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Abstract

The GIPSY system provides a framework for a distributed multi-tier demand-
driven evaluation of heterogeneous programs, in which certain tiers can generate de-
mands, while others can respond to demands to work on them. They are connected
through a virtual network that can be flexibly reconfigured at run-time. Although
the demand generator components were originally designed specifically for the educ-
tive (demand-driven) evaluation of Lucid intensional programs, the GIPSY’s run-
time’s flexible framework design enables it to perform the execution of various kinds
of programs that can be evaluated using the demand-driven computational model.
Management of the GISPY networks has become a tedious (although scripted) task
that took manual command-line console to do, which does not scale for large exper-
iments. Therefore a new component has been designed and developed to allow users
to represent, visualize, and interactively create, configure and seamlessly manage
such a network as a graph. Consequently, this work presents a Graphical GMT
Manager, an interactive graph-based assistant component for the GIPSY network
creation and configuration management. Besides allowing the management of the
nodes and tiers (mapped to hosts where store, workers, and generators reside), it
lets the user to visually control the network parameters and the interconnection be-
tween computational nodes at run-time. In this paper we motivate and present the
key features of this newly implemented graph-based component. We give the graph
representation details, mapping of the graph nodes to tiers, tier groups, and specific
commands. We provide the requirements and design specification of the tool and
its implementation. Then we detail and discuss some experimental results. Key-
words: graph-based management, visualization, GIPSY network, demand-driven
computation, GUI
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1 Introduction

The GIPSY (General Intensional Programming System) project is an ongoing research
project developed at Concordia University. Its initial goal was to investigate on a general
solution for the evaluation of programs written in the Lucid intensional programming
family of languages using a distributed demand-driven evaluation model. In order to
meet the flexibility goals of the project, the system has been designed using a framework
approach integrating a Lucid compiler framework, as well as a demand-driven run-time
system framework.

In its eductive model of execution, the system assumes the presence of demand gen-
erators, as well as a demand workers. Each demand generated is paired along with the
context in which it is made and is uniquely identified. The demands are migrated using a
communication node that enables the connection between demand generators and demand
workers. Through the communication node, any demand worker can pick-up demands,
compute its resulting value, and send it back to the communication node to be picked up
by the generator.

Notably, the framework has demonstrated its flexibility by having the run-time system
put to use in the demand-driven distributed evaluation of programs not involving the
Lucid language. The work presented here goes in this direction and makes abstraction
of the intensional programming aspect of the project and concentrates on the demand-
driven evaluation of heterogeneous programs. We concentrate on showing how a virtual
network of demand-driven computational nodes can be represented graphically at run-
time, enabling the user to map the demand-driven computation nodes over an underlying
physical network of computers, and to control their execution and connectivity at run-
time.

In the current implementation, the node’s connectivity is expressed in a set of con-
figuration files. Upon starting, a node reads its configuration file and establishes its own
connection according to the information contained in the configuration file. The config-
uration can be changed at any time, so that a node can reconfigure its connectivity at
run-time.

A manager node, which acts as a supernode, has been implemented to manage a
GIPSY network. It enables new node(s) to automatically establish connection with it
and receive commands from it. Therefore, enabling the manager node to remotely change
the configuration of any registered node. The virtual network is thus constructed from the
interconnection of the generators, workers, communication, and manager nodes, the later
being able to establish the connectivity between the three first ones. All communication
between nodes, including commands exchanged for configuration changes, are using the
same demand-driven communication mode.

The rest of this paper is organized as follows: Section 2 gives on overview of the
GIPSY Framework and its multi-tier architecture, the GIPSY run-time system and finally
discusses the related work. Section 3 summarizes the objectives of this work. Section 4
presents how currently the GIPSY run-time system is being managed, discusses the design
and implementation of the proposed solution and evaluates the results of some conducted
experiments. Then, Section 5 concludes the paper and points out new research direction
planned as future work.
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2 Background

2.1 GIPSY Framework

The GIPSY run-time system is a distributed multi-tier and demand-driven framework. It
mainly consists of a set of loosely coupled software components enabling the evaluation
of programs in a distributed demand-driven manner. The run-time system is composed
of the following basic entities [17]: (a) A GIPSY tier is an abstract and generic entity.
Each tier instance is a separate thread (one or more) that runs within a registered pro-
cess, namely (GIPSY node), and represents a computational unit that contribute to the
distributed computation. Tiers cooperate in a demand-driven mode of computation; (b)
A GIPSY node is a registered process that hosts one or more GIPSY tier instances be-
longing to different GIPSY instance(s). Node registration is done through a manager tier
called the GIPSY Manager Tier (GMT). More specifically, a node is a computer running
a GIPSYNode process; (c) A GIPSY instance is a group of tier instances collaborating
together to achieve program execution. It can be considered as a set of interconnected
GIPSY tier instances hosted/deployed on one or more GIPSY nodes executing GIPSY
programs by sharing their respective resources. A GIPSY instance can be executed across
different GIPSY nodes. Moreover, as shown in Figure 1, a GIPSY network is designed as
an overlay network where network nodes, GIPSY tiers, are organized in a cluster called
GIPSY instance. A GIPSY tier can be seen as a virtual network node and hosted on a
GIPSY node. In such a network, the mapping between a GIPSY node and a physical
node is made upon starting and registering the node through the GMT.

2.1.1 Multi-Tier Architecture

In [17], a distributed multi-tier architecture has been defined and adopted in the imple-
mentation of GIPSY run-time system. The architecture inherits some of the peer-to-peer
network architecture principles, e.g (1) no single-point of failure: any tier or node can
fail without fatally affecting the system; (2) nodes and tiers can seamlessly join/leave the
network by adding/removing them on the fly as computation is happening; (3) demands
are propagated without knowing where they will be processed or stored; (4) available
nodes and tiers can be affected at run-time to the execution of any GIPSY program while
other nodes and tiers could be computing demands for different programs. The multi-tier
architecture is composed of four distinct tiers: (a) a Demand Store Tier (DST) that acts
as a middleware between tiers in order to migrate demands, provides persistent storage
of demands and their resulting values (demands caching), and exposes Transport Agents
(TAs) used by other tiers to connect to the DST; (b) a Demand Generator Tier (DGT)
that generates demands according to the declarations and resources stored in the GEER
generated for the program being evaluated. The DGT maintains a local demand pro-
cessing dictionary pool that contain the definitions required to formulate demands; (c)
a Demand Worker Tier (DWT) which processes demands by executing method defined
in such a dictionary. The DWT connects to the DST, retrieves pending demands and
returns back the computed demands to the DST; (d) a General Manager Tier (GMT)
(see Figure 1), as its name implies, locally and remotely controls and monitors other tiers

4



Graph-Based Tool To Manage GIPSY Networks Rabah, Mokhov, Paquet

(DGT, DWT and DST) by exchanging system demands. Furthermore, the GMT can
register new nodes, move tier instances from one node to another, or allocate/deallocate
tier instance from/on a registered node.

Figure 1: Example of a GIPSY Nodes Network [17]

2.1.2 Demand Types and States

A demand is a run-time request asking for a value of certain identifier defined in a GIPSY
program. Demands are migrated to other tiers using the DST. There are three types of
demands: (a) intensional demands, which are generated for the evaluation of a GIPSY
program by a generator. GIPSY programs are written in a declarative style, where an
identifier is defined as an expression using other identifiers defined in a multidimensional
context space [17]. All demands for GIPSY identifiers contain the context in which they
are made, and their evaluation depend on this context. The GIPSY program also uses
an algebra of procedures that can be called during evaluation, which are called at run-
time and become procedural demands; (b) procedural demands which are generated by the
DGT when it encounters a procedural function call during the GIPSY program evaluation.
Procedural demands are processed by the DWT; (c) system demands, in turn, are issued
by the GMT for run-time management purposes and include demands for monitoring and
controlling tiers at run-time. It is worth mentioning that system demands are requests for
managerial tasks e.g. demand for node registration, tier allocation and deallocation. In
contrast, intensional demands and procedural demands are computational demands, i.e.
demands that are generated during the evaluation process of a specific GIPSY program.

In the GIPSY environment, each demand has a state and demand states are used to
manage and propagate demands. The state transitions are managed by the demand store
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tier DST, who is responsible for demand migration between generator and worker tiers.
We distinguish three possible states as follows: (a) Pending: a pending demand is a
demand that has been issued by a tier to the demand store and not yet picked by another
tier for further processing. Pending demands are sent to generators and workers when
they notify their availability for processing [17]; (b) Processing: a processing demand
is a demand that has been grabbed by a tier from the demand store and its evaluation
still being processed. This state is assigned by the demand store in order to make sure
that the same demand is grabbed by only one tier for processing. When a tier goes out
of service, all its associated processing demands are put back to the pending state by
the demand store, ensuring a fail-safe behavior [17]; (c) Computed: indicates that a
demand has been computed. When a tier grabs a demand and is finished computing its
corresponding value, it sends back the result to the demand store, that stores it in place
of the initial demand and marks it as computed. Any further demands generation with
the same context will result in the store to directly respond with the resulting value, thus
saving computation time [17].

2.2 Graphical GMT Tool Support for the GIPSY Run-time Sys-
tem

Here we provide some details how the graph-based tool we developed assists with the
automation of the startup sequence and management tasks of the system.

Configuration. The tier instantiation process has a flexible design and has been imple-
mented using Java Reflection [5] and the Factory design pattern [4]. It uses a configuration-
based system to instantiate tiers on the fly. Generic configuration instances are stored in
files and their settings can be easily updated and tailored to a specific tier’s implementa-
tion requirements. Configurations contain a set of key-value pairs where the key denotes
the name of the configuration property while the values could be anything from a service
name, port number, IP address, etc. Such a configuration system eliminates the need of
writing or adapting source code to reflect a specific tier configuration. The properties
stored in the Configuration object determine the tier class to instantiate and consist
of different settings interpreted by the tier implementation class. Upon receiving a tier
instantiation request, the TierFactory inspects the configuration instance to determine
which tier implementation class to instantiate using Java Reflection [5].

Bootstrapping. as mentioned earlier, a GIPSY network consists of a set of intercon-
nected GIPSY nodes each hosting GIPSY tiers mapped to physical machines where the
GIPSY run-time is deployed. Such a network is managed by a GIPSY manager tier (GMT)
that enables nodes registration to the network and tier allocation on the registered nodes.
The bootstrap process of the GIPSY manager tier starts a registration demand store that
is used solely for the exchange of system demands with the nodes and tiers allocated in
the GIPSY network managed by this manager tier. Thus, system demands and compu-
tational demands are exchanged using different communication channels. Any computer
deploying the GIPSY node run-time system can send a registration request to the man-
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ager tier, enabling this manager tier to remotely connect and control the allocation of
various tiers on the registered nodes. After tiers are allocated to the registered nodes, the
manager tier can connect the different tiers together, and eventually instruct a genera-
tor to start the demand-driven evaluation of a GIPSY program. Even after execution is
started, the manager tier can accept new nodes registrations, or allocate/deallocate new
tiers on any registered node that it manages and make newly allocated tiers to contribute
to a program’s evaluation on the fly [8, 7].

GIPSY Node Registration. When a node wants to join the network, first, a GIPSY
node issues a request to the GMT expressed as NodeRegistration system demand having
pending as state. Upon receiving a NodeRegistration demand, the GMT assigns a DST
to the GIPSY node who issued the request. Afterward, the GMT saves the node regis-
tration information in a GMTInfoKeeper object and sends back a RegistrationResult

demand having computed as state and containing the DST information and the assigned
node ID. Finally, the GIPSY node processes the result and uses the information con-
tained in the demand to establish a connection to the assigned DST. Establishing such
connection creates a communication channel for further exchange of system demands.

Tier Allocation. Tiers are allocated inside a previously registered GIPSY node. The
process of tier allocation is performed through the operation of the GMT using a pair of
system demands: TierAllocationRequest and TierAllocationResult. Both demands
share the same demand signature but have different states: pending and computed respec-
tively. The following information needs to be specified in the TierAllocationRequest

demand: the node identifier of the GIPSY node where the tiers to be allocated, the type
of the tier and how many tier instances are to be allocated. When the allocation process
is completed a TierAllocationResult demand is triggered and contains a set of tier
registrations. Each tier registration contains information such as the tier identifier, which
is internally assigned by the GIPSY node.

Tier Deallocation. Tier deallocation consists of removing previously allocated tiers.
Similarly to the case of the tier allocation process, two system demands
TierDeallocationRequest and TierDeallocationResult are issued by the GMT to
deallocate tiers upon user’s request. The type and the ID of the tier to be deallocated
are embedded in a TierDeallocationRequest and sent to the GIPSYNode process to
deallocate the tier specified.

2.3 Related Work

Related work by several researchers on visualization of load balancing, configuration,
formal systems for diagrammatic modeling and visual languages and the corresponding
graph systems are presented in [20, 19, 1, 2, 10]. They all define key concepts that are
relevant to our visualization mechanisms within GIPSY and its corresponding General
Manager Tier [7].
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3 Objectives

The GIPSY framework has been designed in a modular manner but has a lot of config-
urable components; hence, the need of an automation solution for configuring and manag-
ing GIPSY deployment components is crucial. Moreover, prior to this work, the run-time
system was managed using primarily a command-line interface. The project should pro-
vide an integrated tool that allows the user to: create a GIPSY network and configure its
components (GIPSY instances, tiers and nodes); save/load a GIPSY network configura-
tion; start/stop GIPSY nodes and register them with the GMT, and allocate/deallocate
GIPSY tiers; dynamically visualize GIPSY nodes and tiers and inspect/change their prop-
erties at run-time; change tiers connectivity at run-time; increase the usability of GIPSY
run-time system as a whole; provide means and semantics for scheduling, validation, and
visual mapping to Lucid programs. The GMT is the central element of our system from
the user’s perspective. It enables to handle the managerial tasks related to the configura-
tion and functioning of a GIPSY network. The proposed solution should be transparent
and efficient enough in order to enhance the system usability, flexibility, and end-users
experience, while maintaining the structure for run-time analysis and scheduling.

4 Solution

4.1 Overview

The solution presented in this paper is a graph-based graphical user interface that provides
a set of user interfaces enabling the users to directly interact with the distributed GIPSY
run-time system. The main objectives (cf. Section 3) of this work consist of increasing
the usability of the run-time system and enabling the user to have full control over the
GIPSY network with a minimum of detailed manual intervention. It should be noted
that, prior to this work, all the managerial and configuration tasks needed to bootstrap
a GIPSY network required the user to manually execute shear number of commands and
scripts. In this work, we designed the graphical GMT component that aims at allowing
the user to manage and operate the entire GIPSY network seamlessly by translating
simple graphical user interactions into complex message passing between the underlying
deployment components. Our solution enables the user to easily create, configure, and
control a GIPSY network through a graph-based interface. GIPSY tiers are illustrated as
connected graph nodes. Tiers’ properties are read from files and stored as Configuration
objects embedded in the graph nodes. We use graph element shapes to differentiate
GIPSY instances and colors to differentiate GIPSY nodes. When the user adds a new
tier to the network graph, the color assigned to the tier is associated to the node the tier
is assigned to.

According to the GIPSY multi-tier architecture, the DWT, DGT and DST expose
software interfaces to be used for their mutual interactions. Since the GMT plays a key
role in the GIPSY network management, it provides a handy mechanism for starting
and stopping nodes, and allocating and deallocating tiers. In the current run-time im-
plementation, the interaction with the GMT is command-based and is done through a
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command-line console UI, with which the user manually bootstraps and controls the nodes
and tiers by entering commands the corresponding. Additionally, a set of configuration
files with the appropriate settings and properties for each tier type are needed. Before
performing any node or tier startup or registration, we assume that a set of configuration
files with appropriate settings and properties for nodes each tier type have been created.
Typically, in order to start a network, the following sequence of steps should normally be
performed: 1. At first, a GIPSY node process should be created; that prompts the user to
start a GMT tier. When a GMT is started, the GIPSY node is automatically registered
and a registration DST is allocated [7]. The registration DST enables the GMT to receive
system demands for further node and tier allocations. This is the initial bootstrapping
process that enables all further operations on a GIPSY network. 2. At any time the user
can expand the network by adding an additional node locally on the computer where the
GMT is executing (and tiers on a remote computer). Upon successful node creation, the
user is prompted to register the node to an existing GMT using the register command.
3. Then, on any registered node, DSTs are started to allow the propagation of demands
between generators and workers, DGTs are registered to generate demands, and DWTs
are registered to process the generated demands.

Based on this discussion, the following is a typical list of example commands that are
used to interact with the run-time system in order to setup a manual GIPSY network:

1. start GMT GMTConfigFile.config

This command starts the bootstrap process explained above, where GMT is the
type of the tier and GMTConfigFile.config is the configuration file that contains
the settings and properties needed to instantiate a GMT tier instance.

2. allocate NodeID TierType TierTypeConfigFile DSTIndex HowMany

This command allocates a DGT or a DWT. NodeID is the numeric ID of the node
where the tier should be allocated, TierType is the type of the tier ([DGT, DWT]),
DSTIndex is the index of the DST, to which the tier in question should connect to
and the TierTypeConfigFile is the tier-specific configuration file to use.

3. allocate NodeID DST DSTConfigFile.config HowMany

This command sends a request to the GMT with the node ID where a DST instance
will be allocated, how many DST instances are needed, and a DST configuration
file name.

4. deallocate NodeID TierType TierID1 TierID2 TierIDn

This command issues a demand to be processed by the GMT to deallocate tiers.
TierType is the type of the tierID[1..n] is tier instances IDs to deallocate in a node
specified by its ID.

The GIPSY network configuration process requires the user not only to know all the
commands and their exact syntax, but requires to keep track of the IDs of the nodes
and tiers. It also requires the user to manually edit the related configuration files. The
configuration files contain many configuration elements that are not of importance in the
node/tier management process, thus leading to confusion and possible mistakes. Our
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newly designed graphical GMT assistant rather allows the user to abstractly manipulate
icons and use menu options to effectuate these operations. These GUI operations initiated
by the user are then translated by the graphical GMT into the commands similar to the
presented earlier. As for the changes to the configuration files, the user is presented
through the GUI with only the configuration elements that are relevant in the context
of use, thus reducing the information load on the user and reducing the possibility of
configuration mistakes. Listing 1 shows the content of a configuration file for a DGT [7].
It provides configuration information such as to which class implementation to instantiate,
the number of instances to be created, the mode of communication to use, and a maximum
number of demands that can be generated. These configuration parameters are read
during startup and will determine the behavior of the generator.

# Which implementation of the DGT class to instantiate.

gipsy.GEE.multitier.wrapper.impl=gipsy.tests.GEE.simulator.DGTSimulator

gipsy.GEE.multitier.DGT.DemandDispatcher.impl=gipsy.GEE.IDP.DemandGenerator.jini.rmi.

JiniDemandDispatcher

# 0 Concurrent asynchronously

# 1 User -controlled asynchronously

# 2 Response time tester: synchronously

# 3 Space -scalability tester.

gipsy.tests.GEE.simulator.mode=2

gipsy.tests.GEE.simulator.tester.parameter =1

# Number of instances to be created.

gipsy.tests.GEE.simulator.tester.number =2

# Number of maximum demands.

gipsy.tests.GEE.simulator.demand.payload =32

Listing 1: A Sample of DGT Configuration File

4.2 Design and Implementation

Our implementation relies on the graph-based visualization to illustrate a GIPSY network.
We represent a GIPSY tiers network as interconnected graph nodes where each such node
contains data/properties used in tier-to-tier communication configuration. Such proper-
ties are assigned and configured by the user when creating a GIPSY network. The GMT
GUI was implemented using the Java JFC/Swing library. The GIPSY’s Configuration

class is used to store different components’ configuration. We have selected the Java Uni-
versal Network/Graph (JUNG) library to implement the visualization of the management
aspect of GIPSY nodes [9, 15]. JUNG is an open-source library for modeling data that
can be represented as a graph or a network. JUNG provides many visualization features
that can be changed at runtime such as node color, shape, and size. Thus, graph nodes
can be grouped together, which enables us to differentiate the nodes by their tier type
(DST, GMT, or DWT). Through JUNG, GIPSY nodes are configured while creating a
connected graph of nodes and to visualize and manage their activities to alleviate manual
complexity of such operations. The GMT GUI addresses the need of the automation of
the managerial tasks of the GIPSY run-time system and the configuration of resources.

The implemented features are: 1. create a new GIPSY network as a graph; 2. save/load
a pre-configured GIPSY network to/from files; 3. start, register and stop GIPSY nodes by
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maintaining a color-differentiated list of nodes with their related commands and configu-
rations available in a context menu; 4. allocate and deallocate DSTs, DGTs and DWTs
by manipulating icons and context menus; 5. start/stop the demand-driven evaluation
process on a DGT trough a contextual menu accessed on its icon.

The process of node registration and tier allocation has been embedded into our tool,
and only the most relevant configuration information is shown to the user. Graphical
objects representing GIPSY nodes encapsulate their related commands and hold the nec-
essary properties for user inspection or change at setup or run-time. As for GIPSY tier
graphical objects, in addition to allocate and deallocate commands, these objects provide
a drag-and-drop mechanism used to change the connectivity between tiers on the fly at
run-time (see Figure 2(a)). When a new tier or a GIPSY node is added to the network,
it is automatically pre-configured and associated with a configuration file with the prop-
erties entered by the user (see Figure 2(b)). The GMT GUI is arranged in a tabbed form
and provides two main distinct editor and operator views.

The network graph editor and resource configuration allow to create a GIPSY network
or load an existing one. As shown in Figure 2(b), GIPSY instances and nodes are arranged
in two lists while GIPSY tiers in a graph illustrating interconnected tiers. Instances,
nodes and tiers can be easily added and configured separately. The configuration process
is completely automated using dialog boxes allowing the user to fill in the configuration
properties of each entity. All data entered is validated allowing only valid values to
be accepted. In this editor, two GIPSY tiers could be connected together and their
configuration commands automatically generated by drawing a line to connect two graph
nodes.

The GMT operator lists context-menu-enabled GIPSY nodes allowing the user to start
or stop GIPSY nodes and register them with the GMT by simple mouse clicks. As illus-
trated in Figure 2(a), GIPSY tiers are shown as connected graph nodes. Tiers belonging
to the same GIPSY instance are assigned the same shape. The tier’s color determines on
which GIPSY node a given tier is hosted on. Moreover, inspection and visualization of
any element’s properties is possible at run-time. This enables the user, for instance, to
know which GIPSY tier is residing on which GIPSY node. The run-time system activities
such as the output of GMT, GIPSY nodes and GIPSY tiers, errors, and log messages
are displayed in a separate distinct views. This provides better failure traceability and
errors troubleshooting while, at the same time, providing useful information related to
the overall computation process.

In Figure 3(a) is a set of JUNG-interfaced classes we produced to integrate with
and visually represent, load, save, and manage GIPSY networks while in Figure 3(b)
we detail the data structures used to internally represent the network graphs and map
them to the GIPSY objects and the action items associated with them. NodeConnection
is a semantically central data structure that links graph elements representing GIPSY
tiers (the instances of GIPSYTier classes). These connections and tier properties are
the actual representation of the graphs that are saved to and loader from a name:value
paired configuration files (e.g. see Appendix B) by GraphDataManager. A collection
of NodeConnections is managed by the GraphViewer, and both NodeConnection and
GIPSYTier have action items attached to them that send the aforementioned GIPSY
commands to actually do the work via the visual NodeMenu and TierMenu. Every tier has
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(a) GMT Operator View (b) Network Graph Editor View

Figure 2: GMT Operator and Network Graph Editor Views

a color and shape (VertexColorTransformer, VertexShapeSizeAspect) attached to it
based on the GIPSYNode they belong to, so it is easier to differentiate and visualize the
computing resource allocations. When each graph is loaded, mapping is made, and colors
determined, the data structures are handed over to JUNG to do the visual layout.

(a) Visualization Classes (b) Graph-Related Data Structures

Figure 3: UML Class Diagrams of the Graph-Related Design Aspects

4.3 Results and Discussion

The results are encouraging since they demonstrate the ability of the proposed solution
to assist in automation of some management functions GIPSY run-time system. We have
first tested with the simulator [18, 7] which allows to generate different types of demands
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to be computed. We have then performed some usability testing with another tool, that
was recently adapted to be distributively executed over GIPSY – MARFCAT. It is one
of the realistic long-running distributed pattern recognition computation processes test
cases (e.g. MARF’s pattern recognition pipeline [11] with very large data sets over GIPSY
for the static code analysis application for vulnerabilities and weaknesses detection and
malware classification [12, 14]. MARFCAT was made to run completely over GIPSY
separating the heavy and light work logic across the generator and worker tiers. The tool
properly starts up all the indicated components, the network of which were created and
the configurations loaded, begins the computation, logs the output to the console, and
while computation proceeds, the tier state is properly reflected visually.

While us we were the only users of the proposed PoC tool thus far, by making it
public and released along with the GIPSY system and via the demonstration of the tool
on the GIPSY simulator and MARFCAT, we hope to gather larger feedback on the tool
to improve its usability further while weeding out known bugs.

In Appendix A we summarize a complete demo procedure/manual for a creation of a
specific application to run over the GIPSY network for demonstration purposes.

Platforms Tested. We tested the tool in various operating system platforms to ensure
the portability is maintained: Windows XP SP3 32-bit, Windows 7 32-bit and 64-bit;
Scientific Linux 6.2 32-bit and 64-bit, and Ubuntu Linux 11.03 32-bit under VMware;
MacOS X 10.5 32-bit and 64-bit; Oracle JDK 6 and 7; OpenJDK 6; Apple JDK 6.

Implications. The implications of this work are multifold. First, the usability and
management aspects of the multi-tier GIPSY network are of obvious mention. Addition-
ally, having the network represented and managed as a graph allows for further reasoning
and automatic scheduling [6] and load-balancing of such a network through the graph
analysis. Thirdly, since Lucid is a data-flow language and was shown to have one-to-one
correspondence with the data-flow graphs (DFGs) [16, 3, 13], the tool opens up more
possibilities for diagrammatic programming and program-graph-execution-network trans-
lation model for detailed analysis and verification of Lucid-based programs with the added
visualization benefit.

5 Conclusion and Future Work

We have presented a graph-based GUI implementation for the simplification of the man-
agement of the GIPSY run-time system components. The presented tool is proving to be
an effective solution assisting with management automation of GIPSY software artifacts
distributed across multiple physical machines forming an overlay network. Our solution
relies on graph-based programming and visualization to represent a GIPSY network. Each
graph node represents a GIPSY tier and is pre-configured and loaded with the information
needed at run-time. A GIPSY network can be created, configured and saved to a file. The
user can establish a connection between pairs of GIPSY tiers by drawing a line to connect
two graph nodes. A GIPSY network can be easily bootstrapped and managed on the
fly. Many demand generators and workers can be allocated as computation is happening.
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While aiming at increasing the usability of the run-time system, our solution allows the
user to seamlessly inspect the status and properties of GIPSY nodes and GIPSY tiers at
run-time.

The work presented in this paper is to be extended, thus, additional features and
improvements are planned. Future work includes a better semantic definitions of the
graph manipulation actions, so that any operation on a graph can be translated more
easily into the underlying system’s commands and be verifiable. We plan to add observers
to any graph element, enabling for example to click on a graph link to observe the demands
flowing across this link at run-time. Among the planned future works is the continual
extension of the current design to support more problem-specific tiers like MARFCAT,
e.g. genome sequence alignment, and similar computation problems that need a lot of
manual pre-setup to run. We further plan to allow intra-tool (peer) communication to
further allow start up nodes on remote computers and not only tiers. Additionally, expose
an OpenGL-to-Java remote interface to allow connecting to the tool from any OpenGL-
enabled systems remotely, including mobile devices based on iOS and Android.
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A Mini Demo User Manual / “Demo Paper”

In this section we give a brief overview on how to use the graphical PoC tool to create
and manage a GIPSY network. We explain how to create and configure a network, how
the network is saved/loaded to/from a file, and finally, how the network is being managed
in the GMT Operator view.

This section is intended for the demonstration of the tool at the conference with a
mini-user manual instructions and operational description. We will show how to create
and start a complete GIPSY network for the specific MARFCAT application and perform
a complete run of it. We will release the PoC tools, the application, and the source code
for the audience and community at large as well.

A.1 Using the Graph editor

The graph editor is used to create a new GIPSY network or to edit an existing one.

I. Creating/Editing a GIPSY instance

Figure 4(a) and Figure 4(b) show how to create a GIPSY instance and edit its
information. By clicking on the add button, the user enters a name for the new
GIPSY instance to create and clicks save. Double-clicking on an instance in the list
of instances allows to edit the instance name in an appropriate dialog.

II. Creating/Editing a GIPSY Node

To create a new GIPSY node, click on the “Add” button Figure 4(c), which pops
up a dialog to fill in the new node’s properties such as the node name, IP address
and color, see Figure 5(a). Upon clicking “Save”, the new node will be added to the
list as shown in Figure 5(b). To edit an existing node’s properties, double-click on
an item in the node list and a editing dialog will pop up Figure 5(c).

(a) Creating new GIPSY In-
stance

(b) Editing GIPSY Instance (c) Add GIPSY Node

Figure 4: Adding a GIPSY Instance and a GIPSY Node
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(a) Create New GIPSY Node (b) New GIPSY Node
Added

(c) Editing GIPSY Node

Figure 5: Creating and Editing a GIPSY Node

III. Creating/Editing a GIPSY tier

While editing, a GIPSY tier is represented as a red graph node. To create a GIPSY
tier, the user must double-click on the highlighted area as shown in Figure 6(a).
Then, the tier properties such as the tier name, how many instances to create,
GIPSY instance to which the tier belongs to, GIPSY node on which the tier will be
allocated, and finally a configuration file should be specified, cf. Figure 6. To edit a
given tier’s properties, right-click on a graph node and select “Edit Tier Properties”,
see Figure 7(b).

(a) Creating a GIPSY Tier (b) Fill In Tier Configuration Properties

Figure 6: Creating and Configuring a GIPSY Tier

A.2 Saving/Loading a graph

To save/load a network to/form a file, use the save/load buttons located in the toolbar,
Figure 8(a) and Figure 8.
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(a) Right Click to Edit Tier Properties (b) Edit Tier Properties

Figure 7: Editing Tier Properties

A.3 Using the GMT Operator

This feature is implemented in the “GMT Operator” tab and enabled upon loading a
valid saved network graph. After loading is complete, the graph nodes (GIPSY Tiers)
have the same color as the GIPSY node they belong to. Tiers’ shapes, as mentioned early
in this paper, indicate what GIPSY Tier belongs to what GIPSY Instance.

(a) Saving/Loading Graph (b) Load Graph (c) Loaded Graph Example

Figure 8: Saving and Loading GIPSY network Graph

I. Starting/Stopping a GIPSY node

To start a GIPSY node, right-click on a item in the nodes list and select “Start
Node”, Figure 9(a).

After starting the first GIPSY Node, the actions taken are logged in the log console
in “Messages” tab.

When the GMT is first started, a new tab is added to the log console where its
activities are logged, see Figure 9.
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(a) Starting Node (b) Starting Node Messages (c) Node Registered

Figure 9: Saving and Loading GIPSY network Graph

II. Allocation/Deallocating GIPSY tier

To allocate or deallocate a GIPSY Tier, right-click on a graph node and select the
appropriate action, Figure 10(a). The messages and action triggered by the alloca-
tion/deallocation process are logged and showed in the console tab, Figure 10(b),
Figure 11.

(a) Start Tier (b) Allocation/Startup Console Messages

Figure 10: Starting a Selected Tier

B Stored Graph Example

In the example below is a concrete on-disk representation of the GIPSY network graph
from marfcat4Some.config that can be stored and retrieved and executed instantiating
the designed configuration and its connectivity for the MARFCAT test case with the
corresponding graph in Figure 12.

#Graph data

#Mon Jun 25 23:04:50 EDT 2012
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(a) Allocation of DST (b) Deallocation after a System
Demand

(c) Deallocation Completed

Figure 11: Allocation and Deallocation of a DST

Figure 12: MARFCAT GIPSY network Graph

gipsy.tier.posx.a409cb6b-ad54-41f6-af69-f4ec78628ec6=405

gipsy.tier.isgmt.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=false

gipsy.tier.ID.1523569d-25aa-44a4-97d5-370b93790333=1523569d-25aa-44a4-97d5-370b93790333

gipsy.tier.posx.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=409

gipsy.connection.to.7802414d-437f-4382-9162-15d9d8e735c3=77fd90ec-e49e-4977-a55b-0690e2e0cd08

gipsy.tier.howmany.a409cb6b-ad54-41f6-af69-f4ec78628ec6=1

gipsy.tier.isgmt.c341ab91-161e-419d-a7e4-6206e75ec097=false

gipsy.tier.howmany.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=1

gipsy.tier.node.1523569d-25aa-44a4-97d5-370b93790333=1

gipsy.tier.posx.c341ab91-161e-419d-a7e4-6206e75ec097=74

gipsy.tier.howmany.c341ab91-161e-419d-a7e4-6206e75ec097=1

connection_key.0dd7156f-3b40-4df7-b9a9-d1b44eeb4da0=0dd7156f-3b40-4df7-b9a9-d1b44eeb4da0

gipsy.node.name.3=WORKER COIL

gipsy.node.name.2=WORKER NETO

gipsy.tier.posy.1523569d-25aa-44a4-97d5-370b93790333=55

gipsy.node.name.1=WORKER GLEAM

gipsy.tier.isgmt.77fd90ec-e49e-4977-a55b-0690e2e0cd08=false

gipsy.node.name.0=MAIN

gipsy.tier.posx.77fd90ec-e49e-4977-a55b-0690e2e0cd08=75

gipsy.connection.to.0dd7156f-3b40-4df7-b9a9-d1b44eeb4da0=77fd90ec-e49e-4977-a55b-0690e2e0cd08

gipsy.tier.howmany.77fd90ec-e49e-4977-a55b-0690e2e0cd08=1

gipsy.tier.node.29310d89-fd7a-498c-8a47-f80d3b5b9865=0

gipsy.connection.id.1eeea2b5-ec50-4990-a7fe-be48bb5b693e=1eeea2b5-ec50-4990-a7fe-be48bb5b693e

gipsy.tier.tiertype.a409cb6b-ad54-41f6-af69-f4ec78628ec6=DWT
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gipsy.tier.posy.29310d89-fd7a-498c-8a47-f80d3b5b9865=53

gipsy.tier.ID.29310d89-fd7a-498c-8a47-f80d3b5b9865=29310d89-fd7a-498c-8a47-f80d3b5b9865

gipsy.tier.isgmt.1523569d-25aa-44a4-97d5-370b93790333=false

gipsy.connection.id.6a9e123b-c375-4786-9d15-12faeee54c59=6a9e123b-c375-4786-9d15-12faeee54c59

gipsy.tier.posx.1523569d-25aa-44a4-97d5-370b93790333=409

gipsy.tier.instance.a409cb6b-ad54-41f6-af69-f4ec78628ec6=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

gipsy.tier.howmany.1523569d-25aa-44a4-97d5-370b93790333=1

gipsy.connection.name.6a9e123b-c375-4786-9d15-12faeee54c59=[MARFCAT DGT,MAIN DST]

gipsy.tier.tiertype.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=DWT

gipsy.tier.tiertype.77fd90ec-e49e-4977-a55b-0690e2e0cd08=DST

gipsy.connection.id.36485580-5acf-4c12-9110-47c60e23ddc9=36485580-5acf-4c12-9110-47c60e23ddc9

gipsy.connection.name.1eeea2b5-ec50-4990-a7fe-be48bb5b693e=[MARFCAT DWT COIL,MAIN DST]

gipsy.tier.tiertype.c341ab91-161e-419d-a7e4-6206e75ec097=DGT

gipsy.tier.isgmt.29310d89-fd7a-498c-8a47-f80d3b5b9865=true

gipsy.connection.name.36485580-5acf-4c12-9110-47c60e23ddc9=[MARFCAT DWT NETO,MAIN DST]

gipsy.tier.posx.29310d89-fd7a-498c-8a47-f80d3b5b9865=74

gipsy.tier.instance.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

gipsy.connection.from.7802414d-437f-4382-9162-15d9d8e735c3=29310d89-fd7a-498c-8a47-f80d3b5b9865

gipsy.tier.howmany.29310d89-fd7a-498c-8a47-f80d3b5b9865=1

connection_key.6a9e123b-c375-4786-9d15-12faeee54c59=6a9e123b-c375-4786-9d15-12faeee54c59

gipsy.tier.name.a409cb6b-ad54-41f6-af69-f4ec78628ec6=MARFCAT DWT COIL

gipsy.tier.instance.c341ab91-161e-419d-a7e4-6206e75ec097=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

gipsy.tier.tiertype.1523569d-25aa-44a4-97d5-370b93790333=DWT

gipsy.tier.configfile.a409cb6b-ad54-41f6-af69-f4ec78628ec6=bin/multitier/DSTProfiles/marfcatDWT.config

connection_key.1eeea2b5-ec50-4990-a7fe-be48bb5b693e=1eeea2b5-ec50-4990-a7fe-be48bb5b693e

tier_key.a409cb6b-ad54-41f6-af69-f4ec78628ec6=a409cb6b-ad54-41f6-af69-f4ec78628ec6

gipsy.connection.to.6a9e123b-c375-4786-9d15-12faeee54c59=77fd90ec-e49e-4977-a55b-0690e2e0cd08

tier_key.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=89e6605e-5c81-4d95-bf51-8e7576c8dcd7

instance_key.8f5d7614-49e9-4c8a-87fe-c8032a5c9009=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

connection_key.36485580-5acf-4c12-9110-47c60e23ddc9=36485580-5acf-4c12-9110-47c60e23ddc9

gipsy.tier.instance.77fd90ec-e49e-4977-a55b-0690e2e0cd08=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

gipsy.connection.to.1eeea2b5-ec50-4990-a7fe-be48bb5b693e=77fd90ec-e49e-4977-a55b-0690e2e0cd08

gipsy.connection.from.0dd7156f-3b40-4df7-b9a9-d1b44eeb4da0=1523569d-25aa-44a4-97d5-370b93790333

tier_key.c341ab91-161e-419d-a7e4-6206e75ec097=c341ab91-161e-419d-a7e4-6206e75ec097

gipsy.tier.instance.1523569d-25aa-44a4-97d5-370b93790333=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

gipsy.connection.to.36485580-5acf-4c12-9110-47c60e23ddc9=77fd90ec-e49e-4977-a55b-0690e2e0cd08

gipsy.node.ipaddress.3=132.205.8.235

gipsy.node.ipaddress.2=132.205.8.235

gipsy.tier.tiertype.29310d89-fd7a-498c-8a47-f80d3b5b9865=GMT

gipsy.tier.name.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=MARFCAT DWT NETO

gipsy.node.ipaddress.1=132.205.8.235

gipsy.tier.name.77fd90ec-e49e-4977-a55b-0690e2e0cd08=MAIN DST

gipsy.node.ipaddress.0=132.205.8.235

gipsy.tier.configfile.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=bin/multitier/DSTProfiles/marfcatDWT.config

gipsy.tier.configfile.77fd90ec-e49e-4977-a55b-0690e2e0cd08=bin/multitier/DSTProfiles/p9.config

tier_key.77fd90ec-e49e-4977-a55b-0690e2e0cd08=77fd90ec-e49e-4977-a55b-0690e2e0cd08

gipsy.tier.name.c341ab91-161e-419d-a7e4-6206e75ec097=MARFCAT DGT

gipsy.instance.name.8f5d7614-49e9-4c8a-87fe-c8032a5c9009=MARFCAT 4SOME

node_key.3=3

gipsy.tier.configfile.c341ab91-161e-419d-a7e4-6206e75ec097=/local/data/gipsy/cvscheckout/gipsy/gipsy/bin/multitier/marfcatDGT.config

gipsy.node.ID.3=3

node_key.2=2

gipsy.node.ID.2=2

node_key.1=1

gipsy.instance.ID.8f5d7614-49e9-4c8a-87fe-c8032a5c9009=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

node_key.0=0

gipsy.node.ID.1=1

gipsy.node.ID.0=0

gipsy.node.color.3=Lightblue

gipsy.node.color.2=Teal

gipsy.node.color.1=Blue

gipsy.node.color.0=Green

gipsy.tier.name.1523569d-25aa-44a4-97d5-370b93790333=MARFCAT DWT GLEAM

gipsy.tier.configfile.1523569d-25aa-44a4-97d5-370b93790333=/local/data/gipsy/cvscheckout/gipsy/gipsy/bin/multitier/marfcatDWT.config

tier_key.1523569d-25aa-44a4-97d5-370b93790333=1523569d-25aa-44a4-97d5-370b93790333

gipsy.tier.ID.a409cb6b-ad54-41f6-af69-f4ec78628ec6=a409cb6b-ad54-41f6-af69-f4ec78628ec6

gipsy.tier.instance.29310d89-fd7a-498c-8a47-f80d3b5b9865=8f5d7614-49e9-4c8a-87fe-c8032a5c9009

gipsy.tier.node.a409cb6b-ad54-41f6-af69-f4ec78628ec6=3

gipsy.connection.id.7802414d-437f-4382-9162-15d9d8e735c3=7802414d-437f-4382-9162-15d9d8e735c3

gipsy.connection.name.7802414d-437f-4382-9162-15d9d8e735c3=[MAINGMT,MAIN DST]

gipsy.tier.posy.a409cb6b-ad54-41f6-af69-f4ec78628ec6=398

gipsy.tier.node.c341ab91-161e-419d-a7e4-6206e75ec097=0

tier_key.29310d89-fd7a-498c-8a47-f80d3b5b9865=29310d89-fd7a-498c-8a47-f80d3b5b9865

gipsy.connection.from.6a9e123b-c375-4786-9d15-12faeee54c59=c341ab91-161e-419d-a7e4-6206e75ec097

gipsy.tier.ID.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=89e6605e-5c81-4d95-bf51-8e7576c8dcd7

gipsy.tier.ID.77fd90ec-e49e-4977-a55b-0690e2e0cd08=77fd90ec-e49e-4977-a55b-0690e2e0cd08

gipsy.connection.from.1eeea2b5-ec50-4990-a7fe-be48bb5b693e=a409cb6b-ad54-41f6-af69-f4ec78628ec6

gipsy.tier.posy.c341ab91-161e-419d-a7e4-6206e75ec097=406

gipsy.connection.id.0dd7156f-3b40-4df7-b9a9-d1b44eeb4da0=0dd7156f-3b40-4df7-b9a9-d1b44eeb4da0

gipsy.tier.ID.c341ab91-161e-419d-a7e4-6206e75ec097=c341ab91-161e-419d-a7e4-6206e75ec097

gipsy.tier.node.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=2

gipsy.tier.node.77fd90ec-e49e-4977-a55b-0690e2e0cd08=0

gipsy.tier.name.29310d89-fd7a-498c-8a47-f80d3b5b9865=MAINGMT

gipsy.connection.from.36485580-5acf-4c12-9110-47c60e23ddc9=89e6605e-5c81-4d95-bf51-8e7576c8dcd7

gipsy.tier.configfile.29310d89-fd7a-498c-8a47-f80d3b5b9865=/local/data/gipsy/cvscheckout/gipsy/gipsy/bin/multitiermarfcat/GMTNode.config

gipsy.connection.name.0dd7156f-3b40-4df7-b9a9-d1b44eeb4da0=[MARFCAT DWT GLEAM,MAIN DST]

connection_key.7802414d-437f-4382-9162-15d9d8e735c3=7802414d-437f-4382-9162-15d9d8e735c3

gipsy.tier.posy.89e6605e-5c81-4d95-bf51-8e7576c8dcd7=224

gipsy.tier.posy.77fd90ec-e49e-4977-a55b-0690e2e0cd08=222

gipsy.tier.isgmt.a409cb6b-ad54-41f6-af69-f4ec78628ec6=false
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