
Game Programming by Demonstration

Mikaël Mayer
EPFL, Switzerland

mikael.mayer@epfl.ch

Viktor Kuncak �

EPFL, Switzerland
viktor.kuncak@epfl.ch

Abstract
The increasing adoption of smartphones and tablets has pro-
vided tens of millions of users with substantial resources for
computation, communication and sensing. The availability
of these resources has a huge potential to positively trans-
form our society and empower individuals. Unfortunately,
although the number of users has increased dramatically, the
number of developers is still limited by the high barrier that
existing programming environments impose.

To understand possible directions for helping end users to
program, we present Pong Designer, an environment for de-
veloping 2D physics games through direct manipulation of
object behaviors. Pong Designer is built using Scala and runs
on Android tablets with the multi-touch screen as the main
input. We show that Pong Designer can create simple games
in a few steps. This includes (multi-player and multi-screen)
Pong, Brick Breaker, Pacman, Tilting maze. We have made
an open release of Pong Designer and editable games that we
created using it. This paper describes the main principles be-
hind pong designer, and illustrate the process of developing
and customizing behavior in this approach.

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Interactive environments

Keywords programming by demonstration

1. Introduction
Smartphone and tablet devices have dramatically increased
the number of individuals with access to computing re-
sources. The availability of these resources has an enormous
potential to positively transform our society. Unfortunately,
using traditional development methods for such devices is at

� This research is supported in part by the European Research Council
(ERC) Project Implicit Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH Onward’13, October 26–31, 2013, Indianapolis, USA
Copyright c© 2013 ACM . . . $15.00

least as difficult than for desktops, and possibly more dif-
ficult due to new constraints on device input size, energy
consumption, and the complexity of the software stack. Fur-
thermore, the benefits of these platforms can be fully real-
ized only by specialization of applications to particular do-
mains, or even particular users. We would like to enable do-
main experts that are not software developers by training to
develop applications that support well their domain activ-
ities. Many educational, scientific, engineering and artistic
domains would benefit from such end-user programming.
For tasks such as scripting and home automation, we would
like to deliver personalized applications at the low price that
makes current phone applications accessible. To achieve this
level of specialization, the number of developers needs to
be much closer to the number of users. A promising ap-
proach to realize these goals is to empower users themselves
to program, blurring the traditional divide between profes-
sional software developers and end users. This direction is
especially appealing as the increasing computing capabili-
ties of these ubiquitous devices enable more advanced run-
times and software development tools, and as new algorith-
mic techniques enable automated programming assistance
and synthesis [7, 8, 12, 19, 21].

One of the challenges when programming using conven-
tional text-oriented editors is the disconnect between pro-
gram representation and its effect during execution. Several
recent approaches support understanding the effect of a line
of code with an enhanced editor [15] or with very high-
level constructs such as behaviors and constraints [18], [22].
Others prefer to guide the programmer by providing code
structures that can fit together, either modifiable during the
game simulation [16] or in a special structured editor [18],
[1]. These approaches reduce the burden of syntax checking.
However, few of them provide a way to directly modify the
running application by demonstrating the desired behavior
using examples.

Recently, programming by demonstration has been revis-
ited and shown very successful in domains such as spread-
sheets [7, 21], which map inputs to outputs. We wish to un-
derstand the potential of programming by example on a new
generation of touch-enabled devices and apply it to more
complex domains, containing interactive behavior. This led
us to the domain of graphical games running on tablets.

mailto:mikael.mayer@epfl.ch
mailto:viktor.kuncak@epfl.ch

1.1 Contributions
This paper presents a development approach for graphi-
cal games where developers use demonstration to describe
not only application state, but also its behavior. The devel-
oper can pause the game and directly manipulate objects to
demonstrate the desired effects through examples. The main
contributions of our approach are the following:

• An on-the-fly editing principle: the users can pause,
rewind, and modify a running game using a time progress
bar, with graphical access to events from the past.
• Rule demonstration: a rule-based execution model, where

developers dynamically create and update rules using
concrete demonstrations on objects. The system automat-
ically infers candidate rule conditions and actions from
such demonstrations.
• A freely available working Scala/Android implementa-

tion that leverages these principles on runs on devices en-
abled with multitouch and accelerometer input. The sys-
tem and several examples of (editable) games are freely
available as “Pong Designer” app from Play Store, as
well as at http://lara.epfl.ch/w/pong/ .

2. Building Games by Demonstration
We illustrate the flavor of game development in Pong De-
signer by showing how to develop several games using a re-
markably small number of steps on a tablet computer (we
used Asus Eee Pad Transformer for our experiments).

We first show how to build a brick breaker game, fol-
lowed by a variant of Pacman with a moving camera and
accelerometer input.

2.1 Breakout-Style Game
This example illustrates the use of time slider and demon-
stration of behavior in response of actions.

Suppose that we wish to program a classic breakout-style
game, where the goal is to drive the bouncing ball, using
a sliding paddle to ensure it does not escape the screen at
the bottom, and aiming to ensure that the ball breaks all the
bricks on the screen.

Describing the initial state. We begin by creating the
game objects, using predefined shapes. This process resem-
bles drawing in a simple vector graphic design applica-
tion, such as the ones used to create conference presentation
slides. To introduce shapes into the playing field or modify
their properties we use buttons from an on-screen toolbar:

The buttons provide a way to increment or decrement a
number, set up the velocity and angle value of any shape,
whether the shape can move or not as well as its visibility,
size and color. Setting up the game layout corresponds to
defining data structures and objects in usual programming.

Figure 1. Static Initial State of a Breakout-Style Game

Figure 1 shows a possible result for our example, which
includes the walls, bricks, the ball, and the paddle.

Setting dynamic properties such as velocity. In contrast
to a drawing program, the objects we created are in fact
models of physical objects with associated behavior in a
two-dimensional physics world. Objects can be either non-
movable (pinned to the ground), or movable according to
Newton’s inertial laws with friction. By default, all objects
have zero initial velocity. If we select the ball object, we
can change its speed by moving the endpoint of the velocity
vector displayed on screen. In this example, we set the initial
velocity of the ball to move towards a nearby brick:

http://lara.epfl.ch/w/pong/

Starting the game. Pressing the “play” button starts the
game, running the physics simulation from the current state
and displaying the outcome in real time on the screen (in
this case, the ball moves towards the brick). As the game
runs, we observe that the time bar at the bottom of the screen
makes progress, indicating the passage of time, much like
when playing a music or video stream.

During this time the system silently records internal events,
such as object collisions, as well as user input, in particular
the multi-touch screen input.

Identifying events of interest. In our example we observe
the ball hitting the brick and bouncing off it, with the brick
staying intact. We would like to change this behavior to en-
sure that that, when the ball hits a brick, the score increments
and the brick disappears. We press the “Pause” button to stop
the simulation, which allows us to again edit objects in the
last simulated state. This time, however, the game also con-
tains the history of past events. Pressing the events button
displays the events using appropriate graphical metaphors.
The following representation shows that there was a recent
collision between the brick and the ball:

Navigation in time and space to select events. Note that
the number of events recorded can be large, but the user can
navigate them using the fact that an event is indicated near
the relevant objects, and at the relevant time. The user uses
the time bar to go back in past to the approximate point in
time when the event of interest occurred. In our example,
the user chooses the collision event between the ball and the
brick.

Describing actions: breaking a brick. The selected event
represents a condition for triggering a rule. The entire game
is governed by such event-triggered rules. To specify the ac-
tion that should take place in case of a given event, the user
performs the action in the same editor. This action subsumes
macro recording in simpler systems, but is followed by a cru-
cial generalization step. In our current example, we would
like to indicate that the brick should disappear in case of a
collision with the ball. To do this, after selecting the collision
event, we simply move the brick outside the visible screen,
or set its visibility to invisible. We also increment the score

counter. After pressing the OK button, the system automati-
cally generates the corresponding rule (see below). The user
can edit and delete some of its parts, if desired, or simply
accept it as it is. The rule will now be applied whenever the
ball hits this brick.

If we copy any object, the system copies the rule along
with the objects to which they apply. In this case we first
create one brick and the rule. When duplicating the brick,
the system will duplicate the rule. (This corresponds to a
prototype-based object system; we are also adding support
for sets and classes of objects.)

Second rule: moving the paddle. We next wish to specify
that the paddle follows the horizontal movements on the
touch screen when they occur on the paddle. To do this, we
run the game and attempt to move the paddle. The paddle
does not respond, but the movement is recorded in the event
history. We can use the recorded movement to further correct
the existing behavior. We pause the game and move the time
slider towards the point where we made the movement on
the screen. The movements are displayed using curves that
describe the path traced on the screen, as in the following
movement to the right:

We select the move event, which acts as the condition of
our rule. As the action for the rule, we demonstrate the
corresponding change in the position of the object, moving
it from the initial position

into the final position:

Because of a “snapping-to-position” feature, this move-
ment is recorded as a perfectly horizontal movement. At this

point the system performs a generalization from the concrete
demonstration to a rule applying to these two objects. Even if
the two movements demonstrated are not perfectly identical,
our system finds that they are sufficiently close and derives
the following rule that matches the local in finger position to
the indicated horizontal movement on the screen.

In general, the system uses a set of expected parametrized
templates to compute a set of possible actions that could
explain the demonstrated state change. If the user expands
the generated rule, they are able to delete lines and select the
intended result from the templates by pressing arrows.

Describing the losing condition. We would like to specify
that a text displaying “Game over” appears when the ball is
out of screen. For that, we first create the label and make it
invisible by default. To specify when this text should become
visible again, we follow these steps. We set the velocity
of the ball towards the bottom of the game and launch the
simulation. When the ball goes out of the screen, we pause
the game. The engine detected the event of the ball going out
of screen.

We select the out-of-screen event, make the “Game over”
text box visible, and confirm this behavior by pressing OK.
The system then creates the corresponding rule automati-
cally.

Describing the winning condition. Finally, we would like
to specify that a label “Victory” should appear when the
score reaches 19, which is the number of blocks in the game.
For this purpose, we make a text displaying “Victory” in the
middle, initially invisible. We then change the score to 18
to indicate an interesting starting scenario for simulation.
We then play the game until the score reaches 19. When
we press the event menu, the system detected the previous
change as a number change event. Select it, and accept the
offered condition “When score == 19”.

Make the “Victory” text visible and confirm the rule.

This completes the description of the basic functionality
of a break out style game.

Figure 2. Screenshot of a Pacman-like game build in Pong
Designer

2.2 Pacman with Accelerometer Input
We next show how to build a Pacman-like game controlled
using the accelerometer (the angle of the device). Only one
part of the game field is visible on the screen, so the camera
(viewpoint) needs to follow the player. The player moves in
the labyrinth, and needs to eat all food chunks without touch-
ing any of the enemies. We will introduce three enemies; if
they touch the player, the player lose a life. After losing four
lives, the game is lost. The player can win by eating all food
chunks.

We will create the game logic from scratch, specifying
that the player should go through black walls, eat the chunk,
and when the enemy should go through the chunk and make
the player loose a life.

1. Create a yellow circle for a player, a red circle for an
enemy, a yellow circle for a food chunk, a brown rectan-
gle for a wall and a black rectangle for “home” (a wall
through which the player can go, but not the enemies).
Add two numbers, one to 0 to count the number of chunks
eaten, and the other to 4 to count the number of lives. Set
the speed of the player and the enemy to the right.

2. Start the game. After a few seconds, pause it again.

3. The player bounced against the black wall. Press the
event menu, select the collision, and press on the button
to remove the collision. Now the player goes through the
black wall. Follow similar steps to remove the collision
between the enemy and the food chunk.

4. The player collides with the food. Select an instance of
this collision, choose an action that the objects should go
through each other but the collision is recorded, augment
the score from 0 to 1, and move the food away from the
visible part of the screen.

5. Move the time forward to observe the enemy bouncing
against the wall and colliding with the player. Select
the collision, select the option that the object should go
through each other but the collision is recorded (as for the
food), move the player back to the base, set its speed to
zero, and decrease the number of lives.

6. Now go back to the beginning. Create a maze, duplicating
the walls, food and enemies as needed.

Second, we would like to let the player follow the gravity,
and the camera to follow the player.

1. Press the accelerometer button to be able to select
the shapes affected by this sensor, and select the player.
Press the accelerometer button to stop selecting objects.

2. Press the camera button and then select the player.
As a result, the camera will follow the player. To adjust
the view screen, resize the camera.

3. To add “Victory” and “Game over” labels, follow the
steps mentioned in the previous game.

In addition to its immediate use when following the player in
a large game field, the camera can be used to switch between
several screens in case of a multi-level game, or a game with
menus and options.

3. Pong Designer Principles
The key novelty of Pong Designer is the rule-based model
with the ability to dynamically change rules through con-
crete demonstrations in a desired context. Starting from one
or more concrete demonstration (which can be introduced
incrementally at different points in time), the system per-
forms a generalization to obtain a rule that applies beyond
the concrete state in which it was demonstrated. Rules con-
tain a condition (an event) and the action (state change).

3.1 Events
Pong Designer currently supports six kinds of events. Each
kind of event may include several variations. For example,
the user can specialize collision rules as “objects go through
each other and no rule is executed”, “objects go through each
other and the rule is executed” or “objects bounce against
each other and the rule is executed”. It is not at all clear what
it means to keep a collision

collision numbers out of screen

touch down move touch up

3.2 Specifying Actions
Selecting an event enables the user to specify an action
though an example of input and output, which the system
generalizes.

During the modification of the game state, the system
draws two versions of objects being changed. The first ver-

sion shows the original state of objects (input); the second
state is the transformed state of the objects (output). It is
possible to modify either the input or the output. To switch
between these two, the developer toggles the input/output
button.

When the user changes the output, moving a shape moves
it as usual normally (the first picture below). This is the de-
fault mode. When the user changes the input state, moving a
shape will move a shadow version of it.

3.3 Editing Created Rules
Once created through demonstration, it is possible to directly
adjust the rules. This functionality is provided as a fallback
in case demonstration does not achieve the desired effect or
the users prefer to examine a more textual version of the
rules. Note that, even in this representation we use graphical
notation for events. Moreover, it is possible to edit constants
in rules using selection or increment and decrement actions
that requires no keyboard input. Finally, a preview feature
makes it possible to quickly preview the effect of a single
rule invocation on the current state.

Press OK button to create a new rule based on the
modifications of the game, or to refine the existing
open rule by providing a new demonstration.
After a rule is created, one can view its content for
manual review and editing.

Drag the finger on a constant in dark blue
to modify its value. Depending on the
type of the number, an appropriate input

method is invoked. For example, changing a color constant
opens a color palette.

Press the arrows to choose different code possibilities that
were generated by the system. For example, we can switch
between all the three codes transforming 1 to 3, which are
� . . .� 3, � . . .� 2 and � 3.

To apply the code of the rule to the game, press
the play button. This can be used for example to
modify parameters and to see how the rule behaves

for them, in order to correct them. If the rule is opened, the
game shows what the results of the rule would be.

3.4 Underlying Domain-Specific Language
Each game in Pong Designer can be described by its initial
state and the set of rules. Although rules can be modified and
displayed graphically, they also have a textual representation
as a domain-specific language embedded into Scala. We use
this domain-specific language as reference semantics, but
also as a way to emit a compiled version of the game. Figure
3 summarizes this domain-specific language.

The game engine considers rules similar to logic gates.
This means that the order in which the game executes their
inner lines of code is not important. The game modifies all
the parameters at the same time, through the use of a stack-
ing mechanism illustrated in Figure 3. In all the assignments,
the parameters names to the right of the equality start with
“prev”, which means that their value is the one before the
rule started. In the sequel, whenever v �� C is written, it
means in reality v � prev v � C so that the previous value
of v is left unchanged for other lines of code.

When the user provides an input/output example of how
the game state should change, the code generator compares
the example against the list of actions in Figure 4. If several
actions are suitable for the same change, the code generator
wraps all of them in a parallel instruction PARALLEL_EXPR,
in the same order as in Figure 4. The meaning of such an
expression is “Execute the first action, but keep the others in
the case the first action is wrong.” For example, if the code
has to change a score value v from 1 to 2 when a certain event
occurs, the system will create the line PARALLEL EXPRpv �
2, v �� 1, v �� 2q. Now, if the same event occurs and
the user specifies that the score should increase up to 3, the
system will drop the first v � 2 and the last v �� 2 and will
keep only the second v �� 1.

Furthermore, if the user enters a new input/output ex-
ample which is contradictory regarding an existing piece of
code, the code generator selects the most recent one. For ex-
ample, if the code for a rule is PARALLEL EXPRpv � 2, v ��
1q, and the player asserts that the value should increase from
2 to 4, this is not consistent. Therefore, the code generator

GAME := class NAME extends Game
’{’ GAME CONTENT ’}’

GAME CONTENT := layout width = constant
layout height = constant
{SHAPE DEF}+ {CATEGORY DEF}+
{RULE DEF}+

SHAPE DEF :=
val NAME = new (Rectangle | Circle | IntegerBox | TextBox)
’{’ {property = value}+ ’}’

CATEGORY DEF := Accelerometer({NAME}+)
| Gravity2D({NAME}+)

RULE DEF :=
WhenFingerDownOn(NAME) ’{’ CODE ’}’
| WhenFingerUpOn(NAME) ’{’ CODE ’}’
| WhenFingerMovesFrom(NAME) ’{’

(xFrom: Float, yFrom: Float,
xTo: Float, yTo: Float) =>

CODE
’}’
| WhenNumberChanges(NAME) ’{’

(newValue: Int) =>
CODE

’}’
| WhenEver(BOOL EXPR) ’{’ CODE ’}’
| WhenCollisionBetween(NAME, NAME) ’{’

CODE
’}’
| NoCollisionBetween(NAME, NAME)
| NoCollisionEffectBetween(NAME, NAME)

CODE := SIMPLE CODE
| if(BOOL EXPR, SIMPLE CODE, CODE)

SIMPLE CODE := {PARALLEL EXPR}+
PARALLEL EXPR := Parallel(MODIF LINE+)
MODIF LINE := NAME.property = FORMULA
FORMULA := FORMULA (+|�|∗|%|/) FORMULA
FORMULA := NAME.prev property
FORMULA := constant
FORMULA := newValue|xFrom|yFrom|xTo|yTo
BOOL EXPR := FORMULA (¤|¥|<|>|==) FORMULA
BOOL EXPR := BOOL EXPR (|| | &&) BOOL EXPR
BOOL EXPR := !BOOL EXPR

Figure 3. An overiew of the language and grammar used by
our system to generate code

will overwrite the previous rule by producing the following
code PARALLEL EXPRpv �� 2, v �� 2, v � 4q.

If the event occurs when there is a finger move on a
shape, then the variables describing the move can be used
in the code. The system accepts relative coordinates impre-
cisions up to 40%. For example, if the user moved his fin-
ger from xFrom � 90 to xTo � 140, and he also moved
the shape x from 80 to 128, the system outputs the code

PARALLEL EXPRpx �� xTo�xFrom, x �� 50, x � 128q
because 128�80 is approximately equal to 140�90. Enrich-
ing such expressions by considering an arithmetic interval
solver to accomodate imprecisions is a problem we might
investigate in the future.

Although each atomic modification MODIF LINE could
be, in principle, arbitrarily generated by the grammar, the
generator may only use patterns from Figure 4, especially for
conditional if-then-else statements. Whenever other shapes
are involved in those patterns, it means that the generator
loops over all the shapes having the desired property, such
as a “width”. For each shape so that the pattern works, it
outputs a code snippet.

These patterns ensure coherent code and might be ex-
tended in the future as we add other behaviors. For exam-
ple, if we wish in the future to produce random numbers, we
would add the random function as a primitive pattern.

3.5 Rule Creation Algorithm
Whenever the user performs a new demonstration, Pong
Designer uses it to adjust the existing set of rules.

Creating and updating rules are similar activities. If the
rule does not exist yet, the system creates it according to the
type of the selected event, and its action is initially empty
(see Figure 8)

The system extracts the code from the game state. It uses
templates to generate the code (see Figure 6). Templates
have access to the game state, so they can, for example,
provide a code to align shapes, or set up a number as a
combination of two other numbers. The template system in
Figure 5 gives an idea of our template matching process.

When the system recovers the code from the game, it
merges them with the existing code from the rule (see Fig-
ure 7). If there are number conditions for the new code, the
system generates corresponding if-then-else statements or
refines the existing ones. Generated if-then-else statements
currently only check whether the number is less than con-
stant, so the code is easily maintainable.

When the user duplicates a shape, if the condition of
a rule contains the shape, the system duplicates the entire
rule by replacing all occurrences of the old shape with the
new shape. This can lead to an substantial increase in the
size of the code, which we hope to reduce in the future by
abstracting collections. If the condition of a rule does not
contain the shape, the system duplicates every line of code
modifying one of the shape’s properties for the new shape
property.

In the future we expect to deploy more sophisticated
algorithms for learning from examples, and, more broadly,
machine learning techniques to infer the intended behavior.

4. Implementation Aspects
We next describe the architecture of Pong Designer that
enables the modification of run-time behaviors.

/∗ Identifiers xFrom, yFrom, xTo, yTo
are available only if the code is

inside a WhenFingerMovesOn rule.∗/
// Shape: (other.x == x1, other2.x == x2)
cx = x1, cx = cx1, cx = x1+w1
x = x1�w, x = cx1�w, x = x1+q1�w
x = x1, x = cx1, x = x1+w1
x += xTo�xFrom, x += xFrom�xTo
x += CN , x = CN

x += yTo�yFrom, x += yFrom�yTo
// Same for y, by replacing x by y and vice�versa
// Mirror position of a center with other two centers.
(cx, cy) = (2∗cx1�cx2, 2∗cx2�cx1),

// Then angle of the speed.
angle = CN , angle += CN

// Angle from the position of a shape to the finger
angle = angle(x1, y1, xTo, yTo)
velocity ∗= CF , velocity = CF

color = CN

visible = CB

// Rectangular shapes
width += xTo�xFrom, width += CN

width = CN width ∗= CF

height += yTo�yFrom height = CN

height ∗= CF height += CN

// Circles
radius += CN , radius ∗= CF

radius = CN radius += xTo�xFrom ...

// Integer boxes
// The identifier ”nv” represents the new value
// if the rule is triggered by a number.
/∗ We write v instead of ”value” ∗/
v = nv
v = nv / i if nv % i == 0
v = nv ∗ i
v += CN if CN == 1 or �1
v = v1 + v2, v = v1 � v2
v = v1 ∗ v2, v = v1 / v2
v = v1 ∗ CN , v = v1
v += CN if |CN | > 1
v = CN

// Text boxes
text = text1 text = text1 + text2
text = Constant

Figure 4. The language of actions that the game engine
generates by decreasing priority for each property. For each
property, we write ”property” instead of NAME.property.
“other” and “other2” are identifiers to describe other
shapes. We abreviate “other.property” to “property1” and
“other2.property” to “property2”. cx is “center x”, w is
“width” and h is “height”. CN is an integer constant, CF

a float constant and CB a boolean constant.

// Template definition.
trait TemplateShape {
var shape: Shape
def variants(s: Shape): List[Expression] = {

shape = s
if(condition) List(result) else Nil }

def condition: Boolean
def result: Expression
}
// Template to compare against other shapes
trait TemplateOtherShape extends TemplateShape {
var other shape: Shape
override def variants(s: Shape) = {

shape = s
var expressions = Nil
for(o Ð game.shapes) {

other shape = o
if(other shape � shape && condition)

expressions += result
} } }
// Regrouping templates in parallel
trait TemplateParallel extends Template {
def templates: Traversable[Template[T]]
def result: Expression = {
var expressions = Nil
for(template Ð templates)

expressions += template.variants(shape)
Parallel(expressions)

} }
// Regrouping templates in block
trait TemplateBlock extends Template {

//Replace Parallel by Block in the previous code
Block(expressions)

} }
// Template matching horizontal finger tracking.
object TX DX2 extends Template[Shape] {
def condition = ofType(TOUCHMOVE EVENT) &&

approx(shape.x�shape.prev x, xTo�xFrom) &&
!movementIsVertical

def result = ”shape.x = shape.prev x+(xTo�xFrom)”)
}
// Template matching alignments
object TX AlignLeft1 extends TemplateOtherShape {
def condition = approx(shape.x, other shape.prev x, 20)
def result = ”shape.x = other shape.prev x”
}
// Variants for x
object TX extends TemplateParallel {
def condition = shape.prev x � shape.x
val templates = List(TX DX2, TX AlignLeft1)
}
// Global template
object TShape extends TemplateBlock {
def condition = true
val templates = List(TX, TY, TColor ...)
}

Figure 5. Templates producing code for a given shape. The
templates pattern follow those in Figure 4

def codeGeneration(game, event,
actionsCondition, existingActions) = {

actions Ð ()
initialize templates
for{shape P game} {

variants Ð TemplateShape.variants(shape)
if{variants � ()} {

actions �� ParallelExpr{variants}
}
}
mergeCode{game, event, actions,

actionsCondition, existingActions}
}

Figure 6. codeGeneration: Algorithm which takes a
“game”, an “event”, an optional condition “actionsCondi-
tion” under which actions in the game should be performed,
a list “existingActions” of actions that are currently per-
formed when this event is triggered. Outputs a sequence of
actions describing the intended action merged with the pre-
vious ones.

def mergeCode(game, event, actions,
actionsCondition, existingActions) = {

(actionsCondition, existingActions) match {
case (true, ()) ñ

actions
case (true, ”if(”cond”)” codeT ”else” codeF) ñ

”if(”cond”)” mergeCode(..., actions, true, codeT)
”else” mergeCode(..., actions, true, codeF)

case (true,) =>
- Group by assigned property existingActions and actions.
- Intersect expressions parallelExpr for the same property
- If intersection is empty, take the new code.
- Return the resulting block code.

case (”newValue ¤” B,
”if(newValue ¤” A”)” codeT ”else” codeF) ñ

if(B A) {
”if(newValue ¤” B”)” mergeCode(..., actions, true, codeT)
”else (if(newValue ¤” A”)” codeT ”else” codeF ”)”

}
. . .

}

Figure 7. mergeCode: Algorithm which takes a “game”,
an “event”, an optional condition “actionsCqondition” under
which actions in the game should be performed, a list “ex-
istingActions” of actions that are currently performed when
this event is triggered. Outputs a sequence of actions describ-
ing the intended action merged with the previous ones. No-
tice how conditionals are merged: The structure of the pro-
gram remains consistent. Texts in quotes are the representa-
tion of a program.

def ruleMerge(game, event,
existingRule, actionsCondition) = {

if{existingRule is not defined} {
existingRule Ð emptyRuleFrom(event)
//existingRule.code is empty
}
actionsCondition Ð ‘‘true”
if(event is a ‘‘Number change event’’) {

if(event is a ‘‘Number equal event’’) {
actionsCondition Ð ‘‘newValue == event.shape.value’’
}
else if(event is a ‘‘Number greater event’’){

actionsCondition Ð ‘‘newValue ¥ event.value’’
}
else if(event is a ‘‘Number less event’’){

actionsCondition Ð ‘‘newValue ¤ event.value’’
}
else if(event is a ‘‘Number positive event’’){

actionsCondition Ð ‘‘newValue ¥ 0 ’’
}
else if(event is a ‘‘Number negative event’’){

actionsCondition Ð ‘‘newValue ¤ 0 ’’
}
}
rule.code = codeGeneration(game, event,

actionsCondition, existingRule.code)
game.rules += rule

Figure 8. ruleMerge: Algorithm which takes a game with
input and output state available, an event and an optional
existing rule. Outputs a rule to describe the complete event
handling.

Figure 9. The two states of the game engine

4.1 Role of the game engine
Time plays an important role in the game engine. The game
itself is not aware of the real time, only the game engine
is. To manage time, Pong Designer can be in two different
states. In the running state, the game runs naturally, whereas
in the editing state, the game is paused and everything,
including current time, is editable. Because of these two
states, we made sure that the time of the game is tightly
controlled by the game engine.

To control the time for the current game, the game engine
performs the following actions synchronously and forever:

1. When in the running state, it updates the time of the game
from a clock.

2. When in the editing state and if modified, it updates the
time of the game from the time slider.

3. Displays the game.

4. When in the editing state, displays more information
about the game state, such as if objects are static or if
an object has been modified.

5. When in the editing state and activated, displays se-
lectable events from the last 5 seconds in order to let the
user create or modify rules.

6. When in the editing state, displays the game menu on top
of it.

Concerning touch events, the game engine behaves dif-
ferently. Because of the platform, touch events are received
asynchronously. The game engine deals with them in two
different ways:

1. When in the editing state, the game engine dispatches
touch events to menus which in return modify the game
state

2. When in the running state, the game engine dispatches
touch events directly to the game

Figure 9 gives a summary of the interface between the
game engine and the game in the two states The slider
controlling time is included in the box “menus”.

4.2 Time management by games
Games running with this game engine need to have the possi-
bility to go back in time for at least a short period. Therefore,
a game needs to store internally a 5-second history of all of
its parameters and its shapes’ parameters. Events are a par-
ticular case (see below) but are still recorded in a 5-second
history. If the user wishes to start from the beginning, or if
the game has been wrong and not corrected for the last five
seconds, it is still possible to reset it to the initial state.

The data structure storing the history of parameters is
a double linked list of values ordered by timestamps. This
structure is parametrized in the type of the values, which can
be anything among integers, floats, string and events. Except

for events, we optimized the history by storing values only
when they change, so that if the parameters of an object does
not change, its history holds only one value.

When time elapses (forwards) to a new value set by the
game engine, the following actions occur:

1. The game goes through all touch events that were stored
asynchronously, and executes them according to its rules.

2. The game updates the physics by moving shapes and
handling collisions and at the same time triggers syn-
chronous events, like those from collisions, out-of-screen
events and number change events.

The time can elapse backwards only when the game en-
gine is in the editing state. In this case, if the user goes back-
wards in time with the slider (up to 5 seconds) the game re-
verts all its parameters and all its shapes’ parameters to their
value at the given time. If the user moves the time slider back
to the right, the game executes forwards as if it was running.

4.3 Two kinds of events
How events are generated and stored is the key point to
understanding how games are executed in Pong Designer.
We distinguish two kinds of events.

Firstly, asynchronous events, such as touch gestures and
accelerometer changes, are stored in a buffer. When the time
increases to another value, the game flushes all these events.
Because they are external to the game, they provide the nec-
essary input to play it. After having triggered corresponding
rules, these events are recorded in a 5-second history. When
the game engine is in the editing state, they can therefore
be selected by the user to create new rules or modify exist-
ing ones. When the user then lets the time elapse forwards
in the editing state, the game replays these events from the
edited history. It is thus possible to change the rules and to
see their different outcome for the same touch input imme-
diately, making it convenient to determine constants, for in-
stance if rules are changing speed, position, etc.

The second types of events, synchronous events, such as
collisions, out-of-screen events or number change detection,
are detected after the physics is updated. When they are
detected, these events might also trigger rules that are part
of the game. They are also stored in a 5-second history.
Although the user can still select them to create new rules
and to modify existing ones, they will always be recomputed
when the time elapses forwards, both in the editing state or
in the running state.

4.4 Deployment on Android
We are compiling against the latest Android API version
17 (Jelly Bean) by using the SDK that Android provides.
Our application is also compatible until the API 10 (Ginger-
bread). Because the SDK is written in Java, and because the
Android virtual machine only deals with Java-like classes,
we are using two different plug-ins to be able to program
in scala: sbt and AndroidProguardScala. Because Scala li-

braries are not available on Android by default, the two plug-
ins embed Scala libraries to provide a final stand-alone appli-
cation. Our prototype application is available from the An-
droid Play store as Pong Designer.

5. Discussion
Our purpose is twofold. The first objective is to reduce the
gap between coding and testing, and the second is to allow
the user to learn faster how to program by providing him a
comfortable environment.

First, let us remark that there is an inherent duality be-
tween the code and the interface. This dual paradigm is rep-
resentative of a major duality in the software development:
compilation vs. testing, programmer vs. designer, engineer-
ing vs. marketing, developer vs. user, etc.

Because of too simple design decisions, Cooper et Al.
discovered that for many systems, the interface often maps
the code implementation, and do not meet the goals of the
users[5]. For example, a program would like to ask if the user
wants to save the changes, which in most cases should be
done without asking. This happens because it reflects more
or less the way the file system internally works.

The approach of self-reconfiguring interfaces is to try to
reduce as much as possible the gap between the configura-
tion and the execution. Reactive customization is at the core
of self-reconfiguring interfaceS. The purpose is to empower
the user with programming capacities, by specifying a de-
sired behaviour on-the-fly. Coding should be done by the in-
terface itself, so that the programmer would not spend too
much time learning an API.

Bret Victor investigated the way courses currently teach
programming [25] and depicted its bottlenecks. By compar-
ing the program output to the code, Bret found principles
for programming environments, if implemented correctly,
would lead to a better understanding and a better learning
curve for users and programmers.

“Traditional visual environments visualize the code.
They visualize static structure. But that’s not what we
need to understand. We need to understand what the
code is doing.”

To understand what the code is doing, we use visualiza-
tion, debugging and verification systems. However, there are
few programming environments that allow to directly ma-
nipulate what the code is acting on. Usually, any interaction
of this kind only provides backwards pointers, such as re-
trieving the original position in the source of a compiled TeX
file. We aim at providing more code What You See Is What
You Get (WYSIWYG) customization features based on the
manipulation of the outcome of the code, in order to demon-
strate intended behaviors.

Bret identified the following list that users need for an
enjoyable coding experience. We add a comment after each
principle to show how we contribute to these guidelines.

Figure 10. Code required in Scratch to describe conse-
quence of a collision.

Figure 11. Hypothetical illustration of applying Pong De-
signer approach to the Scratch example. The developer pin-
points to a visually represented event, then changes the state
into the desired one. The system infers the state transforma-
tion from the example demonstration by finding a function
that maps the input to the output state.

• Show the data - We are showing the physical world
• Show comparisons - We have the time slider to compare

the states between them
• Get something on the screen as soon as possible - Basic

shapes can be added
• Create by reacting - We select events that happened to

create rules.
• Create by abstracting - We are abstracting the demon-

stration into a general rule.

5.1 What needs to be improved
The main challenge will likely be to find the right trade-
off between the complexity of the code we want to gener-
ate by demonstration and the visual simplicity. For example,
it might be hard to design multiple winning conditions in
our current game engine if they are described by some com-
plex boolean formula. Moreover, generalizing conditions is
currently impossible, for example checking if all numbers
within a certain range are greater than 10, and adding a new
number to the range.

6. Related Work
Most existing approach for game programming do not sup-
port inference of rules from demonstrations. We make an
overview of some of those systems, as well as some of the
approaches for inferring code from examples.

Scratch. Scratch is a game engine that helps to teach pro-
gramming to children aged 8�. It provides all the typi-
cal structures of programming, loops, threads, if-constructs,
tests, intersection detection, stylus, etc. There are two main

screen areas in Scratch: one with programming blocks, and
the other with the canvas. The objects on the canvas can be
directly moved and rotated with the mouse, and program-
ming has been made easier through assembling of compat-
ible predefined blocks, which prevents the construction of
programs that would not correct according to types and the
syntax. The system is simple and seem appealing for teach-
ing conventional programming through a graphical variation
of the usual textual rendering of program text. While the
code is running, it is possible to grasp objects, move and
rotate them. However, we found that writing coordinates by
hand, which is the only way to introduce specific coordinates
into a program, can be cumbersome. Consider a situation
where we wish to move the cat when a given line of code is
executed to a position for which we do not know the coordi-
nates. Currently, one needs to first move the cat round, note
down the coordinates, and then enter them into the source
code, which is much less immediate than in our system. In
general, the programmer needs to define all constants by
hand. Another important feature that we found lacking is the
ability to go back in time to identify the desired behaviors.
A major part of programming is to define the behavior of the
interaction between two objects, but such behaviors cannot
be defined on-the-fly in Scratch. If an object, let us say a
cat, should loose a life when it touches a red enemy, the pro-
grammer normally creates the code such as in Figure 11. The
creation of the analogous code is easier if we graphically set
up the effects of the collision. To do so, in our system we just
select the event on the screen, then change the position and
the number of lives. The desired code is generated automat-
ically. we believe that educational systems such as Scratch
would also benefit from our demonstration-based approach

When it comes to program a single stand-alone behav-
ior, e.g. for an enemy to try to reach a player, Scratch al-
lows the user to program any looping constructions, branch-
ing conditions, lists and variables to achieve the desired re-
sult. Because of its programming paradigm, Pong Designer
still lacks such explicit programming features. However, we
could imagine in the future to program an AI by specifying
a score which needs to be incremented, and the rules that
increment the score. With some learning algorithms and in-
put restrictions, the AI could learn to move a paddle towards
a ball, or to go away from the player if the latter is in an
invincible mode in order not to lose lives. For more sophis-
ticated AI strategies and descriptions. we still need to enrich
the interface and our language.

Programming by example. [14] reports that
programming-by-demonstration paradigms are often
Turing-complete, so is our engine. However, this complete-
ness usually does not lower the complexity of programming
non trivial tasks. Such paradigms become useful in the
presence of a library, which directs the purpose of the
programming. This is a reason why we choose to provide
a direct support for physics, so that providing examples

allows the programmer to quickly create games without
having to worry about details. For example, he does not
need to create the bouncing code when a collision occurs.

Gulwani et al. [7] [21] reports that programming con-
straints can be learned and generalized by their system
through a given set of input/output examples. By using in-
ductive synthesis with a DSL, they were able to find all the
expressions that could match the inputs to the outputs. Their
examples included text editing macros and spreadsheets. Our
engine follows a similar algorithm on graphical input, al-
though it is much less complex for now.

The way rules are refined according to multiple input-
output examples is similar to the Version Space Algebra
method which automatically learns programs from traces
[12], as well as to Angelic nondeterminism [3], which also
provides a methodology to fill the missing parts of code
based on trace executions and specifications.

Quickdraw [4] is a graphical system which rebuilds pre-
cise graphics based on vague input. It also inspired us to en-
force the robustness of our system against minor graphics
specification errors.

Finding a way to manage coexistence between the code
and its execution has already been a source of many more
or less fruitful experiments. The Khan Academy [17] fo-
cuses more on “play with the code” than on its graphical
output, which is vigorously criticized by [25]. Our approach
incorporates many important points of this criticism to make
graphical programming enjoyable.

Simula and Smalltalk. A pioneering object-oriented pro-
gramming language Simula is an excellent programming
model for physics-based games as well as other domains that
can be viewed in analogy with the physical world. Smalltalk
builds on this tradition and further emphasizes graphical en-
vironment and the ability to manipulate the state directly.
Sánchez-Ruı́z et al. [23] showed that 4th and 5th graders
liked to program using the object-oriented programming in-
terface Squeak and its graphics, but disliked correcting er-
rors. Squeak provides a graphical interface, as well as con-
textual menus for on-the-fly editing purposes. Our tool also
aims to provide a graphical interface that even children en-
joy programming. The Morphic environment allows the user
to program graphical interactions between objects called
Morphs and has an object-oriented language inspired from
Smalltalk. The structure of Morphs is organized around a
hierarchy of traits and prototypes, which allows the user to
factor behaviors and attributes. Similarly to our system, it let
the user bind input events to actions. It provides a graphi-
cal editor as well as an interactive way of writing code for
objects, especially prototypes.

Programming for phones. We also draw inspiration and
insight from the TouchStudio/TouchDevelop project [24].
The TouchStudio/TouchDevelop project is related in the
spirit to our work, because it also uses the hand to graphi-

cally program scripts on tablets and has a language that sim-
plifies the general programming model.

Game engines. According to [2] there is a need to sepa-
rate the game content from the game engine. For efficiency
reasons, he asserts that there is a need to specialize the game
engine according to the kind of game that can be produced.
One of the main design goals of the game engine should be
the speed of execution. With a proper scene manager, a dy-
namic collision engine and detection of visible objects, they
were able to obtain a reasonable speed. The design of our
game engine is similarly specific for the kind of games we
would like to run. We are also taking inspiration from this
paper to make our game engine faster, even if our collision
engine is for the moment statical.

Construct 2 is a commercial HTML5 game prototyping
engine with the associated community of developers and a
portal for trading game components. It provides a game lay-
out, a camera usually smaller than the layout, and lets the
user add his or her own sprites. The game logic is on a sep-
arate sheet that is executed 60 times per second, resulting
in professional quality of animation. We observed, however,
that for some on-line games the authors mentioned that they
had a hard time to debug their game logic. In our own ex-
perience, we observed that, for example, writing the spec-
ification to “spawn” objects (such as a bullet from a gun)
requires the programmer to go back from the game to the
game engine, to the image editor, and then to the event sheet.
This process supports precise modifications, but misses the
opportunity of intuitive contextual modifications. Therefore,
we found this system would benefit from the techniques that
we incorporated into Pong Designer.

Functional programming. Fruit [6] is a functional pro-
gramming language that defines GUI logic as signals and
signal transformers. Signals approximately correspond to
continuous variables, and signal transformers are code that
perform actions on signals, such as integrals or conditional
assignments. With this approach, a Pong-like game is pro-
grammed with only 20 lines of code. Part of the efficiency
of this approach can be found in our game engine, where
parameters and events play the role of signals, and signal
transformers resemble rules.

Sound processing. ChucK [26] is a strongly typed lan-
guage designed to write functional audio synthesis pro-
grams. Its programming paradigm is to provide full control
over time features, and to use an arrow operator which cap-
tures the sequential operations of programming. One of the
specificity of ChucK is on-the-fly programming, which al-
lows people to modify their program without having to in-
terrupt the execution of the program, for example during a
live performance.

Debugging environments. WhyLine [9] is a modern in-
teractive debugging tool where the user can ask questions
during debugging about why a certain change happened. By

recording the execution trace, it is possible to solve complex
debugging problems by navigating through history. Our sys-
tem similarly uses time-backtracking to enable the precise
design, refinement and modification of rules.

According to Lieberman [13], there is a huge gap between
the environment of the code and the environment of the
software. He suggests that visual users should be teachers
for the interface of the software itself, which in return would
act like as a learning student. His graphical programming
environment includes the possibility to program macros by
demonstration and to generalize them when translating them
into code. He suggests that the generalization process is
a key part of the learning of the software, and that small
errors should be detected and corrected when generalizing.
Similarly, our tool aims to be a learning student, which for
example tries to correct small alignment mistakes made by
the user who plays the role of the programmer. It produces
macros that generalize the intended behavior provided by
examples.

Tools and runtimes for existing languages. There are sev-
eral tools that find, rank and present the most appropriated
synthesized code portions to the programmer. InSynth [8]
is an IDE extension which allows users to synthesize code
snippets based on the type of the current expression. Al-
though these approaches are not completely automatic due
to the lack of complete specifications, they reduce the bur-
den of the programmer. Similarly, our tool finds, ranks and
presents different code portions, so that the user can choose
among them based on their original intent. On another side
of the spectrum, Chameleon [19] assists the programmer in
the difficult task of choosing the best data type for the col-
lections in a program.

Programming language extensions with constraints. Ka-
plan [11] and Comfusy [10] support the use of constraints
as programming structures. Such structures allow program-
mers to work productively on explicit specifications rather
than explicit code. The automatically generated code is thus
less error-prone. Decreasing the number of potential errors
is also the goal of domain-specific languages like those de-
signed by Intentional Programming [20], which allows the
programmer to work on a language that is closer to his needs.
Our game engine also has a domain-specific rule-based lan-
guage that is generated by the graphical selections made by
the user.

7. Conclusions
Pong Designer enables to modifying games while they run,
stepping back in time, and providing demonstrations of de-
sired behaviors. The system infers corresponding rules and
constraints, which can be manually modified afterwards.
Based on object-based programming principles, users can
create their game through moving and arranging elements
while stepping through time. The system can generate code

in a domain-specific language embedded in Scala, which
runs on the Android platform using the standard toolkit.

We believe Pong Designer can be used to make games
that are as fun to modify as they are fun to play. While
there already exist games whose game worlds can be edited,
the changes to behavior are currently limited, and there is
a large gap between the sophisticated built-in behavior on
the one side and simple customizations on the other side.
We believe that Pong Designer leads reduces this gap, and
we hope that this encourages experimentation and building
of fun logic-based games and interactive games. We believe
that the system can also be used for experiments exploring
the learning and teaching of programming.

We are at this point confident that the approach can be
successful in particular domains. The open question is the
extent to which this success generalizes to broader domains,
and the extent in which this paradigm can incorporate prin-
ciples for managing complexity of larger applications.

Acknowledgments
We thank our shepherd and anonymous reviewers for useful
feedback. We thank Sean McDirmid for useful discussions
and comments. We thank Philippe Suter for his feedback
about this project, as well as Eva Darulova for her feedback
on the paper. We thank Lomig Megard, who greatly con-
tributed to the new version of the project.

References
[1] H. Abelson and A. McKinney. AppInventor: app inventor for

android, 2010.

[2] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz.
Designing a PC game engine. IEEE Computer Graphics and
Applications, 18(1):46 –53, Feb. 1998.

[3] R. Bodı́k, S. Chandra, J. Galenson, D. Kimelman, N. Tung,
S. Barman, and C. Rodarmor. Programming with angelic
nondeterminism. In POPL, pages 339–352, 2010.

[4] S. Cheema, S. Gulwani, and J. LaViola. QuickDraw:
improving drawing experience for geometric diagrams. In
SIGCHI Conf. Human Factors in Computing Systems, CHI
’12, 2012.

[5] A. Cooper, R. Reimann, and D. Cronin. About face 3: the
essentials of interaction design. Wiley, 2012.

[6] C. Elliott. Genuinely functional user interfaces. In In
Proceedings of the 2001 Haskell Workshop, page 41–69,
2001.

[7] S. Gulwani. Synthesis from examples. In WAMBSE
(Workshop on Advances in Model-Based Software
Engineering) Special Issue, Infosys Labs Briefings, volume
10(2), 2012.

[8] T. Gvero, V. Kuncak, and R. Piskac. Interactive synthesis of
code snippets. Technical report, EPFL, SwissFederal
Institute of Technology Lausanne, 2011.

[9] A. J. Ko and B. A. Myers. Debugging reinvented: asking and
answering why and why not questions about program

behavior. In Proceedings of the 30th international conference
on Software engineering, ICSE ’08, page 301–310, New
York, NY, USA, 2008. ACM.

[10] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Comfusy: A
tool for complete functional synthesis (tool presentation). In
CAV, volume 6174, Berlin, 2010.

[11] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control.
In Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’12, page 151–164, New York, NY, USA, 2012. ACM.

[12] T. Lau, P. Domingos, and D. S. Weld. Learning programs
from traces using version space algebra. In Proceedings of
the 2nd international conference on Knowledge capture,
K-CAP ’03, page 36–43, New York, NY, USA, 2003. ACM.

[13] H. Lieberman. Mondrian: a teachable graphical editor. In
INTERCHI, 1993.

[14] R. McDaniel. Your wish is my command. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[15] S. Nasilowski. Codea: Create anything on your iPad with
codea, 2011.

[16] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, and B. Silverman. Scratch: programming for all.
Communications of the ACM, 52(11):60–67, 2009.

[17] S. Sal. Khan academy, 2012.

[18] L. Scirra. Construct 2: Create games. effortlessly., 2013.

[19] O. Shacham, M. Vechev, and E. Yahav. Chameleon: adaptive
selection of collections. SIGPLAN Not., 44(6):408–418, June
2009.

[20] C. Simonyi, M. Christerson, and S. Clifford. Intentional
software. SIGPLAN Not., 41(10):451–464, Oct. 2006.

[21] R. Singh and S. Gulwani. Synthesizing number
transformations from input-output examples. In CAV, Berlin,
Heidelberg, 2012.

[22] K. T. Stolee and T. Fristoe. Expressing computer science
concepts through kodu game lab. In Proc. 42nd ACM
technical symposium on Computer science education,
SIGCSE ’11, New York, NY, USA, 2011. ACM.

[23] A. J. Sánchez-Ruı́z and L. A. Jamba. FunFonts: introducing
4th and 5th graders to programming using squeak. In
Proceedings of the 46th Annual Southeast Regional
Conference on XX, ACM-SE 46, page 24–29, New York, NY,
USA, 2008. ACM.

[24] N. Tillmann, M. Moskal, J. d. Halleux, and M. Fahndrich.
TouchDevelop: programming cloud-connected mobile
devices via touchscreen. Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and reflections on
programming and software, ONWARD, 2011.

[25] B. Victor. Learnable programming.
http://worrydream.com/LearnableProgramming/, Sept. 2012.

[26] G. Wang and P. Cook. ChucK: a programming language for
on-the-fly, real-time audio synthesis and multimedia. In
Proceedings of the 12th annual ACM international
conference on Multimedia, page 812–815, 2004.

	Introduction
	Contributions

	Building Games by Demonstration
	Breakout-Style Game
	Pacman with Accelerometer Input

	Pong Designer Principles
	Events
	Specifying Actions
	Editing Created Rules
	Underlying Domain-Specific Language
	Rule Creation Algorithm

	Implementation Aspects
	Role of the game engine
	Time management by games
	Two kinds of events
	Deployment on Android

	Discussion
	What needs to be improved

	Related Work
	Conclusions

