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ABSTRACT

Estuaries and coastal areas contain increasingly exploited re-
sources that need to be monitored, managed and protected
efficiently and effectively. This requires access to reliable
and timely data and management decisions must be based
on analysis of collected data to avoid or limit negative im-
pacts. Visually supported multi-modal sensing and data fu-
sion offer attractive possibilities for such arduous tasks. In
this paper, we demonstrate how an in-situ sensor network
can be enhanced with the use of contextual image data. We
assimilate and alter a state-of-the-art background modelling
technique from the image processing domain in order to de-
tect turbidity spikes in water quality sensor measurements
automatically. We then combine this with visual sensing to
identify abnormal events that are not caused by local activ-
ities. The system can potentially assist those charged with
monitoring large scale ecosystems, combining real-time an-
alytics with improved efficiency and effectiveness.

Categories and Subject Descriptors

I.4 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Miscellaneous; I.5.4 [Applications]: Computer vi-
sion

Keywords

data fusion, environmental monitoring, multi-modal sensing,
spike detection, visual sensing

1. INTRODUCTION
Increasing demands from various scientific and manage-

ment communities for monitoring issues such as ecosystem
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change, climate change, water quality, coastal erosion and
flooding along with legislative requirements at both national
and international level has led to a need for innovative re-
search into large-scale, reliable and sustainable monitoring of
marine and freshwater environments. In particular, the need
to continuously protect and regulate these environments is
being recognised by governments and policy makers.

On a more regional scale, coastal and freshwater environ-
ments represent vital assets on many levels and need contin-
uous monitoring and protection. Modern sensing technolo-
gies, such as autonomous wireless sensor networks (WSN),
provide an opportunity to meet the challenges of high spa-
cial and temporal scales. However, it is becoming increas-
ingly clear that in order to adequately monitor marine and
freshwater environments, they need to be characterised from
multiple perspectives. Environmental events can be only de-
tected and modelled accurately from multiple diverse data
sources. Only through combining the perspectives offered
by a variety of multi-modal information sources can we ob-
tain a true picture of events. Previous work have shown
that video systems are effective tools for coastal environ-
ment monitoring [3, 8]. Other studies have investigated the
use of cameras in other ecological monitoring applications.
In [9], Richardson et al. investigate the use of cameras to
monitor spring green-up in a deciduous northern hardwood
forest. Graham et al. [4] explored whether cameras can
be used to determine the dynamics of expanding leaf area
for Rhododendron occidental. They concluded that cameras
provide an inexpensive tool to quantify ecological dynamics.

In our previous work [14], we have shown that shipping
activities in ports greatly affects the aquatic ecosystem. We
successfully identified the presence of a ship within an image
in a challenge dataset. However, the effects of these events
could differ depending on the different motion patterns of
ships when entering or leaving the harbour. The principle
limitation of this previous work was an inability to differen-
tiate moving vessels from static vessels. In this work, our
focus is on creating a smarter marine environmental moni-
toring network by fusion of visual sensor modality and in-
situ wireless sensors. A more sophisticated space-time fea-
ture, dense trajectories, is applied to classify the motion of a
shipping event. We also automate the detection of turbidity
spikes from in-situ sensor modality and then combine with



shipping trajectory detection results from visual sensors to
discover the true abnormal events requiring further analysis.

2. SITE OVERVIEW
Poolbeg Marina (latitude: 53◦20’39”, longitude: -6◦12’59”)

is located on the lower Liffey Estuary in Dublin Ireland (Fig-
ure 1). The estuary hosts a diverse ecosystem including ben-
thic communities, fish and shellfish, seabird populations and
marine mammals [10, 13]. The topography of the estuary
has been greatly modified, and is constrained by walls along
its whole length and is regularly dredged to remove accu-
mulated sediments. The working site is located in the upper
part of the Estuary, where the ship traffic is less intensive.
Average water depth in the area is approximately 8m and
the width of the channel is approximately 260m. Due to the
large amount of activity at the site and its importance from
an environmental and ecological perspective, the site was
equipped with a multi-parameter in-situ sensor along with
a visual sensing system. To better understand the ecosys-
tem at the site, we first focus on the turbidity values as it
is the most complicated water quality parameter compared
to others. It can be affected by many factors such as rain-
fall, wind, tides and shipping traffic. Turbidity is defined as
the decrease in the transparency of a solution owing to the
presence of suspended and some dissolved substances, which
causes incident light to be scattered, reflected and attenu-
ated rather than transmitted in straight lines [1]. Turbidity
is now seen as a key water pollutant and often used as a sur-
rogate variable for suspended solids concentration [2]. The
negative impacts of increased turbidity are well defined in
the literature [7].

Shipping can regularly and profoundly affect turbidity lev-
els through a number of mechanisms, including shore erosion
from wakes, increased vertical mixing and stirring of the sed-
iments, especially in the turning area outside harbours from
large ships (150-200m long) or indirectly through regular
dredging [12]. Pressure changes, propeller suction, use of
bow thrusters, drag and acceleration caused by shipping can
all result in visible water displacement, swell, pressure waves
and turbulence. All of this results in periodic increases in
mixing energy driving vertical mixing, artificial upwelling,
temporary water currents and material transport [6].

Figure 1: Poolbeg Marina overview with the loca-
tion of deployed camera and in-situ sensor – from
Google maps

A YSI 6600EDS sonde equipped with turbidity sensor was
deployed at a depth of 2.5m from the water surface. The
sonde was validated using a portable turbidity meter Turb R©

430 IR (VWR Ireland) which was calibrated in the labora-
tory. Sensor maintenance was undertaken weekly and cop-

per tape and mechanical wipers were used to control bio-
fouling on the probe. Along with the in-situ sonde, an IP-
66 rated Axis P1344-E network camera was also deployed
at the site. The camera was mounted on a pole at a height
of 4.36m above the ground and approximately 20m from
bank wall. The visual sensor continuously sends images to a
cloud server through 3G mobile broadband at approximately
1 frame every 10 seconds. However, this frame work is not
guaranteed due to an unreliable network connection.

3. METHODOLOGY

3.1 Turbidity Spike Detection
A turbidity spike is defined as the comparatively large up-

ward movement followed by downward movement of a sin-
gle or several turbidity values in a short period. In order to
detect a turbidity spike, we alter the pixel-based adaptive
segmenter (PBAS) method originally proposed by Martin
Hofmann for image segmentation [5]. To classify a new in-
coming turbidity value I(t) at time t, a turbidity background
model consisting of recently observed background values is
built. The decision is made based on a dynamic threshold
T (t). If the incoming value at time t is greater than the
threshold at time t, it will be classified as a spike value. If
a series of turbidity samples are greater than the threshold,
they will be merged into a spike event. However, a spike
event can also consist of a single turbidity spike value that
is outstanding from its neighbours. The background turbid-
ity model is updated over time in order to handle gradual
changes such as the effect from rainfall and tides. The up-
date rate is controlled by a learning parameter L(t). The
essential and novel idea of the PBAS approach is that both
the decision threshold T (t) and background learning rate
L(t) are dynamically adapted based on an estimate of the
background dynamics. Moreover, these parameters can be
used as the controller of the detection system sensitivity.
However, due to the nature of water turbidity values, we
altered the original method to suit one dimensional sensor
measurements.

The background model is defined by an array ofN recently
observed values.

B(t) = {B1(t), ..., Bk(t), BN(t)} (1)

In [5], incoming values are classified based on the number
of distances between input value I(t) and all elements in
B(t) that are smaller than threshold T (t). We found that
just comparing the minimum distance with the threshold is
sufficient to differentiate the measurements.

I(t) =

{

1, if min( dist(I(t), Bk(t)) ) > T (t)
0, otherwise

(2)

If the input value is classified as background (I(t) = 0), it
can be used for updating the model. The update probability
depends on the learning rate L(t).

When monitoring turbidity values in a marine environ-
ment, there can be time periods with high dynamics, such
as after a heavy rainfall, and time periods with little varia-
tions. Ideally for highly dynamic time periods, the threshold
T (t) should be increased and for time periods with low vari-
ations, T (t) should be decreased. In order to quantify the
turbidity dynamics, the average of the previous N minimum
distances between input turbidity value and best matching
background value are kept and the average dmin(t) of these



values is the measure of the background variations. The
decision threshold can then be adapted as follows:

T (t) =

{

T (t)× (1− Tinc/dec), if T (t) > dmin(t) × Tscale

T (t)× (1 + Tinc/dec), otherwise
(3)

Both Tinc/dec and Tscale are fixed parameters. Tinc/dec is
the update step and Tscale is the controller of the update
rate.

Another important parameter of the method is the back-
ground learning rate L(t) which is defined as follows:

R(t) =











R(t) + Linc

dmin(t))
, if spike = true

R(t)− Ldec

dmin(t))
, if spike = false

L(t) =
1

R(t)/Rupper
(4)

Turbidity has very unique characteristics. Turbidity val-
ues measured by in-situ sensors are typically very noisy and
vary from a baseline (they change gradually due to “global”
effects, such as rainfall, tides, season etc.). Estimating this
dynamic baseline is cumbersome and the model needs to be
updated frequently. Due to the above reasons, we altered
the original method in [5]. Turbidity spikes always intro-
duce large variations from the baseline. Thus, when a spike
occurs, the back ground model should be updated slowly
or not be updated at all. When turbidity falls back to the
baseline, the model should be updated quickly. When a tur-
bidity spike value is first detected after a low variation period
(dmin(t) is small), R(t) increases rapidly, thus the learning
rate L(t) decreases sharply. However, dmin(t) will become
large quickly when multiple spike values are detected which
results in R(t) and indeed L(t) remaining constant or chang-
ing slightly. When sediment settles, dmin(t) becomes small
and L(t) will increase. The variation of R is limited by an
upper and lower bound Rlower < R(t) < Rupper, thus, it
cannot go out of a specified range. The learning rate L(t) is
used as the update probability and an element in the back-
ground model is randomly selected and replaced by the in-
coming value. Rinc and Rdec are fixed values that separate
the rising and falling rate of R(t). However, the calculation
of this learning rate is task dependant. For example, if the
user wants to model the overall trend, the normalised R(t)
can be used as the update probability.

3.2 Ship Trajectory Detection
Since our objective is to be able to detect when large ships

enter the harbour that may cause a turbidity spike event, we
need to extract a set of features that are sufficiently discrim-
inative to allow us to classify such events.

Firstly, a dense trajectory feature [11] is extracted from
each frame. The dense trajectory feature describes the mo-
tion pattern of an interesting point in an image. However,
each image may produce varying numbers of such descrip-
tors. In order to compare these features and further clas-
sify shipping events, a vector quantization method known
as bag-of-visual-words is adopted. Each dense feature is
passed to a K-means clustering method and represented by
the clustering centre (“a visual word”) to which it belongs.
The normalized histogram of all the visual words within an
N minute time window is calculated as the feature input of

the classifier. A ship-entering event may occur partially in
a time window. To avoid this issue, time windows overlap
each other by a small fraction of the window length. Thus,
an event that is not fully covered by previous time win-
dows may be caught by the next time phase. Classification
is performed by Support Vector Machine with Radial Basis
Function (RBF) kernel.

4. EXPERIMENTS AND RESULTS

4.1 Turbidity Spike
The turbidity data used for the following experiments were

measured by the multi-parameter sonde between 28th Oct,
2012 and 25th Nov, 2012 with sampling rate of 15mins. In
order to synchronize the output with results from ship tra-
jectory detection, only a sub-section of the results (7 days
from 19th Nov and 25th Nov 2012) are examined. The fol-
lowing parameter values were used: N = 15, Llower = 0.1,
Lupper = 3.0, Linc = 1.0, Linc = 0.1, Rinc/dec = 0.05,
Rscale = 4.5. Figure 2 shows a 7 day sub-section of turbid-

Figure 2: A 7 day sub-section of turbidity spike de-
tection results

ity spike detection results. The red dots are the turbidity
spikes detected, blue dashed line is the sensor measurements
and the green solid line is the closest matching entry in the
background model. As illustrated in Figure 2, most of the
abnormal turbidity readings are detected accurately. Figure
3 demonstrates the adaptation of classification threshold and
background learning rate based on the variation of the aver-
age minimum distance between input value and background
model. The blue dashed line is the decision threshold. The
minimum distance between real value and closest match
background entry is shown in cyan and the red solid line
at the bottom is the background learning rate. The decision
threshold and background learning rate are adapted based
on the trend of the input values. When the turbidity is noisy,
the threshold rises quickly. However, when turbidity is sta-
ble, the threshold decreases slowly as expected. In contrast,
the background model learning rate decreases rapidly when
a spike occurs and increases slowly when no spike arises.

4.2 Shipping Entering Events
22 days of image data from 28th Oct, 2012 to 18th Nov,

2012 were used to build a model and 7 days of image data
between 19th Nov, 2012 and 25th Nov, 2012 were used for



Figure 3: Classification threshold, background
model learning rate and Euclidean distance between
input value and best match background element

evaluation. The data exhibited a wide variety of lighting and
weather conditions, as well as a variety of ship trajectories.
Figure 4 demonstrates the complexity of the dataset.

Figure 4: Sample image data

Over 255, 000 color images of 640× 480 pixels were anno-
tated as the ground truth of the dataset. These images were
grouped into 15mins time intervals with 5mins overlapping
(e.g 2012-Nov-10 15:00 to 2012-Nov-10 15:15 and 2012-Nov-
10 15:05 to 2012-Nov-10 15:20). If a large part of the event
falls into a time interval, it will be annotated as true. Thus,
the same shipping event may lead to multiple positive en-
tries in the dataset. However, these entries are temporally
close to each other. The total amount of shipping entering
events in the training and testing set are 54 and 17 respec-
tively, the total positive samples are 134 and 44. To reduce
the amount of data that needs to be processed, a region of
interest (x : 0, y : 100, width : 640, height : 200) is drawn on
the original image before extracting features. The number
of visual words is set to 100. Classification is performed in
the WEKA data analysis environment using LIBSVM im-
plementation with default parameters. To avoid over fitting,
10-fold cross-validation was used when building the model.

no ship entering ship entering classified as
1968 4 no ship entering = 0
13 31 ship entering = 1

Table 1: Confusion Matrix of Testing Data

Figure 5: ROC curve of ship traffic classification

The classification confusion matrix is shown in Table 1 and
the receiver operating characteristic (ROC) curve is shown
in Figure 5. As can be seen, 4 out of 1972 negative sam-
ples and 13 out of 44 positive samples are misclassified. As
previously discussed, a single ship entry event may result
in multiple true samples in the dataset. For the purpose of
this work, if any data entry within the event time period
is classified as true, we can safely assume the event is de-
tected. For example, if a ship started entering the port at
15:03 and docked at 15:12, both data entry with timestamps
15:00 to 15:15 and 15:05 to 15:20 in the dataset would be
annotated as true but if either of these two data entries are
classified correctly we assume the event is detected. It is also
acceptable if a false positive sample is next to a true positive
sample. This results in 1 missed event out of 17 ship entries
and 1 event (1 false positive entry is next to a true positive
sample, the other 3 false positive entries are temporally next
to each other and grouped as an event) incorrectly classified.
Figure 6 shows some example images of incorrectly classified
events. As can be seen, the false positive sample was caused
by a medium-sized cargo ship entering on the opposite side
of the port, which is not of interest. Additionally, the missed
event occurs in the dark (4am), which may have been caused
by insufficient production of interesting points for trajectory
classification.

Figure 6: Sample images of (a) incorrectly classified
and (b) missed shipping events

4.3 Data Fusion
To better understand and subsequently model the envi-

ronmental dynamics at the observation site, the output of vi-



sual sensor data was combined with the spike events detected
to further distinguish whether a spike event is caused by
shipping traffic. This filters out the turbidity spikes caused
by local activities and determines the real abnormal events
that require further analysis. The turbidity spike points de-
tected (as shown in Figure 2) are manually grouped into
events by timestamps. This results in 20 events (the par-
tial event at the beginning is not included). Figure 7 shows
turbidity events in combination with shipping events. From

Figure 7: Matching of shipping event and turbidity
spikes by their timestamps

the graph, it can be seen that 13 out of 20 turbidity events
are very likely caused by shipping traffic, which results in
only a small set of abnormal events requiring further anal-
ysis. A single turbidity event caused by shipping traffic is
not detected due to misclassification, however, the opera-
tor could simply examine image data manually and remove
this event. Thus, only 6 (30%) events out of 20 need to be
further studied.

5. CONCLUSIONS
In this work, we used state-of-the-art action recognition

methods to detect shipping which may cause rapid changes
in water turbidity levels. We also adapted a background
modelling technique from the image processing domain to
detect sudden changes in 1-D water quality sensor data. By
fusion of multiple sensor modalities into an integrated smart
system, we have demonstrated the potential of this approach
in assisting in better understanding and subsequent mod-
elling of observation sites more efficiently and effectively.
The visual sensing data has provided augmentative intelli-
gence to help understand the causes of some large spikes in
turbidity values. Turbidity occurrences can then be further
classified as “caused by local activities” or “cause unknown”
which results in only the remaining true abnormal events
requiring further analysis.

6. ACKNOWLEDGEMENTS
QUESTOR, MESTECH, CLARITY

7. REFERENCES
[1] S. G. J. Aarninkhof, I. L. Turner, T. D. T. Dronkers,

M. Caljouw, and L. Nipius. Nearshore subtidal
bathymetry from time-exposure video images.
Geophysical Research, 110 (C6), 2005.

[2] H. Chanson, M. Takeuchi, and M. Trevethan. Using
turbidity and acoustic backscatter intensity as
surrogate measures of suspended sediment
concentration in a small subtropical estuary. Journal
of Environmental Management, 88(4):1406 – 1416,
2008.

[3] A. F. S. Edel O’Connor. Trust and reputation in
multi-modal sensor networks for marine environmental
monitoring. PhD thesis, Dublin City University,
March 2012.

[4] E. A. Graham, E. M. Yuen, G. F. Robertson, W. J.
Kaiser, M. P. Hamilton, and P. W. Rundel. Budburst
and leaf area expansion measured with a novel mobile
camera system and simple color thresholding.
Environmental and Experimental Botany, 65(2-3):238
– 244, 2009.

[5] M. Hofmann, P. Tiefenbacher, and G. Rigoll.
Background segmentation with feedback: The
pixel-based adaptive segmenter. In Computer Vision
and Pattern Recognition Workshops (CVPRW), 2012
IEEE Computer Society Conference on, pages 38–43,
2012.

[6] Lindholm, Tore and Svartström, Mia and Spoof, Lisa
and Meriluoto, Jussi. Effects of ship traffic on
archipelago waters off the l̊angnäs harbour in Åland,
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