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Custom Architecture for Multicore Audio Beamforming Systems

DIMITRIS THEODOROPOULOS and GEORGI KUZMANOV, Delft University of Technology
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The audio Beamforming (BF) technique utilizes microphone arrays to extract acoustic sources recorded in a
noisy environment. In this article, we propose a new approach for rapid development of multicore BF sys-
tems. Research on literature reveals that the majority of such experimental and commercial audio systems
are based on desktop PCs, due to their high-level programming support and potential of rapid system devel-
opment. However, these approaches introduce performance bottlenecks, excessive power consumption, and
increased overall cost. Systems based on DSPs require very low power, but their performance is still limited.
Custom hardware solutions alleviate the aforementioned drawbacks, however, designers primarily focus on
performance optimization without providing a high-level interface for system control and test. In order to
address the aforementioned problems, we propose a custom platform-independent architecture for recon-
figurable audio BF systems. To evaluate our proposal, we implement our architecture as a heterogeneous
multicore reconfigurable processor and map it onto FPGAs. Our approach combines the software flexibility
of General-Purpose Processors (GPPs) with the computational power of multicore platforms. In order to
evaluate our system we compare it against a BF software application implemented to a low-power Atom 330,
a middle-ranged Core2 Duo, and a high-end Core i3. Experimental results suggest that our proposed solution
can extract up to 16 audio sources in real time under a 16-microphone setup. In contrast, under the same
setup, the Atom 330 cannot extract any audio sources in real time, while the Core2 Duo and the Core i3
can process in real time only up to 4 and 6 sources respectively. Furthermore, a Virtex4-based BF system
consumes more than an order less energy compared to the aforementioned GPP-based approaches.
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1. INTRODUCTION
Record of an accurate aural environment has been studied for many decades, which
led to the development of various different techniques for sound acquisition. Effi-
cient microphones placement has been well studied, because it directly affects the
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Signal-to-Noise Ratio (SNR). In general, sound recording techniques can be divided
into four main approaches.

(1) Acquire the speech signal directly from the source. This approach is suitable for
applications where carrying a close-talk recording device is acceptable, like music
concerts and live TV broadcastings.

(2) Surround recording. This technique is followed when carrying recording devices is
not an acceptable solution. An exemplary case is movie actors, where microphones
should not be visible.

(3) Recording of the signals that reach the ears (binaural signals). This method implies
putting two microphones facing away from each other at a distance equal to the
one between human ears (approximately 18 cm). It is applicable in cases where the
recorded signals will be rendered through headphones.

(4) Utilize microphone arrays to amplify the original acoustic source. This solution is
applicable in cases where distant speech signals need to be extracted and attenuate
any ambient noise. Example applications are advanced teleconference products and
surveyance systems inside public areas (like airports or public stations), where the
security personnel can record and acquire the speech signals of suspects.

The first three techniques have been used for many decades, because they require
the least complex hardware setup. However, they introduce particular shortcomings.
In the first technique, for example, although it is well established for performers
and presenters to carry a wired recording device, it still requires complex cable
setups within the performance area. Even in the case of a wireless microphone, it
is considered uncomfortable to constantly carry it. The second approach employs a
small number of microphones to record “sound images” [Snow 1955] of the area and
not directly speech signals. Thus, there can be cases where the SNR is low, leading
to poor audio quality. The binaural recording method [Kyriakakis 1998] offers high
sound localization and perception quality, however, it requires that the listener wears
headphones. Although there are systems, called Ambiophonics [Farina et al. 2001],
that address this shortcoming, still there are movement restrictions imposed within a
small listening area [Mouchtaris et al. 2000].

The last technique is called BeamForming (BF) [Veen and Buckley 1988] and has
already been widely used for many decades in different application fields, like the
SOund Navigation And Ranging (SONAR), RAdio Detection And Ranging (RADAR),
telecommunications, and ultra-sound imaging [Wall and Lockwood 2005]. Over the
last years, the BF technique has also been adopted by the audio research society,
mostly to enhance speech recognition. The main advantage is that any stationary
or moving audio source within a certain noisy area can be efficiently isolated and
extracted with high SNR. Furthermore, there is no need for carrying any recording
device. The BF technique requires the utilization of microphone arrays which capture
all emanating sounds. All incoming signals are then combined to amplify the primary
source signal, while at the same time suppressing any environmental noise. However,
due to the increased number of input channels compared to other approaches, its
main shortcoming is that it requires substantial signal computations, thus powerful
processing platforms.

Figure 1 shows the different number of microphones that each recording technique
requires. As depicted, in general, surround recording techniques employ no more than
five microphones, one of each recorded channel [Theile 2001]. Binaural recordings use
only two microphones, one for each ear, while in the case of a close-talk recording,
each speaker uses a single device. In contrast, nowadays there are commercial and
experimental systems that utilize the BF technique and employ from tens to more
than 1000 microphones [Weinstein et al. 2004].
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Fig. 1. Number of utilized microphones among different sound acquisition techniques.

As discussed before, the BF technology alleviates the majority of the shortcomings
that other recording techniques introduce, at the expense of an increased number of
input channels. Moreover, it is highly scalable, thus can be applied to future consumer
and professional multimedia and telecommunication products, ranging from portable
devices to high-quality teleconference systems. Consequently, because of its inherent
parallelism, the most suitable implementation hardware platform domain is the one of
multicore devices that integrate a large number of processing cores.

However, research on literature reveals that the majority of experimental and com-
mercial BF systems are based on standard PCs, due to their high-level programming
support and potential of rapid system development. It is well accepted that today’s soft-
ware languages provide a very intuitive development environment that allows rapid
systems prototyping and implementation. However, these approaches introduce the
following drawbacks.

—Performance bottlenecks. General-Purpose Processors (GPPs) provide limited compu-
tational power, thus in many cases additional PCs are utilized to efficiently drive all
input channels.

—Excessive power consumption. Contemporary high-end GPPs consume tens of Watts
of power when they are fully utilized. Furthermore, when additional PCs are em-
ployed to drive all required channels, the total system power consumption easily
exceeds the kWatt scale.

—Increased overall system cost. Utilization of many PCs leads to an approximately lin-
ear overall system cost increase, thus constraining the employment of such systems
only to professional applications or large academic projects.

To partially address the aforementioned problems, researchers have considered alter-
native hardware platforms to implement immersive audio systems. Various systems
have been developed based on Digital Signal Processors (DSPs), in order to reduce
power consumption, however, performance is still limited. In contrast, recent Graphic
Processor Unit (GPU) -based BF approaches provide a significantly better performance
compared to PC-based systems, however, a considerable effort is required, in order
to efficiently analyze and map the application onto all processing resources. Custom
hardware solutions alleviate both of the aforementioned drawbacks. However, in the
majority of cases, designers are primarily focused on just performing all required cal-
culations faster than a GPP. Such approaches do not provide a high-level interface for
testing the system that is under development.
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The main contribution of this article is the analytical presentation and evaluation
of a custom BF architecture, originally proposed in Theodoropoulos et al. [2010]. The
microarchitectural support is based on our previously presented reconfigurable BF
processor [Theodoropoulos et al. 2009], and is specifically tailored to reconfigurable
multicore implementations. We prove that our proposal combines the programming
flexibility of software approaches with the high performance, low power consumption,
and limited memory requirements of reconfigurable hardware solutions. The archi-
tecture implementation allows utilization of various number of processing elements,
therefore it is suitable for mapping onto reconfigurable technology. With respect to the
available reconfigurable resources, different FPGA implementations with different per-
formances are possible, where all of them use the same architecture and programming
paradigm. More specifically, the contributions of this article are the following.

—A high-level architecture for BF audio applications. We propose a high-level archi-
tecture that consists of 9 instructions, which allow customization and control of BF
audio systems implemented to FPGAs. Our proposal employs a logically shared,
physically distributed memory hierarchy and allows a high-level interaction with
different processing elements.

—Microarchitectural support for reconfigurable processors. We describe our microar-
chitectural support for the proposed architecture, which allows the utilization of
customizable number of processing elements, thus making it suitable for systems
based on reconfigurable technology.

—Our reconfigurable design demonstrates high performance under different input sce-
narios. We conducted various tests against an OpenMP-annotated software approach
with SSE2 extensions enabled that was run on a low-power Atom 330 at 1.6 GHz, a
middle-ranged Core2 Duo at 2.8 GHz, and a high-end Core i3 at 3.1 GHz. Experimen-
tal results suggest that a Virtex4-based and a Virtex6-based design with 16 input
channels can extract in real time up to 14 and 16 acoustic sources respectively. In
contrast, under the same number of microphones, the Atom-330-based system could
not extract in real time acoustic sources, while the Core2 Duo and the Core i3 GPPs
were limited up to 4 and 6 sources respectively.

—Our implementations achieve low energy consumption. Based on the processing time
and the power dissipation, we estimate the energy consumption of each considered
platform. Results suggest that a Virtex4-based implementation requires more than
an order of magnitude less energy compared to the GPP-based systems.

The rest of the article is organized as follows: Section 2 provides a short theoretical
background on the BF technique and presents various systems that utilize it. In Sec-
tion 3 we propose our custom BF architecture with its dedicated memory organization
and supported instruction set. Section 4 describes the microarchitectural support of
our custom architecture, while in Section 5 we provide experimental results under
different input channels and sources scenarios. Finally, Section 6 concludes.

2. BACKGROUND AND RELATED WORK
Theoretical background. Generally, there are two different types of BF: nonadaptive
(or time invariant or nonblind) and adaptive (or blind) [Sallberg et al. 2006; Veen and
Buckley 1988]. Nonadaptive methods are based on the fact that the spatial environment
is already known and tracking devices are used to enhance speech recognition. In
contrast, adaptive approaches do not utilize tracking devices to locate the sound source.
In fact, the received signals from the microphones are used to calibrate properly the
beamformer, in order to improve the quality of the extracted source. In the audio
domain, in the majority of the cases a nonadaptive delay-and-sum approach is utilized
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Fig. 2. A filter-and-sum beamformer.

[Veen and Buckley 1988], due to its rather simple implementation and because a
tracking device (such as a video camera) is almost always available.

The term of beamformer refers to a processor that performs spatial filtering in order
to estimate a signal arriving from a particular location. Thus, even in the case where
two signals contain overlapping frequencies, a beamformer is able to distinguish each
one of them, as long as they originate from different locations. Figure 2 depicts a
schematic overview of a beamformer utilizing the filter-and-sum approach [Veen and
Buckley 1988]. As we can see, the system consists of an array of microphones sampling
the propagating wavefronts. Each microphone is connected to an FIR filter Hi(z), while
all filtered signals are summed up to extract the desired audio source. Although not
always required, in many cases the input data channels are downsampled by a factor
D in order to reduce the data rate.

xDi[n] = xi[n · D] (1)

Here xi is the input signal, xDi is the downsampled signal, i = 0 . . . C − 1 and C is the
number of input channels (microphones). Each downsampled signal is filtered using a
particular coefficients set based on the source location

yDi[n] =
H−1∑

j=0

hi[ j] · xDi[n − j], (2)

where H is the number of filter taps and h are the filter coefficients. The beamformer
output is given by the sum of all yDi signals

yD[n] =
C−1∑

i=0

yDi[n], (3)

where yD is the downsampled extracted source. Then, yD is upsampled by the factor L
(in most cases L = D) according to Eq. (4) to acquire the upsampled extracted source y.

y[n] =
{

yD
[ n

L

]
, i f n

L ∈ Z
0, otherwise

(4)

The idea is to use the FIR filters as delay lines that compensate for the introduced
delay of the wavefront arrival at all microphones [Kapralos et al. 2003]. The combina-
tion of all filtered signals will amplify the desired one, while all interfering signals will
be attenuated. However, in order to extract a moving acoustic source, it is mandatory to
reconfigure all filters coefficients according to the source current location. For example,
as illustrated in Figure 2, a moving source is recorded for a certain time inside the
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aperture defined by the θ2 − θ1 angle. A source tracking device is used to follow the
source trajectory. Based on its coordinates all filters are configured with the proper
coefficients set. As soon as the moving source crosses to the aperture defined by the
θ3 − θ2 angle, the source tracking device will provide the new coordinates, thus all filter
coefficients must be updated with a new set. This process is normally referred to as
beamsteering.

Related work. Over the last years, various systems that utilize GPUs under different
application domains have been published in the literature. In Wall and Lockwood
[2005] the authors describe a hybrid approach that utilizes 14 Virtex4 LX25 FPGAs
and a GPU connected to a desktop PC to perform 3D-parallel BF and scan conversion
for real-time ultrasonic imaging. Input data are received from 288 channels that are
connected to analog-to-digital converters. Digitized data are forwarded to the FPGAs,
which calculate the signal delay, interpolation, and apodization. All processed data
are transferred though the PCI from the FPGAs to the GPU. In Nilsen and Hafizovic
[2009], the authors utilize a GeForce 8800 GPU to design a delay-and-sum beamformer
in the time and frequency domain. To evaluate their designs they perform experiments
under different number of input channel setups ranging from 79 to 1216. According to
the results, a time domain and a frequency domain beamformer can achieve speedup
up to 12x and 15x respectively compared to a Xeon quad-core processor.

In the audio domain, the BF technique is widely used in hand-held devices, like cell
phones and personal digital assistants. Such embedded systems introduce many con-
straints regarding computational resources and power consumption. To alleviate these
problems, the authors in Mihov et al. [2008] designed a time-invariant beamformer tai-
lored to small devices that consists of two microphones. According to the paper, results
suggest an SNR improvement of 14.95 dB when using two microphones, instead of one.
A data-driven beamformer for a binaural headset is presented in Tashev and Seltzer
[2008]. The authors integrate two microphones to the headphones and employ a head
and torso simulator to acquire the source signal for BF. The improvement of SNR is in
the range between 4.4 and 6.88 dBC.

Commercial products for audio BF have been developed by various companies. For ex-
ample, Squarehead [Squarehead Technology 2013] develops the audioscope, a dual-core
PC-based system, that employs 300 omnidirectional microphones for audio capturing.
Another company, called Acoustic Camera, develops PC-based BF system that utilize
sound acquisition arrays ranging from few tens to more than a hundred elements.
Polycom and Microsoft presented the CX5000 unified conference station [Polycom Inc.
2009], which is the latest version of the Roundcam, originally presented in Cutler
et al. [2002]. Roundcam consists of five built-in cameras that offer a 360o panoramic
view of the conference room and eight microphones to capture the speech signals. It
connects to a dual CPU 2.2 GHz Pentium 4 workstation through a Firewire bus. All
image and sound processing is done to the workstation. For computational efficiency
and low latency, the authors utilize a delay-and-sum beamform approach. Lifesize is
another company that produces high-quality communication systems. For example,
the LifeSize Focus teleconferencing camera supports high-definition video and uses
two omnidirectional microphones to capture audio sources using BF. A small set of
these cameras is utilized in the company’s advanced communication systems, like the
LifeSize Room series, to record image and transmit it to the remote location. Sound
sources are rendered to the remote location using high-definition audio.

In Cedrick [2005], the author presents the NIST Mark-III microphone array that
can be used for speech enhancement and recognition. The proposed platform utilizes
64 input channels that are connected to a Spartan II FPGA via analog-to-digital con-
verters. The FPGA is connected through Ethernet to a host desktop PC that runs the
NIST Smart Flow II software platform [Mei et al. 2006; Fillinger et al. 2007]. The latter
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employs a Web camera that identifies a speaker’s face and steers accordingly the BF,
in order to enhance the speech signal and attenuate any ambient noise.

The authors of Yiu et al. [2008] present a hardware accelerator that utilizes micro-
phone array algorithms based on the use of calibrated signals together with subband
processing. The proposed design utilizes a frequency domain modified recursive least-
squares adaptive algorithm and the SNR maximization of the BF algorithm. Up to 7
instances of the proposed design can fit in a Virtex4 SX55 FPGA, achieving a speedup
of up to 41.7x compared to the software implementation.

A similar approach is chosen in Xcell [2007] where a real-time beamformer mapped on
an FPGA platform is presented. The BF engine is based on the QR matrix decomposition
(QRD). In each update of the beamformer, new input samples are generated by a Matlab
host application and forwarded to the FPGA, where the QRD engine processes them.
Once processing is done, the new weight vector is returned back to the host processor
and a new chunk of data is forwarded to the FPGA. The complete design occupies 3530
Virtex4 slices and requires 56.76 µsec to decompose a 10 × 10 matrix at 250 MHz.

A Digital Signal Processor (DSP) implementation of an adaptive subband BF
algorithm is presented in Yermeche et al. [2007], known as the Calibrated Weighted
Recursive Least-Squares (CWRLS) beamformer. The authors utilize an analog devices
ADSP21262 DSP processor [Analog Devices 2004] to perform CWRLS-based BF over a
two-microphone array setup. According to the paper, results indicate that there is an
up to 14 dB SNR improvement, but the computational load of the DSP processor can
be up to 50% with two input channels. The presented implementation is also energy
efficient, since it was predicted to have an operation time of up to 20 hours, under the
aforementioned processor utilization.

An experimental video teleconferencing system is presented in Fiala et al. [2004]. The
authors combine an omnidirectional video camera and an audio BF microphone array
into a device that is placed in the center of a meeting table. Nonstationary participants
are identified with computer vision algorithms and their speech is recorded from a
circular 16-microphone array. Audio processing is done using a TMS320C6201 DSP
processor [Texas Instruments 2002] at 11.025 kHz sampling rate.

In Beracoechea et al. [2006], the authors describe an immersive audio system that
consists of 12 linearly placed microphones. The sound source is tracked through audio
and video tracking algorithms, while the beamformer is steered accordingly. The audio
signal is extracted through BF and encoded using the MPEG2-AAC or G722 encoders.
The encoded signal is received from a second remote PC and the audio signal is rendered
using the Wave Field Synthesis (WFS) technology [Berkhout et al. 1993] through a 10-
loudspeaker array.

A similar system is presented in Teutsch et al. [2003]. The authors describe a real-
time immersive audio system that exploits the BF technique and the WFS technology.
The system performs sound recording from a remote location A, transmits it to another
one B, and renders it through a loudspeaker array utilizing WFS. The complete system
consists of 4 PCs, out of which one is used for the WFS rendering, one for BF, one for
the source tracking, and one as a beamsteering server.

In addition, the work presented in Buchner et al. [2002] addresses the problem of
echo cancellation that is inherent to contemporary multimedia communication sys-
tems. The authors propose a strategy to reduce the impact of echo while transmitting
the recorded signal to a remote location. The idea is to apply the proposed Acoustic
Echo Cancellation (AEC) to the “dry” source signals that will be rendered through the
loudspeaker array. Then, the AEC output signals are subtracted from the output sig-
nals of the beamformer’s time-invariant components. In order to test their approach,
the authors develop a real-time implementation using a standard desktop PC that
consists of 11 microphones and 24 loudspeakers.
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Finally, nowadays there are many projects that utilize different microphone array
sizes and setups. One of the most famous implementations is the Large AcOUstic Data
(LOUD) [Weinstein et al. 2004], which was part of the MIT Oxygen project [MIT CSAIL:
MIT Project Oxygen 2004]. The LOUD microphone array consists of 1020 elements
arranged into a 2D planar setup and produces data at a rate of 50 MB/sec. All data
are streamed to a custom-designed tiled parallel processor, based on the raw ISA
[Taylor et al. 2001, 2002, 2004]. Experimental results suggest that utilizing such a
large microphone array can dramatically improve the source recognition accuracy up
to 90.6%.

3. CUSTOM ARCHITECTURE
BF instruction set. The design of BF systems requires various tests before their final
implementation. Based on the size of the recording area and the hardware cost limi-
tations, the designer has to evaluate the SNR quality of the extracted sources under
different numbers of microphones. Furthermore, internal signal calculations, except fil-
tering, in many cases require also decimation and interpolation. Based on the available
hardware resources, the designer should carefully evaluate the size and the filtering
coefficients of each one of these modules. For example, one coefficient set can provide
a better filtered signal than another set, under the same number of filter taps. It is
important for the designer to have the option to rapidly change and evaluate each filter
coefficients set. In addition, many tests should be conducted to decide the number of
source apertures into which the recording area should be divided. Such tests, when
developing a software beamformer, are easily applicable, however, it is not the case
when custom hardware solutions are required. In the latter case, the designers should
also be able to easily perform tests under different source apertures.

The main goal of the proposed architecture is to provide a certain instruction set that
will allow easy customization of many vital system parameters, efficient audio data
processing, and system debugging through a high-level interface for reconfigurable BF
audio systems. Furthermore, these instructions should be platform independent and
hide any implementation details, thus allowing the same program to be executed to
different FPGA implementations. After studying the BF technique, we concluded with
the following requirements regarding the kind of instructions that the programmer
should have at his/her disposal.

(1) Enable or disable input channels. In order to allow easy and fast input channel
tests, we decided to provide an instruction that would allow the programmer to
disable/enable them in any arbitrary way. Consequently, it would assist on rapidly
fine-tuning and deciding the number of required input channels for the entire
system.

(2) System configuration. It is very important to provide instructions to the user that
would allow a high-level configuration of many key system parameters. This way,
all implementation details for system customization can be hidden, thus assisting
on easy and rapid development. Examples of these parameters can be the size
and coefficient sets specification for various digital filters, and the number of input
channels.

(3) Efficient audio data processing. A specific instruction is required to control data
processing of audio samples. Although all computations will be performed in paral-
lel from many processing elements, the user should be completely isolated from any
platform-specific details. Moreover, a simple high-level interface should provide all
required parameters, which internally will initiate massively parallel audio data
processing.
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Table I. Supported Instructions by the Proposed Architecture

Instruction type Full name Mnemonic Parameters

I/O Input Stream Enable InStreamEn b mask

System setup

Clear SPRs ClrSPRs NONE
Declare FIR Filter size DFirF FSize, FType

Specify Samples Addresses SSA buf sam addr
Buffer Coefficients BufCoef xmem coef addr, buf coef addr
Load Coefficients LdCoef buf coef addr

Configure C ConfC C
Data processing BF Source BFSrc aper, xmem read addr, xmem write addr

Debug Read SPR RdSPR SPR num

(4) Debugging capabilities. Efficient system debugging considerably assists on rapid
development. For this reason, an instruction that would allow the user to check
important system parameters should be supported by our architecture.

Taking into account the aforementioned requirements, the proposed architecture
consists of eight high-level instructions that can be used to configure an immersive
audio system, and start, manage, or stop processing of input and output data. Further-
more, there is an additional 9th instruction that can be used for debugging purposes. In
order to support many system setups, we provide a versatile environment that allows
the adjustment of various parameters. For example, an audio acquisition module that
utilizes the BF technique may have any number of source apertures that can be iden-
tified. Furthermore, the BF FIR filters can consist of any number of taps. For these
reasons, the proposed programming architecture was designed in such a way that the
programmer can conveniently change these vital system parameters.

Table I shows the nine instructions, divided into four categories, namely I/O, system
setup, data processing, and debug. The I/O instruction is used to enable or disable
audio streaming to input processing units. The system setup instructions are used to
customize system parameters and load filter coefficients to on-chip buffers. The data
processing instruction is used to process input audio samples. Finally, the instruction
that belongs to the debug category provides an interface to the user in order to read
a certain set of Special-Purpose Registers (SPRs) that are used to store many system
parameters. In the following, we describe each of the instructions. We assume that an
immersive audio system consists of C input channels.

InStreamEn. This enables or disables streaming of audio samples from input chan-
nels to the BF processing units.

ClrSPRs. This clears the contents of all SPRs.
DFirF. This declares the size of a filter to the system.
SSA. This specifies the addresses from which all input samples are read.
BufCoef . This fetches all decimator and interpolator coefficients from external mem-

ory to on-chip buffers.
LdCoef . This distributes all decimator and interpolator coefficients to the correspond-

ing filters in the system.
ConfC. This defines the number of input channels that are available to the system.
BFSrc. This processes a 1024-sample chunk of streaming data from each input chan-

nel that is enabled with the InStreamEn instruction, in order to extract an audio
source.

RdSPR. This used for debugging purposes and allows the programmer to read any
of the SPRs.

Memory and registers organization. The application of our custom architecture to re-
configurable devices comprises dedicated register organization and distributed memory
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Fig. 3. Memory organization for BF applications.

Table II. Special-Purpose Registers Mapping for BF

SPR Description

SPR0 InStreamEn binary mask
SPR1 Decimators FIR filter size
SPR2 Interpolators FIR filter size
SPR3 H(z) FIR filter size
SPR4 LdCoef start/done flag
SPR5 aperture address offset
SPR6 BFSrc start/done flag
SPR7 source buffer address
SPR8 interpolator coefficients address
SPR9 number of input channels (C)

SPR10 − SPR[9+C] channel i coefficients buffer address, i = 0 . . . C − 1
SPR[10+C] − SPR[9 + 2 · C] channel i 1024 samples buffer address, i = 0 . . . C − 1

buffers. An important feature of the architecture is that it is based on a multicore pro-
cessing paradigm. This allows the design of scalable microarchitectures, with respect
to the available hardware resources, which makes the architecture suitable for recon-
figurable implementations.

Figure 3 illustrates the logical organization of the memory and the registers of the
proposed architecture when utilizing the BF technique. It is assumed that it operates
as an architectural extension of a GPP in a coprocessor paradigm. The architecture as-
sumes multicore processing, distributed among C processing modules that process data
from C input channels. The C parameter can be determined both at design time and
at runtime. The latter option makes it suitable for implementations on platforms with
partial configuration capabilities. The host GPP and our custom MultiCore BeamForm-
ing Processor (MC-BFP) exchange synchronization parameters and memory addresses
via a set of SPRs, shown in Table II. Each beamformer module has an on-chip BF buffer
and memory space for the decimator and H(z) filters coefficients. Furthermore, there
is also an on-chip source buffer, where samples of an extracted source are stored, and
a memory space for the currently active coefficients set of the interpolator.

The memory organization that is considered by the proposed architecture is the user-
accessible memory space, as illustrated in Figure 3. The nonuser addressable space is
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annotated with the stripe pattern. In order to provide a high-level programming en-
vironment, the programmer has read and write access to the BF buffers, the source
buffer, the external memory, and the GPP on-chip memory. Furthermore, the program-
mer can only read from the SPRs for debugging purposes. There is no direct access to
the memory space for the coefficients, since our architecture provides the functionality
to reload all required coefficients from on-chip BF buffers to the decimators, H(z) filters,
and interpolator. This way the user avoids completely any low-level interaction with
the hardware platform.

Instructions parameters analysis. InStreamEn: Its parameter is a binary mask
b mask equal to the number of input channels C. Within the mask, each bit can be
used from the programmer to disable or enable channel streaming by setting 0 or 1 to
its value, respectively. The binary mask is stored in SPR0, as shown in Table II.

ClrSPRs. It does not require any parameters.
DFirF. It writes the size of a filter to the corresponding SPR. Its parameters are the

filter size FSize and its type FType. The latter is used to distinguish among the three
different filter types, which are decimator (FType = 1), interpolator (FType = 2), and
H(z) filter (FType = 3). Based on the value of FType, this instruction writes the filter
size to the appropriate SPR ranging from SPR1 to SPR3, as shown in Table II.

SSA. Its parameter is an array of pointers buf sam addr to the starting address of all
on-chip BF buffers. SSA writes from SPR[10+C] to SPR[9+2·C] the on-chip BF buffers
starting addresses. Furthermore, it writes to SPR7 the source buffer address, where
1024 samples of the extracted source signal are stored, as shown in Table II.

BufCoef . Its parameters are an array xmem coef addr of pointers to the off-chip
memory starting addresses of the coefficients sets, and an array buf coef addr of point-
ers within the on-chip BF buffers, where all coefficients will be stored. BufCoef does
not write any values to SPRs.

LdCoef . Its parameter is an array buf coef addr of pointers within the on-chip buffers
where all coefficients are stored. These addresses are written from SPR10 to SPR[9+C],
as explained in Table II. The instruction also writes to SPR8 the on-chip address of
the interpolator coefficients from where the MC-BFP can read them. The coefficients
distribution is initiated when a start flag is written to SPR4. Once all filter coefficients
are transferred, LdCoef writes a done flag to SPR4, as shown in Table II.

ConfC. Its parameter is the number of active input channels C that will be enabled
using InStreamEn. The instruction writes the value of C to SPR9, as shown in Table II.

BFSrc. It requires as parameters the current source aperture aper, the starting read
address from the external memory xmem read addr of the current chunk, and the
write address to the external memory xmem write addr, where 1024 samples of the
source signal will be stored. Based on aper, BFSrc writes to SPR5 an on-chip buffer
address offset that allows the correct selection of Hi(z) coefficients sets. In order to
initiate processing, the instruction writes a start flag to SPR6. This flag is read by each
BeamFormeri module, where i = 0, . . . , C − 1, thus channel processing is performed
concurrently. Once all data calculations are finished, a done flag is written to SPR6, as
shown in Table II.

RdSPR. It requires as parameter the number of SPR SPR num that needs to be read.

3.1. Programming Model
In Algorithm 1, we illustrate through pseudocode how to set up a BF system to ex-
tract an audio source. The DISABLE INPUTS MASK and ENABLE INPUTS MASK
are binary masks that are used to disable or enable input channels, as described
previously. The DECIMATOR SIZE, H SIZE, and INTERPOLATOR SIZE variables
are used to configure the decimator, H(z), and interpolator FIR filter sizes. Moreover,
the DECIMATOR TYPE, H TYPE, and INTERPOLATOR TYPE variables are used
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ALGORITHM 1: Pseudocode for Beamforming.

1: {configure the number of input channels available}
2: ConfC (C);
3: {disable all BeamFormers until system is configured}
4: InStreamEn (DISABLE INPUTS MASK);
5: {clear the contents of all SPRs}
6: ClrSPRs ();
7: {configure decimators size}
8: DFirF (DECIMATOR SIZE, DECIMATOR TYPE);
9: {configure H(z) filters size}
10: DFirF (H SIZE, H TYPE);
11: {configure interpolator size}
12: DFirF (INTERPOLATOR SIZE,

INTERPOLATOR TYPE);
13: {configure the samples addresses}
14: SSA (SamplesAddr);
15: {transfer all H(z) coefficients to on-chip buffers}
16: BufCoef (CoefXMemAddr, BufAddr);
17: {load the coefficients to all decimators and interpolator}
18: LdCoef (BufAddr);
19: {initialize external memory reading and writing pointers}
20: xmem rd addr=INPUT DATA XMEM ADDR;
21: xmem wr addr=OUTPUT DATA XMEM ADDR;
22: {enable BeamFormers}
23: InStreamEn (ENABLE INPUTS MASK);
24: {process streaming data}
25: while (1) do
26: BFSrc (aper, xmem rd addr, xmem wr addr);
27: {update external memory pointers}
28: xmem rd addr=xmem rd addr+1024·C;
29: xmem wr addr=xmem wr addr+1024;
30: end while

to specify the filter type. SamplesAddr is an array of pointers to each on-chip BF
buffer, where a 1024-sample chunk is stored. CoefXMemAddr is an array of pointers
to the external memory where all required decimator, H(z) filters, and interpolators
coefficients are stored, and BufAddr is an array of destination pointers to on-chip BF
buffers, where all coefficients will be transferred. xmem rd addr and xmem wr addr
are pointers to the external memory that read input channels data and write source
samples, respectively. INPUT DATA XMEM ADDR is an external memory address,
where input channels data are stored, while OUTPUT DATA XMEM ADDR is an ex-
ternal memory address, where samples of extracted sources are written back. Finally,
aper is the current source aperture.

The pseudocode starts in line 2 by using the ConfC instruction to configure the
number C of currently available input channels to the BF system. In line 4, all input
channels are disabled from processing using the InStreamEn, since the system is not
yet properly set up. In line 6 all SPRs are initialized by clearing their contents. In
lines 8, 10, and 12, the DFirF instruction is used to configure the decimator, H(z), and
interpolator filter sizes. In line 14, the addresses of all samples within the on-chip BF
buffers are specified, using the SSA instruction. In line 16, the BufCoef distributes all
required decimators and interpolator coefficients from the external memory to on-chip
BF buffers. Once it is done, in line 18, the LdCoef instruction is used to configure
the decimators and interpolator coefficients. In line 20, xmem rd addr is initialized
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Fig. 4. Multicore implementation of the BF system.

pointing at the input data stored in the external memory. In line 21, xmem wr addr
points to the external memory address where the extracted source samples are stored.
Once the system is properly configured, all beamformers are enabled in line 23. Finally,
in each iteration of the while-loop in line 25, the current source aperture aper is used
and 1024·C samples are read to extract 1024 source samples using the BFSrc, which are
written to the external memory. The xmem rd addr and the xmem wr addr pointers
are increased by 1024·C and 1024 entries, respectively, to properly point to the required
input and output external memory locations for the next iteration.

It should be noted that any time, the designer can use the RdSPR instruction for
debugging purposes. Also, if the user wants to perform additional experiments under
different number of microphones, it can be done by reconfiguring the system using
the ConfC instruction. Furthermore, in case the designer wishes during runtime to
test different coefficient sets or increase/decrease the total number of source apertures,
it is possible by just providing a new array of pointers to the BufCoef instruction.
The LdCoef can then be used to reload all decimators and interpolator with the new
coefficients sets, while the BFSrc instruction will extract sources based on the new H(z)
coefficients sets.

4. RECONFIGURABLE ARCHITECTURE IMPLEMENTATION
MultiCore BF Microarchitecture. Our system is based on our reconfigurable BF design,
originally presented in Theodoropoulos et al. [2009], however, considerable improve-
ments and design enhancements have been applied, in order to support the proposed
custom architecture. Figure 4 illustrates the multicore implementation of our BF ar-
chitecture. As mentioned in Section 3, the latter is assumed that it operates as an
architectural extension of a GPP in a coprocessor paradigm. The architecture assumes
multicore processing, distributed among C processing modules that process data from
C input channels. A GPP bus is used to connect the on-chip GPP memory and external
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Fig. 5. The BF-PE and source amplifier structures.

SDRAM with the GPP via a standard bus interface (BUS-IF). Furthermore, in order
to accelerate data transfer from the SDRAM to on-chip BF buffers, we employ a Direct
Memory Access (DMA) controller, which is also connected to the same bus. A partial
reconfiguration controller is employed to provide the option of reloading the correct
bitstreams based on the currently available number of input channels. All user ad-
dressable spaces inside the MC-BFP, like SPRs, BF buffers, and the source buffer are
connected to the GPP bus. This fact enhances our architecture’s flexibility, since they
are directly accessible by the GPP. The main controller is responsible for initiating the
coefficients reloading process to all decimators and the interpolator. Furthermore, it
enables input data processing from all channels, and acknowledges the GPP as soon
as all calculations are done.

Each beamformer module consists of one BF buffer and a BeamForming Processing
Element (BF-PE), which is illustrated in Figure 5(a). As can be seen, there is a LdCoef
controller and a BFSrc controller. Based on the current source aperture, the former
is responsible for reloading the required coefficients sets from the BF buffer to the
decimator and H(z) filter. The BFSrc controller reads 1024 input samples from the BF
buffer and forwards them to the decimator and the H(z) filter.

All beamformer modules forward the filtered signals to the source amplifier, which
is shown in Figure 5(b). The LdCoefInt controller is responsible for reloading the coef-
ficients set to the interpolator. As we can see, all Hi(z) signals, where i = 0, . . . , C − 1,
are accumulated to strengthen the original acoustic source signal, which is then in-
terpolated. Finally, the samples controller is responsible for writing back to the source
buffer the interpolated source signal.

BF Data Processing Flow. Figure 7 illustrates how BF data processing is divided
among C beamformers, under a C-sized microphone array setup. In each iteration,
1024 · C samples are fetched from the SDRAM and stored to the on-chip BF buffer of
each beamformer. once data transfer is done, all beamformers start processing concur-
rently the audio samples. More specifically, each one of them downsamples the recorded
signals by a factor D. The downsampled signals are forwarded to the H(z) BF filters,
and all outputs are accumulated in order to strengthen the original acoustic source.
The latter is upsampled by a factor L and the result is stored to the external memory.
The process is repeated for each i acoustic source within the recording area, where
i = 0, . . . , S − 1 and S is the total number of sources. As soon as a 1024-sample chunk
is extracted for all S sources, the recorded data of a new 1024-sample time frame is
loaded from the SDRAM to the BF buffers for further processing.

BF Instruction Implementation. All SPRs are accessible from the GPP, because they
belong to its memory addressable range. Thus, the programmer can directly pass all
customizing parameters to the MC-BFP. Each SPR is used for storing a system config-
uration parameter, a start/done flag, or a pointer to an external/internal memory entry.
For this reason, we have divided the instructions into four different categories, based
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Fig. 6. BF instructions where the GPP reads from or there is no access to SPRs.

on the way the GPP accesses the SPRs. The categories are: GPP reads SPR, GPP writes
to SPR, GPP reads and writes to SPR, GPP does not access any SPR, and are illustrated
in Figure 6(a), Figure 8, Figure 9, and Figure 6(b) respectively. In each figure, a number
highlights the corresponding step that is taken during the entire instruction execution.
All instruction categories are analyzed next.

GPP reads SPR. As illustrated in Figure 6(a), RdSPR is the only instruction that
belongs to this category. The GPP initiates a GPP bus read transaction and, based on
the SPR num value (step 1), it calculates the proper SPR memory address.

GPP writes to SPR. As depicted in Figure 8, InStreamEn, ClrSPRs, DFirF, ConfC,
and SSA are the instructions that belong to this category. When the InStream instruc-
tion has to be executed, the GPP initiates a GPP bus write transaction and writes the
b mask value to SPR0 (step 1). Similarly, in ClrSPRs the GPP has to iterate through
all SPRs and write the zero value to them (step 1). In DFirF instruction, the GPP
uses the Ftype parameter to calculate the proper SPR address to write the FSize value
(step 1). In ConfC, the GPP writes the C parameter to SPR9 (step 1), which is read
from the partial reconfiguration controller, in order to load from the external memory
the bitstream that includes C beamformers. finally, in the SSA instruction, the GPP
iterates SPR[10+C] − SPR[9+2·C] and writes to them the on-chip BF buffer addresses
(step 1), where 1024 input samples will be written, which are read from buf samp addr.
Furthermore, it writes to SPR7 the source buffer address, where 1024 samples of the
extracted source signal are stored (step 2).

GPP reads and writes to SPR. As illustrated in Figure 9, LdCoef and BFSrc in-
structions belong to this category. In LdCoef, the GPP writes all decimators coefficients
addresses to SPR10 − SPR[9+C] (step 1), and the interpolator coefficients address to
SPR8 (step 2), which are read from buf coef addr. As soon as all addresses are written
to the proper SPRs, the GPP writes a LdCoef start flag to SPR4 (step 3) and remains
blocked until the MC-BFP writes a LdCoef done flag to the same SPR. As soon as LdCoef
start flag is written to SPR4, the main controller enables the LdCoef controller to start
reloading the decimators coefficients (step 4). Once this step is finished, the LdCoefInt
controller via the main controller initiates the interpolator coefficients reloading pro-
cedure (step 5). As soon as all coefficients are reloaded, the latter acknowledges the
main controller, which writes a LdCoef done flag to SPR4 (step 6). This unblocks the
GPP, which can continue further processing.

In BFSrc, based on the source aperture aper, the GPP calculates a BF buffer address
offset, called aperture address offset, in order to access the proper H(z) coefficients sets.
The GPP writes the aperture address offset to SPR5 (step 1). Furthermore, it performs
a DMA transaction in order to read C 1024-sample chunks from the xmem read addr
memory location and distribute them to on-chip BF buffers of the C beamformer mod-
ules (step 2). As soon as all data are stored, the GPP writes a BFSrc start flag to
SPR6 (step 3). The MC-BFP reads the start flag from SPR6 (step 4), while the GPP
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Fig. 7. Flowchart of the BF data processing among all RUs.

remains blocked until the MC-BFP writes a BFSrc done flag to the same SPR. Within
each beamformer module, the LdCoef controller reads via the main controller the aper-
ture address offset from SPR5 and reloads to the H(z) filter the proper coefficients set
(step 5). Once all H(z) coefficients are reloaded, the LdCoef controller acknowledges
the BFSrc controller, which enables processing of input data that are stored to the BF
buffers. When all 1024 samples are processed, the main controller writes a BFSrc done
flag to SPR6 (step 6), which unblocks the GPP. The latter performs again a DMA trans-
action, in order to transfer 1024 samples from the source buffer to the xmem write addr
memory location (step 7).

GPP does not access any SPR. As illustrated in Figure 6(b), BufCoef is the only
instruction that belongs to this category. The GPP reads all source and destination
addresses from the xmem coef addr and buf coef addr arrays respectively. First, it
performs a DMA transaction to transfer all decimator coefficients to the BF buffers
(step 1). Next, based on the total number of source apertures to the system, it performs
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Fig. 8. BF instructions where the GPP writes to SPRs.

Fig. 9. BF instructions where the GPP reads and writes to SPRs.

a second DMA transaction to load all H(z) coefficients and distribute them accordingly
to the on-chip BF buffers (step 2). Finally, with a third DMA transaction, the GPP
fetches the active interpolator coefficients set to the on-chip BF buffer of beamformer0
module.

5. EXPERIMENTAL RESULTS
FPGA prototype. We used the Xilinx ISE 9.2 and EDK 9.2 CAD tools to develop a
VHDL hardware prototype of our MC-BFP. The latter was implemented on a Xilinx
ML410 board with a Virtex4 FX60 FPGA and 256MB of DDR2 SDRAM. As host GPP
processor, we used one of the two integrated PowerPC processors. Furthermore, we
used the Processor Local Bus (PLB) to connect all peripherals, which are all on-chip
BF buffers, the source buffer, all SPRs, and the DMA and SDRAM controllers. For
the partial reconfiguration we have used the Xilinx Internal Communication Access
Port (ICAP), which is also connected to the PLB. The PowerPC runs at 200 MHz,
while the rest of the system is clocked at 100 MHz when mapped onto a Virtex4 chip.
When the design is mapped onto a Virtex6 FPGA, we utilize the Microblaze soft-core
processor and the entire system is clocked at 200 MHz. Our prototype is configured with
C = 16 beamformer modules, thus it can process up to 16 input channels concurrently.
Also, within each BF-PE and the source amplifier, all decimators, H(z) filters, and the
interpolator were generated with the Xilinx Core Generator.

Table III displays the resource utilization of each module when mapped onto
Virtex4FX and Virtex6 FPGAs. The first two lines provide the required resources
for a single beamformer and the source amplifier modules. The third line shows all
hardware resources occupied by the MC-BFP. In the fourth line, we show the resources
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Table III. Resource Utilization of Each Module when Mapped onto Virtex4 (V4) and Virtex6 (V6) FPGAs

Module V4 Slices V4 DSP Slices V6 Slices V6 DSP48E1 Slices Memory(bytes)

Single BeamFormer 598 2 171 2 8192
Source Amplifier 2870 0 1086 0 2048

MC-BFP 14165 32 4824 33 133120
System infrastructure 6650 0 2080 0 317440

Complete system with C = 16 20815 32 6904 33 450560

Table IV. Maximum Number of
BeamFormers that Can Fit

in Different FPGAs

FPGA # of BeamFormers fit

V4FX60 19
V4FX100 54
V4FX140 89
6VLX75T 78
6VLX760 360

6VSX315T 352
6VSX475T 532
6VHX250T 252
6VHX565T 432

required to implement the PLB, DMA, ICAP, and all memory controllers with their
corresponding BRAMs. Finally, the fifth line provides all required resources from the
entire BF system.

As can be observed, regarding the V4FX FPGA family, a single beamformer requires
less than 600 slices, 2 DSP slices, and 8Kbytes of Block RAM (BRAM), which makes
it feasible to integrate many such modules within a single chip. Table IV shows how
many beamformers could fit into different V4FX FPGA chips. Moreover, even a medium-
sized FPGA can support up to 19 channels, while larger chips, like the V4FX100 and
V4FX140, could accommodate up to 54 and 89 input channels, respectively.

Of course, newer FPGA families, like the Xilinx Virtex6, integrate more resources,
thus can fit many beamformer modules. In order to investigate how many input chan-
nels a single Virtex6 could accommodate, we used the Xilinx ISE 11.4 and mapped our
MC-BFP onto different chips of the FPGA family. As we can observe from Table IV,
a 6VLX75T FPGA chip, which is the smallest of the Virtex6 family, could fit up to 78
input channels. Moreover, the 6VSX475T chip, which is the largest one, could support
setups that consist up to 532 microphones. We should note that during our calcula-
tions we took into account the required area to also map a Microblaze processor [Xilinx
2010a] onto the reconfigurable hardware, since the Virtex6 families do not integrate
any hard-core processor.

Data accuracy. In order to evaluate the data accuracy of our FPGA implementation,
we compared its output results against the ones from a GPP-based approach. As stimu-
lation input, we used recorded signals from up to 16 microphones that consist of 24576
samples in a 16-bit signed format. However, the GPP-based BF application performs
all calculations using the IEEE 754 standard single-precision floating-point format. In
contrast, our MC-BFP follows a fixed-point format approach, in order to reduce area
utilization and increase performance. However, due to the fixed-point format, a calcu-
lation error is introduced which results in a reduced output accuracy compared to the
IEEE 754 floating-point format.
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Fig. 10. Microphone array setup and source position inside aperture A4.

Fig. 11. Difference between software and hardware values for an acoustic source in dBs inside aperture A4.

In order to verify that the reduced accuracy does not affect the extracted source
quality, we compared the software and hardware sample values, in the exemplary
case of a source being located within source aperture A4 out of the total 19 currently
available apertures, as illustrated in Figure 10. We used the following formula to
estimate the introduced error for each calculated signal sample

DdB = 10 · log
(

sSW

sHW

)
dBs, (5)

where sSW and sHW are the software and hardware sample values respectively.
Figure 11 shows the introduced error for an extracted source signal consisting of 24576
16-bit samples. In the ideal case, the difference between the two values should be zero.
As can be observed, almost all introduced errors do exceed a +/−0.01 decibels (dBs)
boundary. In the few exceptional cases where the difference is large, it is because the
absolute sample value is very low. For example, as depicted in Figure 11, the sample
#4485 has a value difference of 10 dBs. This happens because the correct value sSW
is 1, however, the sHW is 10. In practice, however, this would not introduce any loss
in quality, since both values are very close to 0. In total, by taking into account these
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Fig. 12. Execution time on all platforms under an 8-microphone setup.

exceptional cases, we measured that the hardware output extracted source signal of
our MC-BFP is 99.6% accurate to the software one.

Performance evaluation. In order to test the performance of all platforms, we pro-
vided input signals consisting of 540672 audio samples, divided into 528 1024-sample
chunks. Assuming a sampling frequency of 48000 kHz, each iteration should be cal-
culated in 1024

48000
samples

samples/sec ≈ 21.33 msec. Since there are 528 iterations in total, every
hardware platform that is considered for a real-time audio system must complete all
data calculations within 528 iterations · 21.33 msec

iteration ≈ 11.264 sec.
To evaluate our approach, we conducted experiments for all hardware platforms with

8 and 16 channels and up to 16 sources. Regarding the different FPGA implementa-
tions, we use the “MC-BFPx-Vy” naming rule, where x defines the number of input
channels the design uses and y refers to the utilized Xilinx Virtex FPGA family, that
is y = 4 for Virtex4 and y = 6 for Virtex6. We compared both FPGA-based BF systems
against an OpenMP-annotated software BF solution with SSE2 extensions enabled,
which was implemented to three different GPPs, namely an Atom 330 running at
1.6 GHz, a Core i3 at 3.1 GHz, and a Core2 Duo at 2.8 GHz. The y-axis of Figure 13
depicts the achieved speedup by the FPGAs compared to all considered GPPs. As can
be observed, the Virtex4-based MC-BFP with 8 beamformer modules (MC-BFP8-V4)
and the Virtex6-based MC-BFP with 8 beamformer modules (MC-BFP8-V6) can pro-
cess data up to 8.2 and 11.7 times faster compared to a low-power Atom 330 processor,
up to 2.9 and 4.1 times faster compared to a middle-range Core2 Duo, and up to 2.0
and 2.9 times faster compared to a high-end Core i3.

The fact that the FPGA-based systems can process data faster compared to the
GPPs obviously allows the support of more real-time sources. Figure 12 depicts the
application execution times of each considered platform. As illustrated, the FPGA
execution times are divided into the following parts:

—the “PPC-V4” part (for the Virtex4 implementations that use a PowerPC) or the
“MB-V6” part (for the Virtex 6 implementations that use a Microblaze), which is the
actual software execution time;

—the “FPGA SDRAM” part, which is the time spent on accessing the external memory;
—the actual data processing times of each FPGA platform.
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Fig. 13. Speedup against the GPP-based approaches under an 8-microphone setup.

It can be observed that the Core2 Duo and Core i3 implementations can process all
data in real time, thus within 11.264 sec, for up to 8 and 12 sources respectively. In
contrast, the Atom 330 processor could support extracting in real time only a single
acoustic source. In case there are more sources required, the Atom processor failed to
process all data within the required time limit. In the case of 12 and 16 sources, the
Core2 Duo and Core i3 also fail to process data faster than the actual source length,
thus making them not suitable for such real-time implementations. In contrast, the
MC-BFP8-V4 and MC-BFP8-V6 systems could be used to build real-time BF systems
that are capable of extracting up to 16 sources.

Figure 15 illustrates the achieved FPGAs speedup against the aforementioned GPPs
when utilizing a 16-microphone setup. As can be observed, again both reconfigurable
systems can process data faster compared to the GPPs. More precisely, the MC-BFP16-
V4 and MC-BFP16-V6 systems can extract audio sources up to 10.6 and 13.7 times
faster compared to the Atom, up to 3.7 and 4.8 times faster compared to the Core2 Duo,
and up to 2.5 and 3.2 times faster compared to the Core i3.

Similarly to the case of the 8 input channels, the FPGA systems can process data
more efficiently compared to the GPPs, thus they can support more real-time acoustic
sources. In Figure 14, we provide the execution times of our experiments under a 16-
microphone setup. Again, we have divided the FPGA execution times as explained
before. As can be observed, the Atom-based BF system could not support real-time
processing for any acoustic source. The Core2 Duo and Core i3 could be used for real-
time BF systems when there are up to 3 and 6 sources to be extracted, respectively.
In contrast, the MC-BFP16-V4 could be used for a BF system that supports up to 14
sources, while the MC-BFP16-V6 can support up to 16 sources.

As can be observed from Figure 12 and Figure 14, the software execution time on
the FPGAs is very short and does not exceed 1.3% of the total execution time. In
contrast, a significant processing bottleneck in both FPGA implementations is the ex-
ternal memory access times under both microphone scenarios. More precisely, under
an 8-microphone array, up to 40% and 57% of the total MC-BFP8-V4 and MC-BFP8-V6
execution times, respectively, are spent on accessing the external memory. Further-
more, under a 16-microphone setup, the memory impact is increased up to 55% and
71% of the total MC-BFP16-V4 and MC-BFP16-V6 execution times respectively. The
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Fig. 14. Execution time on all platforms under a 16-microphone setup.

Fig. 15. Speedup against the GPP-based approaches under an 16-microphone setup.

reason that the external memory access time is relatively longer in the Virtex6 imple-
mentations than in the Virtex4 ones is because the former process data at 200 MHz
instead of 100 MHz, however, both utilize the same external memory interface.

From the experiments conducted, we can draw the main conclusion that the external
memory interface can significantly affect the performance of reconfigurable BF sys-
tems. As was suggested by Figure 4, in the current implementation we have utilized a
single PLB to connect all peripherals, including the external memory controller. This
approach adds a setup penalty time for each burst access mode, thus introducing an
overhead to the memory accessing time. However, more efficient approaches can alle-
viate the slow external memory throughput and reduce the overall execution time. For
example, a possible solution could be to remove the external memory controller from
the common bus and develop a custom one that would connect all beamformers directly
to a multibank off-chip memory. This way, each beamformer could load data in parallel
from the external memory, thus reducing the memory load time when increasing the
number of input channels. Furthermore, audio data prefetching to internal buffers of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 19, Publication date: September 2013.



Custom Architecture for Multicore Audio Beamforming Systems 19:23

Fig. 16. Energy consumption of all processing platforms under an 8-microphone setup.

Fig. 17. Energy consumption of all processing platforms under a 16-microphone setup.

the next iteration while processing audio samples of the current iteration can reduce
even more the memory impact on the overall execution time.

Energy consumption. Performance is not the only parameter to be considered when
choosing a hardware platform for a BF system. Energy consumption is an additional
parameter that should also be taken into account. Although the Atom 330 processor in
most of the cases could not process all data within the required time limit, still it would
be useful to provide its energy consumption, since it could be used with BF applications
that do not require real-time processing. In order to evaluate the consumed energy from
each platform, we used

E = P · t, (6)
where E is the energy consumed during the time t, while applying power P. The
y-axis in Figure 16 and Figure 17 suggest the energy consumption by each processing
platform under an 8- and 16-microphone setup for different number of sources. Due to
the OpenMP annotations and the SSE2 extensions, the software execution utilized the
GPPs approximately to 95%, thus we can safely assume that they were processing data
at their peak power consumption. As can be observed, in every case the Core2 Duo-
based system consumes the most energy. Even though its peak power consumption is
65 Watts [Intel Corp. Core 2 Duo], the fact that it requires more time to process all data
compared to the MC-BFP16-V4 prototype results in excessive energy consumption. The
Core i3 has also a peak power consumption of 65 Watts [Intel Corp. Core i3], however, it
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processes data faster compared to the Core2 Duo, thus consumes less energy. The Atom
330 processor has a peak power consumption of 8 Watts [Intel Corp. Atom 330], which
is the least among all considered platforms. However, its slow data processing leads to
an energy consumption that in many cases is an order of magnitude higher compared
to the Virtex4-based approach. An interesting observation is that the Atom energy
consumption is significantly less compared to the Core i3 and Core2 Duo due to its very
low power. Finally, the MC-BFP16-V4 prototype, according to the Xilinx XPower utility
[Xilinx 2010b], requires approximately 8.6 Watts, thus resulting in more than an order
of magnitude less energy consumption compared to the Core2 Duo- and Core i3-based
approaches. This is confirmed by the charts in Figure 16 and Figure 17.

Comparison against related work. Direct comparison against related work is difficult,
since each system has its own design specifications. Moreover, to our best knowledge,
we provide the first architectural proposal for reconfigurable BF. Previous proposals
are mainly microarchitectural ones. In Yermeche et al. [2007], the authors utilize an
ADSP21262 DSP, which consumes up to 250 mA. Furthermore, the voltage supply of
ADSP21262 is 3.3 V [Analog Devices 2004], thus we can assume that the design re-
quires approximately 3.3 V·0.25 A = 0.825 W. In addition, according to the paper, the
ADSP21262 is 50% utilized when processing data from a two-microphones array at 48
KHz sampling rate, or alternatively 48000 samples/sec/input·2 inputs = 96000 sam-
ples/sec. Based on this, we can assume that 192000 samples/sec can be processed in
real time with 100% processor utilization, which means %192000/48000& = 4 sources
can be extracted in real time. Finally, in Yiu et al. [2008] the authors use four micro-
phones to record sound and perform beamforming using an FPGA. They have mapped
their design onto a V4SX55 FPGA and, according to the paper, every instance of the
proposed beamformer can process 43463 samples/sec, with up to seven instances fit-
ting into the largest V4SX FPGA family. Since the sampling frequency is 16 KHz,
%(43463·7)/16000& = 19 sources could be extracted in real time.

6. CONCLUSIONS
In this article, we presented a custom architecture for BF audio applications target-
ing FPGAs. The proposed architecture consists of 9 instructions, while the supporting
programming paradigm employs a logically shared, physically distributed memory hi-
erarchy. Our instructions allow customization and control of many system parameters,
such as the number of input channels and filters size, while not requiring any low-
level interaction with the hardware from the programmer. To evaluate our proposal,
we implemented our custom architecture as a multicore reconfigurable processor and
mapped it onto different FPGA families. We demonstrated through pseudocode that
our approach combines the software flexibility of GPPs with the faster computational
capabilities of the multicore platforms. Experimental results under different number
of input channels and acoustic sources scenarios suggest that employing FPGAs for
building the proposed BF audio systems leads to solutions that can extract in real time
more acoustic sources compared to GPPs. Finally, based on the processing time and the
power consumption of each considered platform, we evaluated their energy consump-
tion and found that Xilinx Virtex4-based implementations require approximately an
order of magnitude less energy compared to modern GPP-based BF systems.
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