
Program Analysis The Abstract
Perspective
Patrick Cousot

l~cole Normale Sup~rieure, Paris

Interpretation

Program analysis should evolve from a disparate collection of methods and algorithms to a mature
discipline founded on a well-established methodology. Abstract interpretation can be used as a
basis for such a methodology.

1. PROGRAM ANALYSIS

Program semantic analysis consists of" designing and writing program analyzers. A
program analyzer is a program which takes as input da ta a (possibly annotated)
program (written in some language) and (fully automatically) produces as output
answers to questions about runtime properties which are valid for all (or some-
times for some) possible executions of that program. Because of undecidabitity or
complexity, these answers are necessarily partial, but should be irrefutable.

Program analysis is both a theoretical activity (close to formal specification meth-
ods, semantics, etc.) and a practicM activity (close to compiler design and devel-
opment). In a sense this situation is quite creative: looking at a real and vast
application problem is a fruitful guide to the process of formalization of tile seman-
tics of programming languages, proof methods, etc. This is also a difficult position
akin to the old debate between pure and applied mathematics. Often practitioners
are not worried about theories while theorists rarely take t ime to find applications
of their theoretical work which is loosely coupled with practical problems.

2. DESIGN METHODOLOGY

Semantic analysis (of programs, systems, etc.) should become a mature discipline
to be included in educational curricula in computer science. This requires the disci-
pline to evolve from an ill-assorted collection of methods and algorithms to a large
scope formal reasoning and design methodology. In particular, program analysis
methods should be explained in language, program encoding, semantics, property,
property encoding, and approximation independent way, to be of very broad scope
and wide usefulness. This might be possible by reasoning on tile approximation
of the structures involved in semantical specifications. This effort would cuhninate
in a general theory of semantical approximation leading to a tractable composable
parameterized semantical analysis design methodology.

3. ABSTRACT INTERPRETATION

Abstract interpretation understood as a theory of' semantic approximation is a basis
for such a methodology. I t relies on the idea that the specification of an analyzer is
an approximation of a semantics, where concrete or exact properties are replaced

73

http://crossmark.crossref.org/dialog/?doi=10.1145%2F251595.251601&domain=pdf&date_stamp=1997-01-01

16 Patrick Cousot

by abstract or approximate properties. This idea of approximation, and dually
of refinement, is central to computer science although it is often left informal.
To be of general scope, its presentation should emphasize underlying concepts and
therefore be presented in a language, semantics and property independent way thus
providing modular techniques and tools which can be composed to design actual
program analyzers which are correct (and efficient), by construction.

4. SEPARATION OF CONCERNS

The separation between:

- - T h e specification of the program properties to be determined (e.g. by a semantics
and an abstraction function);

- - T h e presentation of the specification (using fixpoints, constraints, inference sys-
tem, etc. [5]);

- - T h e form of questions for interfacing the analyzer (complete or partial (demand-
driven) abstract properties, etc.)

- - T h e abstract semantic domains/algebra which are used in the analysis;

- - T h e resolution algorithms (iterative fixpoint computation, direct resolution by
elimination, etc.)

leads to clearly separated problems which can be studied independently. We dis-
cuss briefly below the specification of the program properties through a hierarchy
of semantics and then the abstract semantic algebra which are used for program
analysis.

5. HIERARCHIES OF SEMANTICS

Founding a program analysis methodology on a specific semantics (small/big step
operational, denotational [14], weakest-preconditions, etc.) turns out not to be very
convenient. This is because a program analysis methodology based on a compo-
sitional semantics (e.g. denotational or axiomatic) can hardly be formulated inde-
pendently of a specific language syntax and a specific class of program properties.
Consequently the choice of a specific semantics may lead to elegant or tortuous
specifications of properties whether they are directly expressible by the semantics
or not: think of invariance properties expressed in terms of a denotational seman-
tics or termination in terms of a small-step operational semantics. Consequently
no particular semantics can be considered as general purpose.

We suggest instead to consider hierarchies of semantics which can describe pro-
gram properties, tha t is program executions at various levels of abstraction or
refinement [2]. Then for a given class of properties there should be a natural choice
of semantics in the hierarchy (for example strictness analysis is awkward to explain
using a denotational semantics [18] but very simple using a relational semantics [3]
since there is a simple way to explain how a relation can be understood as a logical
approximation of another, whereas this is not so simple for functions. Relations are
too abstract to express absence, or more generally comportment which requires a
further refinement [4]).

Abstract Interpretation 17

6. HIERARCHIES OF ABSTRACT ALGEBRAS

To a unique encoding of abstract properties (e.g. using logical fbrinulm or term
algebra), we prefer the idea of hierarchies of application independent abstract al-
gebras (the term abstract algebra is better than abstract domain since the design
must include abstract properties but also abstract operations, widenings, . . .). An
example of multi-uses abstract algebra is linear inequalities for the convex-hull ap-
proximation of a set of vectors of numbers by a polyhedron [7] which have been
used to estimate the size of arguments of logic programs [1; 9] and for infinite
state model-checking [12; 8] including hybrid systems [13]. Another e×ample is
BDDs originating from model-checking but also useful to cope with size explosion
in strictness analysis [16]. Not enough such analysis independent abstract alge-
bras are presently available, in particular for discrete structures (see a.o. [6; 10;
19]) as opposed to numerical structures where the spectrum is wider [7; 11; 15].
Some abstract algebras are used without being clearly identified (e.g. fbr type in-
ference, see however [17] for references). In this area, mainly of algorithmic nature,
not enough constructive methods and algorithms h'om algebra, functional analysis
or discrete mathematics have been investigated. Such algorithmic proMems are
rather involved and require experts, but their results could be easily incorporated
in portable widely distributed libraries as is the case e.g. in the fields of numerical
analysis and operational research.

7. DESIGN OF PROGRAM ANALYZERS

From a more practical point of view, we think that the uniform design of:

- - hierarchies of semantics,

- - hierarchies of abstract algebras

at various levels of abstraction/refinement would lead to generic program analysis
tools most of which could be included in reusable and composable libraries.

An ultimate practical goal would be to automate t, he generation of such seman-
tic analysis tools primarily for program analysis and more generally for system
specification analysis.

REFERENCES

[1] COUSOT, P. AND COUSOT, R. 1992a. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming 13, 2-3, 103-179.

[2] COUSOT, P. AND COUSOT, R. 1992b. Inductive definitions, semantics and abstract inter-
pretation. In Conf. Ree. Ninthteeenth ACM SIGPLAN-SIGACT ~lmp. on Principles of
Programming Languages (Albuquerque, New Mexico, 1992), pp. 83-94. ACM Press.

[3] CousoT, P. AND COUSOT, R. 1993. Galois connection based abstract interpretations for
strictness analysis, invited paper. In D. BJO RNER, M. BROY, AND I. POTTOSIN Eds., Pr'oc.
lnt. Conf. on Formal Methods in Prvgrammin 9 and their Applications, Academgorodok,
Novosibirsk, Russia, Lecture Notes in Computer Science 735, pp. 98-127. Springer-Verlag.

[4] COUSOT, P. AND COUSOT, R. 1994. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER analysis
of functional languages), invited paper. In Proc. 1994 Int. Co@ on Computer' Languages,
Toulouse, France (16-19 May 1994), pp. 95-112. IEEE Computer Society Press.

[5] COUSOT, P. AND COUSOT, R. 1995a. Compositional and inductive semantic definitions
in fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic form,

75
i ̧ II

18 Patrick Cousot

invited paper. In P. WOLPEIZ Ed., Proc. Seventh 1at. Co@ on Corr~puter Aided Ve:r'ificatwn,
CAV '95, Liege, Belgium, Lecture Notes in Computer Science 939 (3-5 July 1995), pp. 293-
308. Springer-Verlag.

[6] COVSOT, P. AND COUSOT, R. 1995b. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Proc. Seventh ACM Conf. on lS}mctional
Programming Languages and Computer Ar'chitecturv (La Jolla, Ca., 25-28 June 1995), pp.
170-181. ACM Press.

[7] COUSOT, P. AND HALBWACHS, N. 1978. Automatic discovery of linear restraints among
variables of a program. In Conf. [tec. Fifth A C M S I C P L A N - S I C A C T Syrup. on Principles
of Programming Languages (Tucson, Arizona, 1978), pp. 84-97. ACM Press.

[8] CRIDLIC, R. 1995. Semantic analysis of shared-memory concurrent languages using ab-
stract model-checking. In Proe. A C M Syrup. on Partial Evaluation and Semantics-Based
Program Manipulation, PEPM'95 , La Jolla, Ca., 21-23 June 1995 (June 1995). ACM
Press.

[9] DEBRAY, S. 1994. Formal bases for dataflow analysis of logic programs. In G. LEvi Ed.,
Advances in Logic Programming Theory, International Schools for Computer Scientists,
Section 3, pp. 115-182. Clarendon Press, Oxford, U K

[10] DEUTSCH, A. 1992. A storeless model of aliasing and its abstraction using finite repre
sentations of right-regular equivalence relations. In Proc. 1992 Int. Conf. on Computer
Languages, Oakland, California (20-23 April 1992), pp. 2-13. 1EEE Computer Society
Press.

[11] GRANGER, P. 1991. Static analysis of linear congruence equalities among variables of
a program. In S. ABRAMSKY AND W. MAIBAUM Eds., Proe. of the Int. Joint Conf. on
Theory and Practice of Software Development, T A P S O F T '91, Bright, on, U.K., Volume 1
(CAAP '91), Lecture Notes in Computer Science 493, pp. 169-192. Springer-Verlag.

[12] HALBWACHS, N. 1994. About synchronous programming and abstract interpretation. In
B. LE CHARLIER }~d., Proc. of the Static Analysis Syrup., SAS '9It, Namur Belgium, 20-22
Sept. 1994, Lecture Notes in Computer Science 864, pp. 179-192. Springer-Verlag.

[13] HALBWACHS, N., PROY, J.-t~., AND I{AYMOND, P. 1994. Verification of linear hybrid sys-
tems by means of convex approximations. In B. LE CHARLIER Ed., Proe. of the Static
Analysis Syrup., SAS '9It, Nanmr Belgium, 20-22 Sept. 1994, Lecture Notes in Computer
Science 864, pp. 223 237. Springer-Verlag.

[i4] JONES, N. AND NIELSON, F. 1995. Abstract interpretation: a semantic-based tool for
program analysis. In S. ABRAMSKY, G. D.M., AND M. T.S.E. Eds., Semantic modelling,
Number 4 in Handbook of Logic in Comp. Sci. Clarendon Press.

[15] MASDUPUY, F. 1992. Array operations abstraction using semantic analysis of trapezoid
congruences. In Proe. A C M Int. Conf. on Supereomputing, ICS '92 (Washington D.C., July
1992), pp. 226-235.

[16] MAUBORGNE, L. I994. Abstract interpretation using TDGs. In B. LE CHARMER Ed.,
Proc. of the Static Analysis Syrup., SAS '94, Namur Belgium, 20-22 Sept. 1994, Lecture
Notes in Computer Science 864, pp. 363-379. Springer-Verlag.

[17] MONSUEZ, B. 1995. System F and abstract interpretation. In A. MYCR.OFT Ed., P'r'oe.
of the Static Analysis Syrup., SAS '95, Glasgow, UK, 25-27 Sept. 1995, Lecture Notes in
Computer Science 983, pp. 279-295. Springer-Vertag.

[18] MYCROFT, A. 1981. Abstract interpretation and optimising transformations for applica-
tive programs. Ph .D . thesis, Department of Computer Science, University of Edinburgh,
Scotland.

[19] VENET, A. 1996. Abstract cofibred domains: Application to the alias analysis of un-
typed programs. In R. COUSOT AND D. SCHMIDT Eds., Proc. of the Static Analysis Syrup.,
SAS '96, Aachen, Germany, 24-26 Sept. 1996, Lecture Notes in Computer Science 1145,
pp. 368-382. Springer-Verlag.

76 _ .

