
GRCEc: Computer Algebra System for Applications to Gravity Theory

S.I. T e r t y c h n i y t a n d I .G . O b u k h o v a $

t N a t i o n a l I n s t i t u t e o f P h y s i c a l - T e c h n i c a l

a n d R a d i o t e c h n i c a l M e a s u r e m e n t s

(V N I I F T R I)

M e n d e l e e v o , Russ i a , 141570

SMoscow S t a t e P e d a g o g i c a l Un ive r s i ty ,

P i r o g o v s k a y a 1, M o s c o w , Russ i a , 119882

Abstract

We present a general outline of the specialized computer al-
gebra system GRCEc intended for symbolic calculations in
the field of the gravitation theory, the classical field theory
on a curved background, and the adjacent methods belong-
ing to the differential geometry. The distinctive features of
the GRCEc input language are exhibited and the notewor-
thy elements of the system design are discussed.

1 Introduction

The computer algebra system GRCEc was designed to ad-
dress a wide spectrum of possible applications to the grav-
itation theory and the adjacent topics originated from the
classical field theory on a curved space-time and the differ-
ential geometry.

Concerning the application field mentioned, it should be
remembered that, since the early sixties, general relativity
has been known as a promising field for successful applica-
tion of computer algebra systems. A noteworthy develop-
ment of this direction was stimulated, in particular, by the
existence of a considerable number of important problems
in the gravity theory, that require involved symbolic ma-
nipulations which computer algebra methods were usually
developed to deal with. Compared with other approaches,
computer algebra often proves to be especially convenient
and efficient for tackling these problems.

Nevertheless, in spite of considerable efforts by program-
mers and system designers, which resulted in a series of
packages (e.g., Mathematica/Mathtensor [1], Macsyma [2],
SHEEP / CLASSI / Stensor [6], Reduce / Excalc [4], Maple /
GRTensor [3] and others), the present state of affairs in the
field of the application of the computer algebra to gravity
theory seems on the whole to be far less brilliant than one
might expect.

In particular, one could not claim that there exists soft-
ware which would be commonly accepted now as a satisfac-
tory working tool fairly suitable for the majority of theo-
rists, especially non-programmers, specialized in the gravity
theory. Although the literature gives some evidence of suc-

SIGSAM BULLETIN: Communications in Computer Algebra
volume 31, number 1, issue 119, March 1997. This article
has passed the review process described in "Formal Review
of Articles in the BULLETIN", which appeared in volume 30,
number 3, issue 117, pp. 2-3.

cessful applications of symbolic manipulation packages in
the gravity theory, one is under the general impression that
computer algebra methods remain more of an enthusiasts'
activity than a regular routine tool of current research.

We do not intend to discuss why such a situation has
arisen, but only limit ourselves by the statement that, in our
opinion, the development of symbolic manipulation packages
suitable for treating problems typical for classical field the-
ory including general relativity still remains an important
subject of applied programming.

Several different approaches can be suggested for achiev-
ing success in specialized scientific software design. A par-
ticular one, which underlies the design of GRCEc , assumes
that one of the most important points is to provide a max-
imally convenient interface which should be based on an
immediately understandable input language. Furthermore,
it is desirable for that language to be as close as possible
to the one used for the description of the basic notions and
relations in the framework of application field itself.

As far as possible, a user must be released from the duty
'to write a program' - - at least, in the sense usually associ-
ated with these words. Rather, a user is merely to describe
the initial data in an immediately understandable form and
then to specify a problem to be solved, operating mostly
with 'common' words and expressions and more or less stan-
dard mathematical notations.

Of course, workable software should possess many other
capabilities, such as, e.g., an implementation of the most
important mathematical relations in the application field,
providing the efficiency of the algorithms with reasonable
run time on real jobs, portability of the source code (as well
as the whole system), etc. These and other similar necessary
objectives were also borne in mind during the development
of GRCEc.

On the other hand, such advanced facilities as a system
of menus, graphic window interface and similar tools are
not realized in GRCCEc yet (which is substantially connected
with the current state of the background software utilized,
see below). At the same time there should be no conflict
between the two aspects, and a clear readable input lan-
guage could be an important element of the advanced tools
of system control.

It seems worthwhile to make an additional remark here.
There exists the computer algebra system by V.V. Zhyt-
nikov [11] with almost identical name, GRG, and similar
field of applications. The point is that GRG and GRCCEc
have grown from the same root which had been cultivated
by a single team [10]. Having lost the possibility (though not
the wish) to work together, we worked independently further

http://crossmark.crossref.org/dialog/?doi=10.1145%2F251586.251588&domain=pdf&date_stamp=1997-03-01

with our own branches of the initially common project. Now
these systems are different.

The source code of GRCEC amounts now to approxi-
mately 1 Mb. The compiled binary code occupies about
500 Kb. GRCEc is currently regarded as freely distr ibuted
software.

2 General characteristic of the system

GRCEc is based on the general purpose computer algebra
system Reduce developed by A. Hearn (see Refs. [4]). This
system is extensively exploited for handling a wide variety
of physical and applied mathematical problems.

The language chosen for the realization of GRCEc is how-
ever not Rlisp, the basic language of the Reduce coding, but
the STANDARD LISP dialect 1 supported in frames of the PSL
(Portable Standard Lisp) package. At the same time the
language used for the communication of a user with GRCEc
is a product of independent development. It closely refers
to the application field and simulates at the same time the
elements of the natural language.

An important feature of the GRCEc system, which is in-
herited from its base (PSL & Reduce), is a high degree of
portability, being essentially the same as for Reduce itself
(see Refs. [4] for the characteristic of Reduce's portabili ty).
The OS-dependent component of GRCEc is very compact
and the system is easy adjustable to a majori ty of the pop-
ular computer platforms including Unix workstations and
personal computers.

Generally speaking, GRCEc does not utilize the total
scope of the Reduce facilities exploiting only (i) its algebraic
processor, i.e. the routine performing transformations and
simplifications of the general mathematical expressions, (ii)
the corresponding tools providing the control over the alge-
braic processor, such as substi tut ion handling routines (en-
abling one to realize a wide class of pa t te rn matchings) and
the flags handler (controlling Reduce's dynamic options),
(iii) the routines realizing an output of general mathematical
expressions in a form convenient for immediate perception.
Thus, being based on Reduce, GRCEc nevertheless is not
actually inseparably linked to it. Of course GRCEc needs
a PSL environment for its own run. At the same time the
manipulations with formulas could be in principle realized
over another symbolic manipulat ion package which is able
to provide a relevant interface with operations equivalent to
functions (i)-(iii) listed above.

In principle, one might split GRCEc into the following
functional constituents:

• the input interface which is realized in a form of the
interpreter of the special language of problem specifi-
cations;

• a number of subpackages realizing a collection of math-
ematical methods of modern differential geometry in-
cluding the exterior forms calculus, the spinor alge-
bra and analysis, the classical Riemannian geometry
methods and some other complements which, in fact,
enhance the s tandard capabilities of Reduce's algebraic
processor;

• the collection of routines realizing the specific mathe-
matical relations taking place in the general relativity,
the classical field theory, etc.

1These two l anguages are bas ica l ly equivalent . However they sup-
por t different syn t axes and real ize d i s t inc t ways of process ing a source
code, en ta i l i ng some d i s t i nc t ions in p rac t i ce of the cor responding pro-
g r a m m i n g techniques .

The system allows one to calculate or subject to other
processing more than a hundred so-called data objects mod-
elling the basic notions of field theory in curved space-time
and differential geometry. However GRCEc is not suited to
the purpose of abstract index manipulations. All the work
with da ta objects with indices is carried out using, essen-
tially, explicit sets of their components specified with respect
to a definite gauge.

3 Language of problem specifications

Let us outline now the GRCEC input interface as an ele-
ment which often crucially affects the general est imation of
a system by a user.

The exhaustive description of the GRCEc language oc-
cupies scores of pages of the Manual but we hope to exhibit
its main features by means of the commenting on a num-
ber of examples of the typical GRCEc programs (the term
problem specification is probably more adequate here and
will be usually used below instead). The first example is the
following.

Example 1.
1 Problem First_test.
2 >>slang<< ~.> <-This is the file inset record<r,
3 Data :
4 declare COORDINATES x,y,zeta,zeta';
5 ABBREVIATIONS are c=(I+I*SQRT(3))/2,
6 c '= (1-I*SQRT (3)) / 2 ;
7 TETRAD elements are
8 T0=d x + I * E * * (- x) d y ,
9 Tl=d x - I*E**(-x) d y,

10 T2= E**(c*x) d z e t a + I*E**(c '*x) d z e t a ' ,
11 T3 = E**(c*x) d z e t a - I*E**(c '*x) d z e t a ' ;
12 end of d a t a .

13 Instructions :
14 find SPINOR CURVATURE;
15 obtain and type VACUUM EINSTEIN EQUATIONS;
16 classify UNDOTTED WEYL SPINOR;
17 stop;
18 end of instructions.

19 Run !
(Remark: The enumeration on the left is not a part of the
code and was introduced for the sake of the reference con-
venience alone).

The above example illustrates a typical proper ty of the
GRCEc programs: a specialist in the gravity theory is usu-
ally able to comprehend its purport without additional elu-
cidations - - or, at worst, with the help of minimal ones. Of
course, there are some designations such as 'SPINOR CURS
VATURE', 'VACUUM EINSTEIN EQUATIONS', etc., whose precise
meaning and concrete forms of representation are not auto-
tactically manifest (although, in principle, these expressions
are often referred to in the l i terature concerning the physi-
cal field in question). However this is in fact such a special
terminology which is a compulsory element of any more or
less narrow scientific field and which is to be explained in a
Manual or is handled by means of a sort of the 'HELP' facility.

One can see that the above problem specification is given
in a form simulating the sequence of imperative sentences
in English incorporated with a number of records coding
the mathematical expressions. I t obviously comprises the
specification o/the initial data (lines 3-12) and the indication
what results have to be obtained (lines 13-18), given in the
form of instructions.

In turn, the coding of the mathematical expressions dis-
played in example 1 shows agreement with the major i ty
of computer algebra systems (and originated mostly from
Algol). In part icular it is rather close to the correspond-
ing Reducenotations. At the same t ime they are enhanced

to provide an efficient and straightforward exterior harms
representation. (The features of the ExcMc subpackage of
Reduce dealing with exterior forms are not, strictly speak-
ing, supported.) The practice amassed gives evidence that
the approach realized is efficient and natural in the present
framework.

In particular, the ' in line' record of the following tetrad
of 1-forms

8 0 = d x + i e - X d y , 81 = d x - i e - ~ d y ,
8 2 = eC*d¢÷ie~*d~ , 8 3 = e C * d ¢ - i e e * d ~ .

can be easily revealed in the lines 8-11 of example 1. Here
x , y , ¢ ,~ are the coordinates, c = ½(1 + iv/3),~ = ½(1 -
ivf3) are the abbreviated notations playing here the role of
symbolic constants. (These data correspond to the exact
solution of the vacuum Einstein equations described by the
metric g = 280. 81 + 282 • 83, see Ref. [8], Eq. (10.14)).

The processing which has to be carried out with the data
specified is described in lines 14-16 of the example text, their
purport requiring probably no separate comments. It seems
worth noting only that each of these three brief instructions
invokes automatically a collection of sophisticated routines
performing all the work and yielding an immediate result.
It should be emphasized that a user must not specify any
formulae, describe the methods of the treating the relevant
equations, etc. He or she simply indicates what is to be
obtained and then draws an answer 2.

Let us outline now a deeper level of the GRCEC language
and discuss the main features of its syntax, adding in appro-
priate cases the comments on the semantic as well.

Although a GRCEC' problem specification usually looks
like a free description, it actually exhibits a strict syntax
structure. In particular each problem specification com-
prises

• the title (line 1 in example 1), which specifies the prob-
lem name (the string ' F i r s t _ t e s t ') ,

• the starting thrust 'I~UN! '3 (the last line) and

• a collection of sections.

There are two sections (apparent ones, there may also
exist a hidden section) in example 1: the section of the initial
DATA (lines 3-12) and the section of INSTRUCTIONS to be
executed (lines 13-18).

In its turn every section is identified by the heading (lines
3,13) and the conclusion (lines 12,18, respectively), A sec-
tion body confined between them contains a number of para-
graphs, each of them being finished by a semicolon 4. In
example 1 each paragraph in the sections of DATA and IN4
STRUCTIONS is disposed in a separate line. This is not nec-
essary however and the admissible format of the problem
specification is free.

The set of the types of sections supported is fixed. Two of
them (DATA and INSTRUCTIONS) have been mentioned above,
and the others will be briefly characterized below.

The section of REGIME SPECIFICATION controls some gen-
eral global options. The following example of the section
record

2Of course, solving of a more complicated problem would require
a more elaborated control over the system run.

3The usage of the upper and lower case letters in keywords will be
discussed below.

4There is an exception: in the case of a shortened form of the
instruction with the action 'TYPE' the question sign '?' is used instead;
see example 2 below.

Regime specification:
set CLASSICAL FORMALISM;
DIMENSION is 5;

end of specification.
contains the two paragraphs. They entail the picking out the
standard formalism of the Riemannian geometry and fix the
space-time dimension to the value 5 (which corresponds to
the Kaluza-Klein type theories).

Further, the problem specification may involve a section
of SUBSTITUTIONS whose each paragraph describes certain
substitution rules. The section represents an element of the
pattern matching control facility of GI:tCEC and provides the
corresponding data to the system. An example of the sec-
tion of SUBSTITUTIONS with two substi tution rules is the
following:

S u b s t i t u t i o n s :
(1) SIN (the ta) *.2=1-COS (the ta) **2 ;
(2) DF(rho,r) =-rho**2 ;
end of s u b s t i t u t i o n s .

(It is worth noting that the second substi tution rule repre-
sents in fact the differential equation d p / d r = _ p 2 where
p (rho) is so-called SCALAR, see section 5 below.)

These substitution rules are activated by issuing the in-
struction
Excite substitutions (I), (2) ;

which refers to the enumeration distributed over the section
of 'SUBSTITUTIONS'. An arbitrary subset of the substi tution
rules stockpiled may be simultaneously activated. Subse-
quently, some of them may be cancelled out by means of an
instruction with the action 'ABOLISH' supporting a similar
syntax.

[Another, 'dynamic' , way of implementing a substi tution
rule is also provided for. Specifically, one may issue, for
example, the instruction
Let i*a*rho*C. C. (rho) = (C. C. (rho) -rho)/2 ;

(which means the replacing i ap f i --+ ½(fi - p)). Then the
new paragraph

(3) i*a*rho*C. C. (rho) = (C. C. (r h o) - r h o) / 2 ;
(automatically labelled by the next ordinal number) is added
to the section of SUBSTITUTIONS (which is created in the case
of its initial absence) and the instruction 'EXCITE SUBSTI.L
TUTION (3)' is automatically issued.]

The next section of SAMPLES FOR COMPARISON comprises
the mathematical expressions written down 'by hand' in the
form of assignments. They are intended for the comparisons
with the results produced by GKCEC itself. Additionally, the
replacing of the values generated by the system by equivalent
but, generically, non-identical 'samples' may be carried out.

The syntax of the paragraphs of the 'SAMPLES FOR COM4
PARISDN' and 'DATA' sections essentially coincide but only
working assignments (lines 7-11 in example 1) rather than
declarations (line 4, respectively) or foremost assignments
(lines 5-6) are here allowed. In the case of the example 1,
the record
Samples for comparison:
VOLUME element is

VOL = -4.I d x /\ d y /\ d zeta /\ d zeta';
end of samples list.

might be added to the problem specification. Then the in-
struction
Compare VOLUME with sample;

makes the system determine whether the volume element,
possessing the export name 'VOLUME' (and defined in our case

2 3 as i O ° A 01 A 8 A 8), actually coincides with the expression
shown above (specifically, - 4 i d x A dy A d¢ A d¢, in the
standard notation).

Practice gives evidence for the extreme usefulness of the
above tool. It is especially convenient to use as samples the
results of the preparatory system runs; this allows one to
bring the data to be processed to the optimal form (perhaps
with the help of some re-casting 'by hand') that is often dif-
ficult to achieve due to the autonomous, by default, fashion
of the mathematical transformations brought about by the
system simplifier.

The content of the 'NOTATIONS' section ensures the pos-
sibility to modify so-called kernel identifiers of the data ob-
jects. We have seen an instant of the kernel identifier in
example 1: that is the one-symbol token 'T' which is used in
lines 8-11 for the constructing the component identifiers TO,
T1, T2, T3 constituting together the data object 'TETRAD'.
Adding the record
Not at i on:

Theta denotes TETRAD;
end of notations.

to the problem specification, one may then refer to the
TETRAD elements by means of the new component identifiers
Theta0, The ta l , . . . instead of TO, T1, etc. a

An important auxiliary tool of the supplementary termi-
nology adjusting utilizes the content of so-called SLANG (or
JARGON) section. It finds a lot of important applications in
practice by virtue of its special role in simulating natural
language in the system.

SLANG section contains a number of records similar to the
following ones:

Notation ~ NOTATIONS, notations ~ NOTATIONS;
are synonymous ;

end ~ END, of & 0F, denotes & DENOTE
are synonymous ;

They establish so called restricted synonymy relations be-
tween the tokens from each pair ~. Moreover, one may as-
sociate a single term with an entire words sequence. For
example, the following statements

OBTAIN AND TYPE ~ O.and.t,
VACUUM EINSTEIN EQUATIONS & V.E.EQ

are synonymous ;

allows one to shorten the lengthy instruction 'OBTAIN AND
TYPE VACUUM EINSTEIN EQUATIONS' to ~0. and.t V.E.EQ'.

Next, the supplementary terminology adjusting allows
one to use the lower case or mixed versions of the keywords
(the system core assumes just the usage of the upper case
alphabet in all the keywords). The corresponding collection
of the synonymy assignments is contained in a file supplied
with the system.

Specifically, the record '>>slang<<' in line 2 of exam-
ple 1 represents so-called file inset. Its function is to in-
sert the content of the file whose the name is pointed out
(here ' s lang ') in the corresponding point of the text of prob-
lem specification (whereas the very record of the file inset is
removed) 7. The record '>>slang<<' just ensures the imple-
mentation of the additional lower case and mixed versions
of the keywords eliciting them from the file ' s lang ' .

In example 1 all the 'common' words therein involv-
ing the lower case letters, except for the problem name
T i r s t _ t e s t ' , the content of the long comment 'Z> <-This
i s . . . <Z', (discriminated by the separators 'Z>' and '<Z'),

5A distinct, so-called universal syntax rule is additionally pro-
vided for the coding the indexed components. It assumes the separa-
tion of the kernel names and the indices by the vertical bar characters,
for example, Theta [O, T I 0, RICCI I 1 [1-, etc.

6More precisely, the stars o£ synonymy links are created (or, if
necessary, destroyed).

7Not only a single file name but a sequence of them might be put
between the file inset separators '>>' and '<<', the corresponding path
(or paths) being specified separately.

and the mathematical formulae, are not the ' t rue ' keywords
but are connected to the latter by means of the restricted
synonymy relations provided by the standard SLANG descrip-
tion s .

We have listed all the top level syntax structures pro-
vided for the problem specifications in framework of the
GRCEC input language. Our examples give evidence for the
sufficient clarity, flexibility and naturalness of the resulting
records. In most cases their comprehension is immediate
and does not requires an experience in the programming as
such. On the other hand the GRCCEc language is sufficiently
strict to prevent any ambiguity and pernicious confusions.

4 Run control

The next topic worth discussing concerns with the tools pro-
vided for the control over the GRCCEc run. The instructions
immediately serve that purpose and example 1 involves four
of them (in lines 14-17). These refer, in turn, to five names
of the primitive actions: 'FIND', 'OBTAIN', 'TYPE', 'CLASSIFY'
and ~STOP'.

For the sake of the better comprehending the role of
the instructions facility let us consider the following more
demonstrative example.

ExampJe 2.
1 Problem Schwarzschild_vacuum.
2 >>slang<<
3 Data:
4 declare COORDINATES u,r,theta,phi;
5 declare CONSTANT m;
6 TETRAD is TO=r*(d theta + I*SIN(theta) d phi),
7 Ti=C.C. (TO),
8 T2=d u, T3=2 d r -(1-2*m/r)d u;
9 end of data.
10 Instructions :
II find and type S-FORMS,CONNECTION $

1"and SPINOR CURVATURE;
12 unload;
13 comment: the current state has been is saved$

Ton a hard disk;
14 erase RICCI SPINOR;
15 calculate RICCI SPINOR from DOTTED CURVATUREJ.

'rand type it;
16 erase C0NNECTION and DIFFERENTIALS 0F TETRAD;
17 find CONNECTION from DIFFERENTIALS OF S-FORMS$

Tand type it;
18 save and erase DIFFERENTIALS 0F S-FORMS$

Tand CONNECTION;
19 find,type and erase CONNECTION;
20 find CONNECTION by standard way and type it;
21 erase CUKVATURE,DIFFERENTIALS 0F TETRAD and¢

TDIFFERENTIALS OF S-FORMS;
22 calculate CURVATURE from spinor components$

I" and type it;
23 find and type WEYL INVARIANTS;
24 restore DIFFERENTIALS OF TETRAD and 4.

TDIFFERENTIALS OF S-FORMS;
25 obtain and type VACUUM EINSTEIN EQUATIONS;
26 ALL KNOWN?
27 pause ;
28 empty BOX;
29 save DIFFERENTIALS OF S-FORMS,VOLUME;
30 erase ALL KNOWNi
31 type ALL SAVED using data saved;
32 stop;
33 end of instructions.
34 Run !

Note that the numerous instructions in the above ex-
ample (each of them occupies a separate line with numbers
from 11 to 32) do not follow any sophisticated idea and serve

SOur out-of-line instances involve the records utilizing the both
upper case and lower case symbols (that is usually done in a practice),
whereas all the keywords in the main text are given using the upper
case characters alone.

I0

mostly for the illustrating sake. They exhibit the main, rules
for the construction of the instruction stream.

First of all, it has to be noted that GRCEc does not sup-
port such control facilities as loops: if-then-else stateraents,
goto operators, subroutines, etc. Essentially, these are su-
perfluous here. The instructions are merely performed one
by one, successively.

The executing of the instruction stream may however be
interrupted. The point is that the most preferable fashion
of the GRCEc run is the so-called quasi-batch mode when
all the data and a majority of instructions are prepared pre-
liminarily in the form of a file containing the text of the
corresponding problem specification. Its processing starts
in a batch fashion but the possibility to intervene the cal-
culation is provided for. [The 'purely batch' and ':purely
interactive' modes are also available.]

Return to example 2. The instruction 'PAUSE' (line 27)
causes just a transfer of the control to the user's terminal.
Another natural takeover of a control occurs after the in-
struction stream is exhausted (in particular, it is allowed
to be empty from the very beginning if the 'INSTRUCTIONS'
section is absent in the problem specification at all).

Having received a control, a user may issue the next in-
struction (or instructions) from the terminal, typing them
on a keyboard in exactly the same form as they would be
made out to the section of INSTRUCTIONS. Besides, using the
file inset facility, a collection of the instructions, prepared
previously in the form of a file, may be invoked. Further the
control can be returned to the instruction stream, skipping
preliminary a number of the current items, if necessary.

After these general remarks, let us comment on the in-
stances of instructions displayed in example 2.

Each instruction record begins at an action name. These
are 'FIND AND TYPE' in line II, 'UNLOAD' in line 12, 'COMMENT'
in line 13, etc. [There is an exception from the above rule:
the record 'ALL KNOWN?' (line 26) is the the shortened form
of the 'TYPE ALL KNOWN' instruction. Here the (implicit) ac-
tion name is 'TYPE', 'ALL KNOWN' is the data object name
- - the action target.] The second and third cases refer to
primitive (i.e. indivisible) actions (similarly for the actions
displayed in lines 14, 21, 24, etc.), whereas the first one rep-
resents the name of a compound action. There are other
compound actions in example 2: 'FIND, TYPE AND ERASE'
(line 19), 'OBTAIN AND TYPE' (line 25) and others.

Further, an action - - primitive or compound - - can be
either

directed one, i.e. applied to some data object - - a target
(an example: the action 'ERASE' in line 16 is applied to
the data objects 'CONNECTION' and 'DIFFERENTIALS OF
TETRAD'),

or be able to receive some parameter(s); then it is called
a parameterized action (examples: the action 'COMMENT'
in line 13, the parameter is the sequence ' : the sys$
tern s t a t e . . . '; the action 'EMPTY' in line 28, the pa-
rameter is 'BOX'),

or admit no target and parameters (examples: the action
'UNLOAD' in line 12; the action 'PAUSE' in line 27; the
action 'STOP' in line 32).

Besides a target, a directed action may admit the parameters
as well (examples: the action 'CALCULATE' in line 15, here the
target is 'KICCI SPINOR', the parameter is 'FROM UNDOTTED
CURVATURE'; the action 'TYPE' in line 31, here the target is
~ALL SAVED', the parameter is 'USING DATA SAVED').

Executing instruction with compound action, each its
primitive constituent is successively applied to the common
target, if any, one after another.

Next possibility provided for the instruction constructing
is the so-called extra action which can be seen in lines 15,
17, 20, 22. In all these cases the extra action name is 'TYPE'.
Whereas the main action name is placed at the beginning
of the instruction record, the extra action name stands at
its end and is separated from the left by 'AND' and from the
right by 'IT' or 'THEM '9.

A reason of the introducing the extra action facility is the
following. It makes sense to use it if the action in an instruc-
tion consists of, say, two primitive actions (e.g. 'FIND' and
'TYPE' for the instruction in line 15), and the first of them
requires a parameter ('FROM DIFFERENTIALS OF S-FORMS')
whereas the second action does not (or requires a different
parameter). Using an extra action, it is easy to forward a
proper parameter to a desirable action. [For the instruction
example considered, the equivalent result is achieved by the
following two subsequent instructions:
Calculate RICCI SPINOR from UNDOTTED CURVATURE;
type RICCI SPINOR;
Incidentally, the second line may also be shortened to

'RICCI SPINOR?'.]

Now let us discuss the notion of data object. GRCEc
supports the two their kinds: the primitive data objects
and the composites. Primitive data objects constitute the
basic class and each composite is simply a (predefined) col-
lection of the primitive elements. Of course, the constituents
of every composite were selected not spontaneously but fit-
ting for the geometrical or physical meaning of the primitive
elements involved in it.

From a viewpoint of the GRCEC language, a primitive
data object is regarded as an indivisible entity although it
may actually consist of a number of components accessible
in principle via the component identifiers. This models the
relations taking place between the corresponding mathemat-
ical or physical origins of the notions in question.

For example, the data object 'S-FORMS, CONNECTION AND
SPINOK CURVATURE', referred to in line 11 (regarded as a con-
stituent of an instruction, it is called a compound target),
comprises just the three composites. In their turn

S-FOKMS comprise {UNDOTTED S-FORMS,
DOTTED S-FORMS},

CONNECTION comprises {UNDOTTED CONNECTION,
DOTTED CONNECTION},

SPINOR comprises {UNDOTTED WEYL SPINOR,
CURVATURE DOTTED WEYL SPINOR, RICCI

SPINOR, SCALAR CURVATURE}.

All the data objects on the right are already primitive (but
each comprises several components except SCALAR CURVA.I.
TURE).

Next, let us consider line 12. The action 'UNLOAD' realizes
the complete unloading the problem state into a disk file.
All the data are written in the intrinsic representation that
allows one further (during another session) to quickly load
that information, putt ing the system immediately to the
state in which it was at the moment of the UNLOADing.

The mentioned facility provides a simple and efficient
tool for the maintaining a database which accumulates the
results of the past calculations (in particular, elaborated
ones made with the help of an eminently powerful com-
puter). For example, the archives of the various charac-
teristics of the physical fields (i.e. the exact solutions of the
field equations) can be realized. Besides the results, such

Sir t h e r e exis t s a p a r a m e t e r a f f ec t ed t h e e x t r a a c t i o n t h e n i t (the
p a r a m e t e r) is p l aced a t t he ve ry e n d of t h e i n s t r u c t i o n r eco rd .

11

a database ensures the very 'programs' (problem specifica-
tions) which automatically generate them. Moreover, the
further calculations and transformations of data cart be car-
ried out.

Let us proceed with the example consideration. Line 13
is simply a commenting instruction. The instruction in
line 14 ERASEs the value of RICCI SPINOR while the instruc-
tion in line 15 calculates it again but by another, non-stand-
ard way FROM DOTTED CURVATURE (by default, calculation of
RICCI SPINOR FROM UNDOTTED CURVATURE is assumed). Ad-
ditionally, the result CALCULATEd is TYPEd on the terminal
screen 1°.

In line 18, the action 'SAVE' sends the values of the data
objects 'DIFFERENTIALS 0F S-FOPd~IS' and 'CONNECTION' to
the temporary depository - - the BOX, a file on a hard disk
- - and then they are removed from RAM by means of the
action 'ERASE'. (One of these data objects will be further
RESTOREd by means of the instruction displayed in line 24).

The next noteworthy remark concerns the line number
20. By default, GRCEc tries by to minimize the work at-
tempting to FIND (here, essentially, to calculate) the re-
quested data objects from the data which is already known.
Correspondingly, it may choose, if possible, the ways of cal-
culations, deriving, for example, CONNECTION either FROM
DIFFERENTIALS OF TETRAD or FROM DIFFERENTIALS OF S -

FORMS depending on what of these data is currently avail-
able. The option 'BY STANDARD WAY' forbids such a 'free'
behaviour and forces the system to follow the primary cal-
culation method.

A useful example concerning the collective data address-
ing is given in line 26. The data object named 'ALL KNOWN' is
a representative of the class of so-called unfixed data objects
whose content depends on the state of environment. The
name 'ALL KNOWN' refers to all the ordinary ('fixed') data
objects which are known at the moment when the instruc-
tion is executed. Another unfixed data object is referred to
in line 31. Of course, 'ALL SAVED' comprises all the 'fixed'
data objects whose values have been SAVEd in the BOX 11.

Line 26 also exhibits an example of the shortened form
of the instruction with the action 'TYPE'.

The implications of the 'PAUSE' action (line 27) have been
already mentioned: it transfer the control to the user's ter-
minal allowing him or her to issue further instructions from
the keyboard (or invoke them from a file using a file inset
facility).

Finally, the parameter 'USING DATA SAVED' referred to in
line 31 means the following:

t. if the requested data object has no value at the mo-
ment it is RESTOREd from the B0X;

2. the action (in our example, to TYPE) is applied to it;

3. the value previously RESTOREd is again ERASEd and the
system returns to the state existed before the execution
of the instruction.

One can see that the above abbreviated reference 'USING
DATA SAVED' to the algorithm described fairly well charac-
terizes its essence.

In a more general context, this is just the feature which
the language of the system control have to exhibit; its de-
signing was permanently pursuing such a goal at least.

l°and, by default, is copied to the hardcopy file
ll'EMPTY BOX' instruction (line 28) just removes all the BOX content.

5 Elements of design solutions

Similarly to any sufficiently complex software, GRCEc in-
volves a lot of algorithms playing important role but only
few of them are worth, indeed, a separate discussion. We
outline here a selection of topics concerning GRCCEc design
which possibly could be of a certain common interest.

It has been mentioned that GRCEc borrows the Reduce's
algebraic processor capabilities to simplify the general math-
ematical expressions, it does not carry out any simplifica-
tions itself. However a number of routines has been devel-
oped which might be regarded as complements of Reduce en-
abling it to handle some specific data supported by GRCEc.

For example, a routine which ensures the handling of the
complex (as well as real or pure imaginary) variables and
functions has been developed. Following the corresponding
conventions, it may be implemented as a Reduce's subpack-
age and is able in principle to function independently upon
GRCEc. The facility in question realizes, for example, the
transformation

IM ((u+I*v) / (k**7*k'**3*a))
4 4 7 7

- I*(RE(k)*u + IM(k)*v)/(a*k *k ~)

and is able to properly comprehend the derivative
DF(RE(rho') ,rho) = 1/2

(Reduce itself yields 0 heren) , where u, v are DECLAREd
REAL, a is DECLAREd pure IMAGINARY, and k ~ k ~, rho
rho" are DECLAREd COMPLEX CONJUGATED; 'RE' and 'IM' are
of course the real and imaginary part operators.

An extremely useful and efficient original tool imple-
mented in GRCEc is the so-called 'SCALARS' facility. (The
term 'SCALARS' should be mixed up neither with the own
Reduce's notion of scalars nor with its independent physical
regarding originated from the field theory). It often notice-
ably speeds up calculations and in certain cases provides
the possibility of some data handling which the standard
Reduce is unable to carry out (without additional elaborate
programming at least).

A SCALAR is the data structure which intrinsically in-
corporates the two distinct data types: a variable and an
unspecified function. [To be more precise, either SCALAR-
function or its derivatives (all or several of them) may pos-
sess a concrete analytical representations which are properly
utilized (in particular, are automatically substituted in the
relevant situations).]

The SCALARS were introduced for the implementation of
the chain derivative rule which is hard to realize within the
basic Reduce's framework; further they gave rise to the other
advanced applications.

In order to demonstrate the way of the SCALARS treat-
ment let us resort to a manifest example and
DECLARE SCALARS U(x) ,Y(y) ,W(x,y,V,U) ;

Here where x, y are the (previously DECLAREd) COORDINATES
(i.e. independent variables).

Then the differential D F(W) (for DECLAREd but unspeci-
fied FUNCTION F) is automatically expanded to
(DF(F(W) ,W)*DF(W: (x,y,V,U) ,x)
+ DF(F(W),W)*DF(W: (x,y,V,U),U)*DF(U: (x),x)) d x+
(DF(F(W) ,W)*DF(W: (x,y,V,U) ,y)
+ DF(F(W) ,W)*DF(W: (x,y,V,U),V)*DF(V: (y) ,y)) d y

One can see that the relevant derivatives are constructed
here just in accordance with the chain differentiation rule.
"Janus-like faces" characteristic of SCALARS are explicitly
manifested here: each SCALAR essentially possesses the two

12Certaln problems concerning with a proper handling the deriva-
tives of RE's, IM's, C.C.'s, etc. were a primary motive for the develop-
ing the routine in question.

12

representatives, a variable and a function; these are the pairs
U and U: (x), V and V: (y), W and W: (x ,y ,V,U), respectively.
Specifically, under the action of the derivative operator the
'expanded ' expression of the SCALAR with explicit arguments
is used while in other cases a (distinct) separate identifier is
involved.

A distinguishing feature of the SCALAR data type is the
strictly tree-like structure of the variable dependencies im-
plied, any loops being forbidden. Associating the branchings
with SCALARS, all the leaves are claimed to be COORDINATES.
Obeying these conditions, the tree of the mutual SCALARS
dependencies may be arbitrari ly complex.

I t can be seen tha t the 'SCALAR' da ta type suffices for the
most applications when it is necessary to handle a ramified
dependencies between a collection of variables.

The SCALARS were not incorporated with Reduce' alge-
braic processor. This facility functions as a separate collec-
tion of routines. Its implementat ion is not straightforward,
the main problem being as follows. For every mathemati-
cal expression to be differentiated, it is necessary to know
what variables belonging to the classes of COORDINATES and
SCALARS it actually depends on, both explicitly (for the de-
pendence upon COORDINATES and SCALARS), and in to~lal (for
the dependence upon COORDINATES) 13. Thus the dependence
list of the mathemat ical expression to be differentiated has
to be preliminarily found.

The determinat ion of the dependence list is realized by
means of a twofold trick. At first, every mathematical ex-
pression (a function) is being associated with the overes-
timating collection of the dependence lists. The lat ter is
formed by means of joining the dependence lists of the origi-
nal expression constituents at the moment of the expression
construction. Obviously, the dependence of the resulting
expression (i.e. the collection of COORDINATES and SCALARS
which are actually involved in the expression) may not ex-
ceed the joint dependence of its constituents. On the other
hand, after simplification, the dependence of the mathemat-
ical expression may reduce, so joining the dependencies of
the consti tuents yields generically the overestimating rather
than actual dependence of the whole.

At second, the routine providing determination of the ac-
tual dependence lists was developed. They are constructed
by means of exhausting the mentioned overestimating de-
pendencies.

In principle, the determinat ion of the dependence of a
mathematical expression upon the variables belonging to a
certain class is realized by means of its recursive scanning
and collecting the relevant variables. In addition, let a list
of the variables yet not found be supported. So, whenever
the dependence upon a new variable is detected, t:his vari-
able is added to the relevant dependence list and is removed
from the list of variables yet not found. Then, start ing with
the (supposedly) overestimating dependence list mentioned
above, the procedure may stop as soon as the list of variables
yet not found is exhausted. In a major i ty of generic situa-
tions, this trick allows one to avoid scanning of the whole
mathemat ical expression and noticeably saves t ime spent on
determining the dependence lists.

In any case, practice shows that for non-trivial calcula-
tions this t ime expenditure proves to be negligible compara-
tively with the other expenditures, especially time spent on
simplifications.

Let us give here a simple example which demonstrates
more clearly a potential power of SCALARS. Given the fol-

13Thus the three lists of variables are to be actually supported.

lowing collection of declarations and foremost assignments

Declare COORDINATES r,th,ph,t;
declare SCALARS x,y,z(r,th,ph),

W,Wx,Wy,Wz,Wt,
Wxx, Wyy, Wzz, Wit (x, y, z, t) ;

SCALAR VALUES are z=r*COS(th),
x=r*SIN (th) *COS (ph). y=r*SIN (th) *SIN (ph) ;

SCALAR DERIVATIVES are DF(W,x)=Wx, DF(W,y)=Wy,
DF(W,z)=Wz, DF (W,t)=Wt,

DF (Wx,x) =Wxx, DF (Wy, y) =Wyy,
DF(Wz,z)=Wzz, DF(Wt,t)=Wtt ;

the instruction
Eva lua te I d (# d W)/VOL;

(here '#' denotes the Hodge star operation, flat 4-dimension-
al Minkowski metric is assumed) automatical ly yields the
answer

- Wxx - Wyy - Wzz +Wtt
i.e. the D'Alamber t ian (0~t - 0 ~ - 0 ~ - O=z)W(x, y, z, 4).
[The part ial derivatives have been condensed here to the
variables (which belong to the class of SCALARS) and this
ability usually accelerates calculations and makes the results
more manifest.] Since x, y, z are, essentially, the functions
of the spherical coordinates, W is a 'function of functions'
in fact. Hence in the above example the derivatives with
respect to functions are calculated.

Above, we have used some records denoting differential
(exterior) forms. Let us now outline the basic features of
the implementation of this impor tant mathemat ical notion
in GRCEc.

The exterior calculus subpackage is a collection of rou-
tines, more or less independent, which only exploits the al-
gebraic processor of Reduce for the simplification of general
mathematical expressions. One of its impor tant underly-
ing elements is the intrinsic representation of the relevant
da ta which was specially designed to minimize the specific
overheads connected with the basic operations with exterior
forms: summation, exterior multiplication, exterior deriva-
tion, etc. Not going into the full details here, we would like
to give some examples only.

In particular, the 1-form
z d t h + I*z*SIN(th) d ph

(see declarations of z,th,ph, etc. in the above example), con-
sisting of the two terms, is intrinsically represented by the
following bracket structure:
(((z ((r th) z)) 4 (NIL . T)(T . T))

(((TIMES I z (SIN th))((r th) z))
T8 (NIL . T)(NIL . T)(T . T)))

(s tandard LISP notations are used). Here (z ((r th) z)) and
((TIMES I z (SIN t h)) ((r th) z)) are the so-called alge-
braic lists. Their CAR elements, z ~ z and (TIMES I z (SIN
t h)) ,-~ i z sin 8, respectively, are the very functions (coef-
ficients in the form expansion with respect to the exterior
products of the differentials of coordinates or the elements of
the other basis). Next, CDKs (((r th) z)) (here coinciding
for the both terms) are the lists of the short lists of the over-
estimating dependences of the corresponding functions. In
our case, they both consist of the only element ((r th) z) .
This record means that the corresponding expressions (cod-
ing the functions r and i z sin 8) depend at most on the C0~-
ORDINATES r and th in total, i.e. both explicitly and via the
possible dependence on SCALARS which ul t imately depend
on COORDINATES, possibly, via the chain of other SCALARS.
Removing the first element, the list (z) means tha t the func-
tions may explicitly depend on the SCALAR z alone.

These data, characterizing the dependencies of mathe-
matical expressions, is substantial for a constructing the
derivatives taking into account the mutual connections of

13

SCALARS and COORDINATES and a proper applying the chain
derivative rule.

Next, CURs of the elements describing the terms, namely,
(4 (NIL . T)(T . T)) and (8 (NIL . T)(NIL . T) (T .
T)), encode the so-called ' ta i ls ' d O and d ¢, respectively. In
general, a ' tail ' of an exterior M-form is a product d x ~1 A
. . . d x ~y A . . . d x ~M in holonomic mode or b ~1 A . . . b ~y A
. . . b aM in anholonomic mode (b" is the covector basis).

The e x p o n e n t i a t e d ord ina l n u m b e r s in the beginning of
the 'tail ' lists equal ~ 2 =y or ~ 2 =~ , where a j or aj are,
for holonomic mode, the ordinal numbers of the coordinates
whose differentials are involved in the 'tail ' (aj) or, for an-
holonomic mode, the ordinal numbers of the cobasis ele-
ments (a j) , respectively. In our case the COORDINATE th
possesses the ordinal number 2 and COORDINATE phi pos-
sesses the ordinal number 3. Hence one obtains 4 and 8,
respectively (the 'tail ' dO A d e corresponds to the exponen-
tiated ordinal number 4 + 8 = 12).

Finally, the lists ((NIL . T)(T . T)) and ((NIL . T)
(NIL . T)(T . T)) represent the b i t m a p s of the 'tails' el-
ements and their le f t par i t ies . In order to make this more
transparent, let us re-cast these lists of pairs into the two
sequences of CARs and CDRs of the pairs:

{{o x} { e v e n even }}
{{o o x}{eveneveneven}}

Here 'o'(,,~ NIL) denotes the absence while ' ×'(-~ T) the pres-
ence of the differential d x ~ (the cobasis element b ~) in the
sequence d x 1, d x 2 , . . . (b 1, b2, . . ., respectively) which are in-
volved in the 'tail ', the mark 'even' , ,~ NIL denotes the parity
of the numbers of elements of the 'tail ' on the left to that
point (' odd ' ,,~T). For example, the 'tail ' dO A d e is coded as

((NIL . T)(T . T)(T . NIL))
{{o x x} {even even o d d } } .

The outlined structure comprises the minimal informa-
tion necessary for the immediate constructing the results of
summation, exterior multiplication and exterior derivative
on exterior forms. It allows one to realize the exterior cal-
culus in an efficient and straightforward way. However only
the explicit expansions with respect to some basis can be
efficiently handled.

5 Performance estimate and concluding remarks

GRCEC system makes it possible to formulate physical prob-
lems and generate their solutions with the help of a sim-
ple language succeeding even in comparatively complicated
cases.

A majority of more or less complicated problems is too
bulky to be satisfactorily described in a section of a journal
article. There is however an example which can be discussed
here in brief and which gives some evidence of the above
property, at least within certain limits. This is the calcu-
lation of the curvature of the so-called Bondi' metric (see
P~efs. [9]).

To that end, let us consider the following fragments of
the GRCEc output

Example 3.
. S o m e aux i l i a ry m e s s a g e s are sk ipped

Problem Bondi_metric.
DATA :
declare C00RDINATES u, r, theta, phi;
declare SCALARS U, V, B, G(u, r, %heta);
TETRAD is T2 = -(E ** B) d u,

T3 =(E ** B) *(d r + V d u / r) ,
TO r *(-(U * E ** G) d u

1.+(E ** G) d t h e t a
+(I * SIN(theta)) d phi J.

t / E ** G)/ SQRT (2) ,

T1 = r *(-(U * E ** G) d u
1.+(E ** G) d theta

-(I * SIN(theta)) d vhi 4,
¢ / E ** G) / SQRT (2) ;

END OF DATA.
INSTRUCTIONS :

show time;
find UNDOTTED SPINGR CURVATURE;
type RICCI00", UWEYLO;
quit;

END OF INSTRUCTIONS.
RUN
. S o m e o u t p u t is sk ipped
Time is 1.6 s.

==> find UNDOTTED SPINOR CURVATURE
--> find UNDOTTED SPINOR CUKVATUKE
SCALAR CURVATURE is not found in DATA section
::::>SCALAR CURVATURE has been calculatedl++15.4 s.
RICCI SPINOR is not found in DATA section
::::>RICCI SPINOR has been calculated ~++16.8 s.
UNDOTTED WEYL SPINOR is not found in DATA section
: : : :>UNDOTTED WEYL SPINOR $

thas been calculated ~+-~7.8 s.
==> type RICCIOO ~, UWEYLO
RICCI SPINOR Component:

¢
RICCI . = 4

O0
t 2
t 2 * D F (B : (u , r , t h e t a) , r) - D F (G : (u , r , t h e t a) , r) *r
1. .

1" 2*B
1. E *r

UNDOTTED WEYL SPINOR Component:

UWEYL =
0 ¢

t (2*DF (B : (u, r, theta) , r) *DF (G : (u, r, theta), r) *r
I++~ - DF(G:(u,r,theta),r,2)*r¢

t - 2*DF(G: (u,r,theta) ,r))/
2*B

(E *r)
==> quit

Certainly, the above output does not require lengthy elu-
cidations that is itself a good argument in favour of the ap-
proach realized.

The resulting simple equations described in example 3
can be rewritten in a manifest usual form as

e2B~06 = - G r q- -2Br, e2BqJo = - G r r -- -2Gr -I- B~G~.
r r

They play an important role in the theory of gravitational
radiation [9]. The intermediate calculations leading to them
are however rather involved. As far as we know, the equiva-
lent result required about a half a year long calculation 'by
hand'.

It i s worth noting that the equivalent problem (calcu-
lations in Bondi' metric) traditionally served as one of the
tests of the performance rate for computer algebra systems
dealing with the gravitation theory (cf. Ref [12]). In frames
of GRCEc, it corresponds to the calculation of the curvature
2-forms. The above test yields the estimate of the relevant
time expenditure; it amounts to 5 . 4 - 1.6 = 3.8 seconds (see
the time labels in example 3). It should be mentioned that
the calculation involves here the determination of the SCALAR
CURVATURE besides the curvature 2-forms. The hardware
characteristic are: IBM PC AT compatible computer with
Am486DX4-S 120 MHz CPU (8 KB+256 KB cache), PCI
BUS, 8 Mb RAM. A reference point useful for comparisons
is provided by the time of the expanding (x+y+z)**100: Re-
d u c e consumes for this 18.6 seconds.

A comparison test with the straightforward E x c a l c code
(written by V.V. Zhytnikov) which realizes the equivalent
mathematical background may be of interest. The deter-
mination of the curvature 2-forms for the Bondi' metric re-
quires about 19 seconds, although it should be borne in mind

14

that about half of the work is superfluous here: roughly
speaking, the relevant result is calculated together with its
complex conjugation. In any case GRCCEc is more than twice
faster than Excalc on this problem.

GRCEc has not been entirely completed yet and will
be further developed and amended. Nevertheless, practice
amassed gives the evidence in favour of its efficiency and ex-
cellent convenience for practical calculations. Hence, GRCEc
may be estimated as a promising base for the developing the
advanced efficient tool for the doing computer analysis of a
wide scope of problems in important fields of the theoretical
physics.

Acknowledgments

S.T. was partially supported in frames of the Russia. Min-
istry of Science project 640.01.77. I.G.O. is grateful to Stan
Steinberg and Ecodynamics Research Associates, Inc. for
partial support of this work. The authors are grateful to
Dr. M.A.H. MacCallum for the useful comments on the
draft version of the paper and to V.V. Zhytnikov for the
important information concerning the CAS's performance
rate.

References

[1] Wolfram, S. Mathematica. A System for Doing Mathe-
matics by Computer, Second edition, Addison-~Vesley,
1991; L. Parker and S.M. Christensen, MathTensor. A
system for doing tensor analysis by computer, Addison-
Wesley, 1994.

[2] Maesyma. Reference Manual, version 13, Macsyma
Inc., 1992.

[3] Maple V. Library Reference Manual, Springer-Verlag;
GRTensor. Component tensor calculations for General
Relativity, Version 0.26, 1993; Musgrave, P., Poll-
ney, D. and Lake, K. GRTensorII, Queen's University,
Kingston,Ontario, 1994.

[4] Hearn, A. Reduce User's Manual. Version 3.5, Rand
publication CP78, 1993; Schruefer, E. EXCALC. A Sys-
tem for Doing Calculations in the Calculus of Mod-
ern Differential Geometry. USER's MANUAL, 1993;
Kadlecsik, J. Ricci calculus package in Reduce, User's
Manual, 1994; Hasper, J.F. and Dyer, C.C. Tensor Al-
gebra With REDTEN. A User Manual. 1992; Staufer,
D., Hehl F.W., Ito, N., Vinkelmann, V., and Zabolitzki,
J.G. Computer simulation and computer algebra, Third
edition, Springer, Berlin, 1993; Schruefer, E., Hehl
F.W. and McCrea, J.D. Gem Rel. Gray., 19, 197, 1987.

[5] Marti, J., Hearn, A., Griss, M., Griss, C. Standard Lisp
Report, SIGPLAN Notes, ACM, N.Y., 14, N 10, p. 48,
1979.

[6] Fric I. Sheep. User's guide. University of Stockholm,
1977; MacCallum M.A.H. and Skea, J.E.F. SHEEP: A
computer algebra system for general relativity: in "Al-
gebraic computing in general relativity", (Proceedings
ot ~ the first Brazilian school on computer Mgebra, vol
2), eds. Reboucas M.3. and Roque, W.L., Oxford Univ.
Press, Cambridge, pp. 1-172, 1994; HSrnfeldt, L. Sten-
sot. Reference Manual, University ot ~ Stockholm.

[7] The system ORTOCARTAN - user's manual, fourth
edition, Warsaw, 1992; Krasifiski, B., Perkowski, A.,
Gen. Rel. Gray., 25, 165, 1993.

[8] Kramer, D., Stephani, H., Herlt, E., MacCallum M. Ex-
act solutions of Einstein's equations, Cambridge Univ.
Press, Cambridge, 1980.

[9] Bondi, H., van der Burg, M. G. J., Metzner, A.W.K.,
Proc. Roy. Soc. London, A269, 21, 1962; Campbell,
S.J. and Wainwright, J. Gem Rel. Gray., 8, 978, 1987.

[10] Tertychniy S.I., Zhytnikov V.V., Ponomariev V.N. The
specialized programming system for analytical calcula-
tions in General Relativity, Contributed papers on GR-
10, eds. Bertotti, B., DeFelice, F., Pascolini, A., Roma,
1983, vol. 1, p.449-450; Zhytnikov V.V., Obukhova I.G.
and Tertychniy S.I. Computer Algebra System for Cal-
culations in Gravity, in: Proceedings of the VII So-
viet conference on Gravity Theory, Yerevan University,
1988, p. 67-68; Obukhova I.G., and Tertychniy S.I.
and Zhytnikov V.V. GRG - computer algebra program
for gravity and classical field theory, Preprint Moscow
State Pedagogical Institute, 1991, 14p; Zhytnikov V.V.,
Obukhova I.G. and Tertychniy S.I. Computer Algebra
Program for Gravitation, in: Abstracts of contributed
papers of the GR-13, Huerta Grante, Cordoba, 1992)
p. 309;

[11] Zhytnikov, V.V. GRG: Computer Algebra System for
Differential Geometry Gravitation and Field Theory
Version 3.1, Moscow, 1992, Chung-Li, 1993; GRG 3.1 is
available via anonymous ftp on ~:ftp. maths, qmw. ac. uk'
in the directory 'pub/grg3.1' .

[12] Pollney, D., Musgrave, P., Santosuosso, K. and Lake,
K. Class. Quantum Gray., 13, 2289, 1996.

