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Abstract 

We present a general outline of the specialized computer al- 
gebra system GRCEc intended for symbolic calculations in 
the field of the gravitation theory, the classical field theory 
on a curved background, and the adjacent methods belong- 
ing to the differential geometry. The distinctive features of 
the GRCEc input language are exhibited and the notewor- 
thy elements of the system design are discussed. 

1 Introduction 

The computer algebra system GRCEc was designed to ad- 
dress a wide spectrum of possible applications to the grav- 
itation theory and the adjacent topics originated from the 
classical field theory on a curved space-time and the differ- 
ential geometry. 

Concerning the application field mentioned, it should be 
remembered that, since the early sixties, general relativity 
has been known as a promising field for successful applica- 
tion of computer algebra systems. A noteworthy develop- 
ment of this direction was stimulated, in particular, by the 
existence of a considerable number of important problems 
in the gravity theory, that  require involved symbolic ma- 
nipulations which computer algebra methods were usually 
developed to deal with. Compared with other approaches, 
computer algebra often proves to be especially convenient 
and efficient for tackling these problems. 

Nevertheless, in spite of considerable efforts by program- 
mers and system designers, which resulted in a series of 
packages (e.g., Mathematica/Mathtensor [1], Macsyma [2], 
SHEEP / CLASSI / Stensor [6], Reduce / Excalc [4], Maple / 
GRTensor [3] and others), the present state of affairs in the 
field of the application of the computer algebra to gravity 
theory seems on the whole to be far less brilliant than one 
might expect. 

In particular, one could not claim that there exists soft- 
ware which would be commonly accepted now as a satisfac- 
tory working tool fairly suitable for the majority of theo- 
rists, especially non-programmers, specialized in the gravity 
theory. Although the literature gives some evidence of suc- 
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cessful applications of symbolic manipulation packages in 
the gravity theory, one is under the general impression that  
computer algebra methods remain more of an enthusiasts' 
activity than a regular routine tool of current research. 

We do not intend to discuss why such a situation has 
arisen, but only limit ourselves by the statement that, in our 
opinion, the development of symbolic manipulation packages 
suitable for treating problems typical for classical field the- 
ory including general relativity still remains an important 
subject of applied programming. 

Several different approaches can be suggested for achiev- 
ing success in specialized scientific software design. A par- 
ticular one, which underlies the design of GRCEc , assumes 
that  one of the most important points is to provide a max- 
imally convenient interface which should be based on an 
immediately understandable input language. Furthermore, 
it is desirable for that language to be as close as possible 
to the one used for the description of the basic notions and 
relations in the framework of application field itself. 

As far as possible, a user must be released from the duty 
'to write a program' - -  at least, in the sense usually associ- 
ated with these words. Rather, a user is merely to describe 
the initial data in an immediately understandable form and 
then to specify a problem to be solved, operating mostly 
with 'common' words and expressions and more or less stan- 
dard mathematical notations. 

Of course, workable software should possess many other 
capabilities, such as, e.g., an implementation of the most 
important mathematical relations in the application field, 
providing the efficiency of the algorithms with reasonable 
run time on real jobs, portability of the source code (as well 
as the whole system), etc. These and other similar necessary 
objectives were also borne in mind during the development 
of GRCEc. 

On the other hand, such advanced facilities as a system 
of menus, graphic window interface and similar tools are 
not realized in GRCCEc yet (which is substantially connected 
with the current state of the background software utilized, 
see below). At the same time there should be no conflict 
between the two aspects, and a clear readable input lan- 
guage could be an important element of the advanced tools 
of system control. 

It seems worthwhile to make an additional remark here. 
There exists the computer algebra system by V.V. Zhyt- 
nikov [11] with almost identical name, GRG, and similar 
field of applications. The point is that  GRG and GRCCEc 
have grown from the same root which had been cultivated 
by a single team [10]. Having lost the possibility (though not 
the wish) to work together, we worked independently further 
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with our own branches of the initially common project. Now 
these systems are different. 

The source code of GRCEC amounts now to approxi- 
mately 1 Mb. The compiled binary code occupies about 
500 Kb. GRCEc is currently regarded as freely distr ibuted 
software. 

2 General characteristic of the system 

GRCEc is based on the general purpose computer algebra 
system Reduce developed by A. Hearn (see Refs. [4]). This 
system is extensively exploited for handling a wide variety 
of physical and applied mathematical  problems. 

The language chosen for the realization of GRCEc is how- 
ever not Rlisp, the basic language of the Reduce coding, but  
the STANDARD LISP dialect 1 supported in frames of the PSL 
(Portable Standard Lisp) package. At the same time the 
language used for the communication of a user with GRCEc 
is a product  of independent development. It closely refers 
to the application field and simulates at the same time the 
elements of the natural  language. 

An important  feature of the GRCEc system, which is in- 
herited from its base (PSL & Reduce), is a high degree of 
portability, being essentially the same as for Reduce itself 
(see Refs. [4] for the characteristic of Reduce's portabili ty).  
The OS-dependent component of GRCEc is very compact 
and the system is easy adjustable to a majori ty  of the pop- 
ular computer platforms including Unix workstations and 
personal computers. 

Generally speaking, GRCEc does not utilize the total  
scope of the Reduce facilities exploiting only (i) its algebraic 
processor, i.e. the routine performing transformations and 
simplifications of the general mathematical  expressions, (ii) 
the corresponding tools providing the control over the alge- 
braic processor, such as substi tut ion handling routines (en- 
abling one to realize a wide class of pa t te rn  matchings) and 
the flags handler (controlling Reduce's dynamic options), 
(iii) the routines realizing an output  of general mathematical  
expressions in a form convenient for immediate perception. 
Thus, being based on Reduce, GRCEc nevertheless is not 
actually inseparably linked to it. Of course GRCEc needs 
a PSL environment for its own run. At  the same time the 
manipulations with formulas could be in principle realized 
over another symbolic manipulat ion package which is able 
to provide a relevant interface with operations equivalent to 
functions (i)-(iii) listed above. 

In principle, one might split GRCEc into the following 
functional constituents: 

• the input  interface which is realized in a form of the 
interpreter  of the special language of problem specifi- 
cations; 

• a number of subpackages realizing a collection of math- 
ematical methods of modern differential geometry in- 
cluding the exterior forms calculus, the spinor alge- 
bra  and analysis, the  classical Riemannian geometry 
methods and some other complements which, in fact, 
enhance the s tandard  capabilities of Reduce's algebraic 
processor; 

• the collection of routines realizing the specific mathe- 
matical  relations taking place in the general relativity, 
the classical field theory, etc. 

1These  two l anguages  are bas ica l ly  equivalent .  However they  sup- 
por t  different  syn t axes  and  real ize  d i s t inc t  ways of process ing a source 
code, en ta i l i ng  some d i s t i nc t ions  in p rac t i ce  of the  cor responding  pro- 
g r a m m i n g  techniques .  

The system allows one to calculate or subject  to other 
processing more than a hundred so-called data objects mod- 
elling the basic notions of field theory in curved space-time 
and differential geometry. However GRCEc is not suited to 
the purpose of abstract index manipulations. All the work 
with da ta  objects with indices is carried out using, essen- 
tially, explicit sets of their components specified with respect 
to a definite gauge. 

3 Language of problem specifications 

Let us outline now the GRCEC input  interface as an ele- 
ment which often crucially affects the general est imation of 
a system by a user. 

The exhaustive description of the GRCEc language oc- 
cupies scores of pages of the Manual but  we hope to exhibit 
its main features by means of the commenting on a num- 
ber of examples of the typical GRCEc programs (the term 
problem specification is probably more adequate here and 
will be usually used below instead). The first example is the 
following. 

Example 1. 
1 Problem First_test. 
2 >>slang<< ~.> <-This is the file inset record<r, 
3 Data : 
4 declare COORDINATES x,y,zeta,zeta'; 
5 ABBREVIATIONS are c=(I+I*SQRT(3))/2, 
6 c '=  (1-I*SQRT ( 3 ) ) / 2  ; 
7 TETRAD elements are 
8 T0=d x + I * E * * ( - x )  d y ,  
9 Tl=d x - I*E**(-x)  d y,  

10 T2= E**(c*x) d z e t a  + I*E**(c '*x)  d z e t a ' ,  
11 T3 = E**(c*x) d z e t a  - I*E**(c '*x)  d z e t a ' ;  
12 end of d a t a .  

13 Instructions : 
14 find SPINOR CURVATURE; 
15 obtain and type VACUUM EINSTEIN EQUATIONS; 
16 classify UNDOTTED WEYL SPINOR; 
17 stop; 
18 end of instructions. 

19 Run ! 
(Remark: The enumeration on the left is not a part  of the 
code and was introduced for the sake of the reference con- 
venience alone). 

The above example illustrates a typical proper ty  of the 
GRCEc programs: a specialist in the gravity theory is usu- 
ally able to comprehend its purport  without additional elu- 
cidations - -  or, at worst, with the help of minimal ones. Of 
course, there are some designations such as 'SPINOR CURS 
VATURE', 'VACUUM EINSTEIN EQUATIONS', etc., whose precise 
meaning and concrete forms of representation are not auto- 
tactically manifest (although, in principle, these expressions 
are often referred to in the l i terature concerning the physi- 
cal field in question). However this is in fact such a special 
terminology which is a compulsory element of any more or 
less narrow scientific field and which is to be explained in a 
Manual or is handled by means of a sort of the 'HELP' facility. 

One can see that  the above problem specification is given 
in a form simulating the sequence of imperative sentences 
in English incorporated with a number of records coding 
the mathematical  expressions. I t  obviously comprises the 
specification o/the initial data (lines 3-12) and the indication 
what results have to be obtained (lines 13-18), given in the 
form of instructions. 

In turn, the coding of the mathematical  expressions dis- 
played in example 1 shows agreement with the major i ty  
of computer algebra systems (and originated mostly from 
Algol). In part icular it is rather  close to the correspond- 
ing Reducenotations. At the same t ime they are enhanced 



to provide an efficient and straightforward exterior harms 
representation. (The features of the ExcMc subpackage of 
Reduce dealing with exterior forms are not, strictly speak- 
ing, supported.) The practice amassed gives evidence that 
the approach realized is efficient and natural  in the present 
framework. 

In particular, the ' in line' record of the following tetrad 
of 1-forms 

8 0 = d x + i e - X d y ,  81 = d x - i e - ~ d y ,  
8 2 = eC*d¢÷ie~*d~ ,  8 3 = e C * d ¢ - i e e * d ~ .  

can be easily revealed in the lines 8-11 of example 1. Here 
x , y , ¢ ,~  are the coordinates, c = ½(1 + iv/3),~ = ½(1 - 
ivf3) are the abbreviated notations playing here the role of 
symbolic constants. (These data correspond to the exact 
solution of the vacuum Einstein equations described by the 
metric g = 280. 81 + 282 • 83, see Ref. [8], Eq. (10.14)). 

The processing which has to be carried out with the data 
specified is described in lines 14-16 of the example text, their 
purport requiring probably no separate comments. It seems 
worth noting only that  each of these three brief instructions 
invokes automatically a collection of sophisticated routines 
performing all the work and yielding an immediate result. 
It should be emphasized that  a user must not specify any 
formulae, describe the methods of the treating the relevant 
equations, etc. He or she simply indicates what is to be 
obtained and then draws an answer 2. 

Let us outline now a deeper level of the GRCEC language 
and discuss the main features of its syntax, adding in appro- 
priate cases the comments on the semantic as well. 

Although a GRCEC' problem specification usually looks 
like a free description, it actually exhibits a strict syntax 
structure. In particular each problem specification com- 
prises 

• the title (line 1 in example 1), which specifies the prob- 
lem name (the string ' F i r s t _ t e s t ' ) ,  

• the starting thrust 'I~UN! '3 (the last line) and 

• a collection of sections. 

There are two sections (apparent ones, there may also 
exist a hidden section) in example 1: the section of the initial 
DATA (lines 3-12) and the section of INSTRUCTIONS to be 
executed (lines 13-18). 

In its turn  every section is identified by the heading (lines 
3,13) and the conclusion (lines 12,18, respectively), A sec- 
tion body confined between them contains a number of para- 
graphs, each of them being finished by a semicolon 4. In 
example 1 each paragraph in the sections of DATA and IN4 
STRUCTIONS is disposed in a separate line. This is not nec- 
essary however and the admissible format of the problem 
specification is free. 

The set of the types of sections supported is fixed. Two of 
them (DATA and INSTRUCTIONS) have been mentioned above, 
and the others will be briefly characterized below. 

The section of REGIME SPECIFICATION controls some gen- 
eral global options. The following example of the section 
record 

2Of course, solving of a more complicated problem would require 
a more elaborated control over the system run. 

3The usage of the upper and lower case letters in keywords will be 
discussed below. 

4There is an exception: in the case of a shortened form of the 
instruction with the action 'TYPE' the question sign '?' is used instead; 
see example 2 below. 

Regime specification: 
set CLASSICAL FORMALISM; 
DIMENSION is 5; 

end of specification. 
contains the two paragraphs. They entail the picking out the 
standard formalism of the Riemannian geometry and fix the 
space-time dimension to the value 5 (which corresponds to 
the Kaluza-Klein type theories). 

Further, the problem specification may involve a section 
of SUBSTITUTIONS whose each paragraph describes certain 
substitution rules. The section represents an element of the 
pattern matching control facility of GI:tCEC and provides the 
corresponding data to the system. An example of the sec- 
tion of SUBSTITUTIONS with two substi tution rules is the 
following: 

S u b s t i t u t i o n s  : 
(1) SIN ( the ta )  *.2=1-COS ( the ta )  **2 ; 
(2) DF(rho,r)  =-rho**2 ; 
end  of s u b s t i t u t i o n s .  

(It is worth noting that  the second substi tution rule repre- 
sents in fact the differential equation d p / d r  = _ p 2  where 
p (rho) is so-called SCALAR, see section 5 below.) 

These substitution rules are activated by issuing the in- 
struction 
Excite substitutions (I), (2) ; 

which refers to the enumeration distributed over the section 
of 'SUBSTITUTIONS'. An arbitrary subset of the substi tution 
rules stockpiled may be simultaneously activated. Subse- 
quently, some of them may be cancelled out by means of an 
instruction with the action 'ABOLISH' supporting a similar 
syntax. 

[Another, 'dynamic' ,  way of implementing a substi tution 
rule is also provided for. Specifically, one may issue, for 
example, the instruction 
Let i*a*rho*C. C. (rho) = (C. C. (rho) -rho)/2 ; 

(which means the replacing i ap f i  --+ ½(fi - p)). Then the 
new paragraph 

(3) i*a*rho*C. C. (rho) = (C. C. ( r h o ) - r h o ) / 2  ; 
(automatically labelled by the next ordinal number) is added 
to the section of SUBSTITUTIONS (which is created in the case 
of its initial absence) and the instruction 'EXCITE SUBSTI.L 
TUTION (3)'  is automatically issued.] 

The next section of SAMPLES FOR COMPARISON comprises 
the mathematical expressions written down 'by hand'  in the 
form of assignments. They are intended for the comparisons 
with the results produced by GKCEC itself. Additionally, the 
replacing of the values generated by the system by equivalent 
but, generically, non-identical 'samples' may be carried out. 

The syntax of the paragraphs of the 'SAMPLES FOR COM4 
PARISDN' and 'DATA' sections essentially coincide but  only 
working assignments (lines 7-11 in example 1) rather than 
declarations (line 4, respectively) or foremost assignments 
(lines 5-6) are here allowed. In the case of the example 1, 
the record 
Samples for comparison: 
VOLUME element is 

VOL = -4.I d x /\ d y /\ d zeta /\ d zeta'; 
end of samples list. 

might be added to the problem specification. Then the in- 
struction 
Compare VOLUME with sample; 

makes the system determine whether the volume element, 
possessing the export name 'VOLUME' (and defined in our case 

2 3 as i O ° A 01 A 8 A 8 ), actually coincides with the expression 
shown above (specifically, - 4 i d x  A dy  A d¢ A d¢, in the 
standard notation). 



Practice gives evidence for the extreme usefulness of the 
above tool. It is especially convenient to use as samples the 
results of the preparatory system runs; this allows one to 
bring the data to be processed to the optimal form (perhaps 
with the help of some re-casting 'by hand') that is often dif- 
ficult to achieve due to the autonomous, by default, fashion 
of the mathematical transformations brought about by the 
system simplifier. 

The content of the 'NOTATIONS' section ensures the pos- 
sibility to modify so-called kernel identifiers of the data ob- 
jects. We have seen an instant of the kernel identifier in 
example 1: that is the one-symbol token 'T' which is used in 
lines 8-11 for the constructing the component identifiers TO, 
T1, T2, T3 constituting together the data object 'TETRAD'. 
Adding the record 
Not at i on: 

Theta denotes TETRAD; 
end of notations. 

to the problem specification, one may then refer to the 
TETRAD elements by means of the new component identifiers 
Theta0, The ta l , . . .  instead of TO, T1, etc. a 

An important  auxiliary tool of the supplementary termi- 
nology adjusting utilizes the content of so-called SLANG (or 
JARGON) section. It finds a lot of important applications in 
practice by virtue of its special role in simulating natural 
language in the system. 

SLANG section contains a number of records similar to the 
following ones: 

Notation ~ NOTATIONS, notations ~ NOTATIONS; 
are synonymous ; 

end ~ END, of & 0F, denotes & DENOTE 
are synonymous ; 

They establish so called restricted synonymy relations be- 
tween the tokens from each pair ~. Moreover, one may as- 
sociate a single term with an entire words sequence. For 
example, the following statements 

OBTAIN AND TYPE ~ O.and.t, 
VACUUM EINSTEIN EQUATIONS & V.E.EQ 

are synonymous ; 

allows one to shorten the lengthy instruction 'OBTAIN AND 
TYPE VACUUM EINSTEIN EQUATIONS' to ~0. and.t V.E.EQ'. 

Next, the supplementary terminology adjusting allows 
one to use the lower case or mixed versions of the keywords 
(the system core assumes just the usage of the upper case 
alphabet in all the keywords). The corresponding collection 
of the synonymy assignments is contained in a file supplied 
with the system. 

Specifically, the record '>>slang<<' in line 2 of exam- 
ple 1 represents so-called file inset. Its function is to in- 
sert the content of the file whose the name is pointed out 
(here ' s lang ' )  in the corresponding point of the text of prob- 
lem specification (whereas the very record of the file inset is 
removed) 7. The record '>>slang<<' just  ensures the imple- 
mentation of the additional lower case and mixed versions 
of the keywords eliciting them from the file ' s lang ' .  

In example 1 all the 'common' words therein involv- 
ing the lower case letters, except for the problem name 
T i r s t _ t e s t ' ,  the content of the long comment 'Z> <-This 
i s  . . .  <Z', (discriminated by the separators 'Z>' and '<Z'), 

5A distinct, so-called universal syntax rule is additionally pro- 
vided for the coding the indexed components. It assumes the separa- 
tion of the kernel names and the indices by the vertical bar characters, 
for example, Theta [ O, T I 0, RICCI I 1 [ 1-, etc. 

6More precisely, the stars o£ synonymy links are created (or, if 
necessary, destroyed). 

7Not only a single file name but a sequence of them might be put 
between the file inset separators '>>' and '<<', the corresponding path 
(or paths) being specified separately. 

and the mathematical formulae, are not the ' t rue '  keywords 
but are connected to the latter by means of the restricted 
synonymy relations provided by the standard SLANG descrip- 
tion s . 

We have listed all the top level syntax structures pro- 
vided for the problem specifications in framework of the 
GRCEC input language. Our examples give evidence for the 
sufficient clarity, flexibility and naturalness of the resulting 
records. In most cases their comprehension is immediate 
and does not requires an experience in the programming as 
such. On the other hand the GRCCEc language is sufficiently 
strict to prevent any ambiguity and pernicious confusions. 

4 Run control 

The next topic worth discussing concerns with the tools pro- 
vided for the control over the GRCCEc run. The instructions 
immediately serve that purpose and example 1 involves four 
of them (in lines 14-17). These refer, in turn,  to five names 
of the primitive actions: 'FIND', 'OBTAIN', 'TYPE', 'CLASSIFY' 
and ~STOP'. 

For the sake of the better comprehending the role of 
the instructions facility let us consider the following more 
demonstrative example. 

ExampJe 2. 
1 Problem Schwarzschild_vacuum. 
2 >>slang<< 
3 Data: 
4 declare COORDINATES u,r,theta,phi; 
5 declare CONSTANT m; 
6 TETRAD is TO=r*(d theta + I*SIN(theta) d phi), 
7 Ti=C.C. (TO), 
8 T2=d u, T3=2 d r -(1-2*m/r)d u; 
9 end of data. 
10 Instructions : 
II find and type S-FORMS,CONNECTION $ 

1"and SPINOR CURVATURE; 
12 unload; 
13 comment: the current state has been is saved$ 

Ton a hard disk; 
14 erase RICCI SPINOR; 
15 calculate RICCI SPINOR from DOTTED CURVATUREJ. 

'rand type it; 
16 erase C0NNECTION and DIFFERENTIALS 0F TETRAD; 
17 find CONNECTION from DIFFERENTIALS OF S-FORMS$ 

Tand type it; 
18 save and erase DIFFERENTIALS 0F S-FORMS$ 

Tand CONNECTION; 
19 find,type and erase CONNECTION; 
20 find CONNECTION by standard way and type it; 
21 erase CUKVATURE,DIFFERENTIALS 0F TETRAD and¢ 

TDIFFERENTIALS OF S-FORMS; 
22 calculate CURVATURE from spinor components$ 

I" and type it; 
23 find and type WEYL INVARIANTS; 
24 restore DIFFERENTIALS OF TETRAD and 4. 

TDIFFERENTIALS OF S-FORMS; 
25 obtain and type VACUUM EINSTEIN EQUATIONS; 
26 ALL KNOWN? 
27 pause ; 
28 empty BOX; 
29 save DIFFERENTIALS OF S-FORMS,VOLUME; 
30 erase ALL KNOWNi 
31 type ALL SAVED using data saved; 
32 stop; 
33 end of instructions. 
34 Run ! 

Note that the numerous instructions in the above ex- 
ample (each of them occupies a separate line with numbers 
from 11 to 32) do not follow any sophisticated idea and serve 

SOur out-of-line instances involve the records utilizing the both 
upper case and lower case symbols (that is usually done in a practice), 
whereas all the keywords in the main text are given using the upper 
case characters alone. 
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mostly for the illustrating sake. They exhibit the main, rules 
for the construction of the instruction stream. 

First of all, it has to be noted that GRCEc does not sup- 
port such control facilities as loops: if-then-else stateraents, 
goto operators, subroutines,  etc. Essentially, these are su- 
perfluous here. The instructions are merely performed one 
by one, successively. 

The executing of the instruction stream may however be 
interrupted. The point is that  the most preferable fashion 
of the GRCEc run is the so-called quasi-batch mode when 
all the data and a majority of instructions are prepared pre- 
liminarily in the form of a file containing the text of the 
corresponding problem specification. Its processing starts 
in a batch fashion but  the possibility to intervene the cal- 
culation is provided for. [The 'purely batch' and ':purely 
interactive' modes are also available.] 

Return to example 2. The instruction 'PAUSE' (line 27) 
causes just  a transfer of the control to the user's terminal. 
Another natural  takeover of a control occurs after the in- 
struction stream is exhausted (in particular, it is allowed 
to be empty from the very beginning if the 'INSTRUCTIONS' 
section is absent in the problem specification at all). 

Having received a control, a user may issue the next in- 
struction (or instructions) from the terminal, typing them 
on a keyboard in exactly the same form as they would be 
made out to the section of INSTRUCTIONS. Besides, using the 
file inset facility, a collection of the instructions, prepared 
previously in the form of a file, may be invoked. Further the 
control can be returned to the instruction stream, skipping 
preliminary a number of the current items, if necessary. 

After these general remarks, let us comment on the in- 
stances of instructions displayed in example 2. 

Each instruction record begins at an action name. These 
are 'FIND AND TYPE' in line II, 'UNLOAD' in line 12, 'COMMENT' 
in line 13, etc. [There is an exception from the above rule: 
the record 'ALL KNOWN?' (line 26) is the the shortened form 
of the 'TYPE ALL KNOWN' instruction. Here the (implicit) ac- 
tion name is 'TYPE', 'ALL KNOWN' is the data object name 
- -  the action target.] The second and third cases refer to 
primitive (i.e. indivisible) actions (similarly for the actions 
displayed in lines 14, 21, 24, etc.), whereas the first one rep- 
resents the name of a compound action. There are other 
compound actions in example 2: 'FIND, TYPE AND ERASE' 
(line 19), 'OBTAIN AND TYPE' (line 25) and others. 

Further, an action - -  primitive or compound - -  can be 
either 

directed one, i.e. applied to some data object - -  a target 
(an example: the action 'ERASE' in line 16 is applied to 
the data objects 'CONNECTION' and 'DIFFERENTIALS OF 
TETRAD'), 

or be able to receive some parameter(s); then it is called 
a parameterized action (examples: the action 'COMMENT' 
in line 13, the parameter is the sequence ' :  the sys$ 
tern s t a t e  . . .  '; the action 'EMPTY' in line 28, the pa- 
rameter is 'BOX'), 

or admit no target and parameters (examples: the action 
'UNLOAD' in line 12; the action 'PAUSE' in line 27; the 
action 'STOP' in line 32). 

Besides a target, a directed action may admit the parameters 
as well (examples: the action 'CALCULATE' in line 15, here the 
target is 'KICCI SPINOR', the parameter is 'FROM UNDOTTED 
CURVATURE'; the action 'TYPE' in line 31, here the target is 
~ALL SAVED', the parameter is 'USING DATA SAVED'). 

Executing instruction with compound action, each its 
primitive constituent is successively applied to the common 
target, if any, one after another. 

Next possibility provided for the instruction constructing 
is the so-called extra action which can be seen in lines 15, 
17, 20, 22. In all these cases the extra action name is 'TYPE'. 
Whereas the main action name is placed at the beginning 
of the instruction record, the extra action name stands at 
its end and is separated from the left by 'AND' and from the 
right by 'IT' or 'THEM '9. 

A reason of the introducing the extra action facility is the 
following. It makes sense to use it if the action in an instruc- 
tion consists of, say, two primitive actions (e.g. 'FIND' and 
'TYPE' for the instruction in line 15), and the first of them 
requires a parameter ('FROM DIFFERENTIALS OF S-FORMS') 
whereas the second action does not (or requires a different 
parameter). Using an extra action, it is easy to forward a 
proper parameter to a desirable action. [For the instruction 
example considered, the equivalent result is achieved by the 
following two subsequent instructions: 
Calculate RICCI SPINOR from UNDOTTED CURVATURE; 
type RICCI SPINOR; 
Incidentally, the second line may also be shortened to 

'RICCI SPINOR?'.] 

Now let us discuss the notion of data object. GRCEc 
supports the two their kinds: the primitive data objects 
and the composites. Primitive data objects constitute the 
basic class and each composite is simply a (predefined) col- 
lection of the primitive elements. Of course, the constituents 
of every composite were selected not spontaneously but  fit- 
ting for the geometrical or physical meaning of the primitive 
elements involved in it. 

From a viewpoint of the GRCEC language, a primitive 
data object is regarded as an indivisible entity although it 
may actually consist of a number of components accessible 
in principle via the component identifiers. This models the 
relations taking place between the corresponding mathemat-  
ical or physical origins of the notions in question. 

For example, the data object 'S-FORMS, CONNECTION AND 
SPINOK CURVATURE', referred to in line 11 (regarded as a con- 
stituent of an instruction, it is called a compound target), 
comprises just the three composites. In their turn  

S-FOKMS comprise {UNDOTTED S-FORMS, 
DOTTED S-FORMS}, 

CONNECTION comprises {UNDOTTED CONNECTION, 
DOTTED CONNECTION}, 

SPINOR comprises {UNDOTTED WEYL SPINOR, 
CURVATURE DOTTED WEYL SPINOR, RICCI 

SPINOR, SCALAR CURVATURE}. 

All the data objects on the right are already primitive (but 
each comprises several components except SCALAR CURVA.I. 
TURE). 

Next, let us consider line 12. The action 'UNLOAD' realizes 
the complete unloading the problem state into a disk file. 
All the data are written in the intrinsic representation that  
allows one further (during another session) to quickly load 
that  information, putt ing the system immediately to the 
state in which it was at the moment of the UNLOADing. 

The mentioned facility provides a simple and efficient 
tool for the maintaining a database which accumulates the 
results of the past calculations (in particular, elaborated 
ones made with the help of an eminently powerful com- 
puter). For example, the archives of the various charac- 
teristics of the physical fields (i.e. the exact solutions of the 
field equations) can be realized. Besides the results, such 

Sir  t h e r e  exis t s  a p a r a m e t e r  a f f ec t ed  t h e  e x t r a  a c t i o n  t h e n  i t  ( the  
p a r a m e t e r )  is p l aced  a t  t he  ve ry  e n d  of  t h e  i n s t r u c t i o n  r eco rd .  
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a database ensures the very 'programs' (problem specifica- 
tions) which automatically generate them. Moreover, the 
further calculations and transformations of data cart be car- 
ried out. 

Let us proceed with the example consideration. Line 13 
is simply a commenting instruction. The instruction in 
line 14 ERASEs the value of RICCI SPINOR while the instruc- 
tion in line 15 calculates it again but by another, non-stand- 
ard way FROM DOTTED CURVATURE (by default, calculation of 
RICCI SPINOR FROM UNDOTTED CURVATURE is assumed). Ad- 
ditionally, the result CALCULATEd is TYPEd on the terminal 
screen 1°. 

In line 18, the action 'SAVE' sends the values of the data 
objects 'DIFFERENTIALS 0F S-FOPd~IS' and 'CONNECTION' to 
the temporary depository - -  the BOX, a file on a hard disk 
- -  and then they are removed from RAM by means of the 
action 'ERASE'. (One of these data objects will be further 
RESTOREd by means of the instruction displayed in line 24). 

The next noteworthy remark concerns the line number 
20. By default, GRCEc tries by to minimize the work at- 
tempting to FIND (here, essentially, to calculate) the re- 
quested data objects from the data which is already known. 
Correspondingly, it may choose, if possible, the ways of cal- 
culations, deriving, for example, CONNECTION either FROM 
DIFFERENTIALS OF TETRAD or FROM DIFFERENTIALS OF S - 

FORMS depending on what of these data is currently avail- 
able. The option 'BY STANDARD WAY' forbids such a 'free' 
behaviour and forces the system to follow the primary cal- 
culation method. 

A useful example concerning the collective data address- 
ing is given in line 26. The data object named 'ALL KNOWN' is 
a representative of the class of so-called unfixed data objects 
whose content depends on the state of environment. The 
name 'ALL KNOWN' refers to all the ordinary ('fixed') data 
objects which are known at the moment when the instruc- 
tion is executed. Another unfixed data object is referred to 
in line 31. Of course, 'ALL SAVED' comprises all the 'fixed' 
data objects whose values have been SAVEd in the BOX 11. 

Line 26 also exhibits an example of the shortened form 
of the instruction with the action 'TYPE'. 

The implications of the 'PAUSE' action (line 27) have been 
already mentioned: it transfer the control to the user's ter- 
minal allowing him or her to issue further instructions from 
the keyboard (or invoke them from a file using a file inset 
facility). 

Finally, the parameter 'USING DATA SAVED' referred to in 
line 31 means the following: 

t. if the requested data object has no value at the mo- 
ment it is RESTOREd from the B0X; 

2. the action (in our example, to TYPE) is applied to it; 

3. the value previously RESTOREd is again ERASEd and the 
system returns to the state existed before the execution 
of the instruction. 

One can see that  the above abbreviated reference 'USING 
DATA SAVED' to the algorithm described fairly well charac- 
terizes its essence. 

In a more general context, this is just the feature which 
the language of the system control have to exhibit; its de- 
signing was permanently pursuing such a goal at least. 

l°and, by default, is copied to the hardcopy file 
ll'EMPTY BOX' instruction (line 28) just removes all the BOX content. 

5 Elements of design solutions 

Similarly to any sufficiently complex software, GRCEc in- 
volves a lot of algorithms playing important role but only 
few of them are worth, indeed, a separate discussion. We 
outline here a selection of topics concerning GRCCEc design 
which possibly could be of a certain common interest. 

It has been mentioned that GRCEc borrows the Reduce's 
algebraic processor capabilities to simplify the general math- 
ematical expressions, it does not carry out any simplifica- 
tions itself. However a number of routines has been devel- 
oped which might be regarded as complements of Reduce en- 
abling it to handle some specific data supported by GRCEc. 

For example, a routine which ensures the handling of the 
complex (as well as real or pure imaginary) variables and 
functions has been developed. Following the corresponding 
conventions, it may be implemented as a Reduce's subpack- 
age and is able in principle to function independently upon 
GRCEc. The facility in question realizes, for example, the 
transformation 

IM ((u+I*v) / (k**7*k'**3*a)) 
4 4 7 7 

- I*(RE(k )*u + IM(k )*v)/(a*k *k ~ ) 

and is able to properly comprehend the derivative 
DF(RE(rho') ,rho) = 1/2 

(Reduce itself yields 0 heren) ,  where u, v are DECLAREd 
REAL, a is DECLAREd pure IMAGINARY, and k ~ k ~, rho 
rho" are DECLAREd COMPLEX CONJUGATED; 'RE' and 'IM' are 
of course the real and imaginary part operators. 

An extremely useful and efficient original tool imple- 
mented in GRCEc is the so-called 'SCALARS' facility. (The 
term 'SCALARS' should be mixed up neither with the own 
Reduce's notion of scalars nor with its independent physical 
regarding originated from the field theory). It often notice- 
ably speeds up calculations and in certain cases provides 
the possibility of some data handling which the standard 
Reduce is unable to carry out (without additional elaborate 
programming at least). 

A SCALAR is the data structure which intrinsically in- 
corporates the two distinct data types: a variable and an 
unspecified function. [To be more precise, either SCALAR- 
function or its derivatives (all or several of them) may pos- 
sess a concrete analytical representations which are properly 
utilized (in particular, are automatically substituted in the 
relevant situations).] 

The SCALARS were introduced for the implementation of 
the chain derivative rule which is hard to realize within the 
basic Reduce's framework; further they gave rise to the other 
advanced applications. 

In order to demonstrate the way of the SCALARS treat- 
ment let us resort to a manifest example and 
DECLARE SCALARS U(x) ,Y(y) ,W(x,y,V,U) ; 

Here where x, y are the (previously DECLAREd) COORDINATES 
(i.e. independent variables). 

Then the differential D F(W) (for DECLAREd but unspeci- 
fied FUNCTION F) is automatically expanded to 
(DF(F(W) ,W)*DF(W: (x,y,V,U) ,x) 
+ DF(F(W),W)*DF(W: (x,y,V,U),U)*DF(U: (x),x)) d x+ 
(DF(F(W) ,W)*DF(W: (x,y,V,U) ,y) 
+ DF(F(W) ,W)*DF(W: (x,y,V,U),V)*DF(V: (y) ,y)) d y 

One can see that  the relevant derivatives are constructed 
here just in accordance with the chain differentiation rule. 
"Janus-like faces" characteristic of SCALARS are explicitly 
manifested here: each SCALAR essentially possesses the two 

12Certaln problems concerning with a proper handling the deriva- 
tives of RE's, IM's, C.C.'s, etc. were a primary motive for the develop- 
ing the routine in question. 
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representatives, a variable and a function; these are the pairs 
U and U: (x),  V and V: (y),  W and W: (x ,y ,V,U),  respectively. 
Specifically, under the action of the derivative operator the 
'expanded '  expression of the SCALAR with explicit arguments 
is used while in other cases a (distinct) separate identifier is 
involved. 

A distinguishing feature of the SCALAR data  type is the 
strictly tree-like structure of the variable dependencies im- 
plied, any loops being forbidden. Associating the branchings 
with SCALARS, all the leaves are claimed to be COORDINATES. 
Obeying these conditions, the tree of the mutual  SCALARS 
dependencies may be arbitrari ly complex. 

I t  can be seen tha t  the 'SCALAR' da ta  type suffices for the 
most applications when it is necessary to handle a ramified 
dependencies between a collection of variables. 

The SCALARS were not incorporated with Reduce' alge- 
braic processor. This facility functions as a separate collec- 
tion of routines. Its implementat ion is not straightforward, 
the main problem being as follows. For every mathemati-  
cal expression to be differentiated, it is necessary to know 
what variables belonging to the classes of COORDINATES and 
SCALARS it actually depends on, both  explicitly (for the de- 
pendence upon COORDINATES and SCALARS), and in to~lal (for 
the dependence upon COORDINATES) 13. Thus the dependence 
list of the mathemat ical  expression to be differentiated has 
to be preliminarily found. 

The determinat ion of the dependence list is realized by 
means of a twofold trick. At first, every mathematical  ex- 
pression (a function) is being associated with the overes- 
timating collection of the dependence lists. The lat ter  is 
formed by means of joining the dependence lists of the origi- 
nal expression constituents at the moment of the expression 
construction. Obviously, the dependence of the resulting 
expression (i.e. the collection of COORDINATES and SCALARS 
which are actually involved in the expression) may not ex- 
ceed the joint dependence of its constituents. On the other 
hand, after simplification, the dependence of the mathemat-  
ical expression may reduce, so joining the dependencies of 
the consti tuents yields generically the overestimating rather 
than actual dependence of the whole. 

At second, the routine providing determination of the ac- 
tual dependence lists was developed. They are constructed 
by means of exhausting the mentioned overestimating de- 
pendencies. 

In principle, the determinat ion of the dependence of a 
mathematical  expression upon the variables belonging to a 
certain class is realized by means of its recursive scanning 
and collecting the relevant variables. In addition, let a list 
of the variables yet not found be supported.  So, whenever 
the dependence upon a new variable is detected, t:his vari- 
able is added to the relevant dependence list and is removed 
from the list of variables yet not found. Then, start ing with 
the (supposedly) overestimating dependence list mentioned 
above, the procedure may stop as soon as the list of variables 
yet not found is exhausted. In a major i ty  of generic situa- 
tions, this trick allows one to avoid scanning of the whole 
mathemat ical  expression and noticeably saves t ime spent on 
determining the dependence lists. 

In any case, practice shows that  for non-trivial calcula- 
tions this t ime expenditure proves to be negligible compara- 
tively with the other expenditures,  especially time spent on 
simplifications. 

Let us give here a simple example which demonstrates 
more clearly a potential  power of SCALARS. Given the fol- 

13Thus the three lists of variables are to be actually supported. 

lowing collection of declarations and foremost assignments 

Declare COORDINATES r,th,ph,t; 
declare SCALARS x,y,z(r,th,ph), 

W,Wx,Wy,Wz,Wt, 
Wxx, Wyy, Wzz, Wit (x, y, z, t) ; 

SCALAR VALUES are z=r*COS(th), 
x=r*SIN (th) *COS (ph). y=r*SIN (th) *SIN (ph) ; 

SCALAR DERIVATIVES are DF(W,x)=Wx, DF(W,y)=Wy, 
DF(W,z)=Wz, DF (W,t)=Wt, 

DF (Wx,x) =Wxx, DF (Wy, y) =Wyy, 
DF(Wz,z)=Wzz, DF(Wt,t)=Wtt ; 

the instruction 
Eva lua te  I d (# d W)/VOL; 

(here '#'  denotes the Hodge star  operation, flat 4-dimension- 
al Minkowski metric is assumed) automatical ly  yields the 
answer 

- Wxx - Wyy - Wzz +Wtt 
i.e. the D'Alamber t ian  (0~t - 0 ~  - 0 ~  - O=z)W(x, y, z, 4). 
[The part ial  derivatives have been condensed here to the 
variables (which belong to the class of SCALARS) and this 
ability usually accelerates calculations and makes the results 
more manifest.] Since x, y, z are, essentially, the functions 
of the spherical coordinates, W is a 'function of functions' 
in fact. Hence in the above example the derivatives with 
respect to functions are calculated. 

Above, we have used some records denoting differential 
(exterior) forms. Let us now outline the basic features of 
the implementation of this impor tant  mathemat ical  notion 
in GRCEc. 

The exterior calculus subpackage is a collection of rou- 
tines, more or less independent,  which only exploits the al- 
gebraic processor of Reduce for the simplification of general 
mathematical  expressions. One of its impor tant  underly- 
ing elements is the intrinsic representation of the relevant 
da ta  which was specially designed to minimize the specific 
overheads connected with the basic operations with exterior 
forms: summation,  exterior multiplication, exterior deriva- 
tion, etc. Not going into the full details here, we would like 
to give some examples only. 

In particular,  the 1-form 
z d t h  + I*z*SIN(th)  d ph 

(see declarations of z,th,ph, etc. in the above example),  con- 
sisting of the two terms, is intrinsically represented by the 
following bracket structure: 
( ((z ((r th) z)) 4 (NIL . T)(T . T)) 

(((TIMES I z (SIN th))((r th) z)) 
T8 (NIL . T)(NIL . T)(T . T)) ) 

(s tandard LISP notations are used). Here (z ( ( r  th)  z ) )  and 
((TIMES I z (SIN t h ) )  ( ( r  th)  z ) )  are the so-called alge- 
braic lists. Their CAR elements, z ~ z and (TIMES I z (SIN 
t h ) )  ,-~ i z sin 8, respectively, are the very functions (coef- 
ficients in the form expansion with respect to the exterior 
products of the differentials of coordinates or the elements of 
the other basis). Next, CDKs ( ( ( r  th)  z ) )  (here coinciding 
for the both terms) are the lists of the short lists of the over- 
estimating dependences of the corresponding functions. In 
our case, they both consist of the only element ( ( r  th)  z) .  
This record means that  the corresponding expressions (cod- 
ing the functions r and i z sin 8) depend at  most on the C0~- 
ORDINATES r and th  in total, i.e. both  explicitly and via the 
possible dependence on SCALARS which ul t imately depend 
on COORDINATES, possibly, via the chain of other SCALARS. 
Removing the first element, the list (z) means tha t  the func- 
tions may explicitly depend on the SCALAR z alone. 

These data,  characterizing the dependencies of mathe-  
matical  expressions, is substantial  for a constructing the 
derivatives taking into account the mutual  connections of 
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SCALARS and COORDINATES and a proper applying the chain 
derivative rule. 

Next, CURs of the elements describing the terms, namely, 
(4 (NIL . T)(T . T)) and (8 (NIL . T)(NIL . T) (T . 
T)), encode the so-called ' ta i ls '  d O and d ¢, respectively. In 
general, a ' tail '  of an exterior M-form is a product d x  ~1 A 
. . . d x  ~y A . . . d x  ~M in holonomic mode or b ~1 A . . . b  ~y A 
. . .  b aM in anholonomic mode (b" is the covector basis). 

The e x p o n e n t i a t e d  ord ina l  n u m b e r s  in the beginning of 
the 'tail '  lists equal ~ 2 =y or ~ 2 =~ , where a j  or aj are, 
for holonomic mode, the ordinal numbers of the coordinates 
whose differentials are involved in the 'tail '  (aj)  or, for an- 
holonomic mode, the ordinal numbers of the cobasis ele- 
ments (a j ) ,  respectively. In our case the COORDINATE th 
possesses the ordinal number 2 and COORDINATE phi pos- 
sesses the ordinal number 3. Hence one obtains 4 and 8, 
respectively (the 'tail '  dO A d e  corresponds to the exponen- 
tiated ordinal number 4 + 8 = 12). 

Finally, the lists ((NIL . T)(T . T)) and ((NIL . T) 
(NIL . T)(T . T)) represent the b i t m a p s  of the 'tails' el- 
ements and their le f t  par i t ies .  In order to make this more 
transparent, let us re-cast these lists of pairs into the two 
sequences of CARs and CDRs of the pairs: 

{{o x} { e v e n  even  }} 
{{o o x}{eveneveneven}}  

Here 'o'(,,~ NIL) denotes the absence while ' ×'(-~ T) the pres- 
ence of the differential d x  ~ (the cobasis element b ~) in the 
sequence d x  1, d x 2 , .  . .  (b 1, b2, .  . ., respectively) which are in- 
volved in the 'tail ', the mark 'even' , ,~ NIL denotes the parity 
of the numbers of elements of the 'tail '  on the left to that 
point (' odd '  ,,~T). For example, the 'tail '  dO A d e  is coded as 

((NIL . T)(T . T)(T . NIL)) 
{{o x x} {even even  o d d } } .  

The outlined structure comprises the minimal informa- 
tion necessary for the immediate constructing the results of 
summation, exterior multiplication and exterior derivative 
on exterior forms. It allows one to realize the exterior cal- 
culus in an efficient and straightforward way. However only 
the explicit expansions with respect to some basis can be 
efficiently handled. 

5 Performance estimate and concluding remarks 

GRCEC system makes it possible to formulate physical prob- 
lems and generate their solutions with the help of a sim- 
ple language succeeding even in comparatively complicated 
cases. 

A majority of more or less complicated problems is too 
bulky to be satisfactorily described in a section of a journal 
article. There is however an example which can be discussed 
here in brief and which gives some evidence of the above 
property, at least within certain limits. This is the calcu- 
lation of the curvature of the so-called Bondi' metric (see 
P~efs. [9]). 

To that  end, let us consider the following fragments of 
the GRCEc output  

Example 3. 
. . . . . . . . . .  S o m e  aux i l i a ry  m e s s a g e s  are sk ipped  . . . . . . . . . .  

Problem Bondi_metric.  
DATA : 
declare C00RDINATES u, r, theta, phi; 
declare SCALARS U, V, B, G(u, r, %heta); 
TETRAD is T2 = -(E ** B) d u, 

T3 =(E ** B) *(d r + V d u / r ) ,  
TO r *(-(U * E ** G) d u 

1.+(E ** G) d t h e t a  
+(I * SIN(theta) )  d phi J. 

t /  E ** G)/ SQRT ( 2 ) ,  

T1 = r *(-(U * E ** G) d u 
1.+(E ** G) d theta 

-(I * SIN(theta)) d vhi 4, 
¢ /  E ** G ) /  SQRT ( 2 ) ;  

END OF DATA. 
INSTRUCTIONS : 

show time; 
find UNDOTTED SPINGR CURVATURE; 
type RICCI00", UWEYLO; 
quit; 

END OF INSTRUCTIONS. 
RUN 
. . . . . . . . . . . . . . . . .  S o m e  o u t p u t  is sk ipped  . . . . . . . . . . . . . . . . .  
Time is 1.6 s. 

==> find UNDOTTED SPINOR CURVATURE 
--> find UNDOTTED SPINOR CUKVATUKE 
SCALAR CURVATURE is not found in DATA section 
::::>SCALAR CURVATURE has been calculatedl++15.4 s. 
RICCI SPINOR is not found in DATA section 
::::>RICCI SPINOR has been calculated ~++16.8 s. 
UNDOTTED WEYL SPINOR is not found in DATA section 
: : : :>UNDOTTED WEYL SPINOR $ 

thas been calculated ~+-~7.8 s. 
==> type RICCIOO ~, UWEYLO 
RICCI SPINOR Component: 

¢ 
RICCI . = 4 

O0 
t 2 
t 2 * D F ( B : ( u , r , t h e t a ) , r )  - D F ( G : ( u , r , t h e t a ) , r )  *r 
1.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1" 2*B 
1. E *r 

UNDOTTED WEYL SPINOR Component: 

UWEYL = 
0 ¢ 

t (2*DF (B : (u, r, theta) , r) *DF (G : (u, r, theta), r) *r 
I++~ - DF(G:(u,r,theta),r,2)*r¢ 

t - 2*DF(G: (u,r,theta) ,r))/ 
2*B 

(E *r)  
==> quit 

Certainly, the above output does not require lengthy elu- 
cidations that is itself a good argument in favour of the ap- 
proach realized. 

The resulting simple equations described in example 3 
can be rewritten in a manifest usual form as 

e2B~06 = - G r  q- -2Br, e2BqJo = - G r r  -- -2Gr -I- B~G~.  
r r 

They play an important role in the theory of gravitational 
radiation [9]. The intermediate calculations leading to them 
are however rather involved. As far as we know, the equiva- 
lent result required about a half a year long calculation 'by 
hand'. 

It i s  worth noting that the equivalent problem (calcu- 
lations in Bondi' metric) traditionally served as one of the 
tests of the performance rate for computer algebra systems 
dealing with the gravitation theory (cf. Ref [12]). In frames 
of GRCEc, it corresponds to the calculation of the curvature 
2-forms. The above test yields the estimate of the relevant 
time expenditure; it amounts to 5 . 4 -  1.6 = 3.8 seconds (see 
the time labels in example 3). It should be mentioned that 
the calculation involves here the determination of the SCALAR 
CURVATURE besides the curvature 2-forms. The hardware 
characteristic are: IBM PC AT compatible computer with 
Am486DX4-S 120 MHz CPU (8 KB+256 KB cache), PCI 
BUS, 8 Mb RAM. A reference point useful for comparisons 
is provided by the time of the expanding (x+y+z)**100: Re- 
d u c e  consumes for this 18.6 seconds. 

A comparison test with the straightforward E x c a l c  code 
(written by V.V. Zhytnikov) which realizes the equivalent 
mathematical background may be of interest. The deter- 
mination of the curvature 2-forms for the Bondi' metric re- 
quires about 19 seconds, although it should be borne in mind 
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that about half of the work is superfluous here: roughly 
speaking, the relevant result is calculated together with its 
complex conjugation. In any case GRCCEc is more than twice 
faster than Excalc on this problem. 

GRCEc has not been entirely completed yet and will 
be further developed and amended. Nevertheless, practice 
amassed gives the evidence in favour of its efficiency and ex- 
cellent convenience for practical calculations. Hence, GRCEc 
may be estimated as a promising base for the developing the 
advanced efficient tool for the doing computer analysis of a 
wide scope of problems in important fields of the theoretical 
physics. 
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