
Position Statements on Strategic Directions
Research on Programming Languages

Chris Hankin
Imperial College, London
and
Hanne Riis Nielson
University of Aarhus
and
Jens Palsberg
Purdue University

for

One of t he work ing g roups a t t h e workshop on Strategic Directions in Computing Research was
conce rned wi th Programming Languages. We s u m m a r i s e the s t r a teg ic d i rec t ions identif ied by t he
g roup and we in t roduce 16 of t he pos i t ion s t a t e m e n t s t h a t formed t h e bas is for t he repor t . These
s t a t e m e n t s c an t h e n be found a t t h e following pages.

As part of the celebration of it 's 50th anniversary, the ACM organised a workshop
on Strategic Directions in Computing Research at MIT, Boston, in June 1996. Tile
goal was to have a number of working groups examine the current status and future
directions of computing research as well as strategic issues. More than 20 working
groups were created including one on Programming Languages.

The working group has prepared a report and each of the participants were invited
to write a position statement. The report [1] appears in Comput ing Surveys, Vol.
28(4), December 1996. The position statements appear in this volume of SIGPLAN
Notices; also they appear as an electronic supplement to tile above mentioned
Comput ing Surveys issue.

We shall begin with a summary of some of the main points of the report,: we reier
to [1] for more details. Then we give a brief introduction to the position s tatements
to be found on the tbllowing pages.

1. PROGRAMMING LANGUAGE RESEARCH

Programming language research covers a broad spectrum from systems work through
to theory. The area studied by the working group is mainly concerned with the
discovery of principles and generic techniques; it is not, with a few notable excep-
tions, about the invention of new languages. Many of the results of the area are
generally applicable to a wide variety of language paradigms including procedu-
ral languages, functional and logic languages, object-oriented languages etc. Many
common programming language features have emerged from this area.

In addition to language features, programming language research has also pro-
duced important techniques. Let us mention the five areas that received special
attention by the working group:

ACM SIGPLAN Notices 59 V. 32(1) January 1997

i;!!
!i!i~
i~!i!

http://crossmark.crossref.org/dialog/?doi=10.1145%2F251595.251599&domain=pdf&date_stamp=1997-01-01

2 Hankin, Nielson, Palsberg

--Semantics: Formal semantics is concerned with the description of progr~tm mean-
ings by operational, denotational or axiomatic specifications. It improves our
understanding of new as well as well-known programming constructs and it, pro-
vides a yardstick fbr implementation arid a foundation fbr analysis and verification
techniques and program transfbrmation. Over the years different techniques have
been developed to handle the different programming paradigms and the different
applications.

---Type s~/sterns: A type is a collection of w~lues which share a common structure,
operations and other properties. A type system is a specification of how types
are assigned to values. Type safety - the prevention of certain classes of pro-
gramming errors - is a desirable property of any programming language; many
of the recently published standards for safety critical software insist upon the
use of strongly typed programming languages. Over the years different type
systems have been developed and found their ways into commercially successful
languages.

--Program analysis: Program analysis is concerned with the problem of statically
predicting properties of the dynamic executions of programs. Traditionally, pro-
gram analysis has been used extensively to enable various optimizations and
transformations in compilers; among the newer applications is the validation of
software to reduce the likelihood of malicious behaviour. Over the years a wide
variety of techniques have been developed to handle the different analysis prob-
lems and different programming paradigms.

--Program transfor'rnation: The goal of program transformation is to triodify some
representation of the program to change some of its properties whilst preserv-
ing others. For example, most useful program transformations preserve the in-
p u t / o u t p u t semantics of the program but might radically change the program's
complexity. The transformation of programs is an important, technique in the de-
velopment of reliable and efficient software. Techniques have been developed for
different stages of the software development process: when developing programs
from specifications, when specialising existing programs to specific contexts and,
in particular, in optimizing compilers.

---Implementation: This area concerns compilation arid run-time support. Cur-
rent concerns in compiler technology include compilation for distributed systems,
optimisations across module boundaries and correctness issues. Memory man-
agement, particularly on complex cache architectures, is a critical concern in
run-time support. This area is increasingly concerned with the development of
generic tools rather than tailored solutions.

Programming language research in the 1990s is slowly changing from what it was
in the 1970s and 1980s: the traditional uni-processor machines are being replaced
by heterogeneous and physically distributed computer networks, the traditional line
based user interfaces are being replaced by graphical user interfaces, nmlti-media
applications are the rule rather than the exception, etc. There is a growing need for
programming languages to adapt to this fundamental change and thereby for pro-
gramming language research to address these problems more thoroughly: We need
to understand the semantics of the language features developed for programming
these systems; we need to understand what type security means in this setting;

60

Position Statements on Programming Languages 3

we need to develop program analyses that statically predict the behaviour of these
systems; and we need to develop implementation techniques that utilise the wtst
amount of parallelism present in these networks.

2. STRATEGIC DIRECTIONS

Based on the position statements of tile group members, tile Programming Lan-
guages working group identified five strategic directions. They represent a mix
of continuing, long-term research going on within tile field, and more recent di-
rections sparked by changes in the larger world of computing. In tile past, tile
programming of single computers and computers in local-area networks has been
the dominant programming task. In tile coming years, programs will be needed
for global computing, domain-specific computing, embedded systems, large-scale
systems, and more. These application areas ahnost certainly require new program-
ming concepts. For example the heterogeneous, distributed and dynanfic nature
of global computing networks raise issues to do with configuration, coordination,
security, and exploitation of interprocessor parallelism. In the context of embedded
systems, performance predictability and fault tolerance pose new challenges.

The identified strategic directions are:

(1) Distributed Corr~putin9: One of the recurrent themes throughout the position
statements is distributed computing. This poses new challenges in all areas
of programming language research: how do we design languages for such sys-
tems that have firm semantic foundations, support the safe programming of
distributed systems and utilise tile vast amount of parallelisnr offered by the
networks. Persistence and support for transactions are examples of areas of in-
creasing importance. A common feature of distributed systems, which is also of
independent interest, is mixed language working - "integration of programming
paradigms" is an important theme.

(2) Incrementality, Modularity and Abstraction: Software systems are long-lived
and must survive many modifications in order to prove useful over their in-
tended life span. The primary linguistic mechanisms for managing complexity
are modularity (separating a system into parts) and abstraction (hiding details
that are only relevant to the internal structure of each part). A challenge for fu-
ture language design is to support modularity and abstraction in a manner that
allows incremental changes to be made as easily as possible. Object-oriented
concepts have much to offer and are the topic of much on-going investigation.

(3) Generic Formalisms, Integration of Tools aud Techniques: Many of the fbr-
malisms that we work with have been developed in the context of specific
problem domains; there is the need to develop these further to provide the ba-
sis for generic tbrmalisms. At the more systems-oriented end of the spectrum,
there is the need to integrate the tools and techniques that are being produced
by individual research activities into "real" systems. Par t of the work in this
direction also involves developing a better understanding of the relationship
between different approaches.

(4) Correctness, Efficiency, Engineering, and Pvagmatics: The goal of program-
ming language research must be to define languages and techniques which im-
prove the quality of software. The notion of quality is multi-faceted but must

61

4 Hankin, Nieison, Palsberg

include programmer productivity, verifiability, reliability, maintainability, and
efficiency. This theme has assumed greater importance following a nmnber of
well-publicised disasters, such as the Pentium chip and Ariane-5.

(5) Ed~eatiort arid 2~ehnolo9~ j Tra, r~.sfer: Although only few of the position state-
rnents mention this aspect, the validity of all programming language research
hinges on our ability to educate others and transfer our technology into prac-
tical systems. For example, we can consider TCL to be a failure of education
and technology transfer because the language does not even have a syntax suit-
able for presentation by a grammar, arid Java a success, since the industrial
group responsible for its design used research developments of the past decade
to great advantage.

3. RESEARCH THEMES

In addition to identitying the strategic directions mentioned above the working
group has also identified research themes within the areas of Semantics, Type Sys-
tems, Program Analysis, Program Transformation and Implementation. We sum-
marise the themes below and give pointers to the position statements discussing
them in more detail. The position statements included in this collection are:

--Luca Cardelli: Global Computation

--Charles Consel: Program Adaption based on Program Transfbrmation

--Patrick Cousot: Program Analysis: The Abstract Interpretation Perspective

--Michael Hanus: Integration of Declarative Paradigms: Benefits and Challenges

--Robert Harper and John Mitchell: ML and Beyond

--Daniel Le M6tayer: Program Analysis for Software Engineering: New Applica-
tions, New Requirements, New Tools

--Flemming Nielson: Perspectives on Program Analysis

--Martin Odersky: Challenges in Type Systems Research

--Robert Paige: Future Directions in Program Transfbrmations

--Alberto Pettorossi and Maurizio Proietti: Future Directions in Program Trans-
formation

--John Reynolds: Beyond ML

--Jon G. Riecke: Semantics: The Description of Computational Structures

--Barbara Ryder: A Position Paper on Compile-time Program Analysis

--David A. Schmidt: On the Need for a Popular Formal Semantics

--Dennis Volpano: Provably-Secure Programming Languages for Remote Evalua-
tion

--Reinhard Wilhelm: Program Analysis - A Toolmaker's Perspective

3.1 Semantics

The working group has identified four research themes in Semantics:

(1) Language design.

(2) Foundations.

(3) Paradigm integration.

62

Position Statements on Programming Languages 5

(4) New applications.

These themes are primarily addressed in the position statements by Cardelli, Cousot.,
Hanus, Riecke, and Schmidt. The position statements of Harper and Mitchell, Niel-
son, Reynolds and Ryder also address issues related to semantics.

Theme (1) concerns the influence that semantics has had on programming lan-
guage design. Riecke enumerates a number of successes but also highlights some
oufbstanding problems for current semantic formalisms. Nielson also addresses
the role that semantics should play in advising language designers about a judi-
cious choice of language constructs. Theme (2) is mainly addressed by Riecke and
Schmidt. Riecke identifies a number of new" directions fbr research, including re-
active systems, that will require further foundational work. Schmidt appeals for a
~'poputar" style of semantics that extends BNF and carries little fbrmal overhead
- a formalism that can be used by novice programmers to reason a.bout their pro-
grams. Both Schmidt and Cousot advocate that abstract interpretation provides
the right link between different styles of semantics. Theule (3) is explicitly addressed
by Hanus, who discusses the integration of functional and logic programnfing lan-
guages; it also implicitly addressed by Cardelli, who discusses global computation.
Finally, Theme (4) is addressed by a number of the papers but notably by Cardelli
and Riecke; the issues raised include models for global computation, reactive sys-
tems, programming in the large and distributed programs.

Type Systems

The working group has identified four research themes in Type Systems:

(1) Types for objects.

(2) Type based compilation.

(3) Type aware programming environments.

(4) New applications.

These themes are primarily addressed in the position statements by Harper and
Mitchell, Odersky, and Volpano. The position statements of Cardelli, Reynolds,
Riecke, and Nielson also address issues related to type systems.

Theme (1) is discussed by Harper and Mitchell in the context of extending Stan-
dard ML with objects. Theme (2) concerns the exploitation of type infbrmation
in the process of compilation and it is also addressed by Harper and Mitchell. A
related issues is to extend type systems to carry information about the use of re-
sources; this is discussed by Odersky and Reynolds; more generally the relationship
to program analysis is touched upon by Odersky and Nielson. One issue related t.o
theme (4) is addressed by Volpano who discusses the use of type systems for en-
suring the security of programs in languages with remote procedure calls; Cardelli
advocates more generally for type systems for distributed systems.

3.2 Program Analysis
The working group has identified four research themes in Program Analysis:

(1) Unification of different techniques.

(2) Realisation of program analyses.

63

6 Hankin, Nietson, Palsberg

(3) Choice of program analyses.

(4) New applications.

These themes are primarily addressed in the position statements by Cousot, Le
M6tayer, Nielson, Ryder, and Wilhelm. The position statements of Odersky and
Volpano also addresses issues related to program analysis.

Theme (1) is concerned with estabilishing a better understanding of the strengths
and weaknesses of the different techniques to program analysis. This is discussed
in detail by Nielson and Ryder and touched upon by Le M6tayer and Wilhelm.
Theme (2) is concerned with the development of generic tools for program analysis.
Wilhelm argues that the time is ripe for addressing this challenge. Le M6tayer and
Ryder point out that user-interaction is needed in these tools if they are not .just to
be hidden components in compilers. Theme (3) is addressed by Ryder who raises
issues as how do one select the appropriate analysis for a given application, how
do we trade cost for precision etc. The issues is also discussed by Cousot in the
context of designing abstract domains (or algebras) for abstract interpretations.
Related to theme (4), Le M6tayer argues that program analysis has a role to play
outside optimising compilers, namely in software engineering, and discusses the new
demands such applications will put on the program analysis techniques m general.
It is argued by Nielson and Ryder that program analysis should have an impact on
programming language design to ensure acceptable behaviour of software on, say,
heterogeneous and physically distributed computer networks.

3.3 Program Transformation

The working group has identified four research themes in Program Transfbrmation:

(1) Automatic tools.

(2) Algorithm development and design.

(3) Foundations.

(4) New applications.

These themes are primarily addressed in the position statements by Consel, Paige,
and Pettorossi and Proietti.

The first theme is addressed by all of the position statements. Consel and Paige
focus mainly on partial evaluation, although Paige discusses finite differencing and
data structure selection by real-time simulation as well. Petterossi and Proietti em-
phasise the fold/unfold style of program transformation. Theme (2) concerns the
development of new algorithms using transformational programming techniques;
Paige identifies the better integration of algorithm design and program development
as one of the research directions for transformational programming. Paige and Pet-
terossi and Proietti discuss the semantic foundations of program transformation.
Finally, Theme (4) is addressed by Consel; p'rogram adaptation is a collection of
techniques which allow generic programs to be adapted for a particular context of
use - the techniques include partial evaluation, run-time code generation and data
specialisation. Petterossi and Proietti identify the "lifting" of program transforma-
tion techniques to collections of program modules (rather than single stand-alone
programs) as a pressing problem.

64

Position S ta tements on Programming Languages 7

3.4 Implementation

The working group has identified five research t, hemes in Implementation:

(1) Compilation for distributed systems.

(2) Optimization.

(3) Compiler correctness.

(4) Memory managenlent.

(5) Generic tools.

These themes are not discussed in detail by any of the position statements below.
Issues related to theme (1) are briefly discussed by Harper and Mitchell, issues
related to theme (4) are touched upon by Reynolds, and issues related to theme
(2) and (5) are also discussed by the position statements on program analysis and
program transformations.

4. CONCLUSION

The position statements included in this collection provide a good overview of the
range of the discussions of the working group. The interested reader is urged to
consult [1] for a more detailed presentation of the findings of the group. A number of
other groups also discussed programming language issues: most notably, there were
groups on Object-Oriented Programming; Software Engineering and Programmmg
Languages; and Human Computer Interaction. The reports of these other groups
may also be found in the December 1996 volume of Computing Surveys.

REFERENCES

[I] CHRIS HANKIN, }{ANNE R, IIS NIELSON, .lENS PALSBERO 1996. Stra.tegic Directions for He-
search on Programming Languages. In Corr~p~tting 5"~L~'ve:~/s Vol. 28(4), December 1996.

65

