −− Input1
Selected functions −− { f1, f2, f3, f4, f5}
CFPUncovered = {{ f3, f4}, { f3, f5}}

Step 2:
Selected input −− Input2
Selected functions −− { f3, f4, f5}
CFPUncovered = /0

Figure 8: A toy example of input/function selection

we do not log functions that inherit their callers’ concurrent
functions, we need to compute the concurrent function pairs
that involve these functions, as discussed in Section 3.2.3.
This gives us the final CFP for each input.

The third phase calculates the aggregated CFP. It simply
takes the union of every individual input’s CFP.

Note that, during the second phase, we calculate CFP
based on the log collected from only one run. Theoretically,
different runs under the same input could produce different
logs, and hence different CFPs. However, the concurrency
relationship analyzed here is usually stable across runs,
similar with that in data-race detection [50] and atomicity-
violation detection [44]. Our experimental results also show
that the reported CFP is very stable across runs. Even in
the worst cases, we see fewer than 0.5% of CFP fluctuation
among tens of runs. Therefore, we only run each program
once under each input to collect the CFP, which is consistent
with previous bug-detection work [44, 50].

4.3 Step 2: input and function selection
We aim to select the smallest set of inputs to cover the
aggregated CFP, which unfortunately is an NP-hard problem.
To efficiently solve it, we use a greedy algorithm that provides
approximate results.

Specifically, our algorithm first selects the input that covers
the most concurrent function pairs among all inputs. It then
keeps selecting the input that covers the most uncovered pairs,
until all pairs in the aggregated CFP are covered.

Function selection is straightforward once we know how
to select inputs. During the above input-selection process, for
every selected input i, we know which concurrent function
pairs covered by i are not covered by previously selected
inputs. Functions involved in those concurrent function pairs
become the selected functions for i.

A toy example that demonstrates the input/function selec-
tion process is shown in Figure 8.

4.4 Step 3: guided bug detection
At this step, we simply apply existing concurrency-bug
detectors to the selected inputs and selected functions.

The only non-trivial issue here is that most run-time
concurrency-bug detectors conduct bug detection unselec-
tively on all executed functions. Small modifications are
needed to integrate an existing bug detector into our bug-
detection framework.

In our current implementation, we slightly modified the
Pin-based execution-tracing tool described in Section 2.1
to take a command-line input file. This input file contains
the instruction-address range of every function identified by
Step 2, with each range represented by the function entrance
instruction address and exit instruction address. Our modified
tracing tool only logs memory accesses whose instruction
addresses fall into one of the ranges specified by the input file.
We then apply the same trace-analysis algorithms described
in Section 2.1 to detect data races and atomicity violations.
We believe similar modifications can be easily done for many
other existing concurrency-bug detectors.

4.5 Bug-detection quality assessment
The quality of bug detection is usually measured using three
metrics: (1) performance; (2) false negatives; and (3) false
positives. In the following, we qualitatively compare our CFP-
guided bug detection (short as CFP below) with traditional
bug detection that applies unchanged existing bug detectors
to each and every test input (short as Full below).

In terms of false positives, CFP will never introduce more
false positives than Full.

In terms of performance, the third step of CFP is clearly
faster than Full, because only selected inputs and selected
functions are involved. The more inputs and the more CFP-
overlap the inputs have, the more advantage CFP has over
Full here. However, the first step and the second step of CFP
incur extra cost that is not incurred by Full. In reality, the ben-
efit of CFP tends to significantly outweigh its cost, because
CFP measurement takes much less time than concurrency-
bug detection. We will see more detailed quantitative results
in Section 5.

There are two ways to measure false negatives. One is to
ignore the practical resource limit and measure how many
unique bugs can be discovered given unlimited resource in
unlimited amount of time. The other one, which is more real-
istic, is to measure how many unique bugs can be discovered
with limited resources in a limited amount of time. Since the
resource limitation is a real concern for a set of inputs, the
second way of measurement is more suitable in this paper’s
context. We believe CFP will incur fewer false negatives un-
der this way of measurement, because CFP would spend less
resource in producing duplicate bug reports than Full. We
will discuss more about this in Section 5.

Of course, it is worth pointing out that, with unlimited
resources, CFP will inevitably have more false negatives



than Full. In general, CFP guarantees to apply concurrency-
bug detection to every pair of concurrent functions under at
least one input. However, some bugs may only be detected
when a pair of concurrent functions are executed under a
special input. For example, some bugs may hide in special
basic blocks that are not always exercised when its calling
function is executed. As another example, different inputs
could bring different states to the same code region, causing
two instructions to access different memory locations under
one input and the same memory location under a different
input. In addition, there is an extra source of false negatives
for CFP atomicity-violation detection. Sometimes, the in-
tended atomic region of an atomicity violation involves code
statements from more than one function. Concurrent function
pairs cannot well predict the existence of these bugs.

Overall, CFP is not a panacea. It improves the perfor-
mance of cross-input bug detection at the risk of missing
bugs when there is abundant resource to conduct full-blown
bug detection on all inputs. It is a good fit for bug detection
and testing when the resource is limited, which is the common
case in practice. In fact, in reality, software companies may
not have the resource and time to finish even the CFP-guided
bug detection. In this case, the CFP metric can provide de-
velopers a quantitative measurement about the completeness
of in-house testing. We believe this metric will be useful for
multi-threaded software testing, just like how statement cov-
erage and branch coverage are crucial for sequential software
testing.

5. Evaluation
5.1 Methodology
We run our experiments on an 8-core Intel Xeon machine
and LLVM 2.8 compiler. The applications and test-input sets
used here are identical to those described in Section 2.1.

Our evaluation will compare our CFP-guided concurrency-
bug detection approach, short as CFP, with the traditional
approach that applies full-blown detection to every input,
short as Full. We will try both data-race detection and
atomicity-violation detection, using the detectors described in
Section 2.1. The only difference is that the detectors used by
CFP can be configured to monitor only specified functions,
as discussed in Section 4.4.

Our evaluation will compare CFP with Full from several
aspects: performance, false negatives, bug-report duplication
rate, and trace size. The impact of our optimization algorithms
and other details of CFP will also be evaluated.

5.2 Overall results
As shown in Table 3 and Table 4, our CFP-guided approach
can significantly improve the concurrency-bug detection
performance, with few to no false negative and huge reduction
in bug-detection trace size. The impact on race detection and
atomicity-violation detection is similar.

App. Speedup False Neg. Rate # False Neg. Trace Re-

(X) All Buggy All Buggy duction (%)

Click 3.5 2.0% 0% 17 0 82%
FFT 6.2 4.5% 0% 3 0 82%
LU 4.9 1.7% 0% 1 0 76%
Mozilla 1.5 2.9% 0% 14 0 39%
PBZIP2 3.8 3.1% 0% 2 0 75%
Average 4.0 2.8% 0% 7 0 71%

Table 3: Overall results of CFP-guided race detection, with the
traditional full race detection as the baseline. The baseline bug
counts are shown in the “# All Race Pairs (Unique)” column and “#
Buggy Race Pairs (Unique)” column of Table 2.

App. Speedup False Neg. Rate #False Neg. Trace Re-

(X) All Buggy All Buggy duction (%)

Click 2.5 2.0% 0% 46 0 82%
FFT 5.6 3.0% 0% 11 0 82%
LU 4.8 4.3% 0% 7 0 76%
Mozilla 1.6 1.9% 0% 14 0 39%
PBZIP2 2.4 4.2% 0% 6 0 75%
Average 3.4 3.1% 0% 17 0 71%

Table 4: Overall results of CFP-guided atomicity-violation detec-
tion, with the full atomicity-violation detection as the baseline. The
baseline bug counts are shown in the “# All Atom. Vio. (Unique)”
column and “# Buggy Atom. Vio. (Unique)” column of Table 2.

In terms of performance, CFP achieves 4.0X and 3.4X
speedup on average for data-race and atomicity-violation de-
tection, respectively, with the best performance improvement
achieved for FFT and the worst for Mozilla.

In terms of false negatives, CFP does not miss any failure-
inducing data race or atomicity violation, as shown by the
“Buggy” columns in Table 3 and Table 4. As discussed in
Section 2, the race detector and atomicity-violation detector
also report many data races and atomicity violations that do
not lead to software failures. When we consider all these
reports, both failure-inducing and non-failure-inducing ones,
CFP incurs 1.7% to 4.5% false negative rate, a small number
considering the speedup, as shown by the “All” columns in
Table 3 and Table 4. Among all benchmarks, Click generates
the most data-race and atomicity-violation bug reports, as
shown in Table 2. Consequently, it also incurs the most false
negatives under CFP.

CFP also significantly reduces the trace size in
concurrency-bug detection. As discussed in Section 2.1, both
the race detector and the atomicity-violation detector used in
our implementation analyze execution traces to discover bugs.
By selecting inputs and functions, CFP reduces the trace size
by 71% on average for 5 benchmarks.

Overall, the above results demonstrate that our CFP-
guided approach can significantly speed up the bug-detection
process for a set of inputs during in-house bug detection and
testing, with negligible effect on the bug-detection coverage.



5.3 Input and function selection
Our CFP-guided approach runs faster than Full bug detection,
because it only applies bug detection to selected inputs and
selected functions, as shown in Table 5.

#Inputs #Functions Trace Size (MB)

App. Full CFP Full CFP Full CFP

Click 6 4 3689 724 94 17
FFT 8 1 135 21 1011 182
LU 8 1 122 18 1012 256
Mozilla 7 5 1583 857 10 6
PBZIP2 8 2 782 135 132 33

Table 5: Input/function selection and trace-size changes (“#Func-
tions” and “Trace Size” are both aggregated across inputs)

As we can see, 1 – 5 inputs are selected for the 5 bench-
marks. For FFT, LU, and PBZIP2, only 1 or 2 inputs are
sufficient to provide a complete CFP coverage.

Apart from input selection, our CFP approach also selects
which functions to monitor while executing each input. The
“#Functions” column in Table 5 shows the sum of the number
of static functions that are executed and monitored by bug-
detection tools for every input. As we can see, the number
of functions monitored in CFP across inputs is only 15%
– 54% of those in Full. In Click, even though 4 out of 6
inputs are selected, only few functions are monitored when
executing some of the selected inputs. As a result, CFP only
monitors 20% of functions monitored by Full across inputs,
which leads to over 80% of trace-size reduction shown by the
“Trace Size” columns in Table 5.

Overall, for all benchmarks, CFP can effectively guide
us to identify selective inputs and functions for concurrency-
bug detection. Note that the input selection and function
selection are conducted only once for a program and a set of
inputs. Later on, both race detection and atomicity-violation
detection will use the same selection result.

5.4 Bug-report duplication rate
As discussed in Section 2.2, directly applying traditional
concurrency-bug detection to a set of inputs is inefficient,
because many duplicate bugs will be reported. Table 6 shows
that our CFP-guided approach can effectively reduce the bug-
report duplication rate. Specifically, the average number of
inputs under which each race is reported drops from 3.6 – 4.5
to 1.0 – 2.2 for the five benchmarks. The duplication rate for
atomicity violation also drops from 2.7 – 5.4 to 1.1 – 2.8.
In fact, the duplication rate of CFP drops to below 2 for all
benchmarks except for Mozilla.

The reason that we failed to decrease the duplication rate
to 1 can be explained by an example. Suppose we choose
input i1 to cover a concurrent function pair { f2, f3}, and i2 to
cover pairs { f1, f3} and { f1, f2}. A race between instructions
in f2 and f3 could be reported by both i1 and i2, because
f2 and f3 are monitored in both inputs. Future work can

Data Race Atomicity Violation

App. Full CFP Full CFP

Click 3.6 1.2 2.7 1.8
FFT 4.5 1.0 3.8 1.3
LU 4.1 1.0 5.4 1.1
Mozilla 4.1 2.2 3.4 2.8
PBZIP2 4.5 1.2 3.5 1.2

Table 6: Bug-report duplication rate ( # all reports
# unique reports )

design better monitoring schemes or input/function selection
schemes to further decrease the duplication rate.

Overall, our CFP-guided approach significantly reduces
the bug-report duplication rate across inputs for both data
races and atomicity violations. This reduction will naturally
lead to more effective bug detection — less detection time and
similar detection coverage. It will also relieve the developers
from identifying and discarding duplicate bug reports.

5.5 False negatives
Our CFP-guided detection has missed only 1.7 – 4.5% of
all races and atomicity violations reported by Full. More im-
portantly, it incurs no false negative among failure-inducing
races and atomicity violations. Almost all false negatives oc-
cur when different inputs cover different basic blocks in a
function and the selected input happens to miss those basic
blocks containing data races or atomicity violations. Future
work can potentially refine the granularity of CFP metric to
achieve fewer false negatives. We will discuss this in Sec-
tion 5.9.

Considering the 1.5X – 6.2X speedup achieved by our
CFP-guided bug detection, the above false negative rate
is very low and is a worthy tradeoff in a practical setting
where developers only have a limited amount of time for bug
detection and testing.

5.6 Performance breakdown
Table 7 shows the detailed performance breakdown among
the three steps in CFP-guided bug detection. All the numbers
shown in the table are normalized, where 1 is the total time
of executing a benchmark through all test inputs without any
monitoring or instrumentation (shown in the “Base” column).

The Step 1 of our CFP-guided approach measures the CFP
of every input. In general, it is fast, incurring less than 100%
of overhead comparing with simply running the program
without any monitoring or instrumentation. Mozilla incurs
the largest overhead for several reasons. Most importantly,
it contains many small functions with just a few accesses to
heap/global variables. These functions lead to considerable
overhead in CFP measurement. Furthermore, many functions
in Mozilla execute synchronization operations, either directly
or indirectly through their callees. As a result, our CFP-
measurement optimization does not help Mozilla as much as
it does for some other benchmarks.



Data Race Atomicity Violation

Base CFP CFP CFP CFP Full CFP CFP CFP CFP Full
App. (sec.) Step1 Step2 Step3 Tot. Tot. Step1 Step2 Step3 Tot. Tot.

Click 1.71 1.79 0.04 23.72 25.55 87.27 1.79 0.04 10.63 12.46 30.40
FFT 0.03 1.94 0.01 170.66 172.61 1078.22 1.94 0.01 109.95 111.90 628.71
LU 0.94 1.89 0.0005 41.53 43.42 212.76 1.89 0.0005 41.26 43.15 207.12
Mozilla 0.30 4.48 0.10 60.39 64.88 99.24 4.48 0.10 39.85 44.43 69.88
PBZIP2 5.40 1.06 0.0006 4.87 5.93 19.84 1.06 0.0006 1.38 2.44 5.93

Table 7: Performance breakdown of concurrency-bug detection (all the numbers are normalized by the time in “Base” column, which shows
the total time in seconds of running a benchmark through all test inputs without any instrumentation or bug detection)

Note that measuring the CFP of every input (“CFP-Step1”)
takes much less time than running full-blown bug detection
on every input (“Full-Tot.”). For example, the former takes
only 0.2%–5.3% of the time of full-blown race-detection
for all benchmarks. This confirms that CFP has successfully
stuck to the “simplicity” design principle.

The Step 2 selects inputs and functions. It takes the
smallest amount of time among all three steps.

The Step 3 applies concurrency-bug detection to selected
inputs and functions. Not surprisingly, it is the most time-
consuming step. Of course, it is significantly faster than full-
blown concurrency-bug detection (“Full Tot.” columns).

Finally, “CFP Tot.” and “Full Tot.” columns compare the
total time of our CFP-guided detection with that of traditional
full-blown bug detection. “CFP Tot.” is the sum of the above
three steps. As we can see, our CFP-guided approach is
significantly faster than the traditional approach, which is
also illustrated in Table 3 and Table 4.

The speedup of our CFP-guided approach is mainly de-
termined by the number of selected inputs and functions.
Intuitively, the fewer selected, the faster our CFP-guided bug
detection is. Strictly speaking, the CFP-measurement time
would also affect the speedup. However, since it takes much
less time than bug detection (Step 3), its impact is negligible.

For example, our CFP-guided race (atomicity-violation)
detection is more than 6 (5) times as fast as the full race
(atomicity-violation) detection for FFT. The reason is that
only 1 out of 8 test inputs is selected. On the other hand,
only about 1.6X speedup is achieved by our CFP-guided
approach for Mozilla, because 5 out of 7 test inputs are
selected and about 54% of functions still need to be analyzed
across inputs. Note that, our CFP-guided approach achieves
about 3X speedup in Click, although as many as 4 out of
6 inputs are selected. The reason is that only about 20% of
functions are selected across inputs.

As can be seen from the performance breakdown, al-
though the first two steps of our CFP-guided approach in-
curs additional cost, this cost can be easily compensated by
the reduction of bug-detection time in the third step of our
CFP-guided approach. In addition, the CFP-measurement and
input/function-selection results of the first two steps can be
shared by race detection and atomicity-violation detection.

The speedup will become more significant when we consider
these two together.

5.7 Multiple bug-detection runs for each input
As discussed in Section 2.1, by default, we execute each
application only once under each (selected) input for data-
race or atomicity-violation detection, which is the common
practice in resource-limited software testing. In this sub-
section, we investigate the impact of multiple bug-detection
runs under each input. We will use the subscript “M” to
differentiate these new settings from the default settings used
earlier, with the details shown in Table 8. Since no extra
failure-inducing bug reports are generated under multi-run
settings, we only discuss the results about all bug reports
below.

# of runs for each application under each input

Full 1
CFP 1 in Step 1; 1 in Step 3

FullM 10
CFPM 1 in Step 1; 10 in Step 3
CFP+

M 10 in Step 1; 10 in Step 3

Table 8: Different settings evaluated by our experiments. FullM ,
CFPM , and CFP+

M conduct multiple bug-detection runs for each
input, and are evaluated in Section 5.7.

App. Data Race Atomicity Violation

FullM CFPM CFPM
+ FullM CFPM CFPM

+

Click 6 3 3 10 5 5
FFT 0 0 0 0 0 0
LU 0 0 0 0 0 0
Mozilla 3 1 6 5 2 8
PBZIP2 1 1 1 2 2 2

Table 9: The numbers of extra bug reports generated by FullM
(compared with Full), CFPM and CFP+

M (compared with CFP).

As we can see in Table 9, extra bug-detection runs produce
few extra bug reports. For example, comparing FullM with
Full, only 0 – 10 extra bug reports are generated by the
extra bug-detection runs. Click produces the most extra bug



CFP-Trace Size (MB) CFP-Step1 Time (normalized)

App. No Opt. Opt.1 Opt.2 Opt.1+2 No Opt. Opt.1 Opt.2 Opt.1+2

Click 93.40 93.24 9.28 9.25 18.36 17.24 1.95 1.79
FFT 0.95 0.94 0.93 0.92 3.10 2.89 2.44 1.94
LU 836.27 835.43 4.85 4.31 74.13 72.65 1.97 1.89
Mozilla 10.21 8.41 8.68 7.81 7.44 5.78 5.81 4.48
PBZIP2 0.98 0.93 0.87 0.67 1.14 1.09 1.09 1.06

Table 10: The effect of CFP-measurement optimization (CFP-Trace Size and CFP-Step1 Time are both the summation across all inputs;
CFP-Step1 Time is normalized as that in Table 7)

reports: 6 extra data races and 10 extra atomicity violations,
which contribute to only 0.7% and 0.4% increase of the Full
bug-report numbers.3 This result shows that conducting one
bug-detection run for each selected test input is sufficient in
resource-limited software testing environment.

Click and Mozilla are the only two applications where
the numbers of extra bug reports are different among FullM ,
CFPM , and CFP+

M .
In Mozilla, the CFP+

M setting discovers 3 extra pairs of
concurrent functions during its CFP measurement. Conse-
quently, CFP+

M discovers more concurrency bugs than CFPM .
On the other hand, no extra concurrent function pair is dis-
covered by CFP+

M in Click. As a result, CFP+
M and CFPM

generate the same number of extra bug reports.
In both Mozilla and Click, CFPM generates fewer extra

bug reports than FullM . Some of these are caused by concur-
rent function pairs that are not identified by one-run of CFP
measurement. Some of these are located in rarely executed
paths. By exercising the same functions for multiple times
under more inputs, FullM has more chances to discover these
bugs.

Overall, full-blown concurrency-bug detection can benefit
a little bit more from extra bug-detection runs for some
applications than our CFP approach. However, this benefit is
usually too small to justify the extra cost incurred by extra
bug-detection runs during resource-limited testing.

5.8 Other results
Optimization effect Section 3.2.3 presents two optimiza-
tions for CFP measurement. Table 10 shows their impact on
reducing CFP-trace size and CFP-measurement time.

Overall, the combined optimization effect is significant
(comparing “Opt.1+2” with “No Opt.” in Table 10). Since
both optimizations skip many function entrance/exit records
during CFP measurement, up to 99% reduction is achieved
for CFP-measurement trace size and up to 98% reduction is
achieved for total CFP-measurement time. Without these two
optimizations, CFP measurement can take up to 74 times the
base-line program execution time. With these optimizations,
the slowdown is mostly below 2X.

3 The total numbers of bug reports generated by Full are shown in the
“Unique” columns of Table 2

Clearly, the optimization effects are different for different
applications. For these five benchmarks, Optimization 2 is
more effective than Optimization 1. However, neither one
of them can replace the other. For example, Optimization
1 is the most effective for Mozilla, where 22% of CFP-
measurement time and 18% of CFP traces are saved. The
other four benchmarks all have fewer functions that only
access stack variables, and hence benefit much less from
Optimization 1. Optimization 2 is the most effective for LU
and Click, reducing more than 90% of CFP traces and saving
more than 90% of trace-analysis time.

The size of CFPs One might wonder how many concurrent
function pairs are there for a benchmark. Table 11 presents
the size of aggregated CFP for each benchmark — the total
number of unique pairs of concurrent functions across all
inputs. For reference, the total number of classes, the total
number of static functions of each program and the total
number of unique functions executed by test inputs are also
listed. Naturally, programs with more (executed) functions
have more concurrent functions. At the same time, many
executed functions clearly are not concurrent with each other
due to synchronization.

App. # Class # Fun. # Executed Fun. Size of
Aggregated CFP

Click 133 1889 964 2504
FFT 0 23 23 42
LU 0 21 21 62
Mozilla 0 1050 268 22970
PBZIP2 0 125 125 426

Table 11: Total number of classes, functions and CFPs

The Benefit of Function Selection The performance im-
provement of our CFP approach over the Full approach comes
from two sources: the reduction in the number of test in-
puts and the reduction in the number of functions monitored
during Step 3. To better understand the contributions from
these two sources, we evaluate the total testing time with all
functions monitored for selected inputs during Step 3, and
compare it with the Full approach and the CFP approach.

As shown in Table 12, even without selecting functions,
input selection alone can provide significant speedup over
the Full approach — 3.5X for race detection and 3.1X for



App. w/ function selection w/o function selection

Race Atom. Vio. Race Atom. Vio.

Click 3.5X 2.5X 1.9X 1.4X
FFT 6.2X 5.6X 6.2X 5.6X
LU 4.9X 4.8X 4.9X 4.8X
Mozilla 1.5X 1.6X 1.3X 1.3X
PBZIP2 3.8X 2.4X 3.2X 2.3X
Average 4.0X 3.4X 3.5X 3.1X

Table 12: The speedup over Full approach with and without
function selection.

atomicity-violation detection on average. Function selection
further improves the performance, achieving 4.0X speedup
for race detection and 3.5X speedup for atomicity-violation
detection on average.

The impact of function selection is different for different
benchmarks. Click gets the most benefit. Without function
selection, the testing time almost doubles for Click. On the
other hand, function selection makes no difference for FFT
and LU. The reason is that only one input is selected for FFT
and LU, respectively. Consequently, all functions are selected
to test this input under the CFP approach.

Overall, both function selection and input selection are
useful in shortening the testing time. Among these two, input
selection has a larger impact for our benchmarks.

5.9 Limitations and discussion
What about random input selection? An alternative of
our CFP-guided approach is to randomly select inputs for
concurrency-bug detection. We believe that our CFP-guided
approach has advantages for several reasons.

First, our CFP-guided approach allows us to select not
only inputs but also functions for concurrency-bug detection.
The capability of selecting functions for a selected input is
crucial for bug-detection efficiency (Click is an example for
this). This cannot be achieved by random input selection.

Second, random input selection incurs unpredictable false
negatives. It may happen to expose many bugs and may as
well cause many false negatives. For example, in FFT, when
we randomly select one input from the 8-input test set, there is
87.5% probability that applying race detection to this selected
input would incur a false-negative rate between 41% and
100%, comparing with the full-blown detection on all inputs.
In contrast, our CFP-guided approach will deterministically
select the input with the largest CFP and incur only 4.5%
false-negative rate. As another example, in PBZIP2, each
failure-inducing bug report can be exposed by fewer than half
of all the test inputs. In fact, there are two failure-inducing
atomicity violations in PBZIP2 that can only be discovered
by two and one input out of the 8 test inputs, respectively. It
is difficult to predict the bug-detection capability when only
a couple of inputs are randomly selected.

Third, the CFP-guided approach is more informative. Ran-
dom input selection does not tell developers how thorough

the bug detection is and when the bug detection can stop.
As a coverage metric, CFP provides a quantitative measure-
ment to developers just like how traditional statement/branch
coverage metrics help developers test sequential software.
Developers can also combine CFP with other information,
such as which part of the program is more prone to bugs, to
further enhance the testing quality.

Fourth, the only advantage of random input selection over
our CFP-guided approach is that it takes less time to select
inputs. However, since the time spent running concurrency-
bug detectors is huge (Step 3 in Table 7), much longer than
the time spent measuring CFP and selecting inputs/functions
based on CFP (Step 1 and Step 2 in Table 7), this small
performance advantage is negligible in the big picture.

We should also note that traditional coverage metrics
designed for sequential software, such as counting how many
functions/branches/statements are executed, are not effective
at guiding concurrency-bug detection. As a simple example,
in FFT and LU, we can design two inputs that have exactly
the same command-line options, except that one executes
the program in single-threaded mode and the other in multi-
threaded mode. These two inputs would cover exactly the
same set of functions. However, they clearly have different
capabilities in exposing concurrency bugs.

What if there are more test inputs? In practice, test-input
sets used during in-house testing are much larger than the
ones available to us and evaluated by us in this paper. We
believe the benefit of our CFP approach will not diminish and
can likely get more significant for larger input sets.

Most importantly, the phenomenon of inputs sharing
common pairs of concurrent functions and exposing the same
concurrency bugs widely exists in reality. During software
testing, test input sets are usually designed to achieved good
control-flow coverage and/or good data-flow coverage. In
order to cover a previously uncovered statement, function, or
define-use pair, a test input usually needs to execute a lot of
statements or functions already covered by other inputs. As
a result, there is a natural code-coverage overlap across test
inputs. Consequently, CFP-coverage overlap and bug-report
duplication naturally exist among test inputs. Since the time
used to measure CFP is only a small percentage of that used
to detect bugs, we believe the CFP approach will maintain its
advantage over traditional bug detection for large test-input
sets in reality. In fact, for a given program, as the input set
grows larger, more bug reports are likely to be duplicates
and more CFP are likely to overlap. Thus, the performance
advantage of our CFP approach would likely increase.

Does CFP work for other detectors? As a general metric
characterizing the interleaving space, we believe CFP can
help many concurrency-bug detectors to work on a set of in-
puts. Of course, the benefit would decrease, if a concurrency-
bug detector runs much faster than the detectors used in this
paper (e.g., more than 10 times faster). However, techniques
used to speed up concurrency-bug detection [63, 71] can po-



tentially also help speed up CFP measurement, in which case
the benefit of CFP-guided bug detection will remain.

Does CFP work for all applications? Different applica-
tions may benefit differently from the CFP approach. For ex-
ample, some I/O-intensive applications have relatively small
overhead in run-time concurrency-bug detection, and hence
will benefit less from CFP-guided bug detection.

As discussed in Section 5.5, most false negatives of our
CFP approach occur in functions that are long and have
complicated control flows. Applications with more functions
of this type may suffer more false negatives. At the same
time, the benefit of the CFP approach is unlikely to decrease
when the application gets larger, as long as the ratio of long
functions does not increase. Considering that long functions
can hurt software modularity and maintainability, we expect
most applications, no matter small ones or large ones, to
benefit from the CFP approach with only small numbers of
false negatives.

How to further improve CFP? What is presented above is
just a starting point to improving multi-input concurrency-
bug detection. There is still room for improvement. In terms
of performance, future work can explore more efficient CFP-
measurement techniques with help from static analysis. In
terms of functionality, a function may not be the best unit for
interleaving-space characterization. Sometimes, a function
may be too small as a unit: monitoring the entrances and exits
of utility functions that only have a couple of global or heap
memory accesses leads to a huge overhead. Sometimes, a
function may be too big as a unit. For example, synchroniza-
tion operations inside a function can cause different parts of
a function to have different logical timestamps; some large
functions may include different paths accessing completely
different global/heap variables. As described in Section 5.5,
many false negatives in our current implementation occur
within these big functions. Future work can explore how to
extend CFP to better guide cross-input bug detection.

6. Related Work
Many tools are designed to detect data races [7, 15, 42, 49,
50, 69], atomicity violations [6, 14, 31, 32, 61, 65], and
other types of concurrency bugs [25, 33, 59, 67, 70]. Since
concurrency-bug detection often involves monitoring many
memory accesses across threads and complicated concur-
rency analysis, most of these tools incur large overhead.

Sampling [2, 13, 24, 35], hardware support [21, 46, 47,
57, 63], and other optimization techniques [29] have been
proposed to improve the performance of each concurrency-
bug detection run. This paper has a different perspective and
can well complement the above techniques. Specifically, all
the previous works are oblivious to the selection of inputs.
This paper prioritizes test inputs by their potential to cover
the most unexplored concurrent function pairs, so that bug
detection across a set of inputs becomes more efficient. In

addition, many existing performance-enhancing techniques
focus on data-race detection. Our CFP-based approach can
also help other types of concurrency bugs.

The work mentioned above all focuses on dynamic bug
detection. The problem of how to efficiently detect bugs for
a set of inputs applies to only dynamic tools, but not static
tools [12, 39] — static tools do not take inputs into account.
Of course, static tools encounter their own challenges in
scalability and accuracy, especially for large C/C++ programs,
which is partly why so much work has focused on dynamic
techniques. We believe static analysis, such as may-happen-
in-parallel analysis [1], can help further improve our CFP-
guided bug detection in the future.

Different metrics have been proposed to measure the
coverage of interleaving testing [10, 22, 26, 30, 58, 60,
66]. Apart from the traditional coverage-based adequacy
criteria, saturation-based adequacy criteria [58] are also
proposed to help apply these interleaving-coverage metrics
into testing for multi-threaded software. Our CFP metric
complements traditional interleaving-coverage metrics and
adequacy criteria by focusing on a different target: to select
bug-detection inputs from a given input set. Due to this
different target, our design also faces different challenges.
For example, the measurement of CFP coverage has to be
efficient, and the CFP metric has to strongly correlate with the
follow-up concurrency-bug detector(s). We did not directly
reuse traditional coverage metrics, because they tend to be
too expensive to measure before bug detection or not strongly
correlated with data races or atomicity violations. Of course,
the traditional adequacy criteria, especially the saturation-
based adequacy criteria, can help our CFP approach to judge
whether more test inputs are needed.

Many techniques are proposed [3, 10, 37, 44, 53] to
effectively explore the interleaving space of each input.
Different from these techniques, this paper tries to coordinate
bug detection across inputs. It can help identify testing
candidates more efficiently for these interleaving-testing
techniques on a set of inputs.

A recent position paper [9] by the authors presents the
preliminary version of this work. That position paper focuses
on understanding the interleaving-space overlap across inputs
and across different versions of a software project. A prelimi-
nary idea of CFP-guided race detection was proposed there.
However, the algorithm to measure CFP in that paper was
not accurate enough and may miss many concurrent function
pairs. As no optimizations are proposed, the CFP measure-
ment in that paper was also slow, causing as much as 30X
slowdown for Mozilla. In addition, cross-input atomicity-
violation detection was not discussed.

Symbolic execution has been used for testing sequential
software [5, 19, 55] and unit testing multi-threaded software
[54]. Model checking for multi-threaded software has been
well studied [11, 18, 23, 48, 62]. The observation that inter-
leavings overlap across inputs is not new in model check-



ing and partial-order reduction is often used to avoid repeat-
edly exploring the same state [18]. Unfortunately, this ob-
servation has never been studied in the context of dynamic
concurrency-bug detection and related testing. Due to the
different goals and approaches in these two fields, new ap-
proaches are needed to exploit interleaving-space overlap.

7. Conclusions
This paper proposes improving the quality of concurrency-
bug detection and multi-threaded software testing by avoiding
redundant analysis across inputs. Our study of open-source
applications shows that a significant number of races and
single-variable atomicity violations overlap across inputs.
Based on this study, we propose a new metric, concurrent
function pairs (CFP), to guide multi-input concurrency-bug
detection. Our evaluation using 5 open-source applications
shows that CFP-guided concurrency-bug detection can effec-
tively reduce redundant bug detection and improve the overall
bug-detection efficacy.
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