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ABSTRACT

Despite the multitude of protocols that have been designed
for event monitoring in sensor networks, very little work has
been devoted to assessing the quality of these protocols in
terms of their ability to provide timely and accurate infor-
mation about events. The problem is challenging because of
the combined effects of the stochastic nature of event arrival
and duration and the stochastic nature of a sensor’s sleep-
awake schedule. These various stochastic processes need to
be modelled jointly in order to be able to reason, with any
degree of confidence, about the quality of the event detec-
tion. The main contribution of this paper is a framework for
assessing our confidence about the occurrence of events in
sensor networks. Our framework models the interaction be-
tween the stochastic nature of an event arrival, the event du-
ration, and the sensor sleep/awake schedule. By employing
our framework, it is possible to configure individual sensor
duty cycles to meet the requirements of mission-oriented ap-
plications in terms of timely and accurate information about
events of interest.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design |: Wireless

communication; C.2 [COMPUTER-COMMUNICATION

NETWORKS]: General
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1. INTRODUCTION

The past decade has produced numerous protocols for sen-
sor networks [9, 8]. Sensor networks must be able to reliably
detect events of interest to the mission at hand. Event de-
tection triggers human response, in accordance with mission
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semantics. To avoid wasting human resources, it is impor-
tant that the likelihood of false alarms be minimized while
reporting bona-fide events in a timely manner. Minimizing
false alarms amounts to maximizing a sensor’s certainty of
the occurrence of an event. This is a challenging task be-
cause the event may be detectable for only a limited amount
of time. For example, in a surveillance application, a sensor
may detect the presence of an intruder for only a short time,
and then the intruder may move to another location.

Our contribution is a framework for assessing the qual-
ity of event detection (QED, for short) given the probabil-
ity distributions of event arrival, event duration and sensor
sleep-awake times. In our framework, we define quality of
detection in terms of event detection time, that is, the to-
tal amount of time during which the event was observed
by the sensor. Our analysis reveals the impact on QED of
various system parameters, including the attributes of the
sleep-awake schedule and the duration and arrival distribu-
tions of events.

The paper is organized as follows. Section 2 introduces the
sensor model as well as the event model that the sensors are
tasked to observe. Section 3 models the observation time by
each sensor. We also define formally the QED based on total
observation time. Extensive simulation results, presented in
Section 4 confirm our theoretical findings. A succinct re-
view of relevant related work is offered in Section 5. Finally,
Section 6 concludes the paper.

2. THE SENSOR MODEL

To promote network longevity, sensors alternate between
sleep and awake periods [1, 11]. In the sleep state, the sen-
sors turn off their radio interfaces. During the awake period,
the sensors are fully operational. The sleep-awake schedule
can be fixed or can vary dynamically. Importantly, sen-
sor synchronization is expensive and energy-consuming and,
consequently, the sensors are assumed to be asynchronous.
Recently, AbdelSalam and Olariu showed that despite sen-
sors being asynchronous, there are important common stochas-
tic properties of their behavior [1]. Sleeping sensors are inac-
tive and their presence reduces the Effective Sensor Density,
which is the density of active sensors. Designers need to bal-
ance energy saving with mission-specific requirements when
dealing with sleep-awake scheduling.

The lengths of the awake and sleep periods of a generic
sensor are random variables, denoted as A and S, respec-
tively. We note that A and S need neither be identically
distributed nor independent. Refer to Figure 1 for an ex-
ample. The convolution C = A + S is the length of a whole
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Figure 1: Illustrating event occurrence.

cycle that is repeated over the entire lifetime of the sen-
sor. Inspired by [1], we assume that A and S are random
variables with finite expectation.

We define event observation time by a sensor as our met-
ric for information collection about an event. Clearly, the
longer an event is observed the more certain the sensor is
about the occurrence of the event. We assume that a sen-
sor is able to determine that multiple readings are caused
by the same event, even when separated by several sleep
periods. For example, when fire occurs, several high tem-
perature readings can be attributed to the same fire event.
For a given event, a sensor’s observation time is the sum
of all observations during successive awake periods. In Fig-
ure 1, an event begins in awake period A; and ends in sleep
period S3. An event may arrive at a random point in time
and has a random duration X, with finite expectation.

3. OUR FRAMEWORK

Given the stochastic nature of event arrival and duration
in conjunction with the sleep-awake periods of sensors, we
are interested in measuring the total observation time O of
an event by a generic sensor.

3.1 Evaluating the total observation time

Consider an event with random arrival time L and dura-
tion X with distribution functions Fi, and Fx, respectively.
A sensor with random awake time A and sleep time S is
tasked to detect the event. In order to model a realistic sit-
uation, we assume that all of these random variables have
finite expectation. Write C' = A + S and let O denote the
total observation time of the event by our sensor.

Theorem 3.1. The conditional expectation E[O] given that
the event occurred at t € (0,C] is

A A—t
E[0] = / (/0 [1 - Fx(2)] dz) dFy (t)+

C o iC+A—t
/O 5 / - Px(@)]dn)an )

iC

(1)

There are four possible scenarios based on the time that
the event begins and the time it ends. The event can occur
when the sensor is awake or asleep and can end when the
sensor is awake or asleep. For each scenario, we model the
observation time. Then, the expected observation time is
calculated based on the conditional expected value of each

] N
time

scenario.

3.1.1 Event types

Consider an arbitrary event that has occurred at ¢t € (0, C]
with a duration X > 0. By the Law of Total Expecta-
tion, the (conditional) expected observation time E[O] can
be written as

E[0] = /:OE[O|L — dFL(t) @)

A C
— 7 Blo|L = qdFL 1) +/ E[O|L = (dFo(t)  (3)
t=A

t=0
where two integrals in (3) correspond to the event occurring
in (0, A] and (A, C], respectively. We classify events in terms
of their ending time as follows.

Definition 3.2. An event is of Type I if
t+X e JWG-1C (- 1)C + A) (4)
jz1
and of Type II if
t+X e | J((G-1C+A4,50) (5)
i>1

Type I events terminate during a sensor awake period,
while Type II events terminate when the sensor is asleep.
As an illustration, Figure 1 features an event of Type II.

One can prove readily the following statements.

Claim 3.3. Ift € (0, A] and the event is of Type I, then the
corresponding total observation time is X — (5 — 1)S.

Claim 3.4. Ift € (0, A] and the event of Type II, then the
corresponding total observation time is jA — t.

Claim 3.5. Ift € (A,C] and the event is of Type II, then
the corresponding total observation time is (j — 1) A.

Claim 3.6. Ift € (A, C] and the event is of Type I, then the
corresponding total observation time is X +t— (j —1)S — A.

3.1.2  Events that begin during an awake period

First, we consider events (of Type I and II) that begin
when our sensor is awake, i.e. ¢t € (0, A]. To combine the
observation time of Type I and Type II events, we define the
map g : [0,00) — R* as follows

g(X) =

X—-(G-18 where X € (0, A —t)U
Uj21((j -1)C—-t,(j—1)C+A-1)
GA—t  where X € U5, (G —1)C+A—t,5C —t)

We show g(X) for small values of j (number of sleeping-
awake cycles).

X 0<X<A-t j=1
A—t A—t<X<C-tj=1
X-S C—-t<X<C+H+A—-tj=2

2A—t CHA—-t<X<20—-t,j=2

X—-25 20-t<X<20+A—-t,j=3
3A—t 204+A—-t<X<3C-t,j=3
etc.

g(X) =
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Figure 2: Observation time when the event begins
during an awake period

The plot of g(X) is given in Figure 2 where we plot clock time
on the horizontal axis and observation time on the vertical
axis. By claims 3.3 and 3.4, g(X) is a continuous function.
It is observed that for ¢t € (0, A]

)

E[O|L = 1] = Flg(X)] = / o(X)dFx(z)  (6)

X=0
Note that since X is a random variable, g(X) is a random
variable as well. Consequently, the first integral in the ex-
pression of E[O] on (3) becomes

/ E[O|L = t]dFy(t) /tO/X 9 X)dFx (x)dFy(t)
(7

3.1.3 Events that begin during a sleep period

Now, we consider events (of Type I and II) that begin
when our sensor is asleep, i.e. t € (4,C]. To combine the
observation times of events of type I and II, we define the
map h : [0,00) — RT as follows

h(X) =

X+t—-(G-1S-A where
X e U]’21((j - 1)0 —t,
J-1)C+A-1)
G—-1DA where
XeUp (G-1)C+A—t,iC—1)

We show h(X) for small values of j (number of sleeping-
awake cycles).

0 0<X<C-t j=1
X+t-0C C—t<X<CH+A—-t, j=2
A CH+A-t<X<20—-t j=2
h(X) = X+t—-20+A 20-t<X<20+A-t, j=3
2A 20+ A—t<X<3C—-t,j=3
X+t—-3C+2A 3C—-t<X<3C+A-t,j=4
3A 3C+A—-t<X<4C —-t,j=4

etc.

The plot of h(X) is given in Figure 3. h(X) is very similar
to the plot g(X). In fact, h(X) can be seen as version of
g(X) shifted in time. It is now clear that for ¢ € (A, C]

E[O|L:t]:E[h(X)]:/w WX)dFx(z).  (8)
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Figure 3: Observation time when the event begins
during a sleep period

Consequently, the second integral in (3) becomes

/ E[O|L = t]dFyL(t) / /XO X)dFx (x)dFy(t)
9)

Finally the conditional expected observation time of the
event is

/ / dFX )dFL(t)—l—

t=0J x= o

/ /X X)dFx (z)dFy(t)

In order to get a better handle on (10), we now look at the
inner integrals.

3.1.4 Expected observation for g(X) and h(X)

The purpose of this section is to find the expected obser-
vation time for each of g(X) and h(X). Proofs of following
theorems can be found in Appendix B.

(10)

Theorem 3.7. IfVj > 1 and assuming that X has finite
expectation,

/ij 9(X) dFx(z) = /ij X dFx (z)—

J iC—t
/ [l - Fx(2)]de + jS[1 — Fx(jC — 1)]
(i—1)C+A—t

Next, since the limit of the integral is required in (10),
Theorem 3.7 can be evaluated when j goes to co. The results
are captured by the following theorem.

Theorem 3.8.

/0 " g(X) dFx (x)

:/OA L Fxa ]derZ/ZCJrA 1= Fx(a)lda

A similar result can proved for foj h(X)dFx (z). For proofs
please refer to Appendix B.
Theorem 3.9. ForVj > 1 and E[z] < oo, [;° h(X)dFx (z) =

=) iC+A—
i=1 z‘Cjt L= Fx(«))dz



3.1.5 The final expression of total observation time
Recall from (3) that
E[O] = / E[O|L = JdFy (1) / E[O|L = {]dFy(t).

By replacing the inner integrals by the expressions ob-
tained in Theorems 3.8 and 3.9, we obtain

E[0] = // X)dFx(
// h(X)dFx (z)dFy(t) =

()dF(t)+

/O (/OA t[l—FX d:c+Z/lC+A tl—Fx(z)}dm)dFL(t)

/ / o t[l — Fx(x)]dz) dFL(t)

A A—t
Bo)= [ ([ n-Px@laanm+ 0
C o iC+A—t
/ / 1 — Fx(l‘)] dw) dFL(t)

This completes the proof of Theorem 3.1.

3.1.6  Sensitivity analysis of expected observation time

In this section, we investigate the effect of A, the duration
of the awake period, on E[O]. We define A’ = A + h, where
t € [0,A’],[A’,C]. Then (i) is the observation time for the
awake period i.

Next, if the event duration, X, is exponential, i.e. 1 —
Fx(z) = e *® then

e—A)\

AN —p(A) = ——
p(A) —o(A) = 551
For the proof, please refer to Appendix B. Thus,

p(A) —p(A) ey
Jimy h =50 L

1—e ™ [e* 14 (e~ 1)

A 1 + (e—Cx _ 1)2]
that is a constant. This means that the rate of the improve-

ment in the observation time by increasing A depends on
the values of C, A and .

3.2 Guidelines for selecting A and ¢

In some situations (e.g. uncoordinated management among
nodes, various configuration of nodes based on their deploy-
ment constraints/requirements, heterogeneity of nodes with
various capabilities, different observation schedules and/or
security), the sleep and awake periods are necessarily dy-
namic.

‘We now generalize the observation time for scenarios where
sleep and awake periods follow a random distribution. The
idea is based on external versus local view to event’s arrival
and can be modeled by the classic Poisson Arrival See Time
Averages (PASTA), as shown by AbdelSalam and Olariu [1].
The PASTA property guarantees that the busy percentage
for an external observer matches the local view. In observ-
ing the events from the viewpoint of a sensor that has sleep
and awake periods, AbdelSalam and Olariu [1] showed, us-
ing a simple renewal theory argument, that the probability

of finding a sensor in the awake state is

E[A]
E[A] + E[S]

Due to this result, it can be assumed that our framework,
i.e. Theorem 3.1, will be applicable in scenarios where sen-
sors follow a random variable model for their sleeping-awake
schedule. To summarize, we have the following.

Pr[{sensor is awake}] =

Claim 3.10. The expected observation when random vari-
ables A and S are used for awake and sleep periods, equals
the expected observation based on the expected value of sleep
and awake random variables, i.e. E[A] and E[S].

3.3 How to increase observation time

3.3.1 Adaptive duty cycles

We describe situations where a different observation sched-
ule might be required. For example, there could be two
thresholds on the amount of observation, Th; and The. Con-
sider sleep and awake periods S and A1, respectively. When
an event is observed and the amount of observation exceeds
Th1, the schedule for sleep and awake times are changed to
S and As, respectively. This can happen for many reasons.
For example, after T'hy, the probability of the event happen-
ing is increased and the event should be detected faster. In
this situation, for instance, Az is selected to be larger than
A, and S is set equal to Sy. Similarly, there can be As and
Ss after Tho. We call this an operational mode change. For
example, A; and S; can be normal mode, then we switch to
exceptional mode with A2 and S, and later to As and S3
as critical mode.

3.3.2 Data aggregation

Data aggregation can be used to reduce network traffic,
lessen energy consumption, boost detection accuracy, and
infer new knowledge that could not be extracted from a sin-
gle piece of information [2, 9, 7]. In the context of mission-
oriented networks, all of these are important. However,
our framework focuses on information accuracy since we are
quantifying the confidence of event detection, i.e. QED. We
aggregate information to achieve a higher accuracy and cer-
tainty about the occurrence of an event. When an event is
observed by several sensors, all observations are combined to
achieve a better degree of confidence about the occurrence of
the event(s) of interest. This is very helpful because we can
achieve a confidence level earlier than if we had waited for
one sensor to detect the event with the same level of confi-
dence. Also, this avoids outliers, which could happen in the
presence of decalibrated sensors. Our framework quantifies
the total observation time and the confidence of detection by
a generic sensor. Taking into account the semantics of the
mission at hand, it is possible, at least in principle, to define
an efficient aggregation method that meets the requirements
of the mission. However, this topic is out of the scope of this
paper and is being dealt with elsewhere.

3.4 Definition of QED

We quantify the QED as a monotonically increasing func-
tion of the observation time. Without loss of generality, a
map function can transfer the observation time into the do-
main of R[0, 1]. Linear, exponential, and S-shaped functions
are examples of map functions. The framework introduced



in Section 3.1 shows that the observation time that is cap-
tured by each sensor is dependent on the sleeping-awake
periods. The longer the awake time, the more the observa-
tions, and therefore the more certainty about the occurrence
of event. We denote the map function as ¢. Thus,

Definition 3.11.
QED = ¢(0) (12)

4. SIMULATION RESULTS

In this section, we present results of simulation in MAT-
LAB and compare them with the described theoretical frame-
work. Simulations are based on general time slot units, so
there is no specific time unit (e.g. seconds, minutes) for the
sleeping-awake schedules or event duration.

4.1 Observation time

In this section, we show simulation results that confirm
Theorem 3.1 for the expected value of observation time. Fig-
ure 4 compares the observation between theory and simula-
tion with constants S = 7, A = 3, and exponential event
duration with parameter A = 20. It can be observed that
the simulation value for expected observation time is close
to its theory equivalent.

2 T

*  Simulation
Theory

Average observation time E[O]

08 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Number of simulation runs

Figure 4: Expected Observation Time

The effect of a change in A for a fixed cycle C = 10
is illustrated in Figure 5. A linear growth in observation
time is viewed. This confirms the sensitivity analysis in Sec-
tion 3.1.6, where growth is a constant.

Table 1 shows the expected observation time value for
simulation and theory for values of C' = 10 and A = 3 when
different durations for events are considered. Next, some
map functions are applied to expected observation time to
compute the QED on each of the rows.

4.2 Random duty cycle

We evaluate the effect of having random variables for
sleep-awake cycles on observation time. Figure 6 shows the
observation time when a fixed duty cycle is used versus a
duty cycle that follows a random process. A uniform distri-
bution is used for the selection of random variables. A and
S will choose their values in the range [a,b] and [c,d], re-

spectively. The fixed schedule will have %*b and c;d, which

16 | =>¢=Event Staying time (A

14 - =20)

12 | == Event Staying time (A
=10)

E[O] - Expected Observation time
=
o

0 2 4 6 8 10
Awake Length (A)

Figure 5: Expected Observation Time for various A
for two different durations and C' = 10

Table 1: Expected observation time

X model E[O] Map Function (QED)

S- delayed exp. (A =

shaped | step (D> | 5)

0.5)

exp. (A =0.15
0.5) 0.0069 0 0.63
exp. (A =10.30
1) 0.0071 0 0.78
exp. (A =|6.00
20) 0.0218 1 0.99
Pareto 0.5
(@ = 2 0.0074 1 0.9
B=1)
Pareto 0.29
(@ = 2,
B=05) 0.0071 0 0.77
Pareto 0.21
(@ = 3
B=05) 0.0070 0 0.66

correspond to E[A] and E[S], respectively. The x-axis shows

%. We assume S € [1,20] and A € [1..vq],
where va is varied from 1 to 20. E[O] for each fixed and vari-
able scenario are shown in Figure 6. The results for expo-
nential event duration time with parameter 10 and 20, show
that the expected total observation times are very close, i.e.

the difference is negligible. This confirms Claim 3.10.

the ratio

S. RELATED WORK

In event monitoring, it is key to obtain accurate informa-
tion in a timely fashion while also saving energy. Satisfy-
ing these requirements while simultaneously considering the
stochastic nature of an event’s occurrence, has been a topic
of recent interest [11, 4, 5]. For example, [5] and [11] try to
design optimum strategies to cover event monitoring for an
area while using minimum energy. Using mobile nodes for
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E. Cayirci. A survey on sensor networks.
Communications Magazine, IEEE, 40(8):102 — 114,
Aug. 2002.
[3] M. Anwar Hossain, P. Atrey, and A. El Saddik.
Context-aware Qol computation in multi-sensor
systems. In Mobile Ad Hoc and Sensor Systems, 2008.
MASS 2008. 5th IEEE International Conference on,
pages 736 —741, Oct. 2008.
N. Bisnik, A. Abouzeid, and V. Isler. Stochastic event
capture using mobile sensors subject to a quality
metric. In Proceedings of the 12th annual international
conference on Mobile computing and networking,
MobiCom ’06, pages 98—109, 2006.
[5] G. He and J. Hou. Tracking targets with quality in
wireless sensor networks. In Network Protocols, 2005.
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Figure 6: Comparing random and fixed duty cycles

collecting data to reduce the energy consumption has also
been proposed [11, 4].

In terms of certainty and accuracy of data, even though
many metrics have been defined and evaluated such as Qual-
ity of Monitoring (QoM) or Quality of Information (Qol)
[10], existing literature mainly does not characterize the
metric in a way that could be used simply by decision mak-
ers. Among all metrics, uncertainty of gathered informa-
tion is one of the most challenging metrics due to stochastic
characteristics of events, which has not been studied com-
prehensively. To the best of our knowledge, the only work
about uncertainty of information, i.e. here QED, in sen-
sor networks are [3] and [6]. Hossain et al. [3] characterize
uncertainty based on the context, such as environmental ge-
ometry, sensor placement, orientation, and time. However,
they have not looked at the stochastic occurrence of events.
Work by Kessel [6] focuses on the relationship between cer-
tainty of information among nodes. So, it still suffers from
not considering the stochastic occurrence of events. Further-
more, we investigate the problem with dynamic sleep/awake
periods, which has not been studied before.

6. CONCLUDING REMARKS

In this paper we developed a framework to assess the qual-
ity of event detection (QED) in sensor networks. QED is an
important design parameter particularly in mission-oriented
applications because accurate information about an event
must be obtained in a timely fashion. Our results show that
QED is related to stochastic characteristics of problem, par-
ticularly event arrival and duration distributions as well as
sensor awake and sleep period distributions. Our framework
can be used to guide the design of sleep and awake periods
to suit the specific needs of mission-oriented applications in
sensor networks.
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APPENDIX
A. TWO CLAIMS

First, we prove two claims that will be used for proofs of
other theorems.

Assume X is a random variable and Fx (z) is its Cumu-
lative Distribution Function. Let 0 < a < b, A(a,b) =
be(b) — an(a).

Claim A.1. A(a,b) = [Pz dFx(z) — [ Fx(z)dz.

Proof. Let u = z, v = Fx(x), according to the integration
by parts theorem

/udv = /uv'dx = uv—/u'vdm = :I:Fx(x)—/FX(m)dm
(13)
we get Claim A.1 by directly integrating. O

Claim A.2. If X only takes positive values and has finite
expectation, then limz o 2[1 — Fx(x)] = 0.



Proof. Observe that Vax > 0

o[l — Fx(2)] = x/ AFx () < / wdFx(u)  (14)
On the other hand, since X has finite expectation,
E[x] :/ lu| dFx (u) < oo (15)
0
lim udFx(u) =0 (16)
Tr—r0o0 T
As a result,
0< lim z[1 — Fx(z)] < lim udFx(u)=0 (17)
Tr—r00 r—r00
lim z[1l — Fx(z)]=0 (18)
T —r 00
O

B. PROOF OF THEOREMS
B.1 Proof of Theorem 3.7

Proof. We proceed by induction on j. To settle the basis,
observe that for j = 1 we have

C—t
/0 9(X) dFx (z)

:/OAftg(X)de(x)Jr/AC_:tg(X

) dFx (z)

A—t C—t

= X dFx(x) + / (A

0 A—t

— t)dFx ()

- /AithFX(x) (A= )[Fx(C —t) — Fx(A—1t)]

_ [ X dFx(z) + (A—t)Fx(C —
0

= /Ait XdFx(z)+ [(C—t)Fx(C—t)— (A—t)Fx(A—1)]
+ (A= t)Fx(C —1t) —

t) — (A—t)Fx(A—1)

(C—-t)Fx(C —1t)

A—t
- X dFx(z) + A(A—t,C —t) — (S)Fx(C —t)
0
A—t C—t
- X dFx (z) + / X dFx (z)+
0 A—t

/Cit dFx(2) + S - Fx(C — 1)

A—t
C—t
- / X dFx (z) —
0

which is exactly the RHS of the statement at j = 1.

/Citu ~ Fx(x)]da + S[1 — Fx(C — t)]

A—t

We now consider an arbitrary j > 1 and assume that the
theorem is true for j — 1. In other words, we assume that

(G-1)C—t
/O 9(X) dFx ()

(G-1)C—t
= / xdFx(x)—
0

Jj—1

iC—t
> / (1 — Fx(x)] de+
o Je-1c+a—t
+ (= 1DS[1 = Fx[(j —1)C —1]]
is true. With this in hand, we need to show that the state-

ment holds for j.
For this purpose, we write

/ " (X dFx () =

(G-1C
/ X) dFx (x)+

0

(j—1)C+A-t
/ X) dFx (@)+
(j—1)C—t

jC—t

X)dFx ()

(—1)C+A— t

Then second integral would be

(j—1)C+A-t
/(jfl)Cft
(j—1)C+A—t

_ X —
(G-1C-t

(G—1)C+A—t
:/ XdFy (a)—
(—1)C—t
(G-DSFx[(i—1)C+A-1] -
(j—1)C+A—t
:/ XdFx(z)
(j—1)C—t

- -DE)Fx[(-1)C+ A1+
(= DS Fx[(j —1)C — ]

9(X)dFx (z)

(= 1)S)dFx (z)

Fx[( —1)C 1]

and third integral will be
JC—t
/ g
(j—-1)C+A—t

jC—t
-/ (jA — t)dFx (z)
(j—1)C+A—t

(X) dFx(x)

jC—t
-1 [ dFx (x)
(j—1)C+A—t

= ([JA-D)[Fx(C —1) -
=[UA-OFx(C —1) -

Fx[(i -1DC+ A—1]]
(JA=OFx[(j —1)C+ A —t]

Thus,



JjO—t
/0 9(X) dFx (z)

(j—1)C—t
:/ X dFx (z)
0

j—1 iC—t
- Z/ [ — Fx(x)] d
— J(i—1)C+A—t

i=1

+0-1DS5—- (- DSFx[(G - 1)C — 1]

(j—-1)C+A—t
+/ X dFx(z)
(j—1)C—t

- -DE)Fx[[-1DC+A—1]
+ (= D) Fx[(i - 1)C — 1]
+ (JA—t)Fx(§jC —t) — (JA—t)Fx[(j — 1)C + A — 1]

(j—1)C—t
:/ X dFx (z)
0

j—1 iC—t
_Z/ [l - Fx(z)] dz
= Ju-1cra—t

+ (G -1DS+ (GA-t)Fx(jC —t)
—[(j—1D)C+A—-t]Fx[(j —1)C+ A -1

(j—1)C+A—t
= / X dFx (x)
0

Jj—1 iC—t
—Z/ [1— Fx(x)]dx
= Ju—vcra—t

JC—t
— / [1 - Fx(x)]dz
(G—1)C+A—t

+ (=18 = j(S)Fx(JC —1)
:/]C_thFX(m)
0

J iC—t
Zizl /(i71)c+A7t

+iS[ = Fx(C - 1)]

[1— Fx(z)]dx

This confirms that the theorem is true. O

B.2 Proof of Theorem 3.8
Let X = jC — t, we observe that

lim jS[1 - Fx(jC — t)]
j—o0

=S lim j[1 — Fx(jC — t)]

J—ro0
x+t

r—r0o0

St .
=0 lim [1 — Fx(z)]+

Tr—r0o0

(1 — Fx(z)]

5 lim z[l — Fx(z)] =0

T —r o0

This result motivates taking limits as j — oo in the theorem.

First,

7C—t oo
lim 9(X) dPx(e) = [ g(X) aFx (@

j—=o o

Next,

JO—t
lim X dFx(z / X dFx(z) = E[z]

Jj—oo 0
And we just proved,

lim j(S)[1 - Fx(jC—1t)]=0

Jj—oo

As a result,

/ ~ g(X) dFx(z) = Efa]

— lim / [1 - Fx(x)]dx
J*‘”Z (i—1)C+A—t

We can write

J 0 riC—t
jll>rgo Z;[l — Fx(z)]dz = Z; /(¢71)C+A7t)[1 — Fx(z)]dz
Thus,
oo ad iC'—t
/O 9(X)dFx (x) = E[X] = /@71)@,4%[1 — Fx(z)]dz =

0o et 1C—t
/ [ — Fx(2)do — Z/ [ — Fx(2)]de
0 : (i—1)CH+A—t
However, it is observable that

/000[1 — Fx(a))ds = /OHH — Fx(a))dat

el iC—t et iC+A—t
Z/ (1 — Fx(z)]dz + Z/ [1 — Fx(z)]dz
(i-1)C+A—t (iC—t)

(19)

and so,

%) A—t
/O 9(X)dFx (x) = /0 [ Fx(@)]det  (20)

e iC+A—t
Z/{ic?w [1— Fx(z)dz  (21)

B.3 Proof of Theorem 3.9

Proof. Induction on j. For j =1,
C+A—t
/ h(X)dFx(z) =
0

C—t C+A-t
/0 h(X)dFx (z) +/ hX)dFx(z) =

C—t

C+A-t
/ (X +t— C)dFx(z) =
C—t



C+A—t C+A—t
/ XdFyx(z) — (C 1) / dFx (z) =

C—t C—t

C—t

C+A—-t
/ XdFx(x)

C—t
—(C—t)Fx(C—l—A—t)-i—(c—t)Fx(C—t)] =

C+A—t
/ XdFx (z)—
C—t

[(C+A—t)Fx(C+A—t)—
(C —t)Fx(C —1)] + AFx(C+ A — 1)

using Claim A.1
C+A—t C+A-t
- / XdFyx(z) — [ XdFx (2)+
o—t Cc—t

C+A-t
/ Fx(l’)}—FAFx(C%-A—t)
C—t

C+A-t
:*/ Fx(x)dx+AFx(C+A7t)

o C+A-t
=[A- Fx (z)dz] — A[l — Fx(C + A —t)]
C+Agt_t
:/ [1— Fx(z)]dz — A[l — Fx(C 4+ A —1t)]
Cc—t

which match the right hand side for j = 1.
For the induction step, let j > 2 be arbitrary and assume
that for j — 1

(G—1)C+A—t
/ h(X)dFx (z) =
0

iC+A—t
/ [ — Fx(2)]da—

= J o1
(G-DAL-Fx((j—1)C+A-1)]

j—1

Then we need to show,
JO+A—t
/ h(X)dFx () =
0
I piCHA—t
/ [1 - Fx(x)]dx — jA[l — Fx(jC + A —t)]
— Jac-b

The left hand side of equation would be

jC+A—t
h(X)dFx(z) = (22)
0(j—1)C+A—t
/0 h(X)dFx(z) (1H) (23)
n / T (X)dFx () (28) (24)
(j—1)C+A—t
JO+A—t
n / . hX)arx(@) (31) (25)

The terms are named as (1H), (2H) and (3H).

C+A—t
/ XdFx(z) — (C — t)[Fx(C+ A —t) — Fx(C —t)] =

Then, (2H) would be

jC—t
:/] (j— DA - dFx(z) =
(j—1)C+A—t

(U —DAFx([C —t) = Fx(G-1)C+A=1)] =
(G—DA-Fx(C—1) - (G -DAFx((j - 1)C+ A —-1)]

(3H) would be

JC+A—t
/ h(X)dFx (z) =
jC—t

JjC+A—t
/C_t [X +t—(j— 1)A — jO)dFx (z) =

JO+A—t
/ XdFx (2)+
jo—t

JO+A—t
/a¢ —(JC — (j — 1A — t)dFx (z) =

JC+A—t
/ XdFx(z)—
jC—t
(GC— (G —1DA-)[Fx(JC+A—-1t)— Fx(jC —t)] =
JC+A—t

/ XdFx (x)

jC—t
—[(GC - (G -DA=-O)]Fx(jC+A-t)+
[((C = -1DA-)|Fx(jC —1)]

Thus, (1H) and (2H) would be

J=1 LiC+A—t
:Z/ [1 — Fx(z)]dz

= Jic—t

— (- DALl - Fx((j —1)C+A—t)+
(j — DA Fx(jC —t)—
(G =DA-Fx((-1)C+A-1)] =

J—1 ric+A—t
Z/ﬁ [ = Fx(@))dz — (j — DA+ (j— 1)A - Fx(jC — 1)

i=1/iC—t



Finally Equation 22 would be

JO+A—t J=1 LiC+A—t
/O WX)dFx(z) = 3 / [ — Fx(2))dz

= Jic—t
= DA+ (- DA Fx(C — )+
jC+A—t
/ XdFx (z)
jC—t
—[(C -G -DA-|Fx(C+A—-t)+
[(C - (- DA-)]Fx(GC —1)] =

J=1 nic+A—t
> / [1— Fx(z)]da+

i=1 JiC—t
GO+ A—t
/ XdFx (z)+
jO—t

(JC—-tFx(HC—t)— ([JC+A—-)Fx(jC+ A—-t)+

(JAFx(JC+A—-t)—(j— 1A
J—1 nic+A—t
:Z/C t [1— Fx(x)]dz+
JO+A—t
/ XdFx (z)—
JjC—t

A(GC —t,jC+A—t)+ A—jA[l — Fx(5C + A —t)]

using claim 1,

1= iCH+A—t
- ;/ic_t [1 - Fx(z)ldr — jA[l — Fx(jC + A —t)]

(26)

which exactly matches the RHS.
Thus,

JC+A—t

/ © R(X)dFx () = lim h(X)dFx (z)

Jj—= Jo

J 1C+A—t
= lim ) / [1— Fx(z)dz—
i—1 JiC—t

lim jA[l1 - Fx(jC + A —1t)])
J—o0

e iC+A—t
_ Z/ [ — Fx(2)]da—

i=1 /10—t

lim jA[l — Fx(jC + A —1)])
j—oo
we show that

lim jA[l — Fx(jC+A—1)] =0

j—oo
write, X = jC + A — t, we observe that
lim jA[l - Fx(jJC+A—-1t)] =
Jj—oo

Jim. w[l ~ Fx(a)] =
Xli—I;noo w[l — Fx|(z)+
Jim —[1 — Fx](z)

A .
=0+6Xl£nooX[1—FX](x)

By Claim A.2, it will be 0. Finally, we have

o0 iC+A—t
S [T e r@lds en

=1 Jic—t

/0  R(X)dFx () =

O
B.4 Proof of E[O] sensitivity

Proof.
o) () = | ! / " Ee@ar o+
JAD / N P () -

[ e

/C /ZCM "1 = Py () da)dFy (1)

/ /Mh "1 = Fx () dFL () +

Cc o 1C+A+h—t
/ / [ — Fx(2))dz)dFyL(t)

C+A—-t

)] dFL () +

For event duration with exponential distribution, i.e. Fx(z) =
1 — e, the first term is

Ath—t 1 aion

/ - Fx(@)] = Lfe -
A—t

e—(A—t+h)A] _ 6_(/;_75» - e—Ah}

The second term would be

0 iC+A+h—t

— Az
E / e dr =
= Jct+a-1)

Z XG*(lC#»Aft))\[l _ efkh] _

i=1
—(A=t)Ax e —(A—t)X —CX
e —Ah —iCx _ € —Ahy_€
f[l—e ]Ze :f[l—e | —
i=1 1—e—CA

The sum of the two terms would be

A _—(A-t)X
/ 67[1 _ ef)\h
0 A

/c e (A=A 0= e‘*h] e—CA
0 A !

1—e—CA

JdF(t)+

dFr, (t)

If we assume a uniform arrival of event for (0,C], then dFy(t) =
‘éf, we will have

e—A/\ h AetA e—CA C tA
—AX B AX —CA 1
_6 [176 )\h].[e + el '6 }
A Cx T L A
e 1= e M e — 14 (e —1)?
=Sag M e =14 (e -1
SO
—AX
P(A) = p(A) = Tall—e M [P =14 (e - 1))

O



