skip to main content
10.1145/2512349.2514600acmconferencesArticle/Chapter ViewAbstractPublication PagesissConference Proceedingsconference-collections
research-article

Achieving soft and directly deformable interaction on tabletop interactive surfaces

Published:06 October 2013Publication History

ABSTRACT

This paper outlines doctoral research that investigates the use of magnetic forces to achieve directly deformable interaction on tabletop interactive surfaces. The problem is defined as being the lack of tangibility in touch surfaces and the lack of touch surfaces that feel soft to the touch. A survey of related work is presented along with a description of the chosen approach of using magnetic forces to implement a directly deformable, soft, interactive surface.

References

  1. Aihara, N., Sato, T., and Koike, H. Highly Deformable Interactive 3D Surface Display. In Proc. UIST 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Blackshaw, M., Leithinger, D., DeVincenzi, A., Ishii, H., and Lakatos, D. Recompose: Direct and Gestural Interaction with an Actuated Surface. In Proc. CHI 2011, 1237--1242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Coelho, M., Ishii, H., and Maes, P. Surflex: A Programmable Surface for the Design of Tangible Interfaces. In CHI 2008, 3429--3434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Daniulaitis, V., and Alhalabi, M. O. Medical Palpation of Deformable Tissue using Physics-Based Model for Haptic Interface RObot (HIRO). In Proc IEEE/RSJ Intelligent Robots and Systems 3907--3911.Google ScholarGoogle Scholar
  5. Harrison, C., and Hudson, S. E. Providing Dynamically Changeable Physical Buttons on a Visual Display. Proc. CHI 2009, 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. Project FEELEX: Adding Haptic Surface to Graphics. In Proc. SIGGRAPH 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jansen, Y., Karrer, T., and Borchers, J. MudPad: Tactile Feedback and Haptic Texture Overlay for Touch Surfaces. In Proc ITS 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kim, S.-Y., Kyung, K.-U., Park, J., and Kwon, D.-S. Real-time Area-based Haptic Rendering and the Augmented Tactile Display Device for a Palpation Simulator. In Advanced Robotics 21, 9 (Jan. 2007), 961--981.Google ScholarGoogle ScholarCross RefCross Ref
  9. Leithinger, D., and Ishii, H. Relief: A Scalable Actuated Shape Display. In Proc. TEI 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Nakatani, M., Kajimoto, H., Sekighuchi, D., Kawakami, N., and Tachi, S. Pop Up!: A Novel Technology of Shape Display of 3D Objects. In Proc. SIGGRAPH 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Pangaro, G., Maynes-Aminzade, D., and Ishii, H. The Actuated Workbench: Computer-Controlled Actuation in Tabletop Tangible Interfaces. In Proc. UIST 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. Lumen: Interactive Visual and Shape Display for Calm Computing. In Proc. SIGGRAPH 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Tsimeris, J., Dedman, C., Broughton, M., and Gedeon, T. ForceForm: A Dynamically Deformable Interactive Surface. In ITS 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Tsimeris, J., Stevenson, D., Adcock, M., Gedeon, T., and Broughton, M. User Created Tangible Controls Using ForceForm: a Dynamically Deformable Interactive Surface. In Proc UIST 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Weiss, M., Schwarz, F., Jakubowski, S., and Borchers, J. Madgets: Actuating Widgets on Interactive Tabletops. In Proc. UIST 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Weiss, M., Voelker, S., and Borchers, J. FingerFlux: Near-surface Haptic Feedback on Tabletops. In Proc. UIST 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Weiss, M., Wagner, J., Jansen, Y., Hollan, J. D., Jennings, R., and Borchers, J. SLAP Widgets: Bridging the Gap Between Virtual and Physical Controls on Tabletops. In Proc. CHI 2009 481--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yu, W., Ramloll, R., and Brewster, S. Haptic Graphs for Blind Computer Users. In Haptic Human-Computer Interaction, S. Brewster and R. Murray-Smith, Eds. Springer Berlin / Heidelberg, 2001, 41--51. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Achieving soft and directly deformable interaction on tabletop interactive surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ITS '13: Proceedings of the 2013 ACM international conference on Interactive tabletops and surfaces
      October 2013
      514 pages
      ISBN:9781450322713
      DOI:10.1145/2512349

      Copyright © 2013 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 October 2013

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ITS '13 Paper Acceptance Rate35of121submissions,29%Overall Acceptance Rate119of418submissions,28%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader